JP2000226624A - Method for removing base material - Google Patents

Method for removing base material

Info

Publication number
JP2000226624A
JP2000226624A JP11028987A JP2898799A JP2000226624A JP 2000226624 A JP2000226624 A JP 2000226624A JP 11028987 A JP11028987 A JP 11028987A JP 2898799 A JP2898799 A JP 2898799A JP 2000226624 A JP2000226624 A JP 2000226624A
Authority
JP
Japan
Prior art keywords
base material
substrate
coating
oxygen
coated body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11028987A
Other languages
Japanese (ja)
Other versions
JP4228448B2 (en
Inventor
Hiroaki Wakayama
博昭 若山
Shinji Inagaki
伸二 稲垣
Yoshiaki Fukushima
喜章 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP02898799A priority Critical patent/JP4228448B2/en
Publication of JP2000226624A publication Critical patent/JP2000226624A/en
Application granted granted Critical
Publication of JP4228448B2 publication Critical patent/JP4228448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Chemical Vapour Deposition (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a covering on which the surface shape of a base material is transferred by holding a coat body in which the covering is applied on the surface of the base material containing a carbon substance, etc., in the atmosphere of active oxygen, and allowing the base material to be reacted with oxygen to easily remove the base material while maintaining the quality of the covering. SOLUTION: A covering such as a silica which is not easily reacted with oxygen is applied on the surface of a base material containing a substance to be reacted with oxygen such as carbon substance including active carbon, an organic matter such as amine. Regarding the application a super-critical fluid capable of achieving the application uniformly in a short time is preferably used. As coat body obtained thereby is held in the atmosphere of active oxygen to allow the base material to be reacted with oxygen. In this atmosphere of active oxygen, the temperature of the coat body is made to preferably <=180 deg.C using low-temperature oxygen plasma to surely prevent the re-arrangement, the structural change, etc., of the covering. At least a part of the base material can be easily removed by this reaction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,例えばゼオライト,FSM等の
多孔体を得る場合等に用いることができる基材除去方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing a substrate which can be used for obtaining a porous body such as zeolite and FSM.

【0002】[0002]

【従来技術】例えば,ゼオライトやMCM−41,FS
M−16のような多孔体を製造するに当たっては,得よ
うとする多孔体の形状を反転させた表面形状を有する基
材を準備し,この基材に被覆物を被覆させてコート体を
製造した後,上記基材を除去する。これにより,残存し
た上記被覆物を多孔体として得ることができる。また,
多孔体に限らず,基材の表面形状を転写した被覆物を単
体で得る場合にも同様の処理を行うことができる。
2. Description of the Related Art For example, zeolite, MCM-41, FS
In producing a porous body such as M-16, a substrate having a surface shape obtained by inverting the shape of the porous body to be obtained is prepared, and the substrate is coated with a coating to produce a coated body. After that, the base material is removed. Thereby, the remaining coating can be obtained as a porous body. Also,
The same treatment can be performed not only in the case of a porous body but also in the case of obtaining a single coated product in which the surface shape of a substrate is transferred.

【0003】従来,上記コート体から基材を除去する方
法としては,基材を焼成する方法と基材を抽出する方法
とがあった。上記の焼成による方法は,例えば上記コー
ト体を500〜800℃程度の温度に保持して,基材を
焼成除去することにより行う。また,上記抽出による方
法は,例えば上記コート体を抽出溶媒中に浸漬し,基材
を溶媒中に分離除去することにより行う。
Conventionally, as a method of removing a substrate from the coated body, there have been a method of firing the substrate and a method of extracting the substrate. The above-described firing method is performed by, for example, holding the coated body at a temperature of about 500 to 800 ° C. and firing and removing the base material. In addition, the above-mentioned extraction method is performed, for example, by immersing the above-mentioned coated body in an extraction solvent and separating and removing the substrate in the solvent.

【0004】[0004]

【解決しようとする課題】しかしながら,上記従来の焼
成又は抽出による基材除去方法には,次の問題がある。
即ち,上記焼成による基材除去方法においては,焼成時
の加熱によって,被覆物の原子に再配列が起こる。その
ため,被覆物が多孔体である場合には,上記基材が除去
されると共に多孔構造自体も崩れ,孔がつぶれてしまう
ことがある。特に,上記被覆物がチタニアなどの金属酸
化物,あるいは金属の場合には,上記焼成時に結晶化や
凝集(シンタリング)が生じやすく,多孔構造が崩れや
すい。
However, the above-described conventional method of removing a substrate by firing or extraction has the following problems.
That is, in the above-described method of removing the base material by firing, the atoms of the coating are rearranged by heating during firing. Therefore, when the coating is a porous material, the base material is removed, and the porous structure itself is broken, and the pores may be crushed. In particular, when the coating is a metal oxide such as titania or a metal, crystallization or aggregation (sintering) is liable to occur during the firing, and the porous structure is likely to collapse.

【0005】また,上記抽出による基材除去方法におい
ては,被覆物を抽出せずに基材のみを抽出する抽出溶媒
の選択が困難な場合がある。また,基材をほとんどすべ
て除去したい場合においても,基材が十分に溶解しない
という理由により,基材が必要以上に残存し,これを十
分に除去することができない場合がある。
[0005] In the method of removing a substrate by the above-described extraction, it may be difficult to select an extraction solvent that extracts only the substrate without extracting the coating. Further, even when it is desired to remove almost all of the base material, the base material may remain more than necessary and may not be sufficiently removed because the base material is not sufficiently dissolved.

【0006】本発明は,かかる従来の問題点に鑑みてな
されたもので,被覆物の品質を維持しつつ,容易に基材
除去を行うことができる基材除去方法を提供しようとす
るものである。
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a method of removing a base material which can easily remove a base material while maintaining the quality of a coating. is there.

【0007】[0007]

【課題の解決手段】請求項1の発明は,基材の表面に被
覆物を被覆させてなるコート体を作製した後,該コート
体から上記基材の少なくとも一部を除去する方法であっ
て,上記コート体を活性酸素雰囲気中に保持して,上記
基材と酸素を反応させることにより,該基材の少なくと
も一部を除去することを特徴とする基材除去方法にあ
る。
According to the first aspect of the present invention, there is provided a method for producing a coated body in which a coating is formed on a surface of a substrate, and removing at least a part of the substrate from the coated body. And a method of removing the base material by maintaining the coated body in an active oxygen atmosphere and reacting the base material with oxygen to remove at least a part of the base material.

【0008】本発明において最も注目すべきことは,上
記コート体を活性酸素雰囲気中に保持して,上記基材と
酸素を反応させることにより,該基材を除去することで
ある。上記活性酸素雰囲気とは,活性酸素が存在する状
態であり,低温酸素プラズマ,オゾン含有雰囲気等が挙
げられる。
What is most notable in the present invention is that the base material is removed by maintaining the coated body in an active oxygen atmosphere and reacting the base material with oxygen. The active oxygen atmosphere is a state in which active oxygen is present, and includes low-temperature oxygen plasma, an ozone-containing atmosphere, and the like.

【0009】その中でも,この活性酸素雰囲気として
は,低温酸素プラズマが好ましい。これは,反応が早く
しかも低温で活性酸素が存在する状態を得ることができ
ることにより被覆物の再配列等の構造変化を抑制できる
ためである。ここで,上記低温酸素プラズマとは,酸素
存在下においてグロー放電あるいは高周波放電などを行
うことにより得られる酸素プラズマである。なお,活性
酸素とは,基材の材質(例えば活性炭が基材の場合は炭
素)と,その状態で反応しうる酸素である。
Among them, low-temperature oxygen plasma is preferable as the active oxygen atmosphere. This is because a change in the structure such as rearrangement of the coating can be suppressed by obtaining a state in which active oxygen is present at a low reaction temperature at a high speed. Here, the low-temperature oxygen plasma is an oxygen plasma obtained by performing a glow discharge or a high-frequency discharge in the presence of oxygen. The active oxygen is oxygen that can react with the material of the base material (for example, carbon when the activated carbon is the base material) in that state.

【0010】上記基材としては,種々の分子,分子集合
体,活性炭等を適用することができる。但し,上記基材
は,酸素と反応する物質,例えば炭素質物質,有機物等
を含有していることが必要である。上記基材となりうる
分子としては,例えば,アミン等がある。そして,上記
分子よりなる基材を用いた場合には,上記被覆物として
例えばゼオライト等の多孔体を得ることができる。
As the base material, various molecules, molecular aggregates, activated carbon, and the like can be applied. However, the base material needs to contain a substance that reacts with oxygen, for example, a carbonaceous substance, an organic substance, or the like. Examples of molecules that can serve as the base material include amines. When a substrate composed of the above molecules is used, a porous body such as zeolite can be obtained as the coating.

【0011】また,上記基材となりうる分子集合体とし
ては,例えばミセル状の界面活性剤等がある。そして上
記分子集合体を基材として用いた場合には,上記被覆物
として例えばメソ多孔体であるMCM−14,FSM−
16等の多孔体を得ることができる。また,上記基材と
しては,活性炭等の多孔質体を用いることができる。こ
の活性炭等よりなる基材を用いた場合には,上記被覆物
として,例えばチタニア等よりなる触媒などを得ること
ができる。
[0011] Examples of the molecular assembly that can be a base material include micelle-like surfactants. When the molecular assembly is used as a substrate, the coating may be, for example, mesoporous MCM-14, FSM-
A porous body such as 16 can be obtained. In addition, a porous body such as activated carbon can be used as the base material. In the case where a substrate made of activated carbon or the like is used, a catalyst made of, for example, titania or the like can be obtained as the coating.

【0012】また,上記被覆物としては,活性になった
酸素と容易に反応しガス化しないものであれば,種々の
物質を用いることができる。例えば,シリカ,アルミ
ナ,チタニア,白金等は上記被覆物として用いることが
できる。
As the coating, various substances can be used as long as they react easily with activated oxygen and do not gasify. For example, silica, alumina, titania, platinum and the like can be used as the coating.

【0013】また,上記基材の除去は,少なくとも一部
について行う。即ち,上記被覆物のみにより構成される
多孔体等を得る場合には基材を略100%除去する。一
方,基材を残した方がよい場合には,その一部のみを除
去することもできる。
The removal of the base material is performed on at least a part. That is, when obtaining a porous body composed only of the above-mentioned coating material, the base material is removed by about 100%. On the other hand, when it is better to leave the base material, only a part thereof can be removed.

【0014】また,上記基材に被覆物を被覆させて上記
コート体を作製するに当たっては,例えば,超臨界流体
を用いた超臨界コート法,ゾルゲル法,液相含浸法,C
VD法(chemical vapor deposition),CVI法(che
mical vapor infiltration)等,種々の方法を利用す
ることができる。
In producing the above-mentioned coated body by coating the above-mentioned substrate with a coating material, for example, a supercritical coating method using a supercritical fluid, a sol-gel method, a liquid phase impregnation method,
VD method (chemical vapor deposition), CVI method (che
Various methods such as mical vapor infiltration) can be used.

【0015】このうち,上記超臨界コート法は,均一な
被覆物を短時間で形成することができるので,より好ま
しい。この超臨界コート法は,例えば,上記基材の表面
に,前駆体を溶解した超臨界流体を接触させ,次いで,
上記前駆体を析出させて上記被覆物を形成することによ
り行うことができる。
Of these, the supercritical coating method is more preferable because a uniform coating can be formed in a short time. In this supercritical coating method, for example, a supercritical fluid in which a precursor is dissolved is brought into contact with the surface of the base material,
It can be carried out by depositing the precursor and forming the coating.

【0016】ここで,上記超臨界流体とは,少なくとも
臨界点以上の温度を有する流体である。この状態の流体
は,液体と同等の溶解能力と,気体に近い拡散性,粘性
を有する性質がある。そのため,微細孔内まで容易かつ
迅速に多量の前駆体を運ぶことができる。上記溶解能力
は,温度,圧力,エントレーナー(添加物)等により調
整できる。
Here, the supercritical fluid is a fluid having a temperature at least at a critical point or higher. The fluid in this state has the same dissolving power as a liquid, and has the property of diffusivity and viscosity close to that of a gas. Therefore, a large amount of precursor can be easily and quickly carried into the micropores. The above dissolving ability can be adjusted by temperature, pressure, entrainer (additive) and the like.

【0017】上記超臨界流体としては,例えば,メタ
ン,エタン,プロパン,ブタン,エチレン,プロピレン
等の炭化水素,メタノール,エタノール,プロパノー
ル,iso−プロパノール,ブタノール,iso−ブタ
ノール,sec−ブタノール,tert−ブタノール等
のアルコール,アセトン,メチルエチルケトン等のケト
ン類,二酸化炭素,水,アンモニア,塩素,クロロホル
ム,フレオン類等を用いることができる。
Examples of the supercritical fluid include hydrocarbons such as methane, ethane, propane, butane, ethylene and propylene, methanol, ethanol, propanol, iso-propanol, butanol, iso-butanol, sec-butanol, and tert-. Alcohols such as butanol, ketones such as acetone and methyl ethyl ketone, carbon dioxide, water, ammonia, chlorine, chloroform, freons and the like can be used.

【0018】また,上記基材は活性炭よりなり,上記コ
ート体の作製は超臨界流体を用いて行うことが好ましい
(請求項3)。この場合には,基材のほとんどを除去
し,しかも活性炭の微細な細孔形状を反転させた表面形
状を有する被覆物を容易に形成することができる。
Further, it is preferable that the base material is made of activated carbon, and the production of the coated body is performed using a supercritical fluid. In this case, it is possible to easily form a coating having the surface shape obtained by removing most of the base material and inverting the fine pore shape of the activated carbon.

【0019】また,上記コート体を作製した後,基材を
除去する前に,被覆物の結晶化処理,あるいは還元処理
を行うこともできる。例えば,上記被覆物がTiO2
場合には,上記コート体を窒素中において高温に保持す
ることにより,TiO2が基材形状に忠実に再配列して
結晶化を起こす。この場合には,被覆物の種々の物性を
向上させることができる。
Further, after the above-mentioned coated body is produced and before the base material is removed, the coating may be subjected to a crystallization treatment or a reduction treatment. For example, when the coating is TiO 2 , by holding the coated body at a high temperature in nitrogen, the TiO 2 is rearranged faithfully in the shape of the base material and causes crystallization. In this case, various physical properties of the coating can be improved.

【0020】また,上記活性酸素雰囲気は低温酸素プラ
ズマであり,該活性酸素雰囲気中における上記コート体
の温度は180℃以下であることが好ましい(請求項
2)。この場合には,被覆物の再配列や構造変化を確実
に防止することができる。
The active oxygen atmosphere is a low-temperature oxygen plasma, and the temperature of the coated body in the active oxygen atmosphere is preferably 180 ° C. or less. In this case, rearrangement and structural change of the coating can be reliably prevented.

【0021】次に,本発明の作用につき説明する。本発
明においては,基材の表面に被覆物を被覆させてなるコ
ート体を作製した後,該コート体を活性酸素雰囲気中に
保持する。活性酸素雰囲気は,非常に活性な酸素を含有
する雰囲気であるので,上記コート体における基材は,
酸素と反応する。例えば基材が炭素を含有している場合
には,CがCO2となって除去される。そのため,上記
コート体を活性酸素雰囲気中に保持すれば,基材の除去
を行うことができる。
Next, the operation of the present invention will be described. In the present invention, after preparing a coated body obtained by coating the surface of a substrate with a coating, the coated body is kept in an active oxygen atmosphere. The active oxygen atmosphere is an atmosphere containing very active oxygen.
Reacts with oxygen. For example, when the base material contains carbon, C is removed as CO 2 . Therefore, if the coated body is kept in an active oxygen atmosphere, the substrate can be removed.

【0022】なお,基材のほとんどの表面を被覆物が被
覆した場合でも,CO2等の基材と酸素との反応物は被
覆物中を分子レベルで(分子と分子との間隙を)通過す
るため,基材を除去できる。
Even when the coating covers most of the surface of the substrate, the reaction product between the substrate and oxygen, such as CO 2 , passes through the coating at the molecular level (through the gap between molecules). Therefore, the substrate can be removed.

【0023】また,活性酸素雰囲気は,上記のごとく,
活性な酸素である一方,比較的温度が低い。そのため,
基材除去時において被覆物に対してほとんどダメージを
与えない。即ち,基材除去時に被覆物の原子の再配列を
生じさせるというような熱による不具合を防止すること
ができるので,被覆物の構造の崩壊等を防止することが
できる。それ故,上記被覆物が多孔体である場合には,
その孔形状を良好に維持することができる。
The active oxygen atmosphere is, as described above,
While it is active oxygen, its temperature is relatively low. for that reason,
Almost no damage to the coating when removing the substrate. That is, it is possible to prevent a problem caused by heat such as rearrangement of atoms of the coating when removing the base material, and thus it is possible to prevent the structure of the coating from collapsing. Therefore, if the coating is porous,
The hole shape can be favorably maintained.

【0024】また,上記基材の除去は,該基材と酸素と
の化学反応により行う。そのため,活性酸素雰囲気を供
給し続ける限り基材の除去を続けることができる。それ
故,例えば,上記コート体から基材をほぼすべて取除き
たい場合においても,十分にその目的を達成することが
できる。また,上記基材の除去量は活性酸素雰囲気の条
件の変更,処理時間の変更等により容易に調整すること
ができる。そのため,上記コート体から基材をすべて除
去するだけでなく,一部のみを除去することもできる。
The removal of the substrate is performed by a chemical reaction between the substrate and oxygen. Therefore, the substrate can be continuously removed as long as the active oxygen atmosphere is continuously supplied. Therefore, for example, even when it is desired to remove substantially all of the base material from the coated body, the purpose can be sufficiently achieved. Further, the removal amount of the substrate can be easily adjusted by changing the condition of the active oxygen atmosphere, changing the processing time, and the like. Therefore, not only the base material can be completely removed from the coated body, but also a part thereof can be removed.

【0025】したがって,本発明によれば,被覆物の品
質を維持しつつ,容易に基材除去を行うことができる基
材除去方法を提供することができる。
Therefore, according to the present invention, it is possible to provide a substrate removing method capable of easily removing the substrate while maintaining the quality of the coating.

【0026】[0026]

【発明の実施の形態】実施形態例1 本発明の実施形態例にかかる基材除去方法につき,説明
する。本例は,活性炭素繊維よりなる基材の表面に,T
iO2よりなる被覆物を被覆させてなるコート体を作製
した後,該コート体から上記基材を除去して,触媒とし
ての上記被覆物を得る場合の基材除去方法を実施した例
である。そして,本例では,上記基材除去方法として,
本発明を適用した実施例E1と従来法を適用した比較例
C1を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 A method for removing a substrate according to an embodiment of the present invention will be described. In this example, the surface of a substrate made of activated carbon fiber is coated with T
This is an example of implementing a substrate removing method in the case of producing a coated body coated with a coating made of iO 2 and then removing the substrate from the coated body to obtain the coating as a catalyst. . And in this example, as the above-mentioned substrate removing method,
Example E1 to which the present invention is applied and Comparative Example C1 to which a conventional method is applied are shown.

【0027】(実施例E1)まず,基材として活性炭素
繊維(大阪瓦斯製 リベノスA)を準備し,これに超臨
界コート法によりTiO2の被覆物を被覆した。即ち,
上記活性炭素繊維の存在下において,上記TiO2の前
駆体としてのチタンイソプロキシド{Ti(iso-Pr
O)4}を3.2mol/l溶解させたイソプロパノー
ル溶液を超臨界二酸化炭素(温度150℃,圧力374
atm)に溶解させた。そして,この状態を3時間保持
した。
Example E1 First, activated carbon fiber (Libenos A manufactured by Osaka Gas Co., Ltd.) was prepared as a base material, and this was coated with a TiO 2 coating by a supercritical coating method. That is,
In the presence of the activated carbon fiber, titanium isopropoxide as precursors of the TiO 2 {Ti (iso-Pr
O) 4 } was dissolved in 3.2 mol / l isopropanol solution in supercritical carbon dioxide (temperature 150 ° C., pressure 374).
atm). Then, this state was maintained for 3 hours.

【0028】その後,上記超臨界二酸化炭素を減圧・除
去した。これにより,活性炭素繊維よりなる基材の表面
にTiO2よりなる被覆物を被覆してなるコート体が得
られた。次いで,コート体を室温で10時間乾燥後,本
発明の基材除去方法を実施した。即ち,上記コート体を
低温酸素プラズマ中に保持して,上記基材と酸素を反応
させることにより,該基材を除去した。
Thereafter, the supercritical carbon dioxide was reduced in pressure and removed. As a result, a coated body obtained by coating the surface of the substrate made of activated carbon fibers with the coating made of TiO 2 was obtained. Next, after the coated body was dried at room temperature for 10 hours, the substrate removing method of the present invention was performed. That is, the substrate was removed by holding the coated body in low-temperature oxygen plasma and reacting the substrate with oxygen.

【0029】具体的には,上記コート体をチャンバー内
に配置後10-4torrに減圧した後,出力500W,
酸素流量160ml/分の条件で,最高温度180℃以
下の低温酸素プラズマを発生させ,8時間保持した。こ
れにより,上記コート体から基材が除去されて,TiO
2よりなる被覆物が単離されて触媒として得られた。
Specifically, after the coated body was placed in the chamber, the pressure was reduced to 10 -4 torr, and the output was 500 W,
Under the condition of an oxygen flow rate of 160 ml / min, a low-temperature oxygen plasma having a maximum temperature of 180 ° C. or less was generated and maintained for 8 hours. As a result, the base material is removed from the coated body, and the TiO 2 is removed.
The coating consisting of 2 was isolated and obtained as catalyst.

【0030】(比較例C1)本比較例C1においては,
上記実施例E1と同様にしてコート体を作製し,従来の
焼成法を用いて基材除去を行った。即ち,上記コート体
を室温で10時間乾燥後,温度700℃,流量8リット
ル/分の空気気流下にコート体を6時間保持した。これ
により,コート体から基材が焼成除去されて,TiO2
よりなる被覆物が単離されて触媒として得られた。
(Comparative Example C1) In Comparative Example C1,
A coated body was prepared in the same manner as in Example E1, and the substrate was removed using a conventional firing method. That is, after drying the coated body at room temperature for 10 hours, the coated body was kept at a temperature of 700 ° C. under a flow of air of 8 liters / minute for 6 hours. As a result, the base material is baked and removed from the coated body, and TiO 2
A coating consisting of was isolated and obtained as a catalyst.

【0031】次に,上記実施例E1および比較例C1に
おいて,基材が十分に除去できたか否かを調べた。具体
的には,上記の単離された被覆物を温度900℃まで加
熱して,その加熱前後の重量減少率を測定した。その結
果,重量減少率は,実施例E1は3.1重量%,比較例
C1は3.6重量%であって,いずれも非常にわずかで
あった。このことから,実施例E1,比較例C1のいず
れにおいても,基材のほとんどは除去されていることが
分かった。
Next, in Example E1 and Comparative Example C1, it was examined whether or not the base material was sufficiently removed. Specifically, the isolated coating was heated to 900 ° C., and the weight loss before and after the heating was measured. As a result, the weight loss rate was 3.1% by weight in Example E1 and 3.6% by weight in Comparative Example C1, all of which were very small. From this, it was found that in each of Example E1 and Comparative Example C1, most of the base material was removed.

【0032】次に,実施例E1および比較例C1におい
て得られた触媒の品質特性を代表して,その比表面積を
測定した。測定方法は,窒素吸着によるBET比表面積
測定法を用いた。測定の結果,実施例E1は比表面積が
287m2/g,比較例C1は15m2/gであり,実に
約19倍の差が生じた。
Next, the specific surface area of the catalyst obtained in Example E1 and Comparative Example C1 was measured as a representative of the quality characteristics. As a measuring method, a BET specific surface area measuring method by nitrogen adsorption was used. As a result of the measurement, Examples E1 has a specific surface area of 287m 2 / g, Comparative Example C1 is 15 m 2 / g, the difference indeed about 19-fold occurs.

【0033】この理由は次のように考えられる。即ち,
比較例C1においては,焼成による基材除去時におい
て,被覆物が700℃という高温に曝される。そのた
め,被覆物は,結晶の再配列を起こし,多孔構造を自ら
破壊して細孔を潰す。これにより,比較例C1において
は,基材除去時に比表面積が大幅に減少する。
The reason is considered as follows. That is,
In Comparative Example C1, the coating is exposed to a high temperature of 700 ° C. when the substrate is removed by firing. Therefore, the coating causes crystal rearrangement, destroys the porous structure by itself, and crushes the pores. Thereby, in Comparative Example C1, the specific surface area is significantly reduced when the substrate is removed.

【0034】これに対して,実施例E1においては,上
記低温酸素プラズマを用いて,最高でも180℃以下の
低温条件で基材除去を行うことができる。それ故,被覆
物の多孔構造を破壊することなく,基材表面形状を忠実
に転写した状態で被覆物を得ることができ,比表面積を
大きい状態に維持することができる。
On the other hand, in the embodiment E1, the substrate can be removed at a low temperature of 180 ° C. or less by using the low-temperature oxygen plasma. Therefore, the coating can be obtained in a state in which the substrate surface shape is faithfully transferred without destroying the porous structure of the coating, and the specific surface area can be maintained in a large state.

【0035】以上の結果から,上記低温酸素プラズマを
用いた本発明の基材除去方法によれば,従来の方法の場
合よりも,格段に優れた被覆物の品質を維持しつつ,容
易に基材除去を行うことができるということが分かる。
From the above results, according to the substrate removing method of the present invention using the above-mentioned low-temperature oxygen plasma, it is possible to easily control the base material while maintaining a significantly superior coating quality as compared with the conventional method. It can be seen that material removal can be performed.

【0036】実施形態例2 本例は,活性炭素繊維よりなる基材の表面に,白金より
なる被覆物を被覆させてなるコート体を作製した後,該
コート体から上記基材を除去して,貴金属触媒としての
上記被覆物を得る場合の基材除去方法を実施した例であ
る。そして,本例では,上記基材除去方法として,本発
明を適用した実施例E2と従来法を適用した比較例C2
を示す。
Embodiment 2 In this embodiment, a coated body is prepared by coating a coating made of platinum on the surface of a base made of activated carbon fiber, and the base is removed from the coated body. This is an example in which a method of removing a base material when obtaining the above-mentioned coating material as a noble metal catalyst is performed. In this example, as the substrate removing method, Example E2 to which the present invention was applied and Comparative Example C2 to which the conventional method was applied.
Is shown.

【0037】(実施例E2)まず,基材として活性炭素
繊維(大阪瓦斯製 リベノスA)を1g準備した。ま
た,金属前駆体としての白金アセチルアセトナート錯体
0.2gをアセトン5mlと混合してアセトン混合液を
作製した。次いで,上記活性炭素繊維1gの存在下にお
いて,上記アセトン混合液と超臨界二酸化炭素(温度1
50℃,圧力351atm)とを混合させて2時間保持
し,超臨界コート法を実施した。
(Example E2) First, 1 g of activated carbon fiber (Libenos A manufactured by Osaka Gas) was prepared as a base material. Also, 0.2 g of a platinum acetylacetonate complex as a metal precursor was mixed with 5 ml of acetone to prepare an acetone mixture. Next, in the presence of 1 g of the activated carbon fiber, the acetone mixture and supercritical carbon dioxide (temperature 1)
(At 50 ° C., pressure 351 atm) and kept for 2 hours to carry out a supercritical coating method.

【0038】その後,上記超臨界二酸化炭素を減圧・除
去した。これにより,活性炭素繊維よりなる基材の表面
に白金(Pt)よりなる被覆物を被覆してなるコート体
が得られた。次いで,コート体を室温で10時間乾燥
後,本発明の基材除去方法を実施した。即ち,上記コー
ト体を低温酸素プラズマ中に保持して,上記基材と酸素
を反応させることにより,該基材を除去した。
Thereafter, the supercritical carbon dioxide was reduced in pressure and removed. As a result, a coated body obtained by coating the surface of a substrate made of activated carbon fibers with a coating made of platinum (Pt) was obtained. Next, after the coated body was dried at room temperature for 10 hours, the substrate removing method of the present invention was performed. That is, the substrate was removed by holding the coated body in low-temperature oxygen plasma and reacting the substrate with oxygen.

【0039】具体的には,実施例E1と同様に,上記コ
ート体をチャンバー内に配置後,10-4torrに減圧
した後,出力500W,酸素流量160ml/分の条件
で,最高温度180℃以下の低温酸素プラズマを発生さ
せ,8時間保持した。これにより,上記コート体から基
材が除去されて,白金よりなる被覆物が単離されて貴金
属触媒として得られた。
Specifically, as in the case of Example E1, after the above-mentioned coated body was placed in the chamber, the pressure was reduced to 10 -4 torr, the output was 500 W, the oxygen flow rate was 160 ml / min, and the maximum temperature was 180 ° C. The following low-temperature oxygen plasma was generated and maintained for 8 hours. As a result, the substrate was removed from the coated body, and the coating made of platinum was isolated and obtained as a noble metal catalyst.

【0040】(比較例C2)本比較例C2においては,
上記実施例E2と同様にしてコート体を作製し,従来の
焼成法を用いて基材除去を行った。即ち,上記コート体
を室温で10時間乾燥後,温度700℃,流量8リット
ル/分の空気気流下にコート体を6時間保持した。これ
により,コート体から基材が焼成除去されて,白金より
なる被覆物が単離されて触媒として得られた。
(Comparative Example C2) In Comparative Example C2,
A coated body was prepared in the same manner as in Example E2, and the substrate was removed using a conventional firing method. That is, after drying the coated body at room temperature for 10 hours, the coated body was kept at a temperature of 700 ° C. under a flow of air of 8 liters / minute for 6 hours. As a result, the substrate was calcined and removed from the coated body, and a coating made of platinum was isolated and obtained as a catalyst.

【0041】次に,上記実施例E2および比較例C2に
おいて,基材が十分に除去できたか否かを調べた。具体
的には,上記の単離された被覆物の元素分析(ICP発
光分光分析)を行った。その結果,実施例E2は白金が
99%以上,比較例C1は白金が98%以上であり,い
ずれもほとんどの基材は除去されていることが分かっ
た。
Next, in Example E2 and Comparative Example C2, it was examined whether the substrate could be sufficiently removed. Specifically, the isolated coating was subjected to elemental analysis (ICP emission spectroscopy). As a result, Example E2 contained 99% or more of platinum and Comparative Example C1 contained 98% or more of platinum, and it was found that almost all of the base material was removed.

【0042】次に,実施例E2および比較例C2におい
て得られた貴金属触媒の品質特性を代表して,その比表
面積を測定した。測定方法は,実施形態例1と同様であ
る。測定の結果,実施例E2は比表面積が52m2
g,比較例C2は2.4m2/gであり,実に約21倍
の差が生じた。この理由も実施形態例1と同様であると
考えられる。
Next, the specific surface area was measured as a representative of the quality characteristics of the noble metal catalysts obtained in Example E2 and Comparative Example C2. The measuring method is the same as that of the first embodiment. As a result of the measurement, Example E2 had a specific surface area of 52 m 2 /
g and Comparative Example C2 were 2.4 m 2 / g, and a difference of about 21 times actually occurred. This reason is considered to be the same as in the first embodiment.

【0043】[0043]

【発明の効果】上述のごとく,本発明によれば,被覆物
の品質を維持しつつ,容易に基材除去を行うことができ
る基材除去方法を提供することができる。
As described above, according to the present invention, it is possible to provide a substrate removing method which can easily remove the substrate while maintaining the quality of the coating.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 16/56 C23C 16/56 (72)発明者 福嶋 喜章 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 4G042 DB12 DB26 DB31 DD06 4G047 CA02 CB05 CB08 CC03 CD05 KA03 KD02 LB10 4G073 AA03 BA20 BA63 BC10 BD11 FA11 FC18 FC25 FC26 FD12 FD23 UA02 UB39 4G076 AA02 AB12 BA24 BC02 BD02 BD04 CA12 DA01 FA01 4K030 AA11 BA01 BA43 BA44 BA46 CA05 CA08 DA08 FA00 FA17──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C23C 16/56 C23C 16/56 (72) Inventor Yoshiaki Fukushima Ground 1 Toyota Central R & D Co., Ltd. F-term (reference) 4G042 DB12 DB26 DB31 DD06 4G047 CA02 CB05 CB08 CC03 CD05 KA03 KD02 LB10 4G073 AA03 BA20 BA63 BC10 BD11 FA11 FC18 FC25 FC26 FD12 FD23 UA02 UB39 4G076 BC12 ABA02 DA01 FA01 4K030 AA11 BA01 BA43 BA44 BA46 CA05 CA08 DA08 FA00 FA17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基材の表面に被覆物を被覆させてなるコ
ート体を作製した後,該コート体から上記基材の少なく
とも一部を除去する方法であって,上記コート体を活性
酸素雰囲気中に保持して,上記基材と酸素を反応させる
ことにより,該基材の少なくとも一部を除去することを
特徴とする基材除去方法。
1. A method for producing a coated body obtained by coating a surface of a substrate with a coating, and then removing at least a part of the substrate from the coated body, wherein the coated body is placed in an active oxygen atmosphere. A substrate removing method comprising removing at least a part of the substrate by allowing the substrate to react with oxygen while holding the substrate.
【請求項2】 請求項1において,上記活性酸素雰囲気
は低温酸素プラズマであり,該活性酸素雰囲気中におけ
る上記コート体の温度は180℃以下であることを特徴
とする基材除去方法。
2. The substrate removing method according to claim 1, wherein the active oxygen atmosphere is low-temperature oxygen plasma, and the temperature of the coated body in the active oxygen atmosphere is 180 ° C. or less.
【請求項3】 請求項1又は2において,上記基材は活
性炭よりなり,上記コート体の作製は超臨界流体を用い
て行うことを特徴とする基材除去方法。
3. The method according to claim 1, wherein the substrate is made of activated carbon, and the production of the coated body is performed using a supercritical fluid.
JP02898799A 1999-02-05 1999-02-05 Substrate removal method Expired - Fee Related JP4228448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02898799A JP4228448B2 (en) 1999-02-05 1999-02-05 Substrate removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02898799A JP4228448B2 (en) 1999-02-05 1999-02-05 Substrate removal method

Publications (2)

Publication Number Publication Date
JP2000226624A true JP2000226624A (en) 2000-08-15
JP4228448B2 JP4228448B2 (en) 2009-02-25

Family

ID=12263781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02898799A Expired - Fee Related JP4228448B2 (en) 1999-02-05 1999-02-05 Substrate removal method

Country Status (1)

Country Link
JP (1) JP4228448B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213061A (en) * 2004-01-27 2005-08-11 Ricoh Co Ltd Method for producing mesoporous silica structure, and mesoporous silica structure and liquid crystal element having the same
WO2006054393A1 (en) * 2004-11-22 2006-05-26 Tokyo University Of Agriculture And Technology Method and apparatus for preparing thin film
JP2006144085A (en) * 2004-11-22 2006-06-08 Tokyo Univ Of Agriculture & Technology Method for producing thin film
JP2006144084A (en) * 2004-11-22 2006-06-08 Tokyo Univ Of Agriculture & Technology Method for producing thin film
CN106086779A (en) * 2016-06-06 2016-11-09 王华胜 A kind of micro-or nano size circulation aperture cellular solid and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213061A (en) * 2004-01-27 2005-08-11 Ricoh Co Ltd Method for producing mesoporous silica structure, and mesoporous silica structure and liquid crystal element having the same
WO2006054393A1 (en) * 2004-11-22 2006-05-26 Tokyo University Of Agriculture And Technology Method and apparatus for preparing thin film
JP2006144085A (en) * 2004-11-22 2006-06-08 Tokyo Univ Of Agriculture & Technology Method for producing thin film
JP2006144084A (en) * 2004-11-22 2006-06-08 Tokyo Univ Of Agriculture & Technology Method for producing thin film
US7727597B2 (en) 2004-11-22 2010-06-01 Tokyo University Of Agriculture & Tech. Method and apparatus for preparing thin film
JP4617142B2 (en) * 2004-11-22 2011-01-19 国立大学法人東京農工大学 Thin film manufacturing method
JP4618780B2 (en) * 2004-11-22 2011-01-26 国立大学法人東京農工大学 Thin film manufacturing method
CN106086779A (en) * 2016-06-06 2016-11-09 王华胜 A kind of micro-or nano size circulation aperture cellular solid and preparation method thereof

Also Published As

Publication number Publication date
JP4228448B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
Nair et al. Sol-gel synthesis of molecular sieving silica membranes
US20020190251A1 (en) Thin film materials of amorphous metal oxides
JP5897458B2 (en) Pervaporation separation method
RU2108860C1 (en) Precursor of catalyst or ceramic membrane and method of preparation thereof
KR100627653B1 (en) Method of producing ceramic foams
JP2010526650A5 (en)
EP1323846A2 (en) Process for preparing metal coatings from liquid solutions utilizing cold plasma
US5952421A (en) Synthesis of preceramic polymer-stabilized metal colloids and their conversion to microporous ceramics
JP5595044B2 (en) Carbon film manufacturing method
CN104178745A (en) Method for manufacturing porous diamond or porous cubic silicon carbide self-supporting film
JP2000226624A (en) Method for removing base material
EP2589428B1 (en) Silica film filter
WO2007094267A1 (en) Process for producing ceramic porous membrane
JP2003534907A (en) Improved silica film and method for producing the same
JP2019069866A (en) Method for producing activated carbon
JP2008126088A (en) Mesoporous inorganic material and manufacturing method of adsorption filter carrying the mesoporous inorganic material on it
JPH11128722A (en) Minute structure transfer method
JP2008173576A (en) Method of manufacturing hydrogen separation membrane composite body, and hydrogen separation method using the same
ES2268635T3 (en) PROCEDURE TO COVER A SUBSTRATE.
RU2417123C1 (en) Method of producing catalyst for ice exhaust gas cleaning
EP1562859B1 (en) Method for preparing monolithic hydrated aluminas and composite materials
Meima et al. The interaction of oxygen with isolated silver particles of ca. 70 nm supported on α-alumina. Part 1.—Oxygen sorption and temperature-programmed desorption measurements
JPS62273029A (en) Medium for separating hydrogen
JP3603592B2 (en) Manufacturing method of shape transfer material
JP2002033302A (en) Supercritical drying method and supercritical drying device for thin-film structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees