JP2009040646A - Method for manufacturing carbon material, and electric double-layer capacitor containing the carbon material - Google Patents

Method for manufacturing carbon material, and electric double-layer capacitor containing the carbon material Download PDF

Info

Publication number
JP2009040646A
JP2009040646A JP2007209005A JP2007209005A JP2009040646A JP 2009040646 A JP2009040646 A JP 2009040646A JP 2007209005 A JP2007209005 A JP 2007209005A JP 2007209005 A JP2007209005 A JP 2007209005A JP 2009040646 A JP2009040646 A JP 2009040646A
Authority
JP
Japan
Prior art keywords
gel
aqueous solution
carbon material
compound
basic catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007209005A
Other languages
Japanese (ja)
Inventor
Hajime Tamon
肇 田門
Naoki Inui
直樹 乾
Taketoshi Kikuchi
武利 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Kyoto University NUC
Original Assignee
Sumitomo Chemical Co Ltd
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd, Kyoto University NUC filed Critical Sumitomo Chemical Co Ltd
Priority to JP2007209005A priority Critical patent/JP2009040646A/en
Publication of JP2009040646A publication Critical patent/JP2009040646A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a carbon material that can be molded without a binder and that can be used for a negative electrode having an excellent dielectric capacitance per unit volume. <P>SOLUTION: The method for manufacturing a carbon material includes the following steps [1] to [5]. They are steps of: [1] preparing a wet gel by reacting an aqueous solution containing a phenolic compound, an aldehyde compound and a basic catalyst; [2] dehydrating the wet gel obtained in the step [1] to prepare a dried gel; [3] impregnating the dried gel obtained in the step [2] with an aqueous solution containing a phenolic compound, an aldehyde compound and a basic catalyst to react to obtain a re-wet gel; [4] dehydrating the re-wet gel obtained in the step [3] to prepare a re-dried gel; and [5] calcining the re-dried gel obtained in the step [4] to prepare a carbon material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、電気二重層キャパシタ及び電池用電極材料等のエネルギー貯蔵用デバイス用の電極材料、触媒を担持するための担体、クロマトグラフ用材料並びに吸着剤等として有用な炭素材料の製造方法に関する。   The present invention relates to a method for producing a carbon material useful as an electrode material for an energy storage device such as an electric double layer capacitor and a battery electrode material, a carrier for supporting a catalyst, a chromatographic material, and an adsorbent. About.

電気二重層キャパシタは、急速充放電が可能であり、半永久的な寿命を有し、しかも使用温度範囲が広いことから、例えば、パソコン用バックアップ電源、電気自動車用電源、発電された電力の貯蔵用デバイス等に用いられることが期待されている。そして、電気二重層キャパシタに、小容量で大量の電気量を充電し得る特性、すなわち単位体積あたりの静電容量に優れる特性を与える電極として、通常、炭素材料が用いられている。
炭素材料は、通常、活性炭粉末などをバインダー(ポリテトラフルオロエチレンやポリフッ化ビニリデン)と混練し成形するが、バインダーを用いると、得られる電極の体積抵抗率が大きく、電気二重層キャパシタを充電する際には高電圧が必要であるという問題があった。
本発明者らは、バインダーフリーの電極用に好適な炭素材料の製造方法として、タブレット状の鉢形容器においてフェノール化合物とアルデヒド化合物を反応させ、得られるゲルを乾燥、焼成する方法を既に提案している(特許文献1)。
Electric double layer capacitors are capable of rapid charge and discharge, have a semi-permanent lifetime, and have a wide operating temperature range. For example, backup power supplies for personal computers, power supplies for electric vehicles, and storage of generated power It is expected to be used for devices. A carbon material is usually used as an electrode that gives the electric double layer capacitor a characteristic capable of charging a large amount of electricity with a small capacity, that is, a characteristic excellent in electrostatic capacity per unit volume.
The carbon material is usually formed by kneading activated carbon powder or the like with a binder (polytetrafluoroethylene or polyvinylidene fluoride), but when the binder is used, the resulting electrode has a large volume resistivity and charges the electric double layer capacitor. In some cases, a high voltage was necessary.
The present inventors have already proposed a method for producing a carbon material suitable for a binder-free electrode by reacting a phenol compound and an aldehyde compound in a tablet-like bowl-shaped container, and drying and baking the resulting gel. (Patent Document 1).

特開2005−187320号公報JP 2005-187320 A

電気二重層キャパシタは、コンパクト化、すなわち、単位体積あたりの静電容量の向上が求められており、特許文献1に記載の製造方法で得られた炭素材料を電極として含む電気二重層キャパシタよりもさらに単位体積あたりの静電容量の優れた電気二重層キャパシタを与える炭素材料が求められている。
本発明の目的は、バインダーなしで成型可能な炭素材料であって、単位体積あたりの静電容量に優れる電極に与える炭素材料を製造する方法、および該炭素材料を含む電気二重層キャパシタを提供することである。
The electric double layer capacitor is required to be compact, that is, to improve the electrostatic capacity per unit volume, and more than an electric double layer capacitor including a carbon material obtained by the manufacturing method described in Patent Document 1 as an electrode. Furthermore, there is a need for a carbon material that provides an electric double layer capacitor having an excellent capacitance per unit volume.
An object of the present invention is to provide a method for producing a carbon material that can be molded without a binder and that is applied to an electrode having excellent capacitance per unit volume, and an electric double layer capacitor including the carbon material. That is.

本発明者は、鋭意検討した結果、特許文献1の製造方法で得られた炭素材料のマクロ孔、メソ孔などの空孔を有することから、焼成前のゲルの空孔において、再びフェノール化合物とアルデヒド化合物とを反応させて、空孔をさらにゲルで充填した後、焼成した炭素材料が、かかる課題を解決し得ることを見出し、本発明を完成させた。
すなわち、本発明は、下記[1]〜[5]工程を含む炭素材料の製造方法、および該炭素材料を含む電気二重層キャパシタである。
[1]フェノール化合物、アルデヒド化合物及び塩基性触媒を含む水溶液を反応させて湿潤ゲルを作製する工程。
[2][1]で得られた湿潤ゲルを脱水して、乾燥ゲルを作製する工程。
[3][2]で得られた乾燥ゲルに、フェノール化合物、アルデヒド化合物及び塩基性触媒を含む水溶液を含浸、反応させて、再湿潤ゲルを作製する工程。
[4][3]で得られた再湿潤ゲルを脱水して、再乾燥ゲルを作製する工程。
[5][4]で得られた再乾燥ゲルを焼成して炭素材料を作製する工程。
As a result of intensive studies, the present inventor has pores such as macropores and mesopores of the carbon material obtained by the production method of Patent Document 1, and therefore again with the phenol compound in the pores of the gel before firing. After reacting with the aldehyde compound and further filling the pores with gel, it was found that the calcined carbon material can solve this problem, and the present invention was completed.
That is, the present invention is a carbon material manufacturing method including the following steps [1] to [5], and an electric double layer capacitor including the carbon material.
[1] A step of producing a wet gel by reacting an aqueous solution containing a phenol compound, an aldehyde compound and a basic catalyst.
[2] A step of dehydrating the wet gel obtained in [1] to produce a dry gel.
[3] A step of preparing a rewet gel by impregnating and reacting the dry gel obtained in [2] with an aqueous solution containing a phenol compound, an aldehyde compound and a basic catalyst.
[4] A step of dehydrating the rewet gel obtained in [3] to produce a re-dried gel.
[5] A step of firing the redried gel obtained in [4] to produce a carbon material.

本発明の炭素材料が与える電極は、単位体積あたりの静電容量に優れ、しかも、体積抵抗率が小さい。
また、上記電極を有する電気二重層キャパシタは、急速充放電を繰り返した後の単位体積あたりの静電容量が、急速充放電を繰り返す前の単位体積あたりの静電容量と比較してほとんど低下することがない、つまり、リサイクル特性に優れる。
The electrode provided by the carbon material of the present invention is excellent in electrostatic capacity per unit volume and has a small volume resistivity.
In addition, in the electric double layer capacitor having the electrode, the capacitance per unit volume after repeated rapid charge / discharge is almost reduced as compared with the capacitance per unit volume before repeated rapid charge / discharge. In other words, excellent recycling characteristics.

以下、本発明を詳細に説明する。
本発明の[1]工程とは、フェノール化合物、アルデヒド化合物及び塩基性触媒を含む水溶液を反応させて湿潤ゲルを作製する工程であり、コロイド状の大きさの粒子を含む流動性のある液体中においてコロイド粒子が活発なブラウン運動をしているゾル状態を経て、上記コロイド粒子由来の三次元網目状構造を有する湿潤ゲルを得る工程である。
[1]工程で得られる湿潤ゲルは、三次元の網目構造中に水等の液体又は空気等の気体が含まれていてもよい。
Hereinafter, the present invention will be described in detail.
The step [1] of the present invention is a step of preparing a wet gel by reacting an aqueous solution containing a phenol compound, an aldehyde compound and a basic catalyst, and in a fluid liquid containing particles of colloidal size. Is a step of obtaining a wet gel having a three-dimensional network structure derived from the colloidal particles through a sol state in which the colloidal particles are in active Brownian motion.
[1] The wet gel obtained in the step may contain a liquid such as water or a gas such as air in a three-dimensional network structure.

本発明の[1]工程に用いられるフェノール化合物としては、例えば、式(1)

Figure 2009040646
(式中、R1は、ハロゲン原子若しくは置換基で置換されていてもよいアルキル基、又は水素原子を表す。nは2〜5の整数を表し、mは0〜3の整数を表すが、nとmの和は5である。)
などが挙げられる。 Examples of the phenol compound used in the step [1] of the present invention include a formula (1)
Figure 2009040646
(In the formula, R 1 represents a halogen atom or an alkyl group which may be substituted with a substituent, or a hydrogen atom. N represents an integer of 2 to 5, and m represents an integer of 0 to 3, (The sum of n and m is 5.)
Etc.

式(1)中のR1のアルキル基における置換基としては、例えばヒドロキシ、シアノ、アルコキシ、カルバモイル、カルボキシ、アルコキシカルボニル、アルキルカルボニルオキシ、スルホ及びスルファモイル等を挙げることができる。
上記アルキル基や、該アルキル基の置換基であるアルコキシ、アルコキシカルボニル及びアルキルカルボニルオキシは、直鎖状でもよく、分岐状でもよい。
Examples of the substituent on the alkyl group represented by R 1 in the formula (1) include hydroxy, cyano, alkoxy, carbamoyl, carboxy, alkoxycarbonyl, alkylcarbonyloxy, sulfo and sulfamoyl.
The alkyl group and alkoxy, alkoxycarbonyl and alkylcarbonyloxy which are substituents of the alkyl group may be linear or branched.

上記R1において、ハロゲン原子若しくは置換基で置換されていてもよいアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、s−ブチル基、オクチル基、ノニル基、t−ブチル基、2−ヒドロキシエチル基、2−ヒドロキシプロピル基、3−ヒドロキシプロピル基、2−ヒドロキシブチル基、3−ヒドロキシブチル基、4−ヒドロキシブチル基、2,3−ジヒドロキシプロピル基、3,4−ジヒドロキシブチル基、シアノメチル基、2−シアノエチル基、3−シアノプロピル基、メトキシメチル基、エトキシメチル基、2−メトキシエチル基、2−エトキシエチル基、3−メトキシプロピル基、3−エトキシプロピル基、2−ヒドロキシ−3−メトキシプロピル基、クロロメチル基、ブロモメチル基、2−クロロエチル基、2−ブロモエチル基、3−クロロプロピル基、3−ブロモプロピル基、4−クロロブチル基、4−ブロモブチル基、カルボキシメチル基、2−カルボキシエチル基、3−カルボキシプロピル基、4−カルボキシブチル基、1,2−ジカルボキシエチル基、カルバモイルメチル基、2−カルバモイルエチル基、3−カルバモイルプロピル基、4−カルバモイルブチル基、メトキシカルボニルメチル基、エトキシカルボニルメチル基、2−メトキシカルボニルエチル基、2−エトキシカルボニルエチル基、3−メトキシカルボニルプロピル基、3−エトキシカルボニルプロピル基、4−メトキシカルボニルブチル基、4−エトキシカルボニルブチル基、メチルカルボニルオキシメチル基、エチルカルボニルオキシメチル基、2−メチルカルボニルオキシエチル基、2−エチルカルボニルオキシエチル基、3−メチルカルボニルオキシプロピル基、3−エチルカルボニルオキシプロピル基、4−メチルカルボニルオキシブチル基、4−エチルカルボニルオキシブチル基、スルホメチル基、2−スルホエチル基、3−スルホプロピル基、4−スルホブチル基、スルファモイルメチル基、2−スルファモイルエチル基、3−スルファモイルプロピル基及び4−スルファモイルブチル基等を挙げることができる。
1としては、水素原子又は無置換のアルキル基がより好ましく、水素、メチル基、エチル基、オクチル基が特に好ましい。
In R 1 , examples of the alkyl group which may be substituted with a halogen atom or a substituent include, for example, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, s-butyl group, octyl group, nonyl group, t-butyl group, 2-hydroxyethyl group, 2-hydroxypropyl group, 3-hydroxypropyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl Group, 2,3-dihydroxypropyl group, 3,4-dihydroxybutyl group, cyanomethyl group, 2-cyanoethyl group, 3-cyanopropyl group, methoxymethyl group, ethoxymethyl group, 2-methoxyethyl group, 2-ethoxyethyl Group, 3-methoxypropyl group, 3-ethoxypropyl group, 2-hydroxy-3-methoxypropyl group, chloromethyl Group, bromomethyl group, 2-chloroethyl group, 2-bromoethyl group, 3-chloropropyl group, 3-bromopropyl group, 4-chlorobutyl group, 4-bromobutyl group, carboxymethyl group, 2-carboxyethyl group, 3- Carboxypropyl group, 4-carboxybutyl group, 1,2-dicarboxyethyl group, carbamoylmethyl group, 2-carbamoylethyl group, 3-carbamoylpropyl group, 4-carbamoylbutyl group, methoxycarbonylmethyl group, ethoxycarbonylmethyl group 2-methoxycarbonylethyl group, 2-ethoxycarbonylethyl group, 3-methoxycarbonylpropyl group, 3-ethoxycarbonylpropyl group, 4-methoxycarbonylbutyl group, 4-ethoxycarbonylbutyl group, methylcarbonyloxymethyl group, ethylcarbo Nyloxymethyl group, 2-methylcarbonyloxyethyl group, 2-ethylcarbonyloxyethyl group, 3-methylcarbonyloxypropyl group, 3-ethylcarbonyloxypropyl group, 4-methylcarbonyloxybutyl group, 4-ethylcarbonyloxy Butyl, sulfomethyl, 2-sulfoethyl, 3-sulfopropyl, 4-sulfobutyl, sulfamoylmethyl, 2-sulfamoylethyl, 3-sulfamoylpropyl and 4-sulfamoylbutyl Groups and the like.
R 1 is more preferably a hydrogen atom or an unsubstituted alkyl group, particularly preferably hydrogen, a methyl group, an ethyl group, or an octyl group.

式(1)において、mとしては、1又は2が好ましく、1が特に好ましい。   In the formula (1), m is preferably 1 or 2, and 1 is particularly preferable.

式(1)で表される化合物の具体例としては、o−クレゾール、m−クレゾール、p−クレゾール、2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,4−キシレノール、3,5−キシレノール、o−エチルフェノール、i−プロピルフェノール、ブチルフェノール、p−t−ブチルフェノール、p−オクチルフェノール、p−ノニルフェノール、2−クロロフェノール、4−メトキシフェノール、2,4−ジクロロフェノール、3,5−ジクロロフェノール、4−クロロ−3−メチルフェノール、カテコール、3−メチルカテコール、4−t−ブチルカテコール、レゾルシノール、2−メチルレゾルシノール、4−エチルレゾルシノール、4−クロロレゾルシノール、5−メチルレゾルシノール、2,5−ジメチルレゾルシノール、5−メトキシレゾルシノール、5−ペンチルレゾルシノールやピロガロール等を挙げることができる。
本発明の[1]工程において、上記フェノール化合物は、単独で用いてもよいし、2種以上の混合物を用いてもよい。
Specific examples of the compound represented by the formula (1) include o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, and 2,6-xylenol. 3,4-xylenol, 3,5-xylenol, o-ethylphenol, i-propylphenol, butylphenol, pt-butylphenol, p-octylphenol, p-nonylphenol, 2-chlorophenol, 4-methoxyphenol, 2 , 4-dichlorophenol, 3,5-dichlorophenol, 4-chloro-3-methylphenol, catechol, 3-methylcatechol, 4-t-butylcatechol, resorcinol, 2-methylresorcinol, 4-ethylresorcinol, 4- Chlororesorcinol, 5-methylresorcin Lumpur, 2,5-dimethyl resorcinol, 5-methoxy resorcinol, may be mentioned 5-pentyl Relais sol maytansinol and pyrogallol.
In the step [1] of the present invention, the above phenol compounds may be used alone or in combination of two or more.

[1]工程に用いられるアルデヒド化合物としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、サリチルアルデヒド、ベンズアルデヒド等が挙げられる。
アルデヒド化合物としては、ホルムアルデヒドが好ましい。
[1] Examples of the aldehyde compound used in the step include formaldehyde, paraformaldehyde, acetaldehyde, butyraldehyde, salicylaldehyde, benzaldehyde and the like.
As the aldehyde compound, formaldehyde is preferable.

フェノール化合物/アルデヒド化合物の比は、通常は0.1〜3(mol/mol)の範囲であり、好ましくは0.2〜1の範囲である。フェノール化合物/アルデヒド化合物の比が0.1〜3(mol/mol)の範囲であるとメソ細孔が発達し、結果として、得られる炭素材料の単位体積あたりの静電容量が増加する傾向があることから好ましい。   The ratio of phenol compound / aldehyde compound is usually in the range of 0.1 to 3 (mol / mol), preferably in the range of 0.2 to 1. When the ratio of the phenol compound / aldehyde compound is in the range of 0.1 to 3 (mol / mol), mesopores develop, and as a result, the capacitance per unit volume of the resulting carbon material tends to increase. This is preferable.

[1]工程における水の使用量は、上記フェノール化合物とアルデヒド化合物の合計量100重量部あたり、通常、50〜6000重量部の範囲であり、好ましくは50〜2000重量部の範囲であり、より好ましくは、50〜1000重量部の範囲である。なお、例えば、原料化合物として、例えばホルマリンのような水溶液を用いる場合は、該水溶液に含まれる水も、上記使用量に含まれる。
水の使用量が50重量部以上であると、湿潤ゲルの作製に十分な反応時間を与えることから好ましく、6000重量部以下であると、後述する湿潤ゲルの脱水時間が短縮される傾向があることから好ましい。
[1] The amount of water used in the step is usually in the range of 50 to 6000 parts by weight, preferably in the range of 50 to 2000 parts by weight per 100 parts by weight of the total amount of the phenol compound and the aldehyde compound. Preferably, it is the range of 50-1000 weight part. For example, when an aqueous solution such as formalin is used as the raw material compound, water contained in the aqueous solution is also included in the amount used.
When the amount of water used is 50 parts by weight or more, it is preferable because it gives a sufficient reaction time for preparation of a wet gel, and when it is 6000 parts by weight or less, the dehydration time of the wet gel described later tends to be shortened. Therefore, it is preferable.

[1]工程における塩基性触媒としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸バリウム、リン酸ナトリウム、リン酸リチウムやリン酸カリウム等が挙げられ、中でも、弱塩基性の触媒がメソ細孔特性の制御が容易であることから好ましく、とりわけ、炭酸ナトリウムが好ましい。
塩基性触媒の使用量は、塩基性触媒のカチオン1モルあたりフェノール性水酸基の数が、通常、10〜2000モルの範囲であり、好ましくは100〜1000モルの範囲である。フェノール性水酸基の数が10モル以上であると、好ましくは100〜1000モルの範囲である。フェノール性水酸基の数が10モル以上であると、メソ細孔が発達し、結果として、得られる炭素材料の単位体積あたりの静電容量が増加する傾向があることから好ましく、2000モル以下であると、ゲル化が容易に起こる傾向があることから好ましい。
[1] The basic catalyst in the step includes, for example, sodium carbonate, potassium carbonate, lithium carbonate, sodium hydroxide, potassium hydroxide, lithium hydroxide, barium carbonate, sodium phosphate, lithium phosphate and potassium phosphate. Among them, a weakly basic catalyst is preferable because of easy control of mesopore characteristics, and sodium carbonate is particularly preferable.
The amount of the basic catalyst used is such that the number of phenolic hydroxyl groups per mole of cation of the basic catalyst is usually in the range of 10 to 2000 mol, preferably in the range of 100 to 1000 mol. When the number of phenolic hydroxyl groups is 10 mol or more, it is preferably in the range of 100 to 1000 mol. When the number of phenolic hydroxyl groups is 10 mol or more, mesopores develop, and as a result, the capacitance per unit volume of the resulting carbon material tends to increase, and is preferably 2000 mol or less. And gelation tends to occur easily.

[1]工程における反応温度は、通常、0〜100℃の範囲であり、好ましくは30〜90℃の範囲である。反応温度が100℃以下であると、湿潤ゲルの作製に十分な反応時間を与えることから好ましく、0℃以上であると、[1]工程の反応時間が短縮される傾向があることから好ましい。
中でも、ゲル化するまであるいはその直前までは0〜40℃、好ましくは、10〜35℃程度で反応させ、ゲル化が確認できてから、30〜100℃、好ましくは40〜80℃で反応させると、ゲル内にミクロ孔(直径が2nm未満の微細孔)、メソ孔(直径が2〜20nmの細孔)、及びマクロ孔(直径が20nmよりも大きい孔)などの空孔を含む微細構造が形成され、後述する[3]工程で、該空孔に再びゲルが充填され、そのゲルは、ミクロ孔を主とする微細構造が形成され、結果として、単位体積あたりの静電容量に優れる電極を与えることから好ましい。
このように、ゲル化するまでは、0〜40℃程度の温度で行ったり、密閉系で反応させたりする、加湿系で反応させるなどして、[1]工程においては水を蒸発させないことにより、脱水による空孔の生成を抑制することができる。
[1] The reaction temperature in the step is usually in the range of 0 to 100 ° C, preferably in the range of 30 to 90 ° C. A reaction temperature of 100 ° C. or lower is preferable because it gives a sufficient reaction time for preparation of a wet gel. A temperature of 0 ° C. or higher is preferable because the reaction time of the step [1] tends to be shortened.
Especially, it is made to react at 0-40 degreeC until it gels or just before it, Preferably it is made about 10-35 degreeC, and after gelatinization can be confirmed, it is made to react at 30-100 degreeC, Preferably it is 40-80 degreeC. And a fine structure including pores such as micropores (micropores having a diameter of less than 2 nm), mesopores (pores having a diameter of 2 to 20 nm), and macropores (pores having a diameter of more than 20 nm) in the gel In step [3], which will be described later, the pores are filled again with gel, and the gel has a fine structure mainly composed of micropores. As a result, the capacitance per unit volume is excellent. This is preferred because it provides an electrode.
In this way, by performing the reaction at a temperature of about 0 to 40 ° C., reacting in a closed system, or reacting in a humidification system until gelling, the water is not evaporated in the step [1]. , It is possible to suppress the generation of holes due to dehydration.

[1]工程の具体的な方法としては、(i)円盤状、直方体などに凹部を有するディスク状鉢形容器の凹部に、フェノール化合物、アルデヒド化合物及び塩基性触媒を含む水溶液を充填し、静置することにより、反応させて凹部に湿潤ゲルを作製する方法、(ii)フェノール化合物、アルデヒド化合物及び塩基性触媒を含む水溶液を混合して、流動可能なゾルを得た後、平滑な支持基材上に、ディップコーター、バーコーター、スピンコーターなどのコーターを用いて該ゾルを塗布し、さらに加熱、反応させて湿潤ゲルを得る方法、(iii)前記と同様にして得たゾルを平滑な支持基材上に、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、CAPコーティング法、ダイコーティング法を用いて塗布し、さらに加熱、反応させて湿潤ゲルを得る方法などが挙げられる。   [1] As a specific method of the step, (i) a concave portion of a disk-shaped bowl-shaped container having a concave portion in a disk shape or a rectangular parallelepiped is filled with an aqueous solution containing a phenol compound, an aldehyde compound and a basic catalyst, and left standing. A method for producing a wet gel in the recess by reacting, and (ii) mixing an aqueous solution containing a phenol compound, an aldehyde compound and a basic catalyst to obtain a flowable sol, and then a smooth support substrate A method of applying the sol using a coater such as a dip coater, bar coater, spin coater, etc., and further heating and reacting to obtain a wet gel, (iii) smooth support of the sol obtained in the same manner as described above Extrusion coating method, direct gravure coating method, reverse gravure coating method, CAP coating method and die coating method are used on the substrate. Coated, further heated, and a method of obtaining a wet gel can be given by the reaction.

導電性の向上を目的として、フェノール化合物、アルデヒド化合物及び塩基性触媒を含む水溶液に微細炭素繊維を混合させて、湿潤ゲルを作製してもよい。ここで、微細炭素繊維とは、通常、平均繊維径(直径)が2μm 以下である炭素繊維であり、好ましくは500nm 以下の炭素繊維である。なお、本発明における微細炭素繊維の平均繊維径とは、微細炭素繊維の繊維断面形状が円形の場合は、個々の繊維の断面の直径の合計を本数で除した平均値を示し、繊維断面形状が円形でない場合は、個々の繊維の断面積から求めた円相当直径の合計を本数で除した平均値を示す。導電性の観点から、微細炭素繊維の純度は95%以上であることが好ましい。
微細炭素繊維としては、気相成長法によって製造され、繊維径および繊維長が一般的な炭素繊維に比較して極めて小さい炭素繊維(気相成長カーボン繊維)であるカーボンナノファイバーを用いることが好ましい。
微細炭素繊維の使用量としては、通常、フェノール化合物1重量部に対し0.1重量部以下、好ましくは、1×10−6〜0.01重量部である。
For the purpose of improving conductivity, a wet gel may be prepared by mixing fine carbon fibers with an aqueous solution containing a phenol compound, an aldehyde compound and a basic catalyst. Here, the fine carbon fiber is usually a carbon fiber having an average fiber diameter (diameter) of 2 μm or less, and preferably a carbon fiber of 500 nm or less. The average fiber diameter of the fine carbon fiber in the present invention, when the fiber cross-sectional shape of the fine carbon fiber is circular, shows an average value obtained by dividing the total of the cross-sectional diameters of the individual fibers by the number, the fiber cross-sectional shape When is not circular, an average value obtained by dividing the sum of the equivalent circle diameters determined from the cross-sectional areas of the individual fibers by the number of fibers is shown. From the viewpoint of conductivity, the purity of the fine carbon fiber is preferably 95% or more.
As the fine carbon fiber, it is preferable to use a carbon nanofiber which is a carbon fiber (vapor-grown carbon fiber) which is produced by a vapor growth method and has an extremely small fiber diameter and fiber length compared to a general carbon fiber. .
The amount of the fine carbon fiber used is usually 0.1 parts by weight or less, preferably 1 × 10 −6 to 0.01 parts by weight with respect to 1 part by weight of the phenol compound.

[1]工程で得られる湿潤ゲルの厚みは、最も短い辺が3mm以下のものが好ましく、0.3〜2.8mm以下のものが特に好ましい。湿潤ゲルの最も短い辺の厚みが0.3mm以上であると、得られる炭素材料の機械的強度が向上する傾向があることから好ましい。また、湿潤ゲルの最も短い辺の厚みが3mm以下であると、後述する[2]工程の脱水時間が短縮される傾向や、後述する[3]工程の含浸時間が短縮される傾向があることから好ましい。
湿潤ゲルの厚みは、(i)の方法であればディスク状鉢形容器の凹部の深さを適宜、調整すればよく、(ii)の方法であれば、コーターの高さを適宜、調整すればよく、(iii)の方法であれば、コーティングの厚みを適宜、調整すればよい。
[1] The thickness of the wet gel obtained in the step is preferably 3 mm or less, and particularly preferably 0.3 to 2.8 mm or less. It is preferable that the thickness of the shortest side of the wet gel is 0.3 mm or more because the mechanical strength of the obtained carbon material tends to be improved. Further, when the thickness of the shortest side of the wet gel is 3 mm or less, the dehydration time of the [2] step described later tends to be shortened, and the impregnation time of the [3] step described later tends to be shortened. To preferred.
If the thickness of the wet gel is the method (i), the depth of the concave portion of the disc-shaped bowl-shaped container may be adjusted as appropriate. If the method is (ii), the height of the coater may be adjusted as appropriate. In the case of the method (iii), the thickness of the coating may be adjusted appropriately.

本発明の[2]工程は、[1]で得られた湿潤ゲルを脱水する工程であり、この工程で乾燥ゲルを得ることができる。湿潤ゲルから水を除去する方法としては、例えば、水を直接、通風乾燥法、減圧乾燥法、30〜150℃程度での加熱乾燥法、0℃以下での凍結乾燥法、あるいはこれらの乾燥法の組合せなどが挙げられるが、好ましい実施態様として、前記湿潤ゲル中の水を親水性有機溶媒で置換したのち、該親水性有機溶媒を除去する方法が推奨される。
上記の親水性有機溶媒としては、例えば、メチルアルコール、エチルアルコール、n−プロピルアルコール及びt−ブチルアルコール等のアルコール類;アセトニトリル等の脂肪族ニトリル類;アセトン等の脂肪族ケトン類;ジメチルスルホキシド等の脂肪族スルホキシド類;酢酸等の脂肪族カルボン酸類が挙げられる。
これらの親水性有機溶媒のうち、t−ブチルアルコール、ジメチルスルホキシド又は酢酸が好ましく用いられ、t−ブチルアルコールが特に好ましく用いられる。
The step [2] of the present invention is a step of dehydrating the wet gel obtained in [1], and a dry gel can be obtained in this step. As a method for removing water from the wet gel, for example, direct water drying method, vacuum drying method, heat drying method at about 30 to 150 ° C., freeze drying method at 0 ° C. or less, or these drying methods As a preferred embodiment, a method of removing the hydrophilic organic solvent after replacing water in the wet gel with the hydrophilic organic solvent is recommended.
Examples of the hydrophilic organic solvent include alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol and t-butyl alcohol; aliphatic nitriles such as acetonitrile; aliphatic ketones such as acetone; dimethyl sulfoxide and the like. Aliphatic sulfoxides; and aliphatic carboxylic acids such as acetic acid.
Of these hydrophilic organic solvents, t-butyl alcohol, dimethyl sulfoxide or acetic acid is preferably used, and t-butyl alcohol is particularly preferably used.

親水性有機溶媒を除去する方法としては、例えば、通風乾燥法、減圧乾燥法、30〜150℃程度での加熱乾燥法、0℃以下での凍結乾燥法、あるいはこれらの乾燥法の組合せなどが挙げられるが、凍結乾燥法は、ゾル−ゲル反応により作られた湿潤ゲルを構成する粒子の三次元の網目状構造を保持することができることから好ましい。すなわち、凍結乾燥法形態及び機能的に三次元の網目状構造が有する性状を維持しつつ、湿潤ゲル中の親水性有機溶媒等の液体を除去することができる。
さらに、凍結乾燥装置を用いることにより、湿潤ゲルを短時間で乾燥することができると共に、乾燥ゲルの製造コストを低減化することができることから好ましい。
凍結乾燥における凍結温度は、通常は−70〜0℃の範囲であり、好ましくは−30〜−5℃の範囲である。
Examples of the method for removing the hydrophilic organic solvent include a ventilation drying method, a vacuum drying method, a heat drying method at about 30 to 150 ° C., a freeze drying method at 0 ° C. or less, or a combination of these drying methods. The lyophilization method is preferable because it can retain the three-dimensional network structure of the particles constituting the wet gel made by the sol-gel reaction. That is, it is possible to remove a liquid such as a hydrophilic organic solvent in the wet gel while maintaining the properties of the freeze-drying method and the functionally three-dimensional network structure.
Furthermore, it is preferable to use a freeze-drying apparatus because the wet gel can be dried in a short time and the production cost of the dry gel can be reduced.
The freezing temperature in lyophilization is usually in the range of -70 to 0 ° C, preferably in the range of -30 to -5 ° C.

[3]工程は、[2]工程で得られた乾燥ゲルに、フェノール化合物、アルデヒド化合物及び塩基性触媒を含む水溶液を含浸させ、反応させる工程であり、乾燥ゲルが有するマクロ孔やメソ孔などの空孔、中でもメソ孔に、フェノール化合物、アルデヒド化合物及び塩基性触媒を含む水溶液を含浸させ、該水溶液からコロイド粒子を経て、乾燥ゲル内の空孔にさらに三次元網目構造を形成させた再湿潤ゲルを得る工程である。
上記水溶液は、調整された水溶液をそのまま乾燥ゲルに含浸させてもよいし、上記水溶液を攪拌させてゾル化したのち、コロイド粒子として乾燥ゲル内の空孔に含浸させてもよい。
用いるフェノール化合物、アルデヒド化合物及び塩基性触媒については、[1]工程で例示されたフェノール化合物、アルデヒド化合物及び塩基性触媒を用いればよく、[1]工程で用いられたものと同一であっても異なっていてもよい。
好ましくは、フェノール化合物、アルデヒド化合物、塩基性触媒および水の使用量を適宜、調整したり、上記水溶液の攪拌時間(ゾル化時間)を調整するなどして、[1]工程で得られたゲルのコロイド粒子に由来するナノ粒子と[3]工程で形成されるコロイド粒子に由来するナノ粒子とがほぼ同一径となるように調整することが好ましい。
図1(a)には、[1]および[2]工程を施して得られた乾燥ゲルを炭化(焼成)して得られた材料(比較例4)の電子顕微鏡写真と、図1(b)には、[1]および[2]工程を施して得られた乾燥ゲルを[3]〜[5]工程を経て得られた本発明の炭素材料(実施例15)の電子顕微鏡写真を示した。写真からも明らかなように、本発明の炭素材料は[1]および[2]工程を施して得られたナノ粒子と同等程度の粒子径のナノ粒子がメソ孔に生成していることがわかる。
[3] The step is a step in which the dried gel obtained in the step [2] is impregnated with an aqueous solution containing a phenol compound, an aldehyde compound and a basic catalyst and reacted, and the dried gel has macropores and mesopores. The pores, particularly the mesopores, were impregnated with an aqueous solution containing a phenolic compound, an aldehyde compound and a basic catalyst, and colloidal particles were formed from the aqueous solution to further form a three-dimensional network structure in the pores in the dried gel. This is a step of obtaining a wet gel.
The aqueous solution may be impregnated with the prepared aqueous solution as it is, or may be impregnated into the pores in the dry gel as colloidal particles after the aqueous solution is stirred to form a sol.
About the phenol compound, aldehyde compound, and basic catalyst to be used, the phenol compound, the aldehyde compound and the basic catalyst exemplified in the step [1] may be used, and even if they are the same as those used in the step [1]. May be different.
Preferably, the gel obtained in the step [1] by appropriately adjusting the amounts of phenol compound, aldehyde compound, basic catalyst and water used, or by adjusting the stirring time (solation time) of the aqueous solution. It is preferable to adjust so that the nanoparticles derived from the colloidal particles and the nanoparticles derived from the colloidal particles formed in the step [3] have substantially the same diameter.
FIG. 1A shows an electron micrograph of a material (Comparative Example 4) obtained by carbonizing (baking) the dried gel obtained by performing the steps [1] and [2], and FIG. ) Shows an electron micrograph of the carbon material of the present invention (Example 15) obtained by subjecting the dried gel obtained by the steps [1] and [2] to the steps [3] to [5]. It was. As is clear from the photograph, it can be seen that the carbon material of the present invention has nanoparticles in the mesopores having the same particle size as the nanoparticles obtained by performing the steps [1] and [2]. .

含浸時間は、得られる乾燥ゲルの量、用いるフェノール化合物、アルデヒド化合物及び塩基性触媒からなる水溶液の濃度、粘度によっても異なるが、通常、1時間〜48時間程度、好ましくは、5時間〜30時間程度である。
含浸を十分に行うために、[3]工程においては、0〜40℃、好ましくは、10〜35℃程度にて、密閉系で反応させたり、加湿系で反応させるなどして、[3]工程において、水を蒸発させないことが好ましい。
含浸する際には、真空ポンプなどで減圧にした乾燥ゲルを用いて含浸させる方法も推奨される。
The impregnation time varies depending on the amount of the dried gel obtained, the concentration of the aqueous solution comprising the phenol compound, aldehyde compound and basic catalyst used, and the viscosity, but is usually about 1 hour to 48 hours, preferably 5 hours to 30 hours. Degree.
In order to sufficiently impregnate, in the step [3], the reaction is carried out in a closed system or in a humidified system at 0 to 40 ° C., preferably about 10 to 35 ° C. [3] It is preferable not to evaporate water in the process.
When impregnating, a method of impregnating with a dry gel whose pressure is reduced by a vacuum pump or the like is also recommended.

含浸させた後、通常、30〜100℃、好ましくは40〜80℃にて、1〜48時間、好ましくは5〜30時間、静置することにより、乾燥ゲルにおけるマクロ孔およびメソ孔などの空孔に三次元の網目状構造を形成させる。
[3]工程は、乾燥ゲル内の空孔にゲルの三次元網目構造を形成させればよく、実施例の如く、含浸させたのち、静置してもよいし、含浸と静置を交互におこなってもよい。
含浸時間が長いと、乾燥ゲルの外殻部分に密度の低いゲルが生成する場合がある。このゲルを含む再湿潤ゲルをそのまま次の工程で処理してもよいが、単位体積あたりの静電容量を向上させる観点から、外殻部分のゲルを研磨するなどして除去することが好ましい。
After the impregnation, it is usually left at 30 to 100 ° C., preferably 40 to 80 ° C. for 1 to 48 hours, preferably 5 to 30 hours, so that the pores such as macropores and mesopores in the dried gel A three-dimensional network structure is formed in the hole.
[3] In the step, the three-dimensional network structure of the gel may be formed in the pores in the dried gel. After impregnation as in the embodiment, the gel may be left standing, or the impregnation and the standing are alternately performed. You may do it.
When the impregnation time is long, a low-density gel may be generated in the outer shell portion of the dried gel. The rewet gel containing this gel may be processed in the next step as it is, but from the viewpoint of improving the capacitance per unit volume, it is preferable to remove the gel in the outer shell portion by polishing.

[4]工程は、[3]工程で得られた含浸ゲルを脱水する工程であり、再乾燥ゲルを得る工程である。具体的には[2]工程の項で例示された方法と同様に行えばよい。[2]工程と[4]工程は同一条件でも異なった条件で行ってもよい。   [4] The step is a step of dehydrating the impregnated gel obtained in the [3] step, and is a step of obtaining a re-dried gel. Specifically, it may be carried out in the same manner as the method exemplified in the section [2]. The [2] step and the [4] step may be performed under the same conditions or different conditions.

[5]工程は、[4]工程で得られた再乾燥ゲルを焼成(炭化)し、炭素材料を得る工程である。通常は、不活性ガス雰囲気中で行われ、焼成(炭化)時の不活性ガスとしては、窒素、アルゴン、ヘリウム、水素等が好ましい。焼成(炭化)温度は、通常は200〜3000℃の範囲であり、体積抵抗率を低減させるためには、カルボキシル基などの官能基を除去し得る800℃以上であることが好ましく、グラファイト化を抑制するためには1100℃以下であることが好ましい。
焼成時間は、通常は数分間〜数時間の範囲である。
[5] The step is a step of baking (carbonizing) the re-dried gel obtained in the [4] step to obtain a carbon material. Usually, it is performed in an inert gas atmosphere, and nitrogen, argon, helium, hydrogen, etc. are preferable as the inert gas at the time of firing (carbonization). The firing (carbonization) temperature is usually in the range of 200 to 3000 ° C., and in order to reduce the volume resistivity, it is preferably 800 ° C. or higher that can remove a functional group such as a carboxyl group. In order to suppress, it is preferable that it is 1100 degrees C or less.
The firing time is usually in the range of several minutes to several hours.

本発明の炭素材料は、不活性ガスに、更に、H2O、CO2又はO2を含む酸化性ガス雰囲気において賦活処理してもよい。賦活温度は、通常、700〜1500℃の範囲、体積抵抗率を低減させる観点から、800〜1300℃の範囲で行われることが好ましい。賦活時間は、通常は数分間〜数時間の範囲である。賦活時間は、通常は数分間〜数時間の範囲である。
上記の賦活により、微細構造の割合、特にミクロ孔が多くなり、単位重量当りの表面積の大きな炭素材料を得ることができる。
また、上記の酸化性ガス雰囲気における賦活処理では、薬品を併用してもよい。即ち、上記[4]工程で得られた炭素材料に塩化亜鉛、リン酸、硫化カリウムや水酸化カリウム等の化学薬品を添加した後、H2O、CO2又はO2などの酸化性ガス雰囲気において賦活処理を行うことができる。
The carbon material of the present invention may be activated in an oxidizing gas atmosphere containing H 2 O, CO 2 or O 2 in addition to an inert gas. The activation temperature is usually preferably in the range of 800 to 1300 ° C from the viewpoint of reducing the volume resistivity in the range of 700 to 1500 ° C. The activation time is usually in the range of several minutes to several hours. The activation time is usually in the range of several minutes to several hours.
By the above activation, a carbon material with a large surface area per unit weight can be obtained by increasing the proportion of the fine structure, particularly the micropores.
In the activation treatment in the oxidizing gas atmosphere, a chemical may be used in combination. That is, after adding chemicals such as zinc chloride, phosphoric acid, potassium sulfide and potassium hydroxide to the carbon material obtained in the above step [4], an oxidizing gas atmosphere such as H 2 O, CO 2 or O 2 is added. The activation process can be performed in step (b).

以下、実施例により本発明をより詳細に説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to an Example.

(実施例1)
[1]工程
蒸留水10g([レゾルシノールの重量]/[水の重量]=0.5g/ml、以下、R/W=0.5g/mlという場合がある)、炭酸ナトリウム48mg([フェノール性水酸基のモル数]/[ナトリウムカチオンのモル数]=100mol/mol、以下、R/C=100mol/molという場合がある)、レゾルシノール5.0g及び37重量%ホルマリン7.37gを仕込んだ([レゾルシノールのモル数]/[ホルマリンのモル数]=0.5mol/mol)を順次、混合して水溶液を調製した。
Example 1
[1] Step 10 g of distilled water ([weight of resorcinol] / [weight of water] = 0.5 g / ml, hereinafter sometimes referred to as R / W = 0.5 g / ml), 48 mg of sodium carbonate ([phenolic Mole number of hydroxyl group] / [Mole number of sodium cation] = 100 mol / mol, hereinafter referred to as R / C = 100 mol / mol), 5.0 g of resorcinol and 7.37 g of 37 wt% formalin were charged ([ Mole number of resorcinol] / [Mole number of formalin] = 0.5 mol / mol) were sequentially mixed to prepare an aqueous solution.

[2]工程
厚さ1mm、内径17mmの円盤状の凹部を有するディスク状鉢形容器(2)を該凹部の開孔部が上面になるようにシャール(3)内に置いた。続いて、該凹部に気泡を含まないように、[1]工程で調製した水溶液(1)をシャーレ(3)にゆっくりと注いだ(図2(a)参照)。鉢形容器(2)が凹部を含めて全て水溶液(1)によって浸漬されたのち、該凹部の開孔部を覆うように、シャーレ(3)よりも小さいシャーレ(4)の底面と該開孔部を重ね合わせて置き(図2(b)および(c)参照)、水が蒸発しないように、さらに2つのシャーレをラップで密閉した。続いて、1日間25℃で保存した後、オーブン中50℃で1日間保存し、湿潤ゲルを得た。
[2] Step A disc-shaped bowl-shaped container (2) having a disc-shaped recess having a thickness of 1 mm and an inner diameter of 17 mm was placed in the shar (3) so that the opening of the recess became the upper surface. Subsequently, the aqueous solution (1) prepared in the step [1] was slowly poured into the petri dish (3) so as not to include bubbles in the concave portion (see FIG. 2 (a)). After the bowl-shaped container (2) is completely immersed in the aqueous solution (1) including the recess, the bottom surface of the petri dish (4) smaller than the petri dish (3) and the aperture so as to cover the aperture of the recess The two petri dishes were further sealed with wraps so that the water did not evaporate (see FIGS. 2B and 2C). Subsequently, after storing at 25 ° C. for 1 day, it was stored in an oven at 50 ° C. for 1 day to obtain a wet gel.

[2]工程
[1]工程で得られた湿潤ゲルをt−ブチルアルコールに数時間浸漬し、取り出した。この操作を3日間で5回以上繰り返して、湿潤ゲル中の水をt−ブチルアルコールに置換した。t−ブチルアルコールで置換されたゲルを−10℃にて3日間かけて凍結乾燥し、乾燥ゲルを得た。
[2] Step The wet gel obtained in the step [1] was immersed in t-butyl alcohol for several hours and taken out. This operation was repeated 5 times or more in 3 days to replace the water in the wet gel with t-butyl alcohol. The gel substituted with t-butyl alcohol was freeze-dried at −10 ° C. for 3 days to obtain a dried gel.

[3]工程
[2]工程で得られた脱水ゲルをシャーレに置き、[1]工程と同様に調製された水溶液を該シャーレにゆっくりと注いだ。脱水ゲルが全て水溶液によって浸漬されたのち、脱水ゲルを覆うように、該シャーレよりも小さいシャーレの底面で覆い、水が蒸発しないように、さらに2つのシャーレをラップで密閉した。続いて、1日間25℃で保存した後、オーブン中50℃で1日間保存し、再湿潤ゲルを得た。
[3] Step The dehydrated gel obtained in the step [2] was placed in a petri dish, and the aqueous solution prepared in the same manner as in the step [1] was slowly poured into the petri dish. After all of the dehydrated gel was immersed in the aqueous solution, the dehydrated gel was covered with a bottom surface of the petri dish smaller than the petri dish, and two petri dishes were sealed with wraps so that the water did not evaporate. Subsequently, after storing at 25 ° C. for 1 day, it was stored in an oven at 50 ° C. for 1 day to obtain a rewet gel.

[4]工程
[3]工程で得られた再湿潤ゲル中の水を[2]工程と同様にしてt−ブチルアルコールに置換し、−10℃にて3日間かけて凍結乾燥して、再乾燥ゲルを得た。
[4] Step Water in the rewet gel obtained in [3] step is replaced with t-butyl alcohol in the same manner as in [2] step, freeze-dried at −10 ° C. for 3 days, A dry gel was obtained.

[5]工程
[2]工程で得られた再乾燥ゲルを電気炉((株)京都サイエンス)のセラミック管内に置き、室温下で窒素を同管に200 ml/minにて30分間流通して窒素置換した。続いて、同様に窒素を流しながら、4.2℃/minで523℃まで昇温し、523℃で2時間保持した後、再び、4.2℃/minで1000℃まで昇温し、1000℃にて4時間保持し、厚みが約0.60mmの炭素材料を得た。
[5] Step [2] The re-dried gel obtained in the step is placed in a ceramic tube of an electric furnace (Kyoto Science Co., Ltd.), and nitrogen is circulated through the tube at 200 ml / min for 30 minutes at room temperature. Replaced with nitrogen. Subsequently, while flowing nitrogen in the same manner, the temperature was raised to 523 ° C. at 4.2 ° C./min, held at 523 ° C. for 2 hours, then again raised to 1000 ° C. at 4.2 ° C./min, and 4 ° C. at 1000 ° C. Holding for a time, a carbon material having a thickness of about 0.60 mm was obtained.

[細孔特性と静電容量の評価]
得られた炭素材料の77度(絶対温度)における窒素の吸脱着等温線を自動ガス吸着装置(日本ベル, BELSORP28)で測定し、BET式(ブルナウア−エメット−テーラー式)を用いて比表面積(以下、SBETという場合がある)を求めたところ、857 m2/g であった。
また、上記脱着等温線をDollimore−Heal法でメソ細孔容積およびメソ細孔分布を求めたところ、メソ細孔容積(以下、Vmesoという場合がある)0.60 cm3/g、メソ細孔分布のピーク半径(以下、Rp,mesoという場合がある)は 4.05 nm であった。また、上記脱着等温線をt-プロット法でミクロ孔容積(以下、Vmicroという場合がある)を求めたところ、0.23 cm3/g であった。
さらに、4M水酸化カリウムを電解液として、得られた炭素材料をそのまま3極式セルの作用極として用い、対極としてNi電極として用い、参照電極としてAg/AgCl電極を用いた定電流充放電測定(300mA/g)により電気二重層キャパシタの単位重量あたりの静電容量(以下、Cmasという場合がある)を求めたところ 151.9 F/g であり、電極の密度(用いた電極の径、厚みおよび質量から円柱として求めた。以下、ρという場合がある。)0.89 g/cm3 であったことから、電気二重層キャパシタの単位体積あたりの静電容量(以下、Cvolという場合がある)は 134.9 F/cm3 であった。
[Evaluation of pore characteristics and capacitance]
The adsorption and desorption isotherm of nitrogen at 77 degrees (absolute temperature) of the obtained carbon material was measured with an automatic gas adsorption device (Nippon Bell, BELSORP28), and the specific surface area (Brunauer-Emmett-Taylor method) was used. Hereinafter, it may be referred to as S BET ), and it was 857 m 2 / g.
Further, when the mesopore volume and mesopore distribution were determined from the above desorption isotherm by the Dollimore-Heal method, the mesopore volume (hereinafter sometimes referred to as Vmeso) 0.60 cm 3 / g, the mesopore distribution The peak radius (hereinafter sometimes referred to as Rp, meso) was 4.05 nm. Further, when the micropore volume (hereinafter sometimes referred to as Vmicro) was determined by the t-plot method using the desorption isotherm, it was 0.23 cm 3 / g.
Furthermore, 4M potassium hydroxide is used as the electrolyte, and the obtained carbon material is used as the working electrode of the triode cell as it is, the Ni electrode as the counter electrode, and the constant current charge / discharge measurement using the Ag / AgCl electrode as the reference electrode. The capacitance per unit weight of the electric double layer capacitor (hereinafter sometimes referred to as Cmas) was determined by (300 mA / g) and found to be 151.9 F / g, and the electrode density (the diameter, thickness, and thickness of the electrode used). Calculated as a cylinder from the mass, hereinafter referred to as ρ.) Since 0.89 g / cm 3 , the capacitance per unit volume of the electric double layer capacitor (hereinafter also referred to as Cvol) was 134.9. F / cm 3 .

(比較例1)
実施例1の[2]工程で得られた乾燥ゲルを実施例1の[5]工程と同様に焼成した。得られた炭素材料の結果を実施例1とともに表1にまとめた。
比較例1と実施例1を比較すれば明らかなように、実施例1はメソ細孔容積が低減され、単位体積あたりの静電容量が著しく増加していることがわかる。また、体積抵抗率は、2.67 Ω・cmであった。
(Comparative Example 1)
The dried gel obtained in the step [2] of Example 1 was baked in the same manner as in the step [5] of Example 1. The results of the obtained carbon materials are summarized in Table 1 together with Example 1.
As is apparent from comparison between Comparative Example 1 and Example 1, it can be seen that Example 1 has a reduced mesopore volume and a marked increase in capacitance per unit volume. The volume resistivity was 2.67 Ω · cm.

Figure 2009040646
Figure 2009040646

(実施例2〜6)
実施例1の[3]工程において、[1]工程で調整された水溶液をただちに使用した実施例1とは異なり、実施例2〜6の[3]工程において、表1の水溶液静置時間に記載された時間だけ[1]工程で調整された水溶液を静置してゾル化したものを用いた。結果を表1に示す。比較例1と比較すれば明らかなように、実施例2〜6はメソ細孔容積が低減され、単位体積あたりの静電容量が著しく増加していることがわかる。
(Examples 2 to 6)
Unlike the example 1 in which the aqueous solution prepared in the step [1] was used immediately in the step [3] of the example 1, in the steps [3] of the examples 2 to 6, the aqueous solution standing time in Table 1 was set. An aqueous solution prepared in the step [1] was allowed to stand for the indicated time and used to make a sol. The results are shown in Table 1. As is clear from comparison with Comparative Example 1, it can be seen that in Examples 2 to 6, the mesopore volume is reduced and the capacitance per unit volume is remarkably increased.

(実施例7および8)
[3]工程において用いた水溶液のR/C、R/Wおよび水溶液静置時間が表1に記載のものを用いること以外は、実施例1と同様にして炭素材料を調製した。結果を表1に示す。比較例1と比較すれば明らかなように、実施例7〜16はメソ細孔容積が低減され、単位体積あたりの静電容量が著しく増加していることがわかる。
尚、実施例7で得られた炭素材料の体積抵抗率は、2.50 Ω・cmであった。
(Examples 7 and 8)
[3] A carbon material was prepared in the same manner as in Example 1 except that the R / C, R / W of the aqueous solution used in the step and the aqueous solution standing time described in Table 1 were used. The results are shown in Table 1. As is clear from comparison with Comparative Example 1, in Examples 7 to 16, the mesopore volume is reduced and the capacitance per unit volume is remarkably increased.
The volume resistivity of the carbon material obtained in Example 7 was 2.50 Ω · cm.

(実施例9〜22)
[1]工程において用いた水溶液のR/CおよびR/Wが表1に記載されたものを用い、[3]工程において用いた水溶液のR/C、R/Wおよび水溶液静置時間が表1に記載のものを用いること以外は、実施例1と同様にして炭素材料を調製した。結果を表1に示す。
(Examples 9 to 22)
[1] The R / C and R / W of the aqueous solution used in the step are listed in Table 1, and the R / C, R / W and aqueous solution standing time of the aqueous solution used in the [3] step are shown. A carbon material was prepared in the same manner as in Example 1 except that the material described in 1 was used. The results are shown in Table 1.

(比較例2〜6)
[1]工程において用いた水溶液のR/CおよびR/Wが表1に記載されたものを用いる以外は比較例1と同様にして炭素材料を調製した。結果を表1に示す。比較例2は実施例9で得られた乾燥ゲルをそのまま、焼成したことを意味し、比較例3は実施例10〜13で得られた乾燥ゲルをそのまま、焼成したことを意味し、比較例4は実施例14〜17で得られた乾燥ゲルをそのまま、焼成したことを意味し、比較例5は実施例18〜19で得られた乾燥ゲルをそのまま、焼成したことを意味し、比較例6は実施例20〜22で得られた乾燥ゲルをそのまま、焼成したことを意味する。
実施例は対応する比較例よりもメソ細孔容積が低減され、単位体積あたりの静電容量が著しく増加していることがわかる。
尚、比較例3で得られた炭素材料の体積抵抗率は、2.84 Ω・cmであった。
(Comparative Examples 2-6)
[1] A carbon material was prepared in the same manner as in Comparative Example 1 except that R / C and R / W of the aqueous solution used in the step were those listed in Table 1. The results are shown in Table 1. Comparative Example 2 means that the dried gel obtained in Example 9 was baked as it is, Comparative Example 3 means that the dried gel obtained in Examples 10 to 13 was baked as it was, Comparative Example 4 means that the dried gels obtained in Examples 14 to 17 were baked as they were, Comparative Example 5 means that the dried gels obtained in Examples 18 to 19 were baked as they were, and Comparative Example 6 means that the dried gel obtained in Examples 20 to 22 was baked as it was.
The examples show that the mesopore volume is reduced and the capacitance per unit volume is significantly increased compared to the corresponding comparative examples.
The volume resistivity of the carbon material obtained in Comparative Example 3 was 2.84 Ω · cm.

(実施例23)
[5]工程の最終焼成温度が900℃である以外は実施例15と同様にして炭素材料を調製した。結果を表2に示す。また、体積抵抗率は、2.87 Ω・cmであった。
尚、静電容量はいずれも、電流密度が5A/gにおける定電流充放電測定である以外は実施例15と同様に測定した。
(Example 23)
[5] A carbon material was prepared in the same manner as in Example 15 except that the final firing temperature in the step was 900 ° C. The results are shown in Table 2. The volume resistivity was 2.87 Ω · cm.
The capacitance was measured in the same manner as in Example 15 except that the constant current charge / discharge measurement was performed at a current density of 5 A / g.

(実施例24)
カーボンナノファイバー(ハイペリオン社製)をレゾルシノール1重量部に対して1×10−5重量部の割合で[1]工程の水溶液に混合する以外は実施例23と同様にして炭素材料を調製した。結果を表2に示す。また、体積抵抗率は、1.58 Ω・cmであった。
尚、静電容量は実施例23と同様に測定した。
(Example 24)
A carbon material was prepared in the same manner as in Example 23, except that carbon nanofibers (manufactured by Hyperion Co., Ltd.) were mixed with the aqueous solution in step [1] at a ratio of 1 × 10 −5 parts by weight to 1 part by weight of resorcinol. The results are shown in Table 2. The volume resistivity was 1.58 Ω · cm.
The capacitance was measured in the same manner as in Example 23.

Figure 2009040646
Figure 2009040646

(サイクル特性)
実施例15の炭素材料をそのまま3極式セルの作用極として用いる以外は、対極としてNi電極、参照電極として、Ag/AgCl電極を用いて、300mA/gの電流密度にて、前記と同様の定電流充放電測定を10000回繰り返した。途中の結果を図3に示した。最終的に、単位体積当たり静電容量は1.8%、密度は2%の減少にとどまった。
(Cycle characteristics)
Except for using the carbon material of Example 15 as the working electrode of the triode cell as it is, using the Ni electrode as the counter electrode, the Ag / AgCl electrode as the reference electrode, and the current density of 300 mA / g, the same as described above The constant current charge / discharge measurement was repeated 10,000 times. The results on the way are shown in FIG. Ultimately, the capacitance per unit volume decreased by 1.8% and the density decreased by 2%.

本発明の製造方法で得られる炭素材料は、例えば、固体形状を有するカーボンブラックや活性炭などにも用いるが、優れた導電性から、リチウム二次電池、電気二重層キャパシタのような電極などに利用できる。   The carbon material obtained by the production method of the present invention is used for, for example, carbon black and activated carbon having a solid shape, but is used for an electrode such as a lithium secondary battery or an electric double layer capacitor because of excellent conductivity. it can.

(a)比較例4で得られた炭素材料の電子顕微鏡写真 (b)実施例15で得られた炭素材料の電子顕微鏡写真(A) Electron micrograph of the carbon material obtained in Comparative Example 4 (b) Electron micrograph of the carbon material obtained in Example 15 [2]工程の説明図 (a)上面に開孔部が向いている凹部を有する鉢形容器(2)をシャーレ(3)に置き、フェノール化合物、アルデヒド化合物及び塩基性触媒を含む水溶液(1)を加えた。 (b)シャーレ(4)を鉢形容器(2)に置く。 (c)シャーレ(4)を置き、ラップで密閉する前の状態[2] Explanatory drawing of a process (a) The pot-shaped container (2) which has the recessed part which the opening part has faced on the upper surface is set | placed on a petri dish (3), and the aqueous solution (1) containing a phenol compound, an aldehyde compound, and a basic catalyst Was added. (B) Place the petri dish (4) in the bowl-shaped container (2). (C) State before putting petri dish (4) and sealing with wrap 定電流充放電の回数を横軸、静電容量を縦軸としたサイクル特性の結果Results of cycle characteristics with the constant current charge / discharge count on the horizontal axis and the capacitance on the vertical axis

Claims (11)

下記[1]〜[5]工程を含む炭素材料の製造方法。
[1]フェノール化合物、アルデヒド化合物及び塩基性触媒を含む水溶液を反応させて湿潤ゲルを作製する工程。
[2][1]で得られた湿潤ゲルを脱水して、乾燥ゲルを作製する工程。
[3][2]で得られた乾燥ゲルに、フェノール化合物、アルデヒド化合物及び塩基性触媒を含む水溶液を含浸、反応させて、再湿潤ゲルを作製する工程。
[4][3]で得られた再湿潤ゲルを脱水して、再乾燥ゲルを作製する工程。
[5][4]で得られた再乾燥ゲルを焼成して炭素材料を作製する工程。
The manufacturing method of the carbon material including the following [1]-[5] processes.
[1] A step of producing a wet gel by reacting an aqueous solution containing a phenol compound, an aldehyde compound and a basic catalyst.
[2] A step of dehydrating the wet gel obtained in [1] to produce a dry gel.
[3] A step of preparing a rewet gel by impregnating and reacting the dry gel obtained in [2] with an aqueous solution containing a phenol compound, an aldehyde compound and a basic catalyst.
[4] A step of dehydrating the rewet gel obtained in [3] to produce a re-dried gel.
[5] A step of firing the redried gel obtained in [4] to produce a carbon material.
フェノール化合物が、式(1)で表される化合物である請求項1に記載の製造方法。
Figure 2009040646
(式中、R1は、ハロゲン原子若しくは置換基で置換されていてもよいアルキル基、又は水素原子を表す。nは2〜5の整数を表し、mは0〜3の整数を表すが、nとmの和は5である。)
The production method according to claim 1, wherein the phenol compound is a compound represented by the formula (1).
Figure 2009040646
(In the formula, R 1 represents a halogen atom or an alkyl group which may be substituted with a substituent, or a hydrogen atom. N represents an integer of 2 to 5, and m represents an integer of 0 to 3, (The sum of n and m is 5.)
[1]工程が、凹部を有するディスク状の鉢形容器の凹部にて、フェノール化合物、アルデヒド化合物及び塩基性触媒を含む水溶液を反応させて、凹部に湿潤ゲルを作製する工程である請求項1又は2に記載の製造方法。   [1] The step is a step of producing a wet gel in the recess by reacting an aqueous solution containing a phenol compound, an aldehyde compound and a basic catalyst in the recess of the disc-shaped bowl-shaped container having the recess. 2. The production method according to 2. [1]工程に用いられる水溶液に、さらに、微細炭素繊維を混合する工程を含む請求項1〜3のいずれかに記載の製造方法。   [1] The production method according to any one of claims 1 to 3, further comprising a step of mixing fine carbon fibers with the aqueous solution used in the step. [1]工程が、フェノール化合物、アルデヒド化合物及び塩基性触媒を含む水溶液が0〜40℃で反応し、続いて、30〜100℃で反応する工程を含む請求項1〜4のいずれかに記載の製造方法。   [1] The process according to any one of claims 1 to 4, wherein the step includes a step in which an aqueous solution containing a phenol compound, an aldehyde compound and a basic catalyst reacts at 0 to 40 ° C, and subsequently reacts at 30 to 100 ° C. Manufacturing method. [2]工程が、湿潤ゲル中の水を親水性有機溶媒に置換し、次に、凍結乾燥して親水性有機溶媒を除去する工程を含む請求項1〜5のいずれかに記載の製造方法。   [2] The production method according to any one of claims 1 to 5, wherein the step includes a step of replacing water in the wet gel with a hydrophilic organic solvent and then lyophilizing to remove the hydrophilic organic solvent. . [3]工程が、乾燥ゲルをフェノール化合物、アルデヒド化合物及び塩基性触媒を含む水溶液中にて、0〜40℃にて1時間〜48時間含浸させたのち、得られたゲルを引き上げて、さらに、30〜100℃にて5〜48時間静置する工程を含む請求項1〜6のいずれかに記載の製造方法。   [3] After impregnating the dried gel in an aqueous solution containing a phenolic compound, an aldehyde compound and a basic catalyst at 0 to 40 ° C. for 1 to 48 hours, the obtained gel is pulled up, The manufacturing method in any one of Claims 1-6 including the process left still for 5 to 48 hours at 30-100 degreeC. [4]工程が、再湿潤ゲル中の水を親水性有機溶媒に置換し、次に、凍結乾燥して親水性有機溶媒を除去する工程を含む請求項1〜7のいずれかに記載の製造方法。   [4] The production according to any one of claims 1 to 7, wherein the step includes a step of replacing water in the rewet gel with a hydrophilic organic solvent and then lyophilizing to remove the hydrophilic organic solvent. Method. [5]工程が、再乾燥ゲルを不活性ガス雰囲気下で焼成する工程を含む請求項1〜8のいずれかに記載の製造方法。   [5] The manufacturing method according to any one of claims 1 to 8, wherein the step includes a step of baking the re-dried gel in an inert gas atmosphere. 下記[1]〜[5]工程を経てなる電極。
[1]フェノール化合物、アルデヒド化合物及び塩基性触媒を含む水溶液を反応させて湿潤ゲルを作製する工程。
[2][1]で得られた湿潤ゲルを脱水して、乾燥ゲルを作製する工程。
[3][2]で得られた乾燥ゲルに、フェノール化合物、アルデヒド化合物及び塩基性触媒を含む水溶液を含浸、反応させて、再湿潤ゲルを作製する工程。
[4][3]で得られた再湿潤ゲルを脱水して、再乾燥ゲルを作製する工程。
[5][4]で得られた再乾燥ゲルを焼成して炭素材料を作製する工程。
An electrode obtained through the following steps [1] to [5].
[1] A step of producing a wet gel by reacting an aqueous solution containing a phenol compound, an aldehyde compound and a basic catalyst.
[2] A step of dehydrating the wet gel obtained in [1] to produce a dry gel.
[3] A step of preparing a rewet gel by impregnating and reacting the dry gel obtained in [2] with an aqueous solution containing a phenol compound, an aldehyde compound and a basic catalyst.
[4] A step of dehydrating the rewet gel obtained in [3] to produce a re-dried gel.
[5] A step of firing the redried gel obtained in [4] to produce a carbon material.
請求項10に記載の電極を含む電気二重層キャパシタ。   An electric double layer capacitor comprising the electrode according to claim 10.
JP2007209005A 2007-08-10 2007-08-10 Method for manufacturing carbon material, and electric double-layer capacitor containing the carbon material Pending JP2009040646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007209005A JP2009040646A (en) 2007-08-10 2007-08-10 Method for manufacturing carbon material, and electric double-layer capacitor containing the carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007209005A JP2009040646A (en) 2007-08-10 2007-08-10 Method for manufacturing carbon material, and electric double-layer capacitor containing the carbon material

Publications (1)

Publication Number Publication Date
JP2009040646A true JP2009040646A (en) 2009-02-26

Family

ID=40441798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007209005A Pending JP2009040646A (en) 2007-08-10 2007-08-10 Method for manufacturing carbon material, and electric double-layer capacitor containing the carbon material

Country Status (1)

Country Link
JP (1) JP2009040646A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173533A (en) * 2007-12-25 2009-08-06 Sumitomo Chemical Co Ltd Method for producing carbon material
WO2011105336A1 (en) * 2010-02-26 2011-09-01 国立大学法人群馬大学 Hydrogen storing carbon material
JP2012121796A (en) * 2010-11-23 2012-06-28 Hutchinson Sa Novel sulfur-modified monolithic porous carbon-based material, preparation method therefor, and use thereof in energy storage and discharge
JP2013159515A (en) * 2012-02-03 2013-08-19 Hokkaido Univ Mesoporous carbon gel and method for producing the same
JP2013216503A (en) * 2012-04-04 2013-10-24 Nagoya Univ Carbon porous body and method for manufacturing the same
JP2019069866A (en) * 2017-10-05 2019-05-09 大阪瓦斯株式会社 Method for producing activated carbon
CN110171812A (en) * 2019-05-27 2019-08-27 北京科技大学 Multi-layer porous hollow bowl-type carbon material of one kind and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187320A (en) * 2003-12-01 2005-07-14 Hajime Tamon Method for producing carbon material and tablet-like dried gel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187320A (en) * 2003-12-01 2005-07-14 Hajime Tamon Method for producing carbon material and tablet-like dried gel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173533A (en) * 2007-12-25 2009-08-06 Sumitomo Chemical Co Ltd Method for producing carbon material
WO2011105336A1 (en) * 2010-02-26 2011-09-01 国立大学法人群馬大学 Hydrogen storing carbon material
US8475687B2 (en) 2010-02-26 2013-07-02 National University Corporation Gunma University Hydrogen storing carbon material
JP2012121796A (en) * 2010-11-23 2012-06-28 Hutchinson Sa Novel sulfur-modified monolithic porous carbon-based material, preparation method therefor, and use thereof in energy storage and discharge
JP2013159515A (en) * 2012-02-03 2013-08-19 Hokkaido Univ Mesoporous carbon gel and method for producing the same
JP2013216503A (en) * 2012-04-04 2013-10-24 Nagoya Univ Carbon porous body and method for manufacturing the same
JP2019069866A (en) * 2017-10-05 2019-05-09 大阪瓦斯株式会社 Method for producing activated carbon
JP6999131B2 (en) 2017-10-05 2022-01-18 大阪瓦斯株式会社 How to make activated carbon
CN110171812A (en) * 2019-05-27 2019-08-27 北京科技大学 Multi-layer porous hollow bowl-type carbon material of one kind and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4754813B2 (en) Method for producing carbon material and tablet-like dried gel
Ma et al. Mesoporous size controllable carbon microspheres and their electrochemical performances for supercapacitor electrodes
JP6047799B2 (en) Activated carbon for electrode of electricity storage device and method for producing activated carbon for electrode of electricity storage device
Qian et al. Condiment‐derived 3D architecture porous carbon for electrochemical supercapacitors
JP2009040646A (en) Method for manufacturing carbon material, and electric double-layer capacitor containing the carbon material
JP4662730B2 (en) Macroreticular carbonaceous materials useful in energy storage devices
JP6485999B2 (en) Electrode of electric storage device and method of manufacturing the same
Zhou et al. Porous carbon with high capacitance and graphitization through controlled addition and removal of sulfur-containing compounds
JP2017522417A (en) Novel method for sol-gel polymerization in the absence of solvent, and fabrication of variable carbon structure derived from sol-gel polymerization
JP2006512265A (en) Foam mainly composed of carbon and having a high internal surface area, and method for producing the same
JP7234220B2 (en) Systems and methods for forming activated carbon aerogels and performing 3D printing
JP2003282369A (en) Carbon material for electric double-layer capacitor and its manufacturing method
Abbas et al. Structural tuneability and electrochemical energy storage applications of resorcinol‐formaldehyde‐based carbon aerogels
Xuan et al. Air-assisted activation strategy for porous carbon spheres to give enhanced electrochemical performance
Liu et al. Nitrogen-and oxygen-containing micro–mesoporous carbon microspheres derived from m-aminophenol formaldehyde resin for supercapacitors with high rate performance
Teng et al. Isostatic pressure-assisted nanocasting preparation of zeolite templated carbon for high-performance and ultrahigh rate capability supercapacitors
KR101653488B1 (en) Preparation of steam-activated carbon by polymeric precursor
JP7132258B2 (en) A novel method for solvent-free sol-gel polymerization and fabrication of variable carbon structures derived from sol-gel polymerization
Yang et al. A facile self-templating synthesis of carbon frameworks with tailored hierarchical porosity for enhanced energy storage performance
Kim et al. Nanoporous phloroglucinol-formaldehyde carbon aerogels for electrochemical use
KR20130093740A (en) Carbon material for supercapacitor electrode and method for manufactoring the same
Chavhan et al. Electrospray of carbon precursor sol on supercapacitor current collector: Effect of fast evaporation of solvent
KR102133891B1 (en) Preparing method of carbone foam, carbone foam prepared by thereof and electrode for supercapacitor comprising the carbone foam
KR20110075561A (en) Manufacturing method of carbon nikel composite aerogel and supercapacitor electrode
JP2017141122A (en) Production method of mesoporous carbon, and production method of carbon-based electrode for electrical double layer capacitor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925