JP4618136B2 - Power module substrate manufacturing method - Google Patents

Power module substrate manufacturing method Download PDF

Info

Publication number
JP4618136B2
JP4618136B2 JP2006008505A JP2006008505A JP4618136B2 JP 4618136 B2 JP4618136 B2 JP 4618136B2 JP 2006008505 A JP2006008505 A JP 2006008505A JP 2006008505 A JP2006008505 A JP 2006008505A JP 4618136 B2 JP4618136 B2 JP 4618136B2
Authority
JP
Japan
Prior art keywords
conductor pattern
pattern member
metal layer
power module
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006008505A
Other languages
Japanese (ja)
Other versions
JP2007194256A (en
Inventor
敏之 長瀬
慎介 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006008505A priority Critical patent/JP4618136B2/en
Publication of JP2007194256A publication Critical patent/JP2007194256A/en
Application granted granted Critical
Publication of JP4618136B2 publication Critical patent/JP4618136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/028Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles by means of an interlayer consisting of an organic adhesive, e.g. phenol resin or pitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/72Forming laminates or joined articles comprising at least two interlayers directly next to each other
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、例えば半導体チップなどの電子部品が実装されるパワーモジュール用基板の製造方法に関する。   The present invention relates to a method for manufacturing a power module substrate on which an electronic component such as a semiconductor chip is mounted.

この種のパワーモジュールは、一般にAlNやAl、Si、SiCなどで形成されたセラミックス基板の上面に配置された導体パターンと下面に配置された金属層とを有する絶縁回路基板と、導体パターン上に搭載された発熱体である半導体チップと、金属層の下面に配設されたヒートシンクとを備えている(例えば、特許文献1参照)。そして、半導体チップで発生した熱を、金属層を介してヒートシンク中の冷却水へ放散させる構成となっている。
ここで、導体パターンは、セラミックス基板の上面に、純アルミニウムやアルミニウム合金などで形成された板状の母材をハンダ付けまたはロウ付けによって接合した後、この母材にエッチング処理を施すことで形成されている。また、ヒートシンクは、エッチング処理によって導体パターンを形成した後、金属層に対してハンダ付けやロウ付けなどを行うことで接合されている。
特許第2953163号公報
This type of power module is generally an insulating circuit board having a conductor pattern disposed on the upper surface of a ceramic substrate formed of AlN, Al 2 O 3 , Si 3 N 4 , SiC, or the like and a metal layer disposed on the lower surface. And a semiconductor chip which is a heating element mounted on the conductor pattern, and a heat sink disposed on the lower surface of the metal layer (see, for example, Patent Document 1). The heat generated in the semiconductor chip is dissipated into the cooling water in the heat sink via the metal layer.
Here, the conductor pattern is formed by joining a plate-like base material formed of pure aluminum or aluminum alloy to the upper surface of the ceramic substrate by soldering or brazing, and then subjecting this base material to etching treatment. Has been. The heat sink is bonded by soldering or brazing the metal layer after forming a conductor pattern by etching.
Japanese Patent No. 2953163

しかしながら、上記従来のパワーモジュール用基板の製造方法には、以下の課題が残されている。すなわち、上記従来のパワーモジュール用基板の製造方法では、母材及び金属層をロウ付けした後でヒートシンクをロウ付けしているので、母材及び金属層をロウ付けするときに用いられたロウ材が再び加熱されることになる。そのため、再加熱されたロウ材が導体パターンや金属層、セラミックス基板内に拡散し、拡散した領域における導体パターンや金属層の熱抵抗が増大するという問題がある。また、絶縁回路基板を繰り返し加熱、冷却する温度サイクル特性が劣化することがあるという問題がある。
さらに、導体パターン及び金属層を接合する際に用いるロウ材とヒートシンクを接合する際に用いるロウ材とで融点が異なるロウ材を用いる必要があり、製造に用いる材料の管理など、製造工程が煩雑になるという問題がある。
However, the following problems remain in the conventional method for manufacturing a power module substrate. That is, in the conventional method for manufacturing a power module substrate, since the heat sink is brazed after brazing the base material and the metal layer, the brazing material used when brazing the base material and the metal layer is used. Will be heated again. Therefore, there is a problem that the reheated brazing material diffuses into the conductor pattern, the metal layer, and the ceramic substrate, and the thermal resistance of the conductor pattern and the metal layer in the diffused region increases. Further, there is a problem that the temperature cycle characteristics of repeatedly heating and cooling the insulating circuit board may deteriorate.
Furthermore, it is necessary to use a brazing material having a different melting point between the brazing material used when joining the conductor pattern and the metal layer and the brazing material used when joining the heat sink, and the manufacturing process such as management of the material used for manufacturing is complicated. There is a problem of becoming.

本発明は、前述の課題に鑑みてなされたもので、製造工程を簡略化すると共に温度サイクル特性の劣化を抑制できるパワーモジュール用基板の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object thereof is to provide a method for manufacturing a power module substrate that can simplify a manufacturing process and suppress deterioration of temperature cycle characteristics.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明のパワーモジュール用基板の製造方法は、セラミックス基板の表面に導体パターン部材が配設されたパワーモジュール用基板の製造方法において、前記セラミックス基板の表面に設けられた搭載予定領域上に第1ロウ材箔を介して前記導体パターン部材を配置すると共に、前記セラミックス基板の裏面に第2ロウ材箔を介して金属層を配置し、さらに前記金属層に第3ロウ材箔を介して金属部材を配置して積層体を形成する配置工程と、前記積層体を積層方向で加圧すると共に加熱して前記第1から第3ロウ材箔を溶融させ、前記導体パターン部材及び前記金属層と前記セラミックス基板とを接合すると共に前記金属部材と前記金属層とを接合する接合工程とを備え、前記配置工程で、前記セラミックス基板の前記表面に揮発性有機媒体を塗布した後、前記導体パターン部材及び前記第1ロウ材箔を配置して仮固定し、前記接合工程で、前記揮発性有機媒体を加熱して揮発させることを特徴とする。 The present invention employs the following configuration in order to solve the above problems. That is, the method for manufacturing a power module substrate of the present invention is a method for manufacturing a power module substrate in which a conductor pattern member is disposed on the surface of the ceramic substrate. The conductor pattern member is disposed via the first brazing material foil, a metal layer is disposed on the back surface of the ceramic substrate via the second brazing material foil, and further the third brazing material foil is disposed on the metal layer. An arrangement step of arranging a metal member to form a laminated body; and pressing and heating the laminated body in a laminating direction to melt the first to third brazing material foils; and the conductor pattern member and the metal layer; e Bei a bonding step of bonding the metal layer and the metal member thereby bonding the ceramic substrate, in the arrangement step, volatile components on the surface of the ceramic substrate After applying the sexual organic medium, wherein the conductive pattern member and the first brazing filler metal foil temporarily fixed to place, in the joining step, and said Rukoto evaporate by heating the volatile organic medium.

この発明では、セラミックス基板と導体パターン部材及び金属層との接合を行うと共に、金属層と金属部材との接合を行うので、セラミックス基板に導体パターン部材及び金属層を接合した後で金属層と金属部材との接合を行うことと比較して、導体パターン部材や金属層、セラミックス基板内における第1及び第2ロウ材箔の拡散が小さくなる。したがって、ロウ材の拡散を抑制して熱抵抗が増大することを抑制できる。また、温度サイクル特性の劣化の抑制や製造工程の簡略化を図ることができる。
そして、導体パターン部材及び金属層のロウ付けと金属部材のロウ付けとを接合工程において同時に行うので、第1及び第2ロウ材箔と第3ロウ材箔とで異なるロウ材箔を用いる必要がなく、管理が容易となる。さらに、金属層と金属部材とがロウ付け接合されており、熱的界面がないので、金属層と金属部材との間の熱の伝達が効率よくかつ均一に行われる。
また、揮発性有機媒体で導体パターン部材及び第1ロウ材箔を仮固定するので、導体パターン部材の位置決めの精度や位置決めの容易さを向上させることができる。
In this invention, since the ceramic substrate is bonded to the conductor pattern member and the metal layer, and the metal layer is bonded to the metal member, the metal layer and the metal layer are bonded after the conductor pattern member and the metal layer are bonded to the ceramic substrate. Compared with joining with the member, the diffusion of the first and second brazing material foils in the conductor pattern member, the metal layer, and the ceramic substrate is reduced. Therefore, it is possible to suppress the diffusion of the brazing material and increase the thermal resistance. Further, it is possible to suppress the deterioration of the temperature cycle characteristics and simplify the manufacturing process.
Then, since the brazing of the conductor pattern member and the metal layer and the brazing of the metal member are simultaneously performed in the joining process, it is necessary to use different brazing material foils for the first and second brazing material foils and the third brazing material foil. Management becomes easy. Further, since the metal layer and the metal member are brazed and joined, and there is no thermal interface, heat transfer between the metal layer and the metal member is performed efficiently and uniformly.
In addition, since the conductor pattern member and the first brazing material foil are temporarily fixed with a volatile organic medium, the positioning accuracy of the conductor pattern member and the ease of positioning can be improved.

また、本発明のパワーモジュール用基板の製造方法は、前記配置工程が、前記導体パターン部材の配置位置を前記セラミックスの前記搭載予定領域に規制する位置決部材を用いて前記導体パターン部材を配置することが好ましい。
この発明では、位置決部材を用いることで、導体パターン部材搭載予定領域への配置を精度よくかつ効率的に行える。
Further, in the method for manufacturing a power module substrate according to the present invention, the arranging step arranges the conductor pattern member using a positioning member that restricts the arrangement position of the conductor pattern member to the mounting area of the ceramic. It is preferable.
In this invention, by using the positioning member, it is possible to accurately and efficiently arrange the conductor pattern member in the region where the conductor pattern member is to be mounted.

また、本発明のパワーモジュール用基板の製造方法は、前記位置決部材が、前記導体パターン部材を粘着する粘着面を有し、前記配置工程で、前記粘着面のうち前記搭載予定領域と対応する領域に前記導体パターン部材を粘着した後、該導体パターン部材を前記搭載予定領域に配置することとしてもよい。
この発明では、位置決部材の粘着面に導体パターン部材を粘着させた状態でセラミックス基板の搭載予定領域に導体パターン部材を配置する。
Moreover, the manufacturing method of the board | substrate for power modules of this invention has the adhesion surface in which the said positioning member adheres the said conductor pattern member, and respond | corresponds with the said mounting plan area | region among the said adhesion surfaces by the said arrangement | positioning process. After the conductor pattern member is adhered to the region, the conductor pattern member may be disposed in the region to be mounted.
In this invention, the conductor pattern member is arranged in the region where the ceramic substrate is to be mounted in a state where the conductor pattern member is adhered to the adhesive surface of the positioning member.

また、本発明のパワーモジュール用基板の製造方法は、前記位置決部材には、前記搭載予定領域と対応する領域に前記導体パターン部材を嵌め込む位置決孔が形成されており、前記配置工程で、前記位置決孔に前記導体パターン部材を嵌め込んだ後、該導体パターン部材を前記搭載予定領域に配置することとしてもよい。
この発明では、位置決孔に導体パターン部材を嵌め込み、導体パターン部材を嵌め込んだ状態でセラミックス基板の搭載予定領域に導体パターン部材を配置する。
In the method for manufacturing a power module substrate according to the present invention, the positioning member is formed with a positioning hole for fitting the conductor pattern member in a region corresponding to the planned mounting region. Then, after the conductor pattern member is fitted into the positioning hole, the conductor pattern member may be arranged in the region to be mounted.
In the present invention, the conductor pattern member is fitted into the positioning hole, and the conductor pattern member is arranged in the region where the ceramic substrate is to be mounted in a state where the conductor pattern member is fitted.

また、本発明のパワーモジュール用基板の製造方法は、前記位置決部材は、その厚さが前記導体パターン部材の厚さ以下であると共に、該導体パターン部材よりも前記第1ロウ材箔に対してぬれにくく、前記接合工程で、前記導体パターン部材を前記セラミックス基板に接合した後、前記位置決部材を前記導体パターン部材から離間させることとしてもよい。
この発明では、位置決孔に導体パターン部材を嵌め込んだまま位置決部材を離間させることなく導体パターン部材とセラミックス基板との接合を行うので、導体パターン部材の位置決め状態を確実に維持できる。また、位置決部材が第1ロウ材箔によって接合されることを防止しているので、接合後に位置決部材を導体パターン部材から離間させることが容易である。
Further, in the method for manufacturing a power module substrate according to the present invention, the positioning member has a thickness equal to or less than the thickness of the conductor pattern member, and the first brazing material foil rather than the conductor pattern member. It is difficult to wet, and after the conductor pattern member is joined to the ceramic substrate in the joining step, the positioning member may be separated from the conductor pattern member.
In this invention, since the conductor pattern member and the ceramic substrate are joined without separating the positioning member while the conductor pattern member is fitted in the positioning hole, the positioning state of the conductor pattern member can be reliably maintained. Further, since the positioning member is prevented from being joined by the first brazing material foil, it is easy to separate the positioning member from the conductor pattern member after joining.

また、本発明のパワーモジュール用基板の製造方法は、前記導体パターン部材が、金属板から打ち抜くことで形成され、前記位置決部材が、前記導体パターン部材が打ち抜かれた前記金属板であることとしてもよい。
この発明では、金属板から導体パターン部材を打ち抜き、打ち抜かれた金属板を打ち抜き孔を位置決孔とした位置決部材とする。そして、打ち抜き孔に導体パターン部材を嵌め込んだ状態でセラミックス基板の搭載予定領域に導体パターン部材を配置する。
Further, in the method for manufacturing a power module substrate of the present invention, the conductor pattern member is formed by punching from a metal plate, and the positioning member is the metal plate from which the conductor pattern member is punched. Also good.
In the present invention, the conductor pattern member is punched from the metal plate, and the punched metal plate is used as a positioning member having the punching hole as a positioning hole. And a conductor pattern member is arrange | positioned in the mounting plan area | region of a ceramic substrate in the state which fitted the conductor pattern member in the punching hole.

また、本発明のパワーモジュール用基板の製造方法は、前記金属部材が、ヒートシンクであることとしてもよい。
この発明では、導体パターン部材からセラミックス基板を介して金属層に至った熱を、放散させることができる。ここで、金属層とヒートシンクとがロウ付けされているので、金属層とヒートシンクとの間の熱の伝達が効率よくかつ均一に行われる。
Moreover, the manufacturing method of the board | substrate for power modules of this invention is good also as the said metal member being a heat sink.
In this invention, the heat from the conductor pattern member to the metal layer through the ceramic substrate can be dissipated. Here, since the metal layer and the heat sink are brazed, heat transfer between the metal layer and the heat sink is performed efficiently and uniformly.

また、本発明のパワーモジュール用基板の製造方法は、前記金属部材が、放熱板であることとしてもよい。
この発明では、導体パターン部材からセラミックス基板を介して金属層に至った熱を、放熱板で拡散することができる。ここで、金属層と放熱板とがロウ付けされているので、金属層と放熱板との間の熱の伝達が効率よくかつ均一に行われる。
Moreover, the manufacturing method of the board | substrate for power modules of this invention is good also as the said metal member being a heat sink.
In this invention, the heat from the conductor pattern member to the metal layer through the ceramic substrate can be diffused by the heat sink. Here, since the metal layer and the heat radiating plate are brazed, the heat transfer between the metal layer and the heat radiating plate is performed efficiently and uniformly.

この発明にかかるパワーモジュール用基板の製造方法によれば、導体パターン部材及び金属層の接合と共に金属部材の接合とを行うので、ロウ材の拡散を小さくして熱抵抗が増大することを抑制できる。また、温度サイクル特性の劣化の抑制や、製造工程の簡略化が可能となる。   According to the method for manufacturing a power module substrate according to the present invention, the conductor pattern member and the metal layer are joined together with the metal member, so that the diffusion of the brazing material can be reduced to prevent the thermal resistance from increasing. . In addition, it is possible to suppress degradation of temperature cycle characteristics and simplify the manufacturing process.

以下、本発明によるパワーモジュール用基板の製造方法の第1の実施形態を、図面に基づいて説明する。
本実施形態におけるパワーモジュール1は、図1に示すように、パワーモジュール用基板2と、パワーモジュール用基板2上に配置された電子部品3とを備えている。
パワーモジュール1は、絶縁回路基板5と、絶縁回路基板5の下面に接合されたヒートシンク(金属部材)6とを備えており、電子部品3で発生した熱をヒートシンク6内に放散させる構成となっている。
Hereinafter, a first embodiment of a method for manufacturing a power module substrate according to the present invention will be described with reference to the drawings.
As illustrated in FIG. 1, the power module 1 according to the present embodiment includes a power module substrate 2 and an electronic component 3 disposed on the power module substrate 2.
The power module 1 includes an insulated circuit board 5 and a heat sink (metal member) 6 bonded to the lower surface of the insulated circuit board 5 and dissipates heat generated in the electronic component 3 into the heat sink 6. ing.

絶縁回路基板5は、セラミックス基板11と、セラミックス基板11の上面(表面)に接合された複数の導体パターン部材12と、セラミックス基板11の下面(裏面)に接合された金属層13とによって構成されており、導体パターン部材12の上面に発熱体である電子部品3が配置されている。   The insulated circuit board 5 includes a ceramic substrate 11, a plurality of conductor pattern members 12 bonded to the upper surface (front surface) of the ceramic substrate 11, and a metal layer 13 bonded to the lower surface (back surface) of the ceramic substrate 11. The electronic component 3 that is a heating element is disposed on the upper surface of the conductor pattern member 12.

セラミックス基板11は、絶縁性を有しており、例えばAlN(窒化アルミニウム)などの板状のセラミックス材料によって構成されている。
導体パターン部材12及び金属層13は、例えば純度99.99%の高純度Al(アルミニウム)のような高熱伝導率を有しており、金属板を所定のパターン形状となるように打ち抜くことによって形成されている。また、導体パターン部材12及び金属層13は、セラミックス基板11の上下両面にそれぞれロウ付けにより接合されている。ここで、導体パターン部材12及び金属層13の表面には、それぞれ無電解メッキ法によるNi(ニッケル)−P(リン)メッキ層(図示略)が形成されている。
また、複数の導体パターン部材12は、セラミックス基板11上に間隔を適宜あけて配置されることで回路を構成しており、一部の上面にハンダ層15を介して電子部品3が固着されている。ここで、ハンダ層15に用いられるハンダとしては、例えば95%Pb(鉛)−5%Sn(スズ)や、Sn−Ag(銀)−Cu(銅)系のハンダが適用可能である。なお、95%Pb−5%Snのハンダには、Agを含有するものを適用してもよい。
The ceramic substrate 11 has insulating properties, and is made of a plate-shaped ceramic material such as AlN (aluminum nitride).
The conductor pattern member 12 and the metal layer 13 have high thermal conductivity such as high purity Al (aluminum) having a purity of 99.99%, for example, and are formed by punching a metal plate into a predetermined pattern shape. Has been. The conductor pattern member 12 and the metal layer 13 are joined to the upper and lower surfaces of the ceramic substrate 11 by brazing. Here, a Ni (nickel) -P (phosphorus) plating layer (not shown) is formed on the surface of the conductor pattern member 12 and the metal layer 13 by electroless plating.
Further, the plurality of conductor pattern members 12 constitute a circuit by being arranged on the ceramic substrate 11 with appropriate intervals, and the electronic component 3 is fixed to a part of the upper surface via the solder layer 15. Yes. Here, as the solder used for the solder layer 15, for example, 95% Pb (lead) -5% Sn (tin) or Sn—Ag (silver) —Cu (copper) solder can be applied. A solder containing 95% Pb-5% Sn may be one containing Ag.

電子部品3は、例えば半導体チップによって形成されている。ここで、電子部品3として適用可能な半導体チップとしては、各種のパワーデバイスがあげられる。
ヒートシンク6は、例えばAl−Si−Mg系合金であるアルミニウム合金押し出し材(6063:JIS規格)によって構成され、内部に冷却水を流通させる流路16が形成された、いわゆる多穴管構造を有する液冷式のヒートシンクである。このヒートシンク6は、金属層13とロウ付けによって接合されている。
The electronic component 3 is formed by a semiconductor chip, for example. Here, as a semiconductor chip applicable as the electronic component 3, various power devices are mentioned.
The heat sink 6 is made of, for example, an aluminum alloy extruded material (6063: JIS standard), which is an Al—Si—Mg-based alloy, and has a so-called multi-hole tube structure in which a flow path 16 through which cooling water flows is formed. This is a liquid-cooled heat sink. The heat sink 6 is joined to the metal layer 13 by brazing.

次に、このような構成のパワーモジュール用基板2の製造方法を、図2を参照しながら説明する。
本実施形態におけるパワーモジュール用基板2の製造方法は、セラミックス基板11に対する導体パターン部材12及び金属層13の位置決めを行う配置工程と、導体パターン部材12、セラミックス基板11、金属層13及びヒートシンク6の接合を行う接合工程とを備えている。
Next, a method for manufacturing the power module substrate 2 having such a configuration will be described with reference to FIG.
The manufacturing method of the power module substrate 2 in the present embodiment includes an arrangement step of positioning the conductor pattern member 12 and the metal layer 13 with respect to the ceramic substrate 11, and the conductor pattern member 12, the ceramic substrate 11, the metal layer 13, and the heat sink 6. And a joining step for joining.

まず、配置工程を行う。これは、例えばAlのような高熱伝導率を有する金属板を打ち抜いて複数の導体パターン部材12及び金属層13を形成する。その後、複数の導体パターン部材12及び金属層13の表面に、それぞれ無電解メッキ法を用いて上記Ni−Pメッキ層を形成する。
次に、図2(a)に示すように、第1粘着テープ(位置決部材)21の粘着面21Aにおけるセラミックス基板11の搭載予定領域と対応する領域に、打ち抜いた複数の導体パターン部材12の上面をそれぞれ粘着固定する。また、第2粘着テープ22の粘着面22Aに、打ち抜いた金属層13の下面を粘着固定する。
First, an arrangement process is performed. For example, a plurality of conductive pattern members 12 and metal layers 13 are formed by punching a metal plate having a high thermal conductivity such as Al. Thereafter, the Ni—P plating layer is formed on the surfaces of the plurality of conductor pattern members 12 and the metal layer 13 using an electroless plating method.
Next, as shown in FIG. 2A, the plurality of conductor pattern members 12 punched out in the region corresponding to the mounting region of the ceramic substrate 11 on the adhesive surface 21A of the first adhesive tape 21 (positioning member) 21. Adhere and fix the upper surface. Further, the lower surface of the punched metal layer 13 is adhesively fixed to the adhesive surface 22A of the second adhesive tape 22.

そして、粘着固定された導体パターン部材12の下面と金属層13の上面とにそれぞれ揮発性有機媒体を均一に塗布して揮発性有機媒体層23、24を形成する。ここで、揮発性有機媒体としては、例えば2〜3価の多価アルコールがあげられる。この揮発性有機媒体の粘度は、1×10−3Pa・s以上であることが好ましく、20×10−3Pa・s以上1500×10−3Pa・s以下であることがより好ましい。また、表面張力は、80×10−3N/m以下であることが好ましく、20×10−3N/m以上60×10−3N/m以下であることがより好ましい。また、揮発温度は、後述する第1及び第2ロウ材箔26、27の融点温度以下であって、具体的には400℃以下であることが好ましく、300℃以下であることがより好ましい。 Then, the volatile organic medium layers 23 and 24 are formed by uniformly applying the volatile organic medium to the lower surface of the conductive pattern member 12 and the upper surface of the metal layer 13 which are adhesively fixed. Here, examples of the volatile organic medium include divalent and trivalent polyhydric alcohols. The viscosity of the volatile organic medium is preferably 1 × 10 −3 Pa · s or more, and more preferably 20 × 10 −3 Pa · s or more and 1500 × 10 −3 Pa · s or less. The surface tension is preferably 80 × 10 −3 N / m or less, and more preferably 20 × 10 −3 N / m or more and 60 × 10 −3 N / m or less. Further, the volatilization temperature is not higher than the melting point temperature of first and second brazing foils 26 and 27 described later, specifically 400 ° C. or lower, more preferably 300 ° C. or lower.

その後、導体パターン部材12の下面に第1ロウ材箔26を配置し、金属層13の上面に第2ロウ材箔27を配置する。このとき、セラミックス基板11に配置された第1及び第2ロウ材箔26、27は、それぞれ揮発性有機媒体層23、24の表面張力によって仮固定される。
なお、第1ロウ材箔26は平面視において導体パターン部材12からはみ出ないような形状となっており、第2ロウ材箔27は平面視において金属層13からはみ出ないような形状となっている。ここで、第1及び第2ロウ材箔27としては、さまざまなものが適用可能であるが、Al−Si(珪素)系、Al−Ge(ゲルマニウム)系、Al−Mn(マンガン)系、Al−Cu系、Al−Mg(マグネシウム)系、Al−Si−Mg系、Al−Cu−Mn系及びAl−Cu−Mg−Mn系のロウ材から選択された1種または2種以上であることが好ましい。
Thereafter, the first brazing material foil 26 is disposed on the lower surface of the conductor pattern member 12, and the second brazing material foil 27 is disposed on the upper surface of the metal layer 13. At this time, the first and second brazing foils 26 and 27 disposed on the ceramic substrate 11 are temporarily fixed by the surface tension of the volatile organic medium layers 23 and 24, respectively.
The first brazing material foil 26 has a shape that does not protrude from the conductor pattern member 12 in plan view, and the second brazing material foil 27 has a shape that does not protrude from the metal layer 13 in plan view. . Here, as the first and second brazing material foils 27, various types can be applied, but Al—Si (silicon), Al—Ge (germanium), Al—Mn (manganese), Al One or more selected from a brazing material of -Cu, Al-Mg (magnesium), Al-Si-Mg, Al-Cu-Mn and Al-Cu-Mg-Mn Is preferred.

次に、セラミックス基板11の上下両面に、上記揮発性有機媒体を均一に塗布して揮発性有機媒体層31、32をそれぞれ形成する。
そして、導体パターン部材12が粘着固定された第1粘着テープ21を、第1ロウ材箔26がセラミックス基板11の上面の搭載予定領域上に位置するように配置する。また、金属層13が粘着固定された第2粘着テープ22を、第2ロウ材箔27がセラミックス基板11の下面の搭載予定領域上に位置するように配置する。このとき、導体パターン部材12及び金属層13は、それぞれ揮発性有機媒体層31、32の表面張力によってセラミックス基板11に仮固定される。
Next, the volatile organic medium layers 31 and 32 are respectively formed by uniformly applying the volatile organic medium on the upper and lower surfaces of the ceramic substrate 11.
Then, the first adhesive tape 21 to which the conductor pattern member 12 is adhesively fixed is arranged so that the first brazing material foil 26 is located on the planned mounting region on the upper surface of the ceramic substrate 11. In addition, the second adhesive tape 22 to which the metal layer 13 is adhesively fixed is arranged so that the second brazing material foil 27 is positioned on the planned mounting region on the lower surface of the ceramic substrate 11. At this time, the conductor pattern member 12 and the metal layer 13 are temporarily fixed to the ceramic substrate 11 by the surface tension of the volatile organic medium layers 31 and 32, respectively.

その後、図2(b)に示すように、導体パターン部材12及び金属層13をそれぞれセラミックス基板11に仮固定した後、第1及び第2粘着テープ21、22を導体パターン部材12または金属層13から剥離する。
さらに、第2粘着テープ22を剥離した後の金属層13の下面に上記揮発性有機媒体を均一に塗布して揮発性有機媒体層33を形成する。そして、第3ロウ材箔35を金属層13の下面に仮固定する。ここで、第3ロウ材箔35として、上述した第1及び第2ロウ材箔26、27と同様のものを適用することができる。なお、第3ロウ材箔35は、平面視において金属層13からはみ出ないような形状となっている。
そして、ヒートシンク6を、第3ロウ材箔35を介して金属層13の下面に配置する。これにより、導体パターン部材12、第1ロウ材箔26、セラミックス基板11、第2ロウ材箔27、金属層13、第3ロウ材箔35及びヒートシンク6からなる積層体が形成される。
Thereafter, as shown in FIG. 2B, the conductor pattern member 12 and the metal layer 13 are temporarily fixed to the ceramic substrate 11 respectively, and then the first and second adhesive tapes 21 and 22 are fixed to the conductor pattern member 12 or the metal layer 13. Peel from.
Further, the volatile organic medium layer 33 is formed by uniformly applying the volatile organic medium to the lower surface of the metal layer 13 after the second adhesive tape 22 is peeled off. Then, the third brazing material foil 35 is temporarily fixed to the lower surface of the metal layer 13. Here, as the third brazing material foil 35, the same material as the first and second brazing material foils 26 and 27 described above can be applied. The third brazing material foil 35 has a shape that does not protrude from the metal layer 13 in plan view.
Then, the heat sink 6 is disposed on the lower surface of the metal layer 13 via the third brazing material foil 35. Thereby, a laminate including the conductive pattern member 12, the first brazing material foil 26, the ceramic substrate 11, the second brazing material foil 27, the metal layer 13, the third brazing material foil 35, and the heat sink 6 is formed.

次に、接合工程を行う。これは、図2(c)に示すように、上記積層体の導体パターン部材12の上面及びヒートシンク6の下面をカーボンヒータHで挟持し、約300℃の雰囲気下で加熱する。これにより、揮発性有機媒体層23、24、31〜33が揮発する。さらに、カーボンヒータHにより、上記積層体を積層方向で例えば1時間、約0.3MPaで加圧すると共に、約630℃の雰囲気下で加熱する。これにより、第1ロウ材箔26が溶融して導体パターン部材12とセラミックス基板11とが接合され、第2ロウ材箔27が溶融、拡散して金属層13とセラミックス基板11とが接合され、第3ロウ材箔35が溶融、拡散して金属層13とヒートシンク6とが接合される。なお、接合工程では、上記積層体の導体パターン部材12の上面及びヒートシンク6の下面をカーボン板で挟持して真空路中で加熱することで、導体パターン部材12及びセラミックス基板11、金属層13及びセラミックス基板11、金属層13及びヒートシンク6をそれぞれ接合してもよい。   Next, a joining process is performed. As shown in FIG. 2 (c), the upper surface of the conductor pattern member 12 and the lower surface of the heat sink 6 are sandwiched between carbon heaters H and heated in an atmosphere of about 300 ° C. Thereby, the volatile organic medium layers 23, 24, 31 to 33 are volatilized. Further, the laminate is pressurized by the carbon heater H in the laminating direction for about 1 hour, for example, at about 0.3 MPa, and heated in an atmosphere at about 630 ° C. Thereby, the first brazing material foil 26 is melted and the conductor pattern member 12 and the ceramic substrate 11 are joined, the second brazing material foil 27 is melted and diffused, and the metal layer 13 and the ceramic substrate 11 are joined, The third brazing foil 35 is melted and diffused, and the metal layer 13 and the heat sink 6 are joined. In the bonding step, the conductor pattern member 12, the ceramic substrate 11, the metal layer 13, and the upper surface of the conductor pattern member 12 of the laminate and the lower surface of the heat sink 6 are sandwiched between carbon plates and heated in a vacuum path. You may join the ceramic substrate 11, the metal layer 13, and the heat sink 6, respectively.

以上のようにして、図2(d)に示すように、第1から第3ロウ材箔26、27、35によってセラミックス基板11の表面に導体パターン部材12及び金属層13が接合されると共に金属層13とヒートシンク6とが接合されたパワーモジュール用基板2を製造する。
その後、導体パターン部材12上にハンダ層15を介して電子部品3を固定することで、パワーモジュール1を製造する。
As described above, the conductive pattern member 12 and the metal layer 13 are bonded to the surface of the ceramic substrate 11 by the first to third brazing foils 26, 27, and 35 as shown in FIG. The power module substrate 2 in which the layer 13 and the heat sink 6 are bonded is manufactured.
Then, the power module 1 is manufactured by fixing the electronic component 3 on the conductor pattern member 12 via the solder layer 15.

このようなパワーモジュール1において、電子部品3を駆動すると、電子部品3において発生した熱が導体パターン部材12及びセラミックス基板11を介して金属層13に至る。そして、金属層13に至った熱が、ヒートシンク6に伝導してヒートシンク6内の冷却水に放散される。ここで、金属層13とヒートシンク6とがロウ付けされており、熱的界面がないので、金属層13とヒートシンク6との間の熱の伝達が効率よく、かつヒートシンク6の搭載面内で均一に行われる。以上のようにして、電子部品3の冷却を行う。   In such a power module 1, when the electronic component 3 is driven, heat generated in the electronic component 3 reaches the metal layer 13 via the conductor pattern member 12 and the ceramic substrate 11. Then, the heat reaching the metal layer 13 is conducted to the heat sink 6 and dissipated into the cooling water in the heat sink 6. Here, since the metal layer 13 and the heat sink 6 are brazed and there is no thermal interface, heat transfer between the metal layer 13 and the heat sink 6 is efficient and uniform within the mounting surface of the heat sink 6. To be done. The electronic component 3 is cooled as described above.

このようなパワーモジュール用基板2の製造方法によれば、導体パターン部材12及び金属層13とセラミックス基板11との接合を行うと共に金属層13とヒートシンク6との接合を行うので、ロウ材の拡散を小さくして熱抵抗が増大することを抑制できる。また、パワーモジュール用基板2の温度サイクル特性の劣化を抑制できる。さらに、同時に接合を行うことで製造工程の簡略化を図ることができる。そして、金属層13とヒートシンク6とがロウ付け接合されており、熱的界面がないので、金属層13とヒートシンク6との間の熱の伝達が効率よくかつ均一に行われる。
ここで、揮発性有機媒体層31、32により導体パターン部材12及び第1ロウ材箔26と金属層13及び第2ロウ材箔27とをセラミックス基板11に仮固定するので、導体パターン部材12や金属層13の位置決めの精度や位置決めの容易さの向上が図れる。
According to such a manufacturing method of the power module substrate 2, the conductive pattern member 12 and the metal layer 13 are bonded to the ceramic substrate 11 and the metal layer 13 and the heat sink 6 are bonded. It is possible to suppress an increase in thermal resistance by reducing the value of. Moreover, deterioration of the temperature cycle characteristic of the power module substrate 2 can be suppressed. Furthermore, the manufacturing process can be simplified by performing bonding at the same time. Since the metal layer 13 and the heat sink 6 are brazed and joined, and there is no thermal interface, heat transfer between the metal layer 13 and the heat sink 6 is performed efficiently and uniformly.
Here, since the conductive pattern member 12 and the first brazing material foil 26 and the metal layer 13 and the second brazing material foil 27 are temporarily fixed to the ceramic substrate 11 by the volatile organic medium layers 31 and 32, the conductive pattern member 12 and The positioning accuracy of the metal layer 13 and the ease of positioning can be improved.

次に、本発明によるパワーモジュール用基板の製造方法の第2の実施形態について、図を参照しながら説明する。なお、ここで説明する実施形態はその基本的構成が上述した第1の実施形態と同様であり、上述の第1の実施形態に別の要素を付加したものである。したがって、図3においては、図2と同一の構成要素に同一符号を付し、その説明を省略する。   Next, a second embodiment of the method for manufacturing a power module substrate according to the present invention will be described with reference to the drawings. The basic configuration of the embodiment described here is the same as that of the first embodiment described above, and another element is added to the first embodiment described above. Therefore, in FIG. 3, the same components as those in FIG.

第2の実施形態と第1の実施形態との異なる点は、第1の実施形態では第1及び第2粘着テープ21、22を用いて導体パターン部材12及び金属層13の位置決めを行っているが、本実施形態では第1及び第2テンプレート(位置決部材)41、42を用いて導体パターン部材12及び金属層13の位置決めを行っている点である。   The difference between the second embodiment and the first embodiment is that the conductor pattern member 12 and the metal layer 13 are positioned using the first and second adhesive tapes 21 and 22 in the first embodiment. However, in this embodiment, the conductor pattern member 12 and the metal layer 13 are positioned using the first and second templates (positioning members) 41 and 42.

すなわち、本実施形態におけるパワーモジュール用基板の製造方法は、配置工程において、図3(a)に示すように、セラミックス基板11の上下両面に第1及び第2テンプレート41、42をそれぞれ配置する。ここで、第1テンプレート41は、導体パターン部材12よりも第1ロウ材箔26に対してぬれにくい、例えばカーボン板によって形成されており、導体パターン部材12よりも薄く形成されている。そして、第1テンプレート41は、セラミックス基板11の上面における導体パターン部材12の搭載予定領域と対応する領域に貫通孔である位置決孔41aが形成されている。
また、第2テンプレート42は、第1テンプレートと同様に、例えばカーボン板によって形成されており、セラミックス基板11の下面における金属層13の搭載予定領域と対応する領域に位置決孔42aが形成されている。
That is, in the method for manufacturing the power module substrate in the present embodiment, the first and second templates 41 and 42 are respectively disposed on the upper and lower surfaces of the ceramic substrate 11 in the arranging step, as shown in FIG. Here, the first template 41 is formed of, for example, a carbon plate that is less likely to wet the first brazing material foil 26 than the conductor pattern member 12, and is formed thinner than the conductor pattern member 12. In the first template 41, a positioning hole 41a, which is a through hole, is formed in a region corresponding to a region where the conductor pattern member 12 is to be mounted on the upper surface of the ceramic substrate 11.
Similarly to the first template, the second template 42 is formed of, for example, a carbon plate, and a positioning hole 42 a is formed in a region corresponding to a region where the metal layer 13 is to be mounted on the lower surface of the ceramic substrate 11. Yes.

そして、図3(b)に示すように、第1テンプレート41の位置決孔41aに第1ロウ材箔26及び導体パターン部材12を嵌め込み、第2テンプレート42の位置決孔42aに第2ロウ材箔27及び金属層13を嵌め込む。その後、第1テンプレート41をセラミックス基板11の上下両面にそれぞれ導体パターン部材12及び金属層13がそれぞれ搭載予定領域上に位置するように配置する。そして、第2テンプレート42を金属層13及び第2ロウ材箔27から離間させる。
次に、金属層13の下面に揮発性有機媒体層43を形成し、この揮発性有機媒体層43を介して金属層13の下面に第3ロウ材箔35を仮固定する。そして、ヒートシンク6を金属層13の下面に配置する。
その後、図3(c)に示すように、上述した第1の実施形態と同様に接合工程を行い、第1テンプレート41を離間させて、図3(d)に示すようなパワーモジュール用基板2を製造する。ここで、第1テンプレート41が導体パターン部材12よりも第1ロウ材箔26に対してぬれにくい材料によって形成されているので、接合工程の後、第1テンプレート41を容易に離間させることができる。
Then, as shown in FIG. 3B, the first brazing material foil 26 and the conductor pattern member 12 are fitted into the positioning holes 41a of the first template 41, and the second brazing material is inserted into the positioning holes 42a of the second template 42. The foil 27 and the metal layer 13 are fitted. Thereafter, the first template 41 is disposed on both the upper and lower surfaces of the ceramic substrate 11 so that the conductor pattern member 12 and the metal layer 13 are positioned on the planned mounting area, respectively. Then, the second template 42 is separated from the metal layer 13 and the second brazing material foil 27.
Next, the volatile organic medium layer 43 is formed on the lower surface of the metal layer 13, and the third brazing material foil 35 is temporarily fixed to the lower surface of the metal layer 13 through the volatile organic medium layer 43. Then, the heat sink 6 is disposed on the lower surface of the metal layer 13.
Thereafter, as shown in FIG. 3C, a bonding step is performed in the same manner as in the first embodiment described above, the first template 41 is separated, and the power module substrate 2 as shown in FIG. Manufacturing. Here, since the first template 41 is made of a material that is less likely to wet the first brazing material foil 26 than the conductor pattern member 12, the first template 41 can be easily separated after the joining step. .

本実施形態のパワーモジュール用基板の製造方法においても、上述した第1の実施形態と同様の作用、効果を奏する。   Also in the method for manufacturing the power module substrate of the present embodiment, the same operations and effects as those of the first embodiment described above are exhibited.

次に、本発明によるパワーモジュール用基板の製造方法の第3の実施形態について、図を参照しながら説明する。なお、ここで説明する実施形態はその基本的構成が上述した第1の実施形態と同様であり、上述の第1の実施形態に別の要素を付加したものである。したがって、図4においては、図2と同一の構成要素に同一符号を付し、その説明を省略する。   Next, a third embodiment of the method for manufacturing a power module substrate according to the present invention will be described with reference to the drawings. The basic configuration of the embodiment described here is the same as that of the first embodiment described above, and another element is added to the first embodiment described above. Therefore, in FIG. 4, the same components as those in FIG.

第3の実施形態と第1の実施形態との異なる点は、第1の実施形態では第1及び第2粘着テープ21、22を用いて導体パターン部材12及び金属層13の位置決めを行っているが、本実施形態では導体パターン部材12と金属層13とがそれぞれ打ち抜かれた金属板(位置決部材)51、52を用いて導体パターン部材12及び金属層13の位置決めを行っている点である。   The difference between the third embodiment and the first embodiment is that the conductor pattern member 12 and the metal layer 13 are positioned using the first and second adhesive tapes 21 and 22 in the first embodiment. However, in this embodiment, the conductive pattern member 12 and the metal layer 13 are positioned using the metal plates (positioning members) 51 and 52 in which the conductive pattern member 12 and the metal layer 13 are respectively punched. .

すなわち、本実施形態におけるパワーモジュール用基板の製造方法では、導体パターン部材12が打ち抜かれた金属板51の打ち抜き孔を位置決孔51aとし、金属層13が打ちぬかれた金属板52の打ち抜き孔を位置決孔52aとしている。   That is, in the method for manufacturing a power module substrate in the present embodiment, the punching hole of the metal plate 51 from which the conductor pattern member 12 is punched is used as the positioning hole 51a, and the punching hole of the metal plate 52 from which the metal layer 13 is punched is formed. Is a positioning hole 52a.

次に、配置工程において、図4(a)に示すように、金属板51の位置決孔51aに導体パターン部材12を嵌め込み、金属板52の位置決孔52aに金属層13を嵌め込む。そして、導体パターン部材12の下面に揮発性有機媒体層53を形成し、第1ロウ材箔26を仮固定する。また、金属層13の上面にも上記揮発性有機媒体を均一に塗布して揮発性有機媒体層54を形成し、第2ロウ材箔27を仮固定する。
一方、セラミックス基板11の上下両面に、それぞれ揮発性有機媒体層55、56を形成する。
4A, the conductor pattern member 12 is fitted into the positioning hole 51a of the metal plate 51, and the metal layer 13 is fitted into the positioning hole 52a of the metal plate 52. Then, the volatile organic medium layer 53 is formed on the lower surface of the conductor pattern member 12, and the first brazing foil 26 is temporarily fixed. Further, the volatile organic medium is uniformly applied to the upper surface of the metal layer 13 to form the volatile organic medium layer 54, and the second brazing material foil 27 is temporarily fixed.
On the other hand, volatile organic medium layers 55 and 56 are respectively formed on the upper and lower surfaces of the ceramic substrate 11.

その後、図4(b)に示すように、導体パターン部材12を嵌め込んだ金属板51及び金属層13を嵌め込んだ金属板52をそれぞれセラミックス基板11の上下両面にそれぞれ配置し、導体パターン部材12及び金属層13をそれぞれセラミックス基板11に向けて押し出す。これにより、導体パターン部材12及び金属層13を揮発性有機媒体層55、56により仮固定する。   Thereafter, as shown in FIG. 4B, the metal plate 51 fitted with the conductor pattern member 12 and the metal plate 52 fitted with the metal layer 13 are respectively arranged on the upper and lower surfaces of the ceramic substrate 11, respectively. 12 and the metal layer 13 are each extruded toward the ceramic substrate 11. Thereby, the conductor pattern member 12 and the metal layer 13 are temporarily fixed by the volatile organic medium layers 55 and 56.

次に、金属層13の下面に揮発性有機媒体層57を形成し、第3ロウ材箔35を仮固定する。そして、第3ロウ材箔35を介してヒートシンク6を金属層13の下面に配置する。
この後、図4(c)に示すように、上述した第1の実施形態と同様に接合工程を行い、図4(d)に示すようなパワーモジュール用基板2を製造する。
Next, the volatile organic medium layer 57 is formed on the lower surface of the metal layer 13 and the third brazing material foil 35 is temporarily fixed. Then, the heat sink 6 is disposed on the lower surface of the metal layer 13 via the third brazing material foil 35.
Thereafter, as shown in FIG. 4C, the joining step is performed in the same manner as in the first embodiment described above, and the power module substrate 2 as shown in FIG. 4D is manufactured.

本実施形態のパワーモジュール用基板の製造方法においても、上述した第1の実施形態と同様の作用、効果を奏する。   Also in the method for manufacturing the power module substrate of the present embodiment, the same operations and effects as those of the first embodiment described above are exhibited.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることができる。
例えば、上記実施形態では、パワーモジュール用基板2が絶縁回路基板5とヒートシンク6とをロウ付けにより接合した構成となっているが、図5に示すように、絶縁回路基板5と放熱板(金属部材)61とを接合した構成としたパワーモジュール用基板62としてもよい。さらに、放熱板61にヒートシンク6をネジ63により螺着してもよい。ここで、放熱板61としては、純度99.99%のAlや、他のAl(例えば、1050、6063、6061:JIS規格)、Cu、AlSiC(アルミシリコンカーバイド)、Cu−Mo(モリブデン)などを用いることができる。
また、このパワーモジュール用基板62において、ヒートシンク6を設けない構成としてもよい。
In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, in the above embodiment, the power module substrate 2 has a configuration in which the insulating circuit substrate 5 and the heat sink 6 are joined by brazing, but as shown in FIG. 5, the insulating circuit substrate 5 and the heat sink (metal) It is good also as the board | substrate 62 for power modules made into the structure which joined (member) 61. Further, the heat sink 6 may be screwed to the heat radiating plate 61 with screws 63. Here, as the heat sink 61, Al having a purity of 99.99%, other Al (for example, 1050, 6063, 6061: JIS standard), Cu, AlSiC (aluminum silicon carbide), Cu-Mo (molybdenum), etc. Can be used.
The power module substrate 62 may be configured without the heat sink 6.

また、セラミックス基板11は、AlNに限らず、Al(アルミナ)やSi(窒化珪素)、SiC(炭化珪素)など、他のセラミックス材料によって形成されてもよい。
また、導体パターン部材12及び金属層13は、純度99.99%の高純度Alに限らず、純Al(1050、1100:JIS規格)やAl−Cu合金(2011:JIS規格)、Al−Si−Mg合金(6063、6061:JIS規格)、Al−Mn合金(3003、3004:JIS規格)、Al−Mg合金(5005:JIS規格)など、他の材料によって形成されてもよい。好ましくは、純Al以上の純度がよい。
また、導体パターン部材12及び金属層13の表面に無電解メッキ法によるNi−Pメッキ層をそれぞれ形成しているが、Ni−Pメッキ層の表面にさらに電解メッキ法によってNiメッキ層を形成してもよく、メッキ層を形成しない構成としてもよい。
また、ヒートシンク6としては、多穴管構造に限らず、放熱フィンを有する構造など、他の構造であってもよい。
また、ヒートシンク6は、Al−Mg−Si系合金に限らず、ダイカスト(純アルミ系)など、他の材料によって形成されてもよい。
また、ヒートシンク6に1つの絶縁回路基板5のみが接合されているが、複数の絶縁回路基板5をヒートシンク6上に接合してもよい。
Further, the ceramic substrate 11 is not limited to AlN, and may be formed of other ceramic materials such as Al 2 O 3 (alumina), Si 3 N 4 (silicon nitride), SiC (silicon carbide).
Further, the conductor pattern member 12 and the metal layer 13 are not limited to high-purity Al having a purity of 99.99%, but pure Al (1050, 1100: JIS standard), Al-Cu alloy (2011: JIS standard), Al-Si. -It may be formed of other materials such as Mg alloy (6063, 6061: JIS standard), Al-Mn alloy (3003, 3004: JIS standard), Al-Mg alloy (5005: JIS standard). Preferably, the purity is higher than pure Al.
In addition, the Ni-P plating layer is formed on the surface of the conductor pattern member 12 and the metal layer 13 by the electroless plating method. The Ni plating layer is further formed on the surface of the Ni-P plating layer by the electrolytic plating method. Alternatively, the plating layer may not be formed.
Further, the heat sink 6 is not limited to the multi-hole tube structure, but may be another structure such as a structure having heat radiation fins.
Further, the heat sink 6 is not limited to an Al—Mg—Si based alloy, and may be formed of other materials such as die casting (pure aluminum based).
Further, although only one insulating circuit board 5 is bonded to the heat sink 6, a plurality of insulating circuit boards 5 may be bonded onto the heat sink 6.

また、配置工程において、第1粘着テープ21や第1テンプレート41、金属板51を用いて導体パターン部材12をセラミックス基板11上に配置しているが、導体パターン部材12をセラミックス基板11の搭載予定領域に精度よく配置できれば、第1粘着テープ21や第1テンプレート41を用いずに導体パターン部材12を配置してもよい。同様に、金属層13をセラミックス基板11の搭載予定領域に精度よく配置できれば、第2粘着テープ22や第2テンプレート42、金属板52を用いずに金属層13を配置してもよい。
また、配置工程において、導体パターン部材12の下面や金属層13の上下両面に、それぞれ第1から第3ロウ材箔26、27、35を仮固定するために揮発性有機媒体を塗布しているが、第1から第3ロウ材箔26、27、35を精度よく配置できれば、揮発性有機媒体を塗布しなくてもよい。
In the placement process, the conductor pattern member 12 is placed on the ceramic substrate 11 using the first adhesive tape 21, the first template 41, and the metal plate 51, but the conductor pattern member 12 is scheduled to be mounted on the ceramic substrate 11. The conductor pattern member 12 may be disposed without using the first adhesive tape 21 or the first template 41 as long as it can be accurately disposed in the region. Similarly, the metal layer 13 may be disposed without using the second adhesive tape 22, the second template 42, and the metal plate 52 as long as the metal layer 13 can be accurately disposed in the planned mounting region of the ceramic substrate 11.
Further, in the arranging step, a volatile organic medium is applied on the lower surface of the conductor pattern member 12 and the upper and lower surfaces of the metal layer 13 in order to temporarily fix the first to third brazing foils 26, 27, and 35, respectively. However, if the first to third brazing foils 26, 27, and 35 can be arranged with high accuracy, the volatile organic medium may not be applied.

また、上記第1の実施形態において、配置工程でセラミックス基板11の上下両面に導体パターン部材12及び金属層13を仮固定する揮発性有機媒体を塗布しているが、第1及び第2粘着テープ21、22を導体パターン部材12及び金属層13からそれぞれ導体パターン部材12及び金属層13の配置位置がずれないように剥離可能であれば、揮発性有機媒体を塗布しなくてもよい。
また、上記第1の実施形態において、第1粘着テープ21を導体パターン部材12から剥離した後でロウ付けを行っているが、第1粘着テープ21が接合工程における加熱温度まで加熱されても導体パターン部材12の材質などに影響を与えないのであれば、第1粘着テープ21を剥離せずに接合工程を行い、この後で第1粘着テープ21を剥離することとしてもよい。
Moreover, in the said 1st Embodiment, although the volatile organic medium which temporarily fixes the conductor pattern member 12 and the metal layer 13 is apply | coated to the upper and lower surfaces of the ceramic substrate 11 at the arrangement | positioning process, the 1st and 2nd adhesive tape The volatile organic medium may not be applied as long as 21 and 22 can be separated from the conductor pattern member 12 and the metal layer 13 so that the arrangement positions of the conductor pattern member 12 and the metal layer 13 do not deviate from each other.
In the first embodiment, brazing is performed after the first pressure-sensitive adhesive tape 21 is peeled off from the conductor pattern member 12. However, even if the first pressure-sensitive adhesive tape 21 is heated to the heating temperature in the joining step, the conductor If the material of the pattern member 12 is not affected, the joining process may be performed without peeling off the first adhesive tape 21, and then the first adhesive tape 21 may be peeled off.

また、上記第2の実施形態において、配置工程でセラミックス基板11の上下両面に導体パターン部材12及び金属層13を仮固定する揮発性有機媒体を塗布してもよい。
また、上記第2の実施形態において、第1テンプレート41を導体パターン部材12とセラミックス基板11との接合後に離間させているが、接合前に離間させてもよい。
また、第1及び第2テンプレート41、42は、カーボン板に限らず、SUSなどのように他の材料によって形成してもよい。
In the second embodiment, a volatile organic medium that temporarily fixes the conductor pattern member 12 and the metal layer 13 may be applied to the upper and lower surfaces of the ceramic substrate 11 in the arranging step.
In the second embodiment, the first template 41 is separated after the conductor pattern member 12 and the ceramic substrate 11 are joined, but may be separated before joining.
Further, the first and second templates 41 and 42 are not limited to the carbon plate, and may be formed of other materials such as SUS.

また、上記第3の実施形態において、配置工程でセラミックス基板11の上下両面に導体パターン部材12及び金属層13を仮固定する揮発性有機媒体を塗布してもよい。   Moreover, in the said 3rd Embodiment, you may apply | coat the volatile organic medium which temporarily fixes the conductor pattern member 12 and the metal layer 13 on the upper and lower surfaces of the ceramic substrate 11 at an arrangement | positioning process.

本発明の第1の実施形態におけるパワーモジュールを示す全体図である。1 is an overall view showing a power module in a first embodiment of the present invention. 図1のパワーモジュール用基板の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the board | substrate for power modules of FIG. 本発明の第2の実施形態におけるパワーモジュール用基板の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the board | substrate for power modules in the 2nd Embodiment of this invention. 本発明の第3の実施形態におけるパワーモジュール用基板の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the board | substrate for power modules in the 3rd Embodiment of this invention. 本実施形態以外の、本発明を適用可能なパワーモジュールを示す全体図である。It is a general view which shows the power module which can apply this invention other than this embodiment.

符号の説明Explanation of symbols

1 パワーモジュール
2、62 パワーモジュール用基板
6 ヒートシンク(金属部材)
11 セラミックス基板
12 導体パターン部材
13 金属層
21 第1粘着テープ(位置決部材)
21A 粘着面
31、32 揮発性有機媒体層(揮発性有機媒体)
26 第1ロウ材箔
27 第2ロウ材箔
35 第3ロウ材箔
41 第1テンプレート(位置決部材)
41a 位置決孔
51 金属板(位置決部材)
51a 位置決孔
61 放熱板(金属部材)
1 Power module 2, 62 Power module substrate 6 Heat sink (metal member)
11 Ceramic substrate 12 Conductive pattern member 13 Metal layer 21 First adhesive tape (positioning member)
21A Adhesive surfaces 31, 32 Volatile organic medium layer (volatile organic medium)
26 1st brazing material foil 27 2nd brazing material foil 35 3rd brazing material foil 41 1st template (positioning member)
41a Positioning hole 51 Metal plate (positioning member)
51a Positioning hole 61 Heat sink (metal member)

Claims (8)

セラミックス基板の表面に導体パターン部材が配設されたパワーモジュール用基板の製造方法において、
前記セラミックス基板の表面に設けられた搭載予定領域上に第1ロウ材箔を介して前記導体パターン部材を配置すると共に、前記セラミックス基板の裏面に第2ロウ材箔を介して金属層を配置し、さらに前記金属層に第3ロウ材箔を介して金属部材を配置して積層体を形成する配置工程と、
前記積層体を積層方向で加圧すると共に加熱して前記第1から第3ロウ材箔を溶融させ、前記導体パターン部材及び前記金属層と前記セラミックス基板とを接合すると共に前記金属部材と前記金属層とを接合する接合工程とを備え、
前記配置工程で、前記セラミックス基板の前記表面に揮発性有機媒体を塗布した後、前記導体パターン部材及び前記第1ロウ材箔を配置して仮固定し、
前記接合工程で、前記揮発性有機媒体を加熱して揮発させることを特徴とするパワーモジュール用基板の製造方法。
In a method for manufacturing a power module substrate in which a conductor pattern member is disposed on the surface of a ceramic substrate,
The conductor pattern member is disposed via a first brazing material foil on a planned mounting region provided on the surface of the ceramic substrate, and a metal layer is disposed on the back surface of the ceramic substrate via a second brazing material foil. And an arrangement step of arranging a metal member on the metal layer via a third brazing material foil to form a laminate,
The laminated body is pressed in the laminating direction and heated to melt the first to third brazing material foils, the conductor pattern member, the metal layer, and the ceramic substrate are joined, and the metal member and the metal layer e Bei a bonding step of bonding the bets,
In the arranging step, after applying a volatile organic medium to the surface of the ceramic substrate, the conductor pattern member and the first brazing material foil are arranged and temporarily fixed,
Wherein the bonding step, method for manufacturing a power module substrate according to claim Rukoto evaporate by heating the volatile organic medium.
前記配置工程が、前記導体パターン部材の配置位置を前記セラミックスの前記搭載予定領域に規制する位置決部材を用いて前記導体パターン部材を配置することを特徴とする請求項1に記載のパワーモジュール用基板の製造方法。   2. The power module according to claim 1, wherein the arranging step arranges the conductor pattern member using a positioning member that regulates an arrangement position of the conductor pattern member to the mounting area of the ceramic. A method for manufacturing a substrate. 前記位置決部材が、前記導体パターン部材を粘着する粘着面を有し、
前記配置工程で、前記粘着面のうち前記搭載予定領域と対応する領域に前記導体パターン部材を粘着した後、該導体パターン部材を前記搭載予定領域に配置することを特徴とする請求項2に記載のパワーモジュール用基板の製造方法。
The positioning member has an adhesive surface that adheres the conductor pattern member;
The said arrangement | positioning process WHEREIN: After adhere | attaching the said conductor pattern member to the area | region corresponding to the said mounting plan area | region among the said adhesion surfaces, this conductor pattern member is arrange | positioned in the said mounting plan area | region. Of manufacturing a power module substrate.
前記位置決部材には、前記搭載予定領域と対応する領域に前記導体パターン部材を嵌め込む位置決孔が形成されており、
前記配置工程で、前記位置決孔に前記導体パターン部材を嵌め込んだ後、該導体パターン部材を前記搭載予定領域に配置することを特徴とする請求項2に記載のパワーモジュール用基板の製造方法。
The positioning member is formed with a positioning hole for fitting the conductor pattern member into a region corresponding to the planned mounting region,
3. The method for manufacturing a power module substrate according to claim 2, wherein the conductor pattern member is placed in the planned mounting area after the conductor pattern member is fitted into the positioning hole in the placement step. .
前記位置決部材は、その厚さが前記導体パターン部材の厚さ以下であると共に、該導体パターン部材よりも前記第1ロウ材箔に対してぬれにくく、
前記接合工程で、前記導体パターン部材を前記セラミックス基板に接合した後、前記位置決部材を前記導体パターン部材から離間させることを特徴とする請求項4に記載のパワーモジュール用基板の製造方法。
The positioning member has a thickness equal to or less than the thickness of the conductor pattern member, and is less likely to wet the first brazing material foil than the conductor pattern member,
5. The method for manufacturing a power module substrate according to claim 4, wherein after the conductor pattern member is joined to the ceramic substrate in the joining step, the positioning member is separated from the conductor pattern member.
前記導体パターン部材が、金属板から打ち抜くことで形成され、
前記位置決部材が、前記導体パターン部材が打ち抜かれた前記金属板であることを特徴とする請求項4に記載のパワーモジュール用基板の製造方法。
The conductor pattern member is formed by punching from a metal plate,
5. The method of manufacturing a power module substrate according to claim 4, wherein the positioning member is the metal plate from which the conductor pattern member is punched.
前記金属部材が、ヒートシンクであることを特徴とする請求項1から6のいずれか1項に記載のパワーモジュール用基板の製造方法。 The method for manufacturing a power module substrate according to any one of claims 1 to 6 , wherein the metal member is a heat sink. 前記金属部材が、放熱板であることを特徴とする請求項1から8のいずれか1項に記載のパワーモジュール用基板の製造方法。 The method for manufacturing a power module substrate according to claim 1 , wherein the metal member is a heat radiating plate.
JP2006008505A 2006-01-17 2006-01-17 Power module substrate manufacturing method Active JP4618136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006008505A JP4618136B2 (en) 2006-01-17 2006-01-17 Power module substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006008505A JP4618136B2 (en) 2006-01-17 2006-01-17 Power module substrate manufacturing method

Publications (2)

Publication Number Publication Date
JP2007194256A JP2007194256A (en) 2007-08-02
JP4618136B2 true JP4618136B2 (en) 2011-01-26

Family

ID=38449743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006008505A Active JP4618136B2 (en) 2006-01-17 2006-01-17 Power module substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP4618136B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103531582A (en) * 2012-07-06 2014-01-22 株式会社丰田自动织机 Semiconductor unit

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2793258A4 (en) 2011-12-12 2015-11-11 Mitsubishi Materials Corp Power module substrate, substrate for power module with heat sink, power module, paste for forming flux component penetration prevention layer, and bonding method for article to be bonded
JP6189015B2 (en) * 2012-04-19 2017-08-30 昭和電工株式会社 Radiator and method of manufacturing radiator
WO2016002804A1 (en) * 2014-07-02 2016-01-07 三菱マテリアル株式会社 Joined body manufacturing method, multilayer joined body manufacturing method, power-module substrate manufacturing method, heat sink equipped power-module substrate manufacturing method, and laminated body manufacturing device
KR102300970B1 (en) * 2014-07-02 2021-09-09 미쓰비시 마테리알 가부시키가이샤 Joined body manufacturing method, multilayer joined body manufacturing method, power-module substrate manufacturing method, heat sink equipped power-module substrate manufacturing method, and laminated body manufacturing device
CN110634818B (en) * 2019-09-25 2021-09-24 湖南大学 Packaging structure of hybrid power module composed of IGBT and MOSFET

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613728A (en) * 1992-01-14 1994-01-21 Ibiden Co Ltd Manufacture of board for mounting electronic component
JP2002043482A (en) * 2000-05-17 2002-02-08 Ngk Insulators Ltd Member for electronic circuit, its manufacturing method and electronic component
JP2005252159A (en) * 2004-03-08 2005-09-15 Ngk Insulators Ltd Method of controlling composite laminate shape, method of manufacturing composite laminate, composite laminate, heat spreader module and method of manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613728A (en) * 1992-01-14 1994-01-21 Ibiden Co Ltd Manufacture of board for mounting electronic component
JP2002043482A (en) * 2000-05-17 2002-02-08 Ngk Insulators Ltd Member for electronic circuit, its manufacturing method and electronic component
JP2005252159A (en) * 2004-03-08 2005-09-15 Ngk Insulators Ltd Method of controlling composite laminate shape, method of manufacturing composite laminate, composite laminate, heat spreader module and method of manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103531582A (en) * 2012-07-06 2014-01-22 株式会社丰田自动织机 Semiconductor unit

Also Published As

Publication number Publication date
JP2007194256A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
JP4610414B2 (en) Electronic component storage package, electronic device, and electronic device mounting structure
JP4159861B2 (en) Method for manufacturing heat dissipation structure of printed circuit board
JP4654942B2 (en) Surface lighting device
JP5125241B2 (en) Power module substrate manufacturing method
JP4618136B2 (en) Power module substrate manufacturing method
TW201008403A (en) Printed circuit board having excellent heat dissipation
JP2002203932A (en) Heat radiation substrate for semiconductor power device and its conductor plate, heat sink material, and brazing material
JP6620989B2 (en) Electronic component package
TW201138165A (en) High heat-dissipation LED non-metal substrate and manufacturing method thereof and high heat-dissipation LED component and manufacturing method thereof
WO2014097644A1 (en) Electronic component package and method for producing same
JP2010010561A (en) Power module substrate and method of manufacturing the same
TW201220979A (en) Radiant heat circuit board and method for manufacturing the same
JP5091459B2 (en) Manufacturing method of high heat radiation type electronic component storage package
US7750461B2 (en) Metal-ceramic substrate for electric circuits or modules, method for producing one such substrate and module comprising one such substrate
JP2006100640A (en) Ceramic circuit board and power semiconductor module using same
JP2000058930A (en) Thermoelement, and its manufacture
TW201234682A (en) Circuit for a light emitting component and method of manufacturing the same
JP2958692B2 (en) Ball grid array semiconductor package member, method of manufacturing the same, and method of manufacturing ball grid array semiconductor package
WO2006019099A1 (en) Insulation substrate, power module substrate, manufacturing method thereof, and power module using the same
JPWO2007138771A1 (en) Semiconductor device, electronic component module, and method of manufacturing semiconductor device
WO2010050896A1 (en) Insulated metal substrate and method of forming the same
JP4311303B2 (en) Power module substrate manufacturing method
JP6910630B2 (en) Manufacturing method of wiring board laminate and wiring board laminate
JP2012146801A (en) Heat sink, substrate for power module with heat sink, power module, and manufacturing method of heat sink
JP5045613B2 (en) Power module substrate and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4618136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150