JP4617142B2 - Thin film manufacturing method - Google Patents
Thin film manufacturing method Download PDFInfo
- Publication number
- JP4617142B2 JP4617142B2 JP2004337176A JP2004337176A JP4617142B2 JP 4617142 B2 JP4617142 B2 JP 4617142B2 JP 2004337176 A JP2004337176 A JP 2004337176A JP 2004337176 A JP2004337176 A JP 2004337176A JP 4617142 B2 JP4617142 B2 JP 4617142B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- chamber
- fluid
- raw material
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1212—Zeolites, glasses
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Description
本発明は、基板等の表面に炭素含有固体膜を薄くかつ均一に形成する薄膜製造方法に関する。 The present invention relates to a thin film manufacturing method for forming a carbon-containing solid film thinly and uniformly on the surface of a substrate or the like.
従来、基板等の表面に炭素含有固体膜を形成するものとしては、プラズマCVD装置を用いたものが知られている。(特許文献1)
ところが、プラズマCVD装置を用いて基板等の表面に薄膜を形成する場合、チャンバー内を減圧しなければならないことから、基板の大きさが規制されるうえ、プラズマを均一に作用させることが難しかった。また、発生する活性種の濃度および原料の濃度が低く、気相から成長させることによる薄膜成長速度が遅いという問題があった。 However, when forming a thin film on the surface of a substrate or the like using a plasma CVD apparatus, the inside of the chamber has to be depressurized, so that the size of the substrate is restricted and it is difficult to make the plasma act uniformly. . In addition, there is a problem that the concentration of active species and the concentration of raw materials generated are low, and the growth rate of the thin film is slow when grown from the gas phase.
本発明はこのよう点に着目してなされたもので、広い面積にわたって均一かつ高速に薄膜を形成することのできる製造方法を提供することを目的としている。 The present invention has been made paying attention to such a point, and an object thereof is to provide a manufacturing method capable of forming a thin film uniformly and at high speed over a wide area.
上述の目的を達成するために、本発明はチャンバー内に収容した触媒体に二酸化炭素と炭化水素誘導体からなる原料流体を超臨界状態で吹きつけ、前記触媒体と原料流体の接触反応によって、原料流体の少なくとも一部を分解し、分解によって生成された活性種の雰囲気中に基板を晒し、基板に炭素含有固体膜を形成するようにしたことを特徴としている。 In order to achieve the above-mentioned object, the present invention sprays a raw material fluid composed of carbon dioxide and a hydrocarbon derivative in a supercritical state onto a catalyst body accommodated in a chamber, and performs a raw material reaction by a catalytic reaction between the catalyst body and the raw material fluid. It is characterized in that at least a part of the fluid is decomposed and the substrate is exposed to an atmosphere of active species generated by the decomposition to form a carbon- containing solid film on the substrate.
本発明では、原料流体と触媒体との接触により、原料流体の少なくとも一部を分解して、炭素ラジカルを形成し、この炭素ラジカルの雰囲気内に設置されている基板の表面に炭素含有固体膜を形成するようにしている。また、分解により発生した水素は二酸化炭素の超臨界流体にすみやかにとけ込み、膜中には残らない。このため、チャンバー内全体が均一な雰囲気となり、炭素含有固体膜を基板全体で均一に形成することができることになる。 In the present invention, at least a part of the raw material fluid is decomposed by contact between the raw material fluid and the catalyst body to form carbon radicals, and a carbon-containing solid film is formed on the surface of the substrate placed in the atmosphere of the carbon radicals. To form. In addition, the hydrogen generated by the decomposition quickly enters the supercritical fluid of carbon dioxide and does not remain in the film. For this reason, the whole chamber becomes a uniform atmosphere, and the carbon-containing solid film can be uniformly formed on the entire substrate.
本発明では、二酸化炭素と原料流体とをともに超臨界状態にしてチャンバー内に導入し、チャンバー内の活性種発生装置に接触させることで、遊離炭素を形成させ、低温で基板表面上に薄くて緻密な炭素含有固体膜を形成することができる。それゆえ、従来では作製が難しかった、ガラス転移温度が低い、ガラスやプラスチック基板上でも良質なダイヤモンドライクカーボン膜を得ることができた。 In the present invention, carbon dioxide and the raw material fluid are both introduced into the chamber in a supercritical state and brought into contact with the active species generator in the chamber to form free carbon, which is thin on the substrate surface at a low temperature. A dense carbon-containing solid film can be formed. Therefore, it has been possible to obtain a diamond-like carbon film having a good quality even on a glass or plastic substrate, which has been difficult to produce in the past and has a low glass transition temperature.
しかもこの場合、原料流体の濃度が通常使用されているCVD装置と較べて遙かに高いために、核発生の頻度が高まるための、ピンホールフリーで全体的に均一な薄膜を形成することができる。また、チャンバー内の雰囲気を真空にする必要もないことから、作業性にも優れることになる。 Moreover, in this case, since the concentration of the raw material fluid is much higher than that of a commonly used CVD apparatus, a pinhole-free and entirely uniform thin film can be formed to increase the frequency of nucleation. it can. In addition, since the atmosphere in the chamber does not need to be evacuated, the workability is excellent.
図は本発明を実施する装置の一例を示し、チャンバー(1)内に活性種発生装置(2)を配置して、チャンバー(1)内を活性種発生装置で区画するように構成し、この活性種発生層で区画された一方の空間(3)に原料流体の吹き込み口(4)を位置させるとともに、他方の空間(5)にガス排出口(6)を位置させ、この他方の空間(5)内に基板(7)を位置させている。 The figure shows an example of an apparatus for carrying out the present invention. The active species generator (2) is arranged in the chamber (1), and the chamber (1) is partitioned by the active species generator. The raw material fluid blow-in port (4) is positioned in one space (3) partitioned by the active species generation layer, and the gas discharge port (6) is positioned in the other space (5). 5) The substrate (7) is located inside.
活性種発生手段(2)としては、白金、タングステン、コバルト、ニッケル、鉄、またはその合金等の抵抗発熱体を使用しており、2000℃以下の温度に加熱することにより、反応条件を整えて使用するようになっている。なお、この触媒の加熱はレーザ加熱や電磁波加熱であっても良い。この場合、2000℃は二酸化炭素がプラズマ現象を起こす温度であり、二酸化炭素の臨界温度(31℃)以上の温度でプラズマ現象を発生させない温度領域に加熱する。
また、活性種発生装置(2)として白金線や鉄線を利用することも可能である。
As the active species generating means (2), a resistance heating element such as platinum, tungsten, cobalt, nickel, iron, or an alloy thereof is used, and the reaction conditions are adjusted by heating to a temperature of 2000 ° C. or less. It is designed to be used. The catalyst may be heated by laser heating or electromagnetic wave heating. In this case, 2000 ° C. is a temperature at which carbon dioxide causes a plasma phenomenon, and is heated to a temperature range that does not cause a plasma phenomenon at a temperature equal to or higher than the critical temperature (31 ° C.) of carbon dioxide.
Moreover, it is also possible to use a platinum wire or an iron wire as the active species generator (2).
そして炭素含有固体膜を形成する場合には、キャリア流体としてはキャリアガス導入口(41)より導入される二酸化炭素(8)と原料流体としては炭化水素誘導体(9)を混合して使用するようにしており、この流体を超臨界状態で活性種発生装置(2)に接触させるようにしている。 To the case of forming a carbon-containing solid film and, as the carrier fluid as carbon dioxide (8) and the raw material fluid introduced from the carrier gas inlet (41) as a mixture of hydrocarbon derivative (9) using The fluid is brought into contact with the active species generator (2) in a supercritical state.
また、基板(7)としてはガラス基板やアルミニウム基板、シリコン基板、合成樹脂基板を使用している。 As the substrate (7), a glass substrate, an aluminum substrate, a silicon substrate, or a synthetic resin substrate is used.
上述のように構成した固体膜製造方法では、チャンバー(1)内に二酸化炭素(8)とカーボンソースとしての炭化水素誘導体(9)とをそれぞれ超臨界状態で供給する。超臨界状態で二酸化炭素と炭化水素誘導体を導入すると、両流体が均一に混合され、活性種発生装置(2)に接触し、炭化水素誘導体が炭素と水素に分解して、この遊離炭素が基板(7)の表面に達して、薄くて、緻密で固い多結晶状のダイヤモンドライクカーボン膜を形成する。このとき、二酸化炭素はキャリアガスとして働き、遊離炭素の原料にはなっていない。 In the solid film manufacturing method configured as described above, carbon dioxide (8) and a hydrocarbon derivative (9) as a carbon source are supplied into the chamber (1) in a supercritical state. When carbon dioxide and a hydrocarbon derivative are introduced in a supercritical state, both fluids are uniformly mixed and contacted with the active species generator (2), the hydrocarbon derivative is decomposed into carbon and hydrogen, and this free carbon is converted into a substrate. Reaching the surface of (7), a thin, dense and hard polycrystalline diamond-like carbon film is formed. At this time, carbon dioxide acts as a carrier gas and is not a raw material for free carbon.
なお、活性種発生装置(2)との接触により原料流体から分解生成した水素ガスは、すみやかに超臨界状態の二酸化炭素に溶けて、導入された二酸化炭素と共に、ガス排出口(6)から排出される。 The hydrogen gas decomposed from the raw material fluid by contact with the active species generator (2) is immediately dissolved in the supercritical carbon dioxide and discharged from the gas outlet (6) together with the introduced carbon dioxide. Is done.
上記の実施形態では、二酸化炭素と炭化水素誘導体を超臨界状態でチャンバー(1)内に個別に導入するようにしたが、二酸化炭素と炭化水素誘導体とを超臨界状態で混合させ、その混合流体をチャンバー(1)内に導入するようにしても良い。 In the above embodiment, carbon dioxide and a hydrocarbon derivative are individually introduced into the chamber (1) in a supercritical state. However, the carbon dioxide and the hydrocarbon derivative are mixed in a supercritical state, and the mixed fluid May be introduced into the chamber (1).
[実施例1]
まず、予め洗浄したガラス基板(7)を、チャンバー(1)にセットする。次に、ターボ分子ポンプ(55)、ロータリーポンプ(56)を作動させてチャンバー(1)内を1〜2×10-6Pa程度にまで減圧し、この状態を約5分保持して特にチャンバー内に持ち込まれた水分や酸素を排気する。また、基板(7)の温度を200℃に加熱保持する。
[Example 1]
First, a previously cleaned glass substrate (7) is set in the chamber (1). Next, the turbo molecular pump (55) and the rotary pump (56) are operated to depressurize the chamber (1) to about 1 to 2 × 10 −6 Pa, and this state is maintained for about 5 minutes. Exhaust moisture and oxygen brought inside. Further, the temperature of the substrate (7) is kept at 200 ° C. by heating.
次いで、活性種発生装置(白金系触媒)(2)に通電し、その温度を1600〜1800℃程度に上げる。本例では1800℃に設定する。そして、この状態で10分間保持する。 Next, the active species generator (platinum catalyst) (2) is energized and its temperature is raised to about 1600-1800 ° C. In this example, it is set to 1800 ° C. And hold | maintain for 10 minutes in this state.
次いで、前記反応ガス制御系からメタン(CH4 )についてもこれをチャンバー(1)内に導入する。すなわち、本例では、超臨界二酸化炭素流量を90sccm/minとし、CH4 流量を9sccm/min(100%メタン)とすることによって原料ガスをチャンバー内(1)に供給する。チャンバー内の圧力は5MPa、50℃に保つ。成膜速度80nm/minで1分間成膜を行い、厚さ40nm程度のダイヤモンドライクカーボン膜を形成する。 Next, methane (CH 4 ) is also introduced into the chamber (1) from the reaction gas control system. That is, in this example, supercritical carbon dioxide flow rate and 90 sccm / min, supplying the raw material gas by making the CH 4 flow rate 9 sccm / min (100% methane) into the chamber (1). The pressure in the chamber is maintained at 5 MPa and 50 ° C. Film formation is performed at a film formation rate of 80 nm / min for 1 minute to form a diamond-like carbon film having a thickness of about 40 nm.
このようにして原料ガスをチャンバー(1)内に供給すると活性種発生装置(2)によって原料ガスにこれらを化学反応させるエネルギーが供給され、これによりCH4 が分解してCが生成され、前述したようにガラス基板(7)表面上に炭素が堆積してダイヤモンドライクカーボン膜(10)が高速で形成される。得られたダイヤモンドライクカーボン膜(10)は、本装置で形成されたことにより、その成膜条件によって結晶粒径が100nm以下の所望する粒径(例えば1〜2nm程度の微細粒径)に制御されたものとなっており、またその水素含有量も原子比が0.1〜2.0at%程度に抑えられたものとなっている。 When the raw material gas is supplied into the chamber (1) in this way, the active species generator (2) supplies energy for chemically reacting these to the raw material gas, whereby CH 4 is decomposed and C is generated. As described above, carbon is deposited on the surface of the glass substrate (7), and the diamond-like carbon film (10) is formed at a high speed. Since the obtained diamond-like carbon film (10) is formed by this apparatus, the crystal grain size is controlled to a desired grain size of 100 nm or less (for example, a fine grain size of about 1 to 2 nm) according to the deposition conditions. Further, the hydrogen content is also suppressed to an atomic ratio of about 0.1 to 2.0 at%.
このようにしてダイヤモンドライクカーボン膜(10)に形成したら、前記反応ガス制御系によってCH4 ガスの流量をゼロにし、二酸化炭素のみを流し続ける。そして、この状態を5分間続けたら、 活性種発生装置(2)への電力供給を停止してその温度を下げる。次いで、二酸化炭素の流量もゼロにし、さらに反応室(51)内を1〜2×10-6Pa程度にまで減圧し、この状態を約5分保持して特にチャンバー内に導入したCH4 を排気する。その後、チャンバー内を大気圧に戻し、ガラス基板(7)を外部に取り出す。 When the diamond-like carbon film (10) is formed in this way, the flow rate of CH 4 gas is made zero by the reaction gas control system, and only carbon dioxide is allowed to flow. If this state continues for 5 minutes, the power supply to the active species generator (2) is stopped and the temperature is lowered. Next, the flow rate of carbon dioxide is also reduced to zero, and the pressure in the reaction chamber (51) is reduced to about 1 to 2 × 10 −6 Pa, and this state is maintained for about 5 minutes, and in particular CH 4 introduced into the chamber Exhaust. Thereafter, the inside of the chamber is returned to atmospheric pressure, and the glass substrate (7) is taken out.
[実施例2]
まず、予め洗浄したガラス基板(7)を、チャンバー(1)にセットする。次に、ターボ分子ポンプ(55)、ロータリーポンプ(56)を作動させて反応室(51)内を1〜2×10-6Pa程度にまで減圧し、この状態を約5分保持して特にチャンバー内に持ち込まれた水分や酸素を排気する。また、基板(7)の温度を200℃に加熱保持する。
[Example 2]
First, a previously cleaned glass substrate (7) is set in the chamber (1). Next, the turbo molecular pump (55) and the rotary pump (56) are operated to depressurize the reaction chamber (51) to about 1-2 × 10 −6 Pa, and this state is maintained for about 5 minutes. Exhaust moisture and oxygen brought into the chamber. Further, the temperature of the substrate (7) is kept at 200 ° C. by heating.
次いで、活性種発生装置(白金径触媒)(2)に通電し、その温度を1600〜1800℃程度に上げる。本例では1800℃に設定する。そして、この状態で10分間保持する。 Next, the active species generator (platinum diameter catalyst) (2) is energized and its temperature is raised to about 1600-1800 ° C. In this example, it is set to 1800 ° C. And it hold | maintains for 10 minutes in this state.
次いで、前記反応ガス制御系からメタノールについてもこれをチャンバー(1)内に導入する。すなわち、本例では、超臨界二酸化炭素流量を90sccm/minとし、メタノール 流量を9sccm/min(100%メタノール)とすることによって原料ガスをチャンバー内(1)に供給する。チャンバー内の圧力は5MPa、50℃に保つ。成膜速度80nm/minで1分間成膜を行い、厚さ40nm程度のダイヤモンドライクカーボン膜を形成する。 Next, methanol is also introduced into the chamber (1) from the reaction gas control system. That is, in this example, the source gas is supplied into the chamber (1) by setting the supercritical carbon dioxide flow rate to 90 sccm / min and the methanol flow rate to 9 sccm / min (100% methanol). The pressure in the chamber is maintained at 5 MPa and 50 ° C. Film formation is performed at a film formation rate of 80 nm / min for 1 minute to form a diamond-like carbon film having a thickness of about 40 nm.
このようにして原料ガスをチャンバー(1)内に供給すると活性種発生装置(2)によって原料ガスを分解し、これにより、まず炭素ラジカルが生成し、水素が脱離する。そして、これらが反応して、前述したようにガラス基板(7)表面上に炭素が堆積してダイヤモンドライクカーボン膜が高速で形成される。得られたダイヤモンドライクカーボン膜は、本装置で形成されたことにより、その成膜条件によって結晶粒径が100nm以下の所望する粒径(例えば1〜2nm程度の微細粒径)に制御されたものとなっており、またその水素含有量も原子比が0.1〜2.0at%程度に抑えられたものとなっている。 When the source gas is supplied into the chamber (1) in this way, the active species generator (2) decomposes the source gas, whereby carbon radicals are first generated and hydrogen is desorbed. Then, these react and carbon is deposited on the surface of the glass substrate (7) as described above, and a diamond-like carbon film is formed at a high speed. The obtained diamond-like carbon film is formed by this apparatus, so that the crystal grain size is controlled to a desired grain size of 100 nm or less (for example, a fine grain size of about 1 to 2 nm) according to the deposition conditions. Further, the hydrogen content is also suppressed to an atomic ratio of about 0.1 to 2.0 at%.
このようにしてダイヤモンドライクカーボン膜(10)を形成したら、前記反応ガス制御系によってメタノールガスの流量をゼロにし、二酸化炭素のみを流し続ける。そして、この状態を5分間続けたら、 活性種発生装置(2)への電力供給を停止してその温度を下げる。次いで、二酸化炭素の流量もゼロにし、さらにチャンバー(1)内を1〜2×10-6Pa程度にまで減圧し、この状態を約5分保持して特にチャンバー内に導入したCH4 を排気する。その後、チャンバー内を大気圧に戻し、ガラス基板(7)を外部に取り出す。 When the diamond-like carbon film (10) is formed in this way, the flow rate of methanol gas is reduced to zero by the reaction gas control system, and only carbon dioxide is allowed to flow. If this state continues for 5 minutes, the power supply to the active species generator (2) is stopped and the temperature is lowered. Next, the flow rate of carbon dioxide is also reduced to zero, and the pressure in the chamber (1) is reduced to about 1 to 2 × 10 −6 Pa. This state is maintained for about 5 minutes, and CH 4 introduced into the chamber is exhausted. To do. Thereafter, the inside of the chamber is returned to atmospheric pressure, and the glass substrate (7) is taken out.
本発明は、基板表面に薄くて緻密な炭素含有固体膜(DLC)を形成することができるので、各種工具、治具、耐摩擦材、スピーカ振動板、各融合炉壁材、半導体素子等の製造分野に応用することができる。 In the present invention, since a thin and dense carbon-containing solid film (DLC) can be formed on the substrate surface, various tools, jigs, friction-resistant materials, speaker diaphragms, fusion furnace wall materials, semiconductor elements, etc. It can be applied to the manufacturing field.
1…チャンバー、2…活性種発生装置、3…空間、4…原料ガス導入口、5…空間、6…ガス排気口、7…基板、8…キャリア流体、9…原料流体、10…ダイヤモンドライクカーボン、41…キャリアガス導入口、55…ターボ分子ポンプ、56…ロータリーポンプ。 DESCRIPTION OF SYMBOLS 1 ... Chamber, 2 ... Active species generator, 3 ... Space, 4 ... Raw material gas inlet, 5 ... Space, 6 ... Gas exhaust port, 7 ... Substrate, 8 ... Carrier fluid, 9 ... Raw material fluid, 10 ... Diamond like Carbon, 41 ... carrier gas inlet, 55 ... turbo molecular pump, 56 ... rotary pump.
Claims (5)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004337176A JP4617142B2 (en) | 2004-11-22 | 2004-11-22 | Thin film manufacturing method |
PCT/JP2005/018101 WO2006054393A1 (en) | 2004-11-22 | 2005-09-30 | Method and apparatus for preparing thin film |
US11/719,806 US7727597B2 (en) | 2004-11-22 | 2005-09-30 | Method and apparatus for preparing thin film |
KR1020077011539A KR20070084435A (en) | 2004-11-22 | 2005-09-30 | Method and apparatus for preparing thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004337176A JP4617142B2 (en) | 2004-11-22 | 2004-11-22 | Thin film manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006144084A JP2006144084A (en) | 2006-06-08 |
JP4617142B2 true JP4617142B2 (en) | 2011-01-19 |
Family
ID=36624127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004337176A Expired - Fee Related JP4617142B2 (en) | 2004-11-22 | 2004-11-22 | Thin film manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4617142B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4710002B2 (en) * | 2005-03-14 | 2011-06-29 | 国立大学法人東京農工大学 | Membrane manufacturing method |
JP5268104B2 (en) * | 2006-06-22 | 2013-08-21 | 国立大学法人北見工業大学 | Method for manufacturing metal nitride film, metal oxide film, metal carbide film or composite film thereof, and apparatus for manufacturing the same |
US20100243426A1 (en) | 2007-08-27 | 2010-09-30 | Toyo University | Method for decomposing carbon-containing compound, method for producing carbon nano/microstructure, and method for producing carbon thin film |
JP2012169553A (en) * | 2011-02-16 | 2012-09-06 | Tokyo Electron Ltd | Substrate processing device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000226624A (en) * | 1999-02-05 | 2000-08-15 | Toyota Central Res & Dev Lab Inc | Method for removing base material |
-
2004
- 2004-11-22 JP JP2004337176A patent/JP4617142B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000226624A (en) * | 1999-02-05 | 2000-08-15 | Toyota Central Res & Dev Lab Inc | Method for removing base material |
Also Published As
Publication number | Publication date |
---|---|
JP2006144084A (en) | 2006-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5674572A (en) | Enhanced adherence of diamond coatings employing pretreatment process | |
US20070134433A1 (en) | Methods for producing silicon nitride films and silicon oxynitride films by thermal chemical vapor deposition | |
JPH0346437B2 (en) | ||
KR20070084435A (en) | Method and apparatus for preparing thin film | |
US5693377A (en) | Method of reducing carbon incorporation into films produced by chemical vapor deposition involving titanium organometallic and metal-organic precursor compounds | |
WO2004048257A3 (en) | Method for forming carbon nanotubes | |
JP4617142B2 (en) | Thin film manufacturing method | |
WO2004048258A8 (en) | Method for forming carbon nanotubes | |
WO2004055234A1 (en) | Method for forming film | |
JP4618780B2 (en) | Thin film manufacturing method | |
Nakamura et al. | High quality chemical vapor deposition diamond growth on iron and stainless steel substrates | |
JPS63166733A (en) | Production of diamond film | |
US6257960B1 (en) | Lapping method and method for manufacturing lapping particles for use in the lapping method | |
JP2006069805A (en) | Method for manufacturing fine carbon fiber | |
KR960008149B1 (en) | Method for coating a diamond thin film of dies for drawing | |
JP2840750B2 (en) | Coating method | |
JP2752753B2 (en) | Synthesis method of diamond by combustion flame | |
JP2581330B2 (en) | Synthesis method of diamond by combustion flame | |
JP2619557B2 (en) | Synthesis method of vapor phase diamond | |
Emelyanov et al. | EXPERIMENTAL STUDY OF DIAMOND STRUCTURE SYNTHESIS FROM AMIXTURE OF HYDROGEN WITH ETHANOL VAPOR | |
JP2645867B2 (en) | Method of depositing diamond film | |
JP2584475B2 (en) | Synthesis method of vapor phase diamond and its apparatus | |
JPH08225394A (en) | Method for carrying out vapor phase synthesis of diamond | |
JPS63166798A (en) | Production of diamond film | |
JPH0248494A (en) | Method for preparing carbon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100728 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100928 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101025 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131029 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |