JP2019069866A - Method for producing activated carbon - Google Patents

Method for producing activated carbon Download PDF

Info

Publication number
JP2019069866A
JP2019069866A JP2017195445A JP2017195445A JP2019069866A JP 2019069866 A JP2019069866 A JP 2019069866A JP 2017195445 A JP2017195445 A JP 2017195445A JP 2017195445 A JP2017195445 A JP 2017195445A JP 2019069866 A JP2019069866 A JP 2019069866A
Authority
JP
Japan
Prior art keywords
activated carbon
activation
gas
carbon
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017195445A
Other languages
Japanese (ja)
Other versions
JP6999131B2 (en
Inventor
正晃 吉川
Masaaki Yoshikawa
正晃 吉川
紳 向井
Shin Mukai
紳 向井
振一郎 岩村
Shinichiro Iwamura
振一郎 岩村
大介 福満
Daisuke Fukutomi
大介 福満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Osaka Gas Co Ltd
Original Assignee
Hokkaido University NUC
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Osaka Gas Co Ltd filed Critical Hokkaido University NUC
Priority to JP2017195445A priority Critical patent/JP6999131B2/en
Publication of JP2019069866A publication Critical patent/JP2019069866A/en
Application granted granted Critical
Publication of JP6999131B2 publication Critical patent/JP6999131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

To provide a technique of more efficiently producing activated carbon having superior properties.SOLUTION: A method for producing activated carbon comprises: a drying step of drying an organic hydroxy gel; a carbonization step of elevating temperature to 1000°C in inert gas; and an activation step of applying microwave to a carbon material resultant from the carbonization with carbon dioxide used as an activation gas. In the activation step, a sample holding tube 3, in which a quartz tube 1 having a gas inlet 1a and a gas outlet 1b illustrated in Fig. 1 has its center portion packed with a gas-permeable quartz filter 2, is heated under application of microwave, using a heating device attached such that the quartz filter 2 is positioned within a microwave application device 4, with the carbon material held on the quartz filter 2 and with carbon dioxide gas flowed as an activation gas into the sample holding tube 3.SELECTED DRAWING: Figure 1

Description

本発明は、活性炭の製造方法に関する。   The present invention relates to a method of producing activated carbon.

活性炭は、微細孔が発達し細孔表面積が大きいという特徴から、下水処理、廃液処理、電気二重層キャパシタ用電極、ガスセンサー電極、及び排ガス処理等に用いられる吸着材料、触媒担体等として用いられるものであり、その微細孔をより高度に発達させるために、通常では、炭素化した微細孔を有する多孔質の炭素材料に対して、さらに、水蒸気雰囲気下で加熱する賦活処理を行うことがある。   Activated carbon is used as an adsorbent material, catalyst carrier, etc. used for sewage treatment, waste liquid treatment, electrode for electric double layer capacitor, gas sensor electrode, exhaust gas treatment, etc. from the characteristic that fine pores are developed and the pore surface area is large. In order to develop the fine pores to a higher degree, the carbonized fine porous carbon material may usually be further subjected to an activation treatment of heating in a water vapor atmosphere. .

また、多孔質の炭素材料としては、椰子殻等の木質材料を炭素化処理したものが一般的に用いられているが、近年、フェノール類化合物とアルデヒド類化合物とを水溶媒中でゾル−ゲル反応により重合して得られる有機ヒドロキシゲルを乾燥してクライオゲルを得、該クライオゲルを炭素化処理することにより製造することができる多孔質の炭素材料が知られている(特許文献1等)。
また、本発明者らは、このような炭素材料として賦活処理することなく、三次元的ネットワークを有し、かつBET表面積が500〜1000m/gであり、平均メソ細孔直径が2〜50nmであり、メソ細孔容積が0.5〜2ml/gであるものを製造する方法を開発している(特許文献2)。さらに、このようにして得られた炭素材料に二酸化炭素を賦活剤とするガス賦活により効率的にミクロ孔を導入できることを確認している(非特許文献1)。
As a porous carbon material, carbonized wood materials such as coconut husk are generally used, but in recent years, a sol-gel of a phenol compound and an aldehyde compound in an aqueous solvent There is known a porous carbon material which can be produced by drying an organic hydroxy gel obtained by polymerization by reaction to obtain a cryogel and carbonizing the cryogel (see Patent Document 1 and the like).
Moreover, the present inventors have a three-dimensional network without activation treatment as such a carbon material, and have a BET surface area of 500 to 1000 m 2 / g, and an average mesopore diameter of 2 to 50 nm. A method has been developed for producing a solution having a mesopore volume of 0.5 to 2 ml / g (Patent Document 2). Furthermore, it has been confirmed that micropores can be efficiently introduced into the carbon material thus obtained by gas activation using carbon dioxide as an activator (Non-patent Document 1).

特開2002−003211号公報JP 2002-003211 A 特開2013−159515号公報JP, 2013-159515, A

T. Tsuchiya, T. Mori, S. Iwamura, I. Ogino, S. R. Mukai, Binderfree synthesis of high-surface-area carbon electrodes via CO2 activation of resorcinol-formaldehyde carbon xerogel disks: Analysis of activation process, Carbon, 76 (2014) 240-249.T. Tsuchiya, T. Mori, S. Iwamura, I. Ogino, SR Mukai, Binderfree synthesis of high-surface-area carbon electrodes via CO2 activation of resorcinol-formaldehyde carbon xerogel disks: Analysis of activation process, Carbon, 76 (2014 (2014) 240-249.

しかし、上述の非特許文献1の炭素材料は、マクロ孔の割合が多くなり、メソ孔、ミクロ孔が成長し、種々の用途において優れた物性(物質の吸着能力等)が期待されるようになってきているものの、製造効率の面で改善の余地があった。すなわち、賦活処理を行う場合に、処理工程に多くのエネルギーと時間を要するため、より効率よく賦活処理を行える活性炭の製造方法が求められている。   However, in the carbon material of the above-mentioned non-patent document 1, the proportion of macropores increases, mesopores and micropores grow, and excellent physical properties (such as adsorption ability of substances) are expected in various applications. Although there are growing concerns, there is room for improvement in terms of manufacturing efficiency. That is, since a lot of energy and time are required for a treatment process when performing activation processing, there is a need for a method of producing activated carbon that can perform activation processing more efficiently.

したがって、本発明は上記実状に鑑み、物性の優れた活性炭を、より効率よく製造する技術を提供することを目的とする。   Therefore, in view of the above-mentioned situation, an object of the present invention is to provide a technique for more efficiently producing activated carbon having excellent physical properties.

上記目的を達成するための本発明の活性炭の製造方法の特徴構成は、
有機ヒドロキシゲルを炭素化させて得られる炭素材料に対して、二酸化炭素を賦活用ガスとしてマイクロ波照射する賦活工程を行う点にある。
The characteristic constitution of the method for producing the activated carbon of the present invention to achieve the above object is
The carbon material obtained by carbonizing the organic hydroxy gel is subjected to an activation step of performing microwave irradiation using carbon dioxide as an activation gas.

上記構成によると、有機ヒドロキシゲルを炭素化させて得られる炭素材料を原料として活性炭を製造するから、メソ孔、ミクロ孔が発達した活性炭を製造することができる。
また、後述の実施形態より明らかなように、二酸化炭素を賦活用ガスとして用い、マイクロ波照射する賦活工程を行うから、きわめて迅速にかつメソ孔、ミクロ孔が発達した活性炭を得ることができる。
According to the above configuration, since activated carbon is produced from a carbon material obtained by carbonizing an organic hydroxy gel as a raw material, activated carbon having mesopores and micropores can be produced.
Further, as is apparent from the embodiment described later, since carbon dioxide is used as an activation gas and an activation step of microwave irradiation is performed, activated carbon in which mesopores and micropores are developed can be obtained extremely rapidly.

また、有機ヒドロキシゲルを乾燥する乾燥工程と、不活性ガス中にて200℃以上1200℃以下の温度まで昇温して炭素化する炭素化工程とを行った炭素材料は、上記活性炭の製造方法における出発原料として適切な多孔質構造を備えたものとして有用である。よって、この多孔質構造を有効に利用して、マクロ孔を損なうことなく、メソ孔、ミクロ孔が発達した活性炭を得ることができる。   Further, a carbon material subjected to a drying step of drying the organic hydroxy gel and a carbonization step of raising the temperature to a temperature of 200 ° C. or more and 1200 ° C. or less in an inert gas for carbonization is a method for producing the above activated carbon Are useful as having a porous structure suitable as a starting material for Therefore, by utilizing this porous structure effectively, it is possible to obtain an activated carbon in which mesopores and micropores are developed without damaging the macropores.

また、上述の炭素材料は、前記有機ヒドロキシゲルが、フェノール類化合物とアルデヒド類化合物を水‐有機溶剤混合溶液中で重合させて容易に得ることができる。   In addition, the above-mentioned carbon material can be easily obtained by the above-mentioned organic hydroxy gel by polymerizing a phenol compound and an aldehyde compound in a water-organic solvent mixed solution.

より具体的には、前記フェノール類化合物がレゾルシノール、前記アルデヒド類化合物がホルムアルデヒドとすることができ、前記炭素材料が三次元的ネットワークを有し、かつBET表面積が500〜1000m/gであり、平均メソ細孔直径が2〜50nmであり、メソ細孔容積が0.5〜2ml/gであるものが好適に利用できる。 More specifically, the phenolic compound may be resorcinol, the aldehyde compound may be formaldehyde, the carbon material has a three-dimensional network, and a BET surface area is 500 to 1000 m 2 / g, Those having an average mesopore diameter of 2 to 50 nm and a mesopore volume of 0.5 to 2 ml / g can be suitably used.

前記賦活工程は、二酸化炭素気流中に載置された前記炭素材料にマイクロ波照射するものとでき、賦活に必要な二酸化炭素の供給と、賦活によって生じた一酸化炭素等の生成ガスの排気とを効率よく行い、賦活工程を円滑に進行させることができる。   The activation step can be performed by microwave irradiation on the carbon material placed in a carbon dioxide stream, supply of carbon dioxide necessary for activation, exhaust of generated gas such as carbon monoxide generated by activation, and the like. Can be performed efficiently, and the activation process can proceed smoothly.

また、前記賦活工程により得られる活性炭が、BET比表面積が1500m/g以上、孔径2nm以上のメソ孔とマクロ孔との合計細孔容積が1.5ml/g以上であるものを製造できるので、得られた活性炭は、下水処理、廃液処理、電気二重層キャパシタ用電極、ガスセンサー電極、及び排ガス処理等に用いられる吸着材料、触媒担体等としてきわめて有用に用いられるものとなる。 In addition, activated carbon obtained by the above-mentioned activation step can be manufactured to have a BET specific surface area of 1500 m 2 / g or more, and a total pore volume of mesopores and macropores of 1.5 nm or more and a pore diameter of 2 nm or more. The obtained activated carbon is very useful as an adsorbent material, a catalyst carrier and the like used for sewage treatment, waste liquid treatment, electrodes for electric double layer capacitors, gas sensor electrodes, exhaust gas treatment and the like.

したがって、より物性の優れた活性炭を、より効率よく製造することができるようになった。   Therefore, activated carbon having more excellent physical properties can be produced more efficiently.

加熱装置の概略図Schematic of heating device 加熱時間と炭素の重量損失割合(B.O.)との関係を示すグラフGraph showing the relationship between heating time and weight loss ratio of carbon (B.O.) 吸着等温線を示すグラフGraph showing adsorption isotherm 比較例2における加熱時間とB.O.との関係を示すグラフThe heating time and the B.C. O. Graph showing relationship with 比較例2における加熱時間と比表面積との関係を示すグラフGraph showing the relationship between heating time and specific surface area in Comparative Example 2 比較例2における加熱時間とミクロ孔容積との関係を示すグラフGraph showing the relationship between heating time and micropore volume in Comparative Example 2

以下に、本発明の実施形態にかかる活性炭の製造方法を説明する。尚、以下に好適な実施例を記すが、これら実施例はそれぞれ、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。   Below, the manufacturing method of the activated carbon concerning embodiment of this invention is demonstrated. Although preferred embodiments are described below, these embodiments are each described to illustrate the present invention more specifically, and various modifications can be made without departing from the scope of the present invention. The present invention is not limited to the following description.

本発明の実施形態にかかる活性炭の製造方法は、
有機ヒドロキシゲルを炭素化させて得られる炭素材料に対して、二酸化炭素を賦活用ガスとしてマイクロ波照射する賦活工程を行うものである。
A method of producing activated carbon according to an embodiment of the present invention is
The carbon material obtained by carbonizing the organic hydroxy gel is subjected to an activation step of microwave irradiation using carbon dioxide as an activation gas.

ここで、前記炭素材料は、たとえば、特許文献2に記載のように、有機ヒドロキシゲルを乾燥する乾燥工程と、不活性ガス中にて1000℃まで昇温して炭素化する炭素化工程とにより製造することができる。また、前記有機ヒドロキシゲルは、たとえば、フェノール類化合物とアルデヒド類化合物を水‐有機溶剤混合溶液中で重合させて得られる。   Here, as described in Patent Document 2, for example, the carbon material is dried by drying an organic hydroxy gel, and by a carbonization step of carbonizing by raising the temperature to 1000 ° C. in an inert gas. It can be manufactured. The organic hydroxy gel can be obtained, for example, by polymerizing a phenol compound and an aldehyde compound in a water-organic solvent mixed solution.

フェノール類化合物としては、いずれの価数のものも用いることができる。一価フェノール類化合物ではフェノール、o−クレゾール、m−クレゾール、p−クレゾール、チモール、ナフトール、二価フェノール類化合物ではレゾルシノール、カテコール、ヒドロキノン、ジヒドロキシナフタレン、三価フェノール類化合物ではピロガロール、フロログルシロール等があげられる。このうち、一価フェノール類化合物、より好ましくはフェノールの使用が生産性を高めるうえで好ましい。
また、アルデヒド類化合物としては、例えば、ホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、サリチルアルデヒド、ベンズアルデヒド等などがあげられる。このうち、反応性の高さからホルムアルデヒドを用いることが好ましい。アルデヒド類は予め水溶媒等に溶解させた原料を使用してもかまわない。
有機溶媒としては、水に混和できる親水性有機溶媒であれば好ましく、メタノール、エタノール、1−プロパノール、2−プロパノール、ギ酸、1−ブタノール、2−ブタノール、t−ブタノール、酢酸、アセトン、テトラヒドロフラン、N,N−ジメチルホルムアミド等があげられる。このうち、汎用性の高さや経済性の面で優れるエタノール、1−プロパノール、2−プロパノール、t−ブタノールなどの低級アルコールがゾル−ゲル反応を効率的に行う水‐有機溶剤混合溶液を調製しやすい。
As the phenolic compound, compounds of any valence can be used. Monohydric phenol compounds: phenol, o-cresol, m-cresol, p-cresol, thymol, naphthol; dihydric phenol compounds: resorcinol, catechol, hydroquinone, dihydroxynaphthalene, trivalent phenol compounds: pyrogallol, phloroglucilol Etc. Among these, the use of a monohydric phenol compound, more preferably phenol is preferred in order to enhance the productivity.
Further, examples of the aldehyde compounds include formaldehyde, acetaldehyde, butyraldehyde, salicylaldehyde, benzaldehyde and the like. Among these, it is preferable to use formaldehyde because of high reactivity. Aldehydes may be used as raw materials dissolved in water solvent or the like in advance.
The organic solvent is preferably a hydrophilic organic solvent miscible with water, preferably methanol, ethanol, 1-propanol, 2-propanol, formic acid, 1-butanol, 2-butanol, t-butanol, acetic acid, acetone, tetrahydrofuran, N, N- dimethylformamide etc. are mention | raise | lifted. Among them, a water-organic solvent mixed solution in which a lower alcohol such as ethanol, 1-propanol, 2-propanol, t-butanol or the like is excellent in versatility and economy is prepared to efficiently perform a sol-gel reaction. Cheap.

また、上述のように得られた炭素材料としては、前記炭素材料が三次元的ネットワークを有し、かつBET表面積が500〜1000m/gであり、平均メソ細孔直径が2〜50nmであり、メソ細孔容積が0.5〜2ml/gであるものが知られており、好適に用いることができる。 Moreover, as the carbon material obtained as described above, the carbon material has a three-dimensional network, a BET surface area of 500 to 1000 m 2 / g, and an average mesopore diameter of 2 to 50 nm, Those having a mesopore volume of 0.5 to 2 ml / g are known and can be suitably used.

さらに、前記賦活工程は、二酸化炭素気流中に載置された炭素材料にマイクロ波照射することによって、賦活に必要な二酸化炭素の供給と、賦活によって生じた一酸化炭素等の生成ガスの排気とを効率よく行い、賦活工程を円滑に進行させることができる。   Furthermore, in the activation step, the carbon material placed in the carbon dioxide stream is irradiated with microwaves to supply carbon dioxide necessary for activation, and exhaust the generated gas such as carbon monoxide generated by activation. Can be performed efficiently, and the activation process can proceed smoothly.

この賦活工程により得られる活性炭として、BET比表面積が1000m/g以上、孔径2nm以上のメソ細孔容積が2ml/g以上のものを製造することとすれば、得られた活性炭は、下水処理、廃液処理、電気二重層キャパシタ用電極、ガスセンサー電極、及び排ガス処理等に用いられる吸着材料、触媒担体等としてきわめて有用に用いられるものとなる。 If activated carbon obtained by this activation step has a BET specific surface area of 1000 m 2 / g or more and a pore size of 2 nm or more and a mesopore volume of 2 ml / g or more, the obtained activated carbon is a sewage treatment They are extremely useful as waste materials, electrodes for electric double layer capacitors, gas sensor electrodes, adsorption materials used for exhaust gas treatment and the like, catalyst carriers and the like.

より具体的には、本実施形態にかかる活性炭の製造方法の好適な例は、以下の工程により行われる。
(1)フェノール類化合物とアルデヒド類化合物とを用いて有機ヒドロキシゲルを得るゲル化工程
(2)得られた有機ヒドロキシゲルを乾燥する乾燥工程
(3)乾燥した有機ヒドロキシゲルを炭素化する炭素化工程
(4)炭素化工程で得られた炭素材料を賦活する賦活工程
More specifically, the suitable example of the manufacturing method of the activated carbon concerning this embodiment is performed by the following processes.
(1) Gelation step of obtaining organic hydroxy gel using phenol compound and aldehyde compound (2) Drying step of drying the obtained organic hydroxy gel (3) Carbonization to carbonize the dried organic hydroxy gel Step (4) Activation step for activating the carbon material obtained in the carbonization step

以下、各工程の詳細な実施例を説明するが、以下の実施例は具体的な一例であって、本発明は下記の実施例に限定されるものではない。   Hereinafter, although the detailed example of each process is described, the following example is a specific example, Comprising: This invention is not limited to a following example.

〔実施例1〕
(1)ゲル化工程
レゾルシノール(R)、ホルムアルデヒド(F)、水(W)、炭酸ナトリウム(C)を所定の濃度(R/C=1000[molmol−1],R/F=0.5[molmol−1],R/W=0.5[gmL−1])で混合し、RFゾルを調製した。得られたRFゾルを密閉容器に移し、30℃で2h静置することでゲル化させた。得られた湿潤ゲルを、60℃で更に72hエージングを行い、有機ヒドロキシゲルを得た。
Example 1
(1) Gelation process Resorcinol (R), formaldehyde (F), water (W), sodium carbonate (C) at a predetermined concentration (R / C = 1000 [molmol −1 ], R / F = 0.5 [ It mixed by molmol < -1 >, R / W = 0.5 [gmL < -1 >]), and prepared RF sol. The obtained RF sol was transferred to a closed vessel, and left to stand at 30 ° C. for 2 h for gelation. The obtained wet gel was further aged at 60 ° C. for 72 h to obtain an organic hydroxy gel.

ゲル化工程において、ゾル−ゲル反応させる際の反応条件としては特に限定されないが、反応温度は、通常60〜120℃、好ましくは80〜100℃である。反応温度が60℃未満であると、ゾル−ゲル反応に時間がかかり過ぎて、生産性が大幅に低下しやすい。また反応温度が100℃を超えると、溶媒の沸点を超えるため反応容器内の圧力が急激に増加し、高価な圧力容器を利用する必要が生じるため経済的に好ましくない。また、反応時間は、通常7〜240時間、好ましくは24〜120時間である。反応時間が7時間未満であると、ゾル−ゲル反応の進行が不十分であるために有機ヒドロキシゲルの構造が不安定になりやすく強度の低下が生じやすい。また、反応時間が240時間を超えると、反応系中の溶媒の積算蒸発量が大きくなり、これに伴って有機ヒドロキシゲルが収縮して、有機ヒドロキシゲルの特異な構造が失われやすい。   In the gelation step, reaction conditions for the sol-gel reaction are not particularly limited, but the reaction temperature is usually 60 to 120 ° C., preferably 80 to 100 ° C. When the reaction temperature is less than 60 ° C., the sol-gel reaction takes too much time, and the productivity tends to be significantly reduced. When the reaction temperature exceeds 100 ° C., the pressure in the reaction vessel rapidly increases because the temperature exceeds the boiling point of the solvent, which makes it necessary to use an expensive pressure vessel, which is economically unpreferable. The reaction time is usually 7 to 240 hours, preferably 24 to 120 hours. If the reaction time is less than 7 hours, the progress of the sol-gel reaction is insufficient and the structure of the organic hydroxy gel tends to be unstable, and the strength tends to be reduced. In addition, when the reaction time exceeds 240 hours, the cumulative evaporation amount of the solvent in the reaction system becomes large, and the organic hydroxy gel shrinks along with this, and the unique structure of the organic hydroxy gel tends to be lost.

(2)乾燥工程
この有機ヒドロキシゲル中に残存する混合溶媒を、48時間かけ6回に分けてtert−ブチルアルコールで置換した。その後、低圧条件(<40Pa)−10℃で48h凍結乾燥し、有機ヒドロキシゲルの乾燥したクライオゲルを得た。
(2) Drying Step The mixed solvent remaining in the organic hydroxy gel was divided into six portions over 48 hours and replaced with tert-butyl alcohol. Then, it was freeze-dried at low pressure conditions (<40 Pa)-10 ° C for 48 h to obtain a dried cryogel of organic hydroxy gel.

乾燥工程における乾燥方法としては、当該有機ヒドロキシゲルを構成する微粒子の三次元的ネットワーク構造を保持したまま、三次元的ネットワーク構造中に残存する溶媒を除去できる乾燥方法を適宜選択することができる。具体的には乾燥方法には、温風乾燥、真空乾燥、凍結乾燥、超臨界乾燥、マイクロ波乾燥等があげられる。このうち、経済性の面から凍結乾燥、温風乾燥、マイクロ波乾燥が好ましい。   As the drying method in the drying step, a drying method capable of removing the solvent remaining in the three-dimensional network structure can be appropriately selected while maintaining the three-dimensional network structure of the fine particles constituting the organic hydroxy gel. Specifically, examples of the drying method include warm air drying, vacuum drying, freeze drying, supercritical drying, microwave drying and the like. Among these, lyophilization, hot air drying and microwave drying are preferable from the viewpoint of economy.

凍結乾燥において、凍結温度としては特に限定されないが、通常−30〜−5℃、このましくは、−15〜−10℃である。凍結温度が該範囲内にあると、一般的に利用される凍結乾燥装置を用いる事ができ、乾燥速度も比較的大きくすることができるため好ましい。また、マイクロ波乾燥を行う場合、マイクロ波の出力としては特に限定されないが、通常0.1〜10kW/kg、好ましくは0.5〜5kW/kgである。マイクロ波の出力が該範囲内にあると、溶媒の急激な気化による有機ヒドロキシゲルの構造破壊を抑制することができると共に、乾燥速度も比較的大きくすることができるため好ましい。また、温風乾燥を行う場合、設定温度としては特に限定されないが、通常20〜150℃、好ましくは、30〜90℃である。設定温度が該範囲内にあると、一般的に利用される温風器、乾燥器を用いる事ができ、乾燥速度も比較的大きくすることができるため好ましい。   In lyophilization, the freezing temperature is not particularly limited, but is usually -30 to -5 ° C, preferably -15 to -10 ° C. When the freezing temperature is in the above range, a generally used lyophilizer can be used, and the drying rate can be relatively large, which is preferable. Moreover, when performing microwave drying, although it does not specifically limit as an output of a microwave, Usually, 0.1-10 kW / kg, Preferably it is 0.5-5 kW / kg. When the output of the microwave is within the range, it is possible to suppress the structural destruction of the organic hydroxy gel by the rapid evaporation of the solvent, and it is preferable because the drying rate can be made relatively large. Moreover, when performing warm-air drying, although it does not specifically limit as preset temperature, Usually, 20-150 degreeC, Preferably, it is 30-90 degreeC. When the set temperature is in the above range, a generally used hot air blower or dryer can be used, and the drying speed can be relatively large, which is preferable.

(3)炭素化工程
得られたクライオゲルを、電気炉にて窒素流通下(100mLmin−1)1000℃で炭素化し、炭素材料を得た。得られた炭素材料は、三次元的ネットワークを有し、かつBET表面積が500〜1000m/gであり、平均メソ細孔直径が2〜50nmであり、メソ細孔容積が0.5〜2ml/gであることがわかった。
(3) Carbonization process The obtained cryogel was carbonized at 1000 degreeC under nitrogen distribution (100 mLmin < -1 >) with an electric furnace, and the carbon material was obtained. The obtained carbon material has a three-dimensional network, and has a BET surface area of 500 to 1000 m 2 / g, an average mesopore diameter of 2 to 50 nm, and a mesopore volume of 0.5 to 2 ml. It turned out to be / g.

炭素化工程は、上記のクライオゲルを非酸化性ガス(不活性ガス)雰囲気下で加熱することで、熱分解・炭素化させ微細孔を有する炭素材料を製造する工程である。炭素化温度としては特に限定されないが、通常200〜1200℃、好ましくは300〜1000℃である。炭素化温度が200℃より低すぎると該クライオゲルが十分に熱分解・炭素化されないため好ましくない。逆に炭素化温度が1200℃より高すぎると、熱分解が過度に進んで該クライオゲルの構造が崩れやすくなり、構造の破壊や強度の低下が起こりやすくなるため好ましくない。また処理時間としては特に限定されないが、通常1〜20時間、好ましくは、2〜10時間である。処理時間が1時間よりも少ないと、該クライオゲルが十分に熱分解・炭素化されないため好ましくない。逆に処理時間が20時間よりも多いと、熱分解が過度に進んで該クライオゲルの構造が崩れやすくなり、構造の破壊や強度の低下が起こりやすくなるため好ましくない。また、炭素化工程は不活性ガス流通下で行うことが好ましく、不活性ガスとしては、窒素、アルゴン等が挙げられる。また、不活性ガスの流量としては、内径3〜10mmの反応管として2〜10cm/sec程度が好ましい。   The carbonization step is a step of producing the carbon material having fine pores by thermal decomposition and carbonization by heating the above-mentioned cryogel in a non-oxidizing gas (inert gas) atmosphere. The carbonization temperature is not particularly limited, but is usually 200 to 1200 ° C., preferably 300 to 1000 ° C. It is not preferable that the carbonization temperature is lower than 200 ° C. because the cryogel is not sufficiently pyrolyzed and carbonized. On the other hand, if the carbonization temperature is higher than 1200 ° C., the thermal decomposition proceeds excessively, the structure of the cryogel tends to be broken, and the structure is likely to be broken or the strength is reduced, which is not preferable. The treatment time is not particularly limited, but is usually 1 to 20 hours, preferably 2 to 10 hours. If the treatment time is less than 1 hour, it is not preferable because the cryogel is not sufficiently pyrolyzed and carbonized. On the other hand, if the treatment time is more than 20 hours, the thermal decomposition proceeds excessively, the structure of the cryogel is easily broken, and the structure is likely to be broken or the strength is lowered, which is not preferable. Moreover, it is preferable to perform a carbonization process under inert gas distribution, and nitrogen, argon, etc. are mentioned as an inert gas. Moreover, as a flow volume of inert gas, about 2-10 cm / sec is preferable as a reaction tube of internal diameter 3-10 mm.

以上の方法により、有機ヒドロキシゲルを構成する微粒子の三次元ネットワーク構造が実質的に保たれたまま三次元的ネットワーク構造中に残存する溶媒を除去することができ、乾燥時における構造の破壊が生じないクライオゲルが得られる。さらに該クライオゲルを炭素化することで三次元ネットワーク構造を保持したまま微細孔を発達させた炭素材料を得ることができる。本発明では、該クライオゲルあるいは炭素材料は、ミクロ孔、メソ孔の発達したものである。   By the above method, the solvent remaining in the three-dimensional network structure can be removed while the three-dimensional network structure of the fine particles constituting the organic hydroxy gel is substantially maintained, resulting in the destruction of the structure upon drying. No cryogel is obtained. Furthermore, by carbonizing the cryogel, it is possible to obtain a carbon material in which fine pores are developed while maintaining a three-dimensional network structure. In the present invention, the cryogel or carbon material is a development of micropores and mesopores.

(4)賦活工程
加熱装置は、図1に示すように、縦姿勢で両端にガス流入口1a及びガス排出口1bを形成した石英管1の中央部に通気性の石英フィルタ2を充填してある試料保持管3を、石英フィルタ2がマイクロ波照射装置4内に位置するように、当該マイクロ波照射装置4に装着し、二酸化炭素流通条件下で石英フィルタ2上に保持された炭素材料5にマイクロ波を照射可能に構成してある。
この加熱装置の石英フィルタ2上に炭素材料300mgを保持させ、試料保持管3に賦活用ガスとして二酸化炭素を所定の流量で流し、一定時間ガス置換したのち、二酸化炭素流通下で所定の時間、電源周波数50Hz、マイクロ波周波数、2.45GHz、電力700Wで加熱を行った。
なお、マイクロ波は、周波数300MHz〜30GHz程度の電磁波であり、適切に加熱することができれば、任意の周波数のマイクロ波を使用することができる。本実施例では、2.45GHzのマイクロ波を照射した。
マイクロ波の照射に従ってB.O.が増加するとともに、炭素材料は多孔質構造に変化する。
(4) Activation process As shown in FIG. 1, the heating device is filled with a gas-permeable quartz filter 2 in the central portion of the quartz tube 1 having the gas inlet 1a and the gas outlet 1b at both ends in a vertical posture. The carbon material 5 held on the quartz filter 2 under carbon dioxide flow conditions, with a certain sample holding tube 3 attached to the microwave irradiation device 4 such that the quartz filter 2 is positioned in the microwave irradiation device 4 Can be irradiated with microwaves.
After 300 mg of carbon material is held on the quartz filter 2 of this heating device, carbon dioxide is flowed at a predetermined flow rate as the activating gas into the sample holding pipe 3 at a predetermined flow rate, and gas substitution is performed for a fixed time, and then the carbon dioxide is circulated for a predetermined time Heating was performed at a power supply frequency of 50 Hz, a microwave frequency of 2.45 GHz, and a power of 700 W.
The microwaves are electromagnetic waves having a frequency of about 300 MHz to 30 GHz, and microwaves of any frequency can be used as long as they can be appropriately heated. In this example, microwaves of 2.45 GHz were irradiated.
According to the microwave irradiation B. O. As the carbon content increases, the carbon material changes to a porous structure.

(5)結果
炭素化工程を行った炭素材料は、ふるいにより、粒径125〜212μmの試料A、粒径212〜500μmの試料Bに分け、それぞれ賦活工程を行った場合、加熱時間(min)とバーンオフ(B.O.(%))との関係を調べた。
(バーンオフとは、加熱による炭素の重量損失割合(B.O.=((最初の質量−加熱後の質量)/最初の質量)×100)
その結果、いずれの試料についても約15分でB.O.が50%以上に増加し、賦活工程が速やかに進んでいることが分かった(図2参照)。
(5) Results The carbon material subjected to the carbonization step is divided into a sample A with a particle diameter of 125 to 212 μm and a sample B with a particle diameter of 212 to 500 μm by a sieve, and the activation step is performed respectively; The relationship between B and B (B.O. (%)) was investigated.
(The burn-off is the weight loss ratio of carbon by heating (B.O. = ((first mass-mass after heating) / first mass) x 100)
As a result, B.I. O. Increased to 50% or more, and it was found that the activation process was rapidly advancing (see FIG. 2).

〔比較例1〕
実施例1における加熱装置をマイクロ波照射装置に替えて電気炉として賦活工程を行った。
(4)賦活工程
炭素材料300mgを入れた試料保持管を縦型の電気炉にセットし、Arガスを100ml/minで流し、一定時間置いたのち10℃/minで昇温した。1000℃になったことを確認したのち、Arガスを止め、COガスを所定の流量で所定の時間流し、賦活を行った。予定の賦活処理が終了したのち、再びガスを切り替え、加熱を止めた。
Comparative Example 1
The heating apparatus in Example 1 was changed to a microwave irradiation apparatus, and the activation process was performed as an electric furnace.
(4) Activation Step A sample holding tube containing 300 mg of a carbon material was set in a vertical electric furnace, Ar gas was flowed at 100 ml / min, and the temperature was raised at 10 ° C./min after being kept for a certain time. After confirming that the temperature reached 1000 ° C., Ar gas was stopped, CO 2 gas was flowed at a predetermined flow rate for a predetermined time, and activation was performed. After the scheduled activation process was completed, the gas was switched again and heating was stopped.

(5)結果
実施例1と同様に賦活工程におけるバーンオフ(B.O.(%))との関係を調べたところ、B.O.が50%以上になるまでに40分以上の時間を要し、実施例1に比べて緩やかに賦活工程が進んでいることが分かった(図2参照)。すなわち、本発明によると賦活工程がきわめて速やかに行えることが分かった。
(5) Results The relationship with burn-off (B.O. (%)) in the activation step was examined in the same manner as in Example 1. O. It took more than 40 minutes to become 50% or more, and it was found that the activation process proceeded more gently than in Example 1 (see FIG. 2). That is, according to the present invention, it was found that the activation process can be performed very quickly.

また、得られた試料C〜Fについての細孔構造を窒素吸着測定装置(MicrotracBEL,BELSORP−mini)により評価した。   In addition, the pore structures of the obtained samples C to F were evaluated by a nitrogen adsorption measuring device (Microtrac BEL, BELSORP-mini).

試料A:粒径125〜212μmの賦活前の炭素材料
試料B:粒径212〜500μmの賦活前の炭素材料
試料C:試料Aを比較例1の賦活工程でB.O.=69%としたもの
試料D:試料Aを実施例1の賦活工程でB.O.=72%としたもの
試料E:試料Bを比較例1の賦活工程でB.O.=31%としたもの
試料F:試料Bを実施例1の賦活工程でB.O.=29%としたもの
Sample A: Carbon material before activation of particle diameter 125 to 212 μm Sample B: Carbon material before activation of particle diameter 212 to 500 μm Sample C: Sample A in the activation step of Comparative Example 1 B. O. Sample D: Sample A in the activation step of Example 1 B. O. Sample E: Sample B in the activation step of Comparative Example 1 B. O. Sample F: Sample B in the activation step of Example 1 B. O. With = 29%

窒素吸着測定に際し、試料の前処理を20mL/minの窒素流通条件下250℃で6h行った。得られた吸着等温線(相対圧p/pに対する総吸着量をプロットしたもの)を図3に示す。この結果から、二酸化炭素を用いた賦活工程により、細孔容積が大きく増加し、吸着性能の高い活性炭が得られていることがわかる。なお、試料CとDおよび試料EとFのグラフが良く重なっていることから、炭素材料の粒径や、電気炉による加熱や、マイクロ波照射による加熱の違いによらずB.O.が同程度であれば、ほぼ同程度の吸着性能の活性炭が得られていることがわかった。 For nitrogen adsorption measurement, pretreatment of the sample was performed at 250 ° C. for 6 h under nitrogen flow conditions of 20 mL / min. The resulting adsorption isotherm (a plot of total adsorption versus relative pressure p / p 0 ) is shown in FIG. From these results, it is understood that the pore volume is greatly increased by the activation step using carbon dioxide, and activated carbon having high adsorption performance is obtained. In addition, since the graphs of Samples C and D and Samples E and F overlap well, regardless of the difference in the particle size of the carbon material, the heating by the electric furnace, and the heating by the microwave irradiation. O. It was found that when the same was about the same, the activated carbon having almost the same adsorption performance was obtained.

さらに、吸着等温線に基づきBET法により比表面積(SBET)、相対圧0.20未満(細孔径2nm未満相当)の吸着量からミクロ孔容積(Vmicro)、相対圧0.20以上0.96未満(細孔径2nm以上50nm未満相当)における吸着量からメソ孔容積(Vmeso)を求めた。また、相対圧0.96以上0.99未満(細孔径50nm以上相当)における吸着量からマクロ孔容積(Vmacro)を求めた。
その結果、試料Bを用いた比表面積と各細孔容積の関係は表1のようになった。
Furthermore, based on the adsorption isotherm, the specific surface area (S BET ) and relative pressure less than 0.20 (equivalent to pore diameter less than 2 nm) are adsorbed by the BET method, micropore volume (V micro ), relative pressure not less than 0.20. The mesopore volume (V meso ) was determined from the amount of adsorption at less than 96 (equivalent to a pore diameter of 2 nm or more and less than 50 nm). Also, the macropore volume (V macro ) was determined from the amount of adsorption at a relative pressure of 0.96 or more and less than 0.99 (corresponding to a pore diameter of 50 nm or more).
As a result, the relationship between the specific surface area and each pore volume using sample B was as shown in Table 1.

Figure 2019069866
Figure 2019069866

表1より、得られた活性炭は特にB.O.=11%以上に賦活するとメソ孔とマクロ孔とのの合計細孔容積が1ml/g以上となっており、メソ孔、ミクロ孔が発達し、ガス吸着材としてきわめて高い性能を有する活性炭が得られていることが予想される。特に、電源周波数50Hz、マイクロ波周波数、2.45GHz、電力700Wで、15分間のマイクロ波を照射した場合、BET比表面積1500m/g以上、孔径2nm以上のメソ孔とマクロ孔とのの合計細孔容積が1.5ml/g以上であるきわめて高性能な活性炭が得られることが分かった。
なお、B.O.=77%で得られた活性炭のデータにおいては、細孔構造の崩壊等が原因となって、BET比表面積が大きく低下した値として計算されているものと考えられる。
From Table 1, the obtained activated carbon is particularly suitable for B.I. O. When activated to 11% or more, the total pore volume of mesopores and macropores is 1 ml / g or more, mesopores and micropores develop, and activated carbon having extremely high performance as a gas adsorbent is obtained. It is expected to be In particular, when microwaves are applied for 15 minutes at a power frequency of 50 Hz, a microwave frequency of 2.45 GHz, and a power of 700 W, the total of mesopores and macropores having a BET specific surface area of 1500 m 2 / g or more and a pore diameter of 2 nm or more It was found that an extremely high performance activated carbon having a pore volume of 1.5 ml / g or more was obtained.
In addition, B. O. In the data of the activated carbon obtained in = 77%, it is considered that the value is calculated as a value in which the BET specific surface area is greatly reduced due to the collapse of the pore structure and the like.

〔比較例2〕
実施例1、比較例1における賦活用ガスを二酸化炭素に替えて窒素として賦活工程を行った。
(4)賦活工程
実施例1及び比較例1における各加熱装置に炭素材料300mgを保持させ、賦活用ガスとして窒素を所定の流量で流し、一定時間ガス置換したのち、窒素流通下で所定の時間電源周波数50Hz、マイクロ波周波数、2.45GHz、電力700W(マイクロ波照射装置)または、1000℃(電気炉)で加熱を行った。
Comparative Example 2
The activated gas in Example 1 and Comparative Example 1 was changed to carbon dioxide and the activation step was performed using nitrogen.
(4) Activation step: 300 mg of carbon material is held in each heating device in Example 1 and Comparative Example 1, nitrogen is flowed at a predetermined flow rate as an activation gas, and gas substitution is carried out for a fixed time, and then a predetermined time under nitrogen flow Heating was performed at a power supply frequency of 50 Hz, a microwave frequency, 2.45 GHz, and a power of 700 W (microwave irradiation apparatus) or 1000 ° C. (electric furnace).

(5)結果
その結果図4〜6のようになった。
すなわち、いずれのグラフからも、試料A,Bいずれについても二酸化炭素を用いた例では、マイクロ波照射による加熱が進むにつれ、15分程度で比表面積が増大し、細孔容積が増大し、賦活が進んでいるのに対して、特許文献2にも記載の窒素中における加熱処理では、炭素材料が賦活処理されていないことがわかる。
また、図5、6より、賦活工程におけるマイクロ波照射を行う場合、長時間続けるとBET比表面積が低下し始め、ミクロポア容積、マクロポア容積も上限に達するため、適切な賦活工程時間を設定することが必要になるものと考えられる。本発明の実施形態においては、電源周波数50Hz、マイクロ波周波数、2.45GHz、電力700Wの条件下で、10分〜20分程度が好ましいものと推定できる。
(5) Results As a result, it became as shown in Figs.
That is, also from any graph, in the example using carbon dioxide for both samples A and B, as heating by microwave irradiation proceeds, the specific surface area increases in about 15 minutes, the pore volume increases, and activation However, in the heat treatment in nitrogen described in Patent Document 2, it is understood that the carbon material is not activated.
In addition, according to FIGS. 5 and 6, when microwave irradiation is performed in the activation step, the BET specific surface area starts to decrease when it is continued for a long time, and the micropore volume and the macropore volume also reach the upper limit. Is considered necessary. In the embodiment of the present invention, it can be estimated that about 10 minutes to 20 minutes is preferable under the conditions of the power supply frequency of 50 Hz, the microwave frequency, 2.45 GHz, and the power of 700 W.

〔総括〕
以上の結果より、有機ヒドロキシゲルを炭素化させて得られる炭素材料に対する賦活工程を、マイクロ波照射によって行った場合、電気炉による加熱に比べて、きわめて速やかに賦活工程を行え、活性炭としての比表面積も、B.O.を指標として、電気炉による賦活工程と同等水準の活性炭が得られることが分かった。また、マイクロ波照射を用いる場合、賦活用ガスとして水蒸気を用いると、照射されるマイクロ波のエネルギーがすべて水蒸気に奪われるため適さないことが判明している。そのため、賦活用ガスとして二酸化炭素を用い、かつ、マイクロ波照射による賦活工程を行うことが効果的であることがわかる。
[Summary]
From the above results, when the activation process for the carbon material obtained by carbonizing the organic hydroxy gel is performed by microwave irradiation, the activation process can be performed very quickly compared to heating by an electric furnace, and the ratio as activated carbon is The surface area is also B.I. O. It turned out that the activated carbon of the same level as the activation process by an electric furnace is obtained by using as an index. Moreover, when using microwave irradiation, when water vapor | steam is used as an activation gas, it turns out that all the energy of the microwave to be irradiated is deprived to water vapor, and it is not suitable. Therefore, it is understood that it is effective to use carbon dioxide as the activation gas and to perform the activation step by microwave irradiation.

本発明の活性炭の製造方法は、下水処理、廃液処理、電気二重層キャパシタ用電極、ガスセンサー電極、及び排ガス処理等に有用に用いられる活性炭を製造するのに用いられる。   The method for producing activated carbon according to the present invention is used to produce activated carbon useful for sewage treatment, waste liquid treatment, electrodes for electric double layer capacitors, gas sensor electrodes, exhaust gas treatment and the like.

1 :石英管
1a :ガス流入口
1b :ガス排出口
2 :石英フィルタ
3 :試料保持管
4 :マイクロ波照射装置
5 :炭素材料
1: Quartz tube 1a: Gas inlet 1b: Gas outlet 2: Quartz filter 3: Sample holding tube 4: Microwave irradiation device 5: Carbon material

Claims (7)

有機ヒドロキシゲルを炭素化させて得られる炭素材料に対して、二酸化炭素を賦活用ガスとしてマイクロ波照射する賦活工程を行う活性炭の製造方法。   The manufacturing method of the activated carbon which performs the activation process which carries out microwave irradiation using carbon dioxide as an activation gas with respect to the carbon material obtained by carbonizing organic hydroxy gel. 有機ヒドロキシゲルを乾燥する乾燥工程と、不活性ガス中にて1000℃まで昇温して炭素化する炭素化工程とを行い、前記炭素材料を得る請求項1に記載の活性炭の製造方法。   The method for producing activated carbon according to claim 1, wherein the step of drying the organic hydroxy gel and the step of carbonization in which the temperature is raised to 1000 ° C in an inert gas for carbonization are performed to obtain the carbon material. 前記有機ヒドロキシゲルが、フェノール類化合物とアルデヒド類化合物を水‐有機溶剤混合溶液中で重合させて得られるものである請求項1または2に記載の活性炭の製造方法。   The method for producing activated carbon according to claim 1 or 2, wherein the organic hydroxy gel is obtained by polymerizing a phenol compound and an aldehyde compound in a water-organic solvent mixed solution. 前記フェノール類化合物がレゾルシノール、前記アルデヒド類化合物がホルムアルデヒドである請求項3に記載の活性炭の製造方法。   The method for producing activated carbon according to claim 3, wherein the phenol compound is resorcinol and the aldehyde compound is formaldehyde. 前記炭素材料が三次元的ネットワークを有し、かつBET表面積が500〜1000m/gであり、平均メソ細孔直径が2〜50nmであり、メソ細孔容積が0.5〜2ml/gである請求項1〜4のいずれか一項に記載の活性炭の製造方法。 The carbon material has a three-dimensional network, a BET surface area of 500 to 1000 m 2 / g, an average mesopore diameter of 2 to 50 nm, and a mesopore volume of 0.5 to 2 ml / g The manufacturing method of the activated carbon as described in any one of Claims 1-4. 前記賦活工程が、二酸化炭素気流中に載置された前記炭素材料にマイクロ波照射するものである請求項1〜5のいずれか一項に記載の活性炭の製造方法。   The method for producing activated carbon according to any one of claims 1 to 5, wherein the activation step is to microwave-irradiate the carbon material placed in a carbon dioxide stream. 前記賦活工程により得られる活性炭が、BET比表面積が1500m/g以上、孔径2nm以上のメソ孔とマクロ孔との合計細孔容積が1.5ml/g以上である請求項1〜6のいずれか一項に記載の活性炭の製造方法。 The activated carbon obtained by the activation step has a BET specific surface area of 1500 m 2 / g or more, and a total pore volume of mesopores and macropores having a pore diameter of 2 nm or more is 1.5 ml / g or more. The manufacturing method of the activated carbon as described in any one.
JP2017195445A 2017-10-05 2017-10-05 How to make activated carbon Active JP6999131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017195445A JP6999131B2 (en) 2017-10-05 2017-10-05 How to make activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017195445A JP6999131B2 (en) 2017-10-05 2017-10-05 How to make activated carbon

Publications (2)

Publication Number Publication Date
JP2019069866A true JP2019069866A (en) 2019-05-09
JP6999131B2 JP6999131B2 (en) 2022-01-18

Family

ID=66440348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017195445A Active JP6999131B2 (en) 2017-10-05 2017-10-05 How to make activated carbon

Country Status (1)

Country Link
JP (1) JP6999131B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020142960A (en) * 2019-03-06 2020-09-10 株式会社クラレ Porous carbon and method for producing porous carbon
JP2021086696A (en) * 2019-11-27 2021-06-03 アイオン株式会社 Electrode for power storage device and manufacturing method thereof
CN113181877A (en) * 2021-05-13 2021-07-30 沈阳农业大学 Preparation method of magnetic biochar material
JP7015444B1 (en) * 2020-07-30 2022-02-03 富田製薬株式会社 Calcium phosphate powder
JP7563145B2 (en) 2019-12-05 2024-10-08 artience株式会社 Porous carbon and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040646A (en) * 2007-08-10 2009-02-26 Kyoto Univ Method for manufacturing carbon material, and electric double-layer capacitor containing the carbon material
JP2013502214A (en) * 2009-09-10 2013-01-24 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Smoke filtration
JP2013159515A (en) * 2012-02-03 2013-08-19 Hokkaido Univ Mesoporous carbon gel and method for producing the same
JP2014118345A (en) * 2012-12-14 2014-06-30 Samsung Electro-Mechanics Co Ltd Activated carbon, method for preparing the same, and electrochemical capacitor including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040646A (en) * 2007-08-10 2009-02-26 Kyoto Univ Method for manufacturing carbon material, and electric double-layer capacitor containing the carbon material
JP2013502214A (en) * 2009-09-10 2013-01-24 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Smoke filtration
JP2013159515A (en) * 2012-02-03 2013-08-19 Hokkaido Univ Mesoporous carbon gel and method for producing the same
JP2014118345A (en) * 2012-12-14 2014-06-30 Samsung Electro-Mechanics Co Ltd Activated carbon, method for preparing the same, and electrochemical capacitor including the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020142960A (en) * 2019-03-06 2020-09-10 株式会社クラレ Porous carbon and method for producing porous carbon
JP7338993B2 (en) 2019-03-06 2023-09-05 株式会社クラレ Porous carbon and method for producing porous carbon
JP2021086696A (en) * 2019-11-27 2021-06-03 アイオン株式会社 Electrode for power storage device and manufacturing method thereof
JP7383214B2 (en) 2019-11-27 2023-11-20 アイオン株式会社 Electrode of electricity storage device and method for manufacturing the same
JP7563145B2 (en) 2019-12-05 2024-10-08 artience株式会社 Porous carbon and its manufacturing method
JP7015444B1 (en) * 2020-07-30 2022-02-03 富田製薬株式会社 Calcium phosphate powder
WO2022024817A1 (en) * 2020-07-30 2022-02-03 富田製薬株式会社 Calcium phosphate powder
CN113181877A (en) * 2021-05-13 2021-07-30 沈阳农业大学 Preparation method of magnetic biochar material

Also Published As

Publication number Publication date
JP6999131B2 (en) 2022-01-18

Similar Documents

Publication Publication Date Title
JP6999131B2 (en) How to make activated carbon
Hesas et al. Comparison of oil palm shell-based activated carbons produced by microwave and conventional heating methods using zinc chloride activation
Özdemir et al. Preparation and characterization of activated carbon from cotton stalks in a two-stage process
Lua et al. Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions
Dolas et al. A new method on producing high surface area activated carbon: the effect of salt on the surface area and the pore size distribution of activated carbon prepared from pistachio shell
Jaramillo et al. Preparation and ozone-surface modification of activated carbon. Thermal stability of oxygen surface groups
JP4754813B2 (en) Method for producing carbon material and tablet-like dried gel
Demiral et al. Surface properties of activated carbon prepared from wastes
Jimenez-Cordero et al. Preparation of granular activated carbons from grape seeds by cycles of liquid phase oxidation and thermal desorption
JP2013531596A (en) Method for producing porous carbon
JP2022525737A (en) Method for producing porous carbonaceous material, porous carbonaceous material and catalyst produced from the material
KR101631181B1 (en) Manufacturing method of activated carbon aerogel for carbon dioxide adsorption
JP5988075B2 (en) Carbon material manufacturing method
Demiral et al. Preparation and characterization of activated carbons from poplar wood (Populus L.)
JP2019210188A (en) Carbon aerogel and filtration device having the same, and method for producing carbon aerogel
JP2009173523A (en) Mesoporous carbon (mc-mcm-48) and method for producing the same
JP4696299B2 (en) Composites of porous carbon and metal nanoparticles with sharp pore size distribution
KR100913998B1 (en) Macro-porous honeycomb carbon structure and the method for preparing it
JP2007223857A (en) Method for producing porous structure and porous structure
JP5062591B2 (en) Honeycomb structure
JP4035622B2 (en) High performance activated carbon and method for producing the same
CN110026050B (en) Fe-based silkworm excrement biochar adsorption slow-release method for phenylethanol
KR101635095B1 (en) Method of manufacturing silica-carbon nanotube composite introduced amine functions
CN107324332A (en) New Type of Carbon adsorbing material and preparation method thereof
Tzvetkov et al. Mesoporous cellular-structured carbons derived from glucose–fructose syrup and their adsorption properties towards acetaminophen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211214

R150 Certificate of patent or registration of utility model

Ref document number: 6999131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150