JP2645867B2 - Method of depositing diamond film - Google Patents

Method of depositing diamond film

Info

Publication number
JP2645867B2
JP2645867B2 JP22529788A JP22529788A JP2645867B2 JP 2645867 B2 JP2645867 B2 JP 2645867B2 JP 22529788 A JP22529788 A JP 22529788A JP 22529788 A JP22529788 A JP 22529788A JP 2645867 B2 JP2645867 B2 JP 2645867B2
Authority
JP
Japan
Prior art keywords
gas
diamond film
substrate
plasma
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22529788A
Other languages
Japanese (ja)
Other versions
JPH0274591A (en
Inventor
豊彦 小林
健志 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKAI KAABON KK
Original Assignee
TOKAI KAABON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKAI KAABON KK filed Critical TOKAI KAABON KK
Priority to JP22529788A priority Critical patent/JP2645867B2/en
Publication of JPH0274591A publication Critical patent/JPH0274591A/en
Application granted granted Critical
Publication of JP2645867B2 publication Critical patent/JP2645867B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温プラズマを用いるダイヤモンド膜の析
出方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for depositing a diamond film using high-temperature plasma.

〔従来の技術〕[Conventional technology]

基体面に形成される合成ダイヤモンドの膜は、卓越し
た硬度、耐摩耗性、高弾性率等を有しているため、すで
に切削工具、耐摩耗工具、軸受、摺動部材などに有用さ
れているが、近時、その熱的、光学的、電気的特性を利
用した機能材料としての用途が期待されている。
Synthetic diamond films formed on the substrate surface have excellent hardness, wear resistance, high elastic modulus, etc., and are already useful for cutting tools, wear-resistant tools, bearings, sliding members, etc. However, recently, it is expected to be used as a functional material utilizing its thermal, optical, and electrical properties.

従来、ダイヤモンドの気相析出法としては、熱によっ
て原料ガスおよび水素の分解をおこなう熱CVD法、直
流、高周波、マイクロ波励起によるプラズマ中で原料ガ
スおよび水素の分解をおこなうプラズマCVD法、炭化水
素のプラズマ分解をイオン銃などでおこない電界により
イオンを引出して蒸着するイオンビーム蒸着法等が知ら
れている。
Conventionally, as a vapor phase deposition method of diamond, there are a thermal CVD method in which a raw material gas and hydrogen are decomposed by heat, a plasma CVD method in which a raw material gas and hydrogen are decomposed in a plasma excited by direct current, high frequency and microwave, and a hydrocarbon. There is known an ion beam vapor deposition method in which plasma decomposition is performed by an ion gun or the like, and ions are extracted and vapor deposited by an electric field.

これらの方法は工業的見地からいずれも低圧下の条件
でおこなわれており、このため、反応初期において基体
表面に析出するダイヤモンド結晶核の数が少なくて所定
膜厚のダイヤモンド膜を形成するのに著しく長時間を要
する。この欠点を解消するため、基体表面を粗面化(特
開昭60−200897号公報)したり、1μm未満の研磨粉で
研磨する方法(特開昭62−108798号公報)が試みられて
いる。
All of these methods are performed under low pressure conditions from an industrial point of view. Therefore, in the initial stage of the reaction, the number of diamond crystal nuclei precipitated on the substrate surface is small, so that a diamond film having a predetermined thickness can be formed. It takes an extremely long time. In order to solve this drawback, a method has been attempted in which the surface of the substrate is roughened (JP-A-60-200897) or polished with an abrasive powder of less than 1 μm (JP-A-62-108798). .

一方、上記の低圧条件とは逆に、比較的高い圧力で高
温プラズマを利用して活性種濃度を増大させることによ
って高品位の合成ダイヤモンドを高速で成長させる方法
(特開昭62−158195号公報)が提案されている。
On the other hand, contrary to the above low pressure conditions, a method of growing high-quality synthetic diamond at high speed by increasing the concentration of active species by using high-temperature plasma at a relatively high pressure (Japanese Patent Laid-Open No. 62-158195) ) Has been proposed.

〔発明が解決しようとする手段〕[Means to be Solved by the Invention]

しかしながら、上記特開昭62−158195号の発明に代表
される従来の熱プラズマで合成される膜状のダイヤモン
ドは基体との接着性に難点があり、合成中あるいは合成
後にダイヤモンド膜に発生した亀裂によって容易に基体
面から剥離する現象を招く問題があった。
However, conventional film-form diamond synthesized by thermal plasma typified by the invention of JP-A-62-158195 has a problem in adhesion to a substrate, and cracks generated in the diamond film during or after synthesis. Accordingly, there is a problem that a phenomenon of easily peeling off from the substrate surface is caused.

発明者らは、高温プラズマを用いる場合の上記問題点
を解消する目的で鋭意研究を重ねた結果、基体の近傍に
おける反応ガスの炭素と水素の組成比を一定値以上に設
定保持すると、基体の表面状態に係りなく析出ダイヤモ
ンド膜との接着性が著しく向上するとの知見を得て本発
明の開発に至ったものである。
The inventors have conducted intensive studies with the aim of solving the above-mentioned problems when using high-temperature plasma, and as a result, when the composition ratio of carbon and hydrogen of the reaction gas in the vicinity of the substrate is set and maintained at a certain value or more, the substrate The inventors have found that the adhesion to the deposited diamond film is significantly improved regardless of the surface state, and have led to the development of the present invention.

〔課題を解決するための手段〕[Means for solving the problem]

すなわち、本発明によるダイヤモンド膜の析出方法
は、炭化水素ガス、水素ガスおよび希ガスからなる混合
ガスに高周波による熱プラズマを発生させて基体面にダ
イヤモンド膜を析出する方法において、基体の近傍にお
ける反応ガスのC/H比を0.07以上に設定することを構成
上の特徴とする。
In other words, the method of depositing a diamond film according to the present invention is a method of depositing a diamond film on a substrate surface by generating a high-frequency thermal plasma in a mixed gas comprising a hydrocarbon gas, a hydrogen gas, and a rare gas, thereby forming a reaction in the vicinity of the substrate. It is characterized in that the C / H ratio of the gas is set to 0.07 or more.

プラズマ発生用の反応ガス源としては、メタン、エタ
ン、プロパン、ブタン、エチレン、ベンゼン等の炭化水
素ガスおよび水素ガスとアルゴン、ヘリウムのような希
ガスが用いられる。また、ダイヤモンド膜を形成するた
めの基体には、モリブデン、珪素、ステンレス鋼などの
金属、アルミナ、炭化珪素のようなセラミック材料が適
用される。
As a reaction gas source for generating plasma, hydrocarbon gases such as methane, ethane, propane, butane, ethylene, and benzene, and hydrogen gases and rare gases such as argon and helium are used. Further, as a substrate for forming a diamond film, a metal such as molybdenum, silicon, and stainless steel, or a ceramic material such as alumina and silicon carbide is applied.

ダイヤモンド膜の析出反応は、基体の温度を500〜150
0℃に上昇し、系内の圧力を10-4〜1気圧に保持した状
態で基体の近傍における反応ガスのC/H比を0.07以上に
設定する。このC/H比が0.07を下廻ると析出するダイヤ
モンド膜が樹枝状断面を呈するようになり、基体との接
着性が顕著に減退する。
The deposition reaction of the diamond film raises the temperature of the substrate to 500 to 150
The C / H ratio of the reaction gas in the vicinity of the substrate is set to 0.07 or more while the temperature is raised to 0 ° C. and the pressure in the system is maintained at 10 −4 to 1 atm. When the C / H ratio is less than 0.07, the deposited diamond film has a dendritic cross section, and the adhesion to the substrate is significantly reduced.

一般に、炭化水素ガスまたはこの分解生成物であるC
H、C、C2等のイオンやラジカルは希ガス中への拡散速
度がH2やHに比べて著しく小さいため、プラズマ発生室
内において均一な拡散状態を得ることは難しい。したが
って、上記C/H比の調整は、炭化水素ガスと希ガスおよ
び水素ガスを別ルートを介し相互に流量制御しながらプ
ラズマ発生室内に導入する方式が効果的である。導入さ
れた炭化水素およびその分解生成物はプラズマ発生室内
で均一に拡散せず、プラズマ発生室内径よりも小さな径
を有して基体面に達することが発光分光分析によって確
かめられている。
Generally, hydrocarbon gas or its decomposition product, C
Since ions and radicals such as H, C, and C 2 have a significantly lower diffusion rate into the rare gas than H 2 and H, it is difficult to obtain a uniform diffusion state in the plasma generation chamber. Therefore, for the adjustment of the C / H ratio, it is effective to introduce a hydrocarbon gas, a rare gas, and a hydrogen gas into the plasma generation chamber while controlling the flow rates of the gases through different routes. It has been confirmed by emission spectroscopy that the introduced hydrocarbon and its decomposition products do not diffuse uniformly in the plasma generation chamber and reach the substrate surface with a diameter smaller than the diameter of the plasma generation chamber.

例えば、第1図に示すような周辺部に高周波電源1に
連結するワークコイル2、上部に反応ガス供給装置3と
バルブ4、5、6、7を介して各接続する中央ノズル8
を備えた三重構造の送入筒9、そして下部に基体10を載
置した支持具11と排気装置12とを備えるプラズマ発生室
13により構成された高周波プラズマトーチを用い、中央
ノズル8から送入する炭化水素ガスと希ガスの噴出速度
を最外筒から送入する水素ガスの流速より増すことによ
り基体近傍におけるCH、C、C2などのイオンやラジカル
濃度(活性種濃度)を相対的に高位に調整することが可
能となる。
For example, as shown in FIG. 1, a work coil 2 connected to a high-frequency power supply 1 is provided at a peripheral portion, and a central nozzle 8 connected to a reactive gas supply device 3 via valves 4, 5, 6, and 7 at an upper portion.
A plasma generating chamber including a triple-structured feed tube 9 having a support, a support 11 having a base 10 mounted on a lower portion thereof, and an exhaust device 12.
By using a high-frequency plasma torch constituted by 13 and increasing the ejection speed of the hydrocarbon gas and the rare gas sent from the central nozzle 8 from the flow rate of the hydrogen gas sent from the outermost cylinder, CH, C, C ions and radicals concentrations such 2 (active species concentration) can be adjusted relatively high.

〔作用〕[Action]

熱プラズマによるダイヤモンド膜の形成時に基体の近
傍における反応ガスのC/H比を0.07以上に条件設定する
と、プラズマ中の単位体積当りにおける活性種濃度が増
大するとともにプラズマが基体近傍で冷却されて非平衡
状態を生じ、その結果活性種濃度の過飽和度が上昇し核
発生率の著しい増加をもたらす。
If the C / H ratio of the reaction gas in the vicinity of the substrate is set to 0.07 or more during the formation of the diamond film by thermal plasma, the concentration of active species per unit volume of the plasma increases, and the plasma is cooled near the substrate and becomes non-conductive. An equilibrium is created, resulting in increased supersaturation of the active species concentration, resulting in a marked increase in nucleation rate.

また、C/H比が0.07未満の場合に析出されるダイヤモ
ンド膜の断面は樹枝状を呈しているが、この比が0.07以
上では巨視的に塊状のダイヤモンド粒からなる高接着性
の連続膜に転化する。
The cross section of the diamond film deposited when the C / H ratio is less than 0.07 is dendritic. Invert.

このような多様の作用を受けて、表面状態が鏡面、粗
面に拘らず常に接着性に優れ、亀裂、剥離の生じない高
品質のダイヤモンド膜が効率よく析出する。
Due to such various actions, a high-quality diamond film which is always excellent in adhesion and has no cracks or peeling is efficiently deposited irrespective of a mirror surface or a rough surface.

〔実施例〕〔Example〕

以下、本発明を実施例および比較例に基づいて説明す
る。
Hereinafter, the present invention will be described based on examples and comparative examples.

実施例1 第1図に示した高周波プラズマトーチを用い、バルブ
4を介し0.4l/分の流速でメタンガスを流し、同時にバ
ルブ5を介し10l/分の流速でアルゴンガスを送って、両
者の混合ガスとして中央ノズル8(直径2mm)から噴出
した。バルブ6からは42l/分の流速でアルゴンガスを、
そしてバルブ7を介し7.0l/分で水素ガスを最外筒に送
入した。この場合の、基体近傍における反応ガスのC/H
比は約0.4であった。
Example 1 Using the high-frequency plasma torch shown in FIG. 1, methane gas was flowed at a flow rate of 0.4 l / min through a valve 4 and, simultaneously, argon gas was fed at a flow rate of 10 l / min through a valve 5 to mix the two. Gas was ejected from the central nozzle 8 (diameter 2 mm) as gas. Argon gas at a flow rate of 42 l / min from valve 6
Then, hydrogen gas was fed into the outermost cylinder via the valve 7 at 7.0 l / min. In this case, the C / H of the reaction gas near the substrate
The ratio was about 0.4.

基体10には表面を研磨しないモリブデンを用い、基体
温度を890℃に保持した。その他、プラズマ発生室13
(直径55mm、長さ190mm)の圧力:1気圧、電源周波数:4M
Hz、真空管入力:65KVAの条件により熱プラズマを発生さ
せ、10分間に亘って基体面にダイヤモンド膜を析出させ
た。
The substrate 10 was made of molybdenum whose surface was not polished, and the temperature of the substrate was kept at 890 ° C. In addition, plasma generation chamber 13
(55mm diameter, 190mm length) Pressure: 1 atm, Power frequency: 4M
Thermal plasma was generated under the conditions of Hz, vacuum tube input: 65 KVA, and a diamond film was deposited on the substrate surface for 10 minutes.

得られたダイヤモンド膜は厚さ16〜18μmの接着性の
良好な均質膜で、第2図のSEM写真(倍率1440倍)に示
した結晶構造のように塊状のダイヤモンド粒が連続した
層状を呈していて亀裂および界面剥離は全く認められな
かった。
The resulting diamond film is a homogeneous film having a good adhesiveness with a thickness of 16 to 18 μm, and has a layered structure in which massive diamond grains are continuous like the crystal structure shown in the SEM photograph (magnification: 1440 ×) of FIG. No cracks and interfacial delamination were observed.

実施例2 中央ノズル8の直径を4mmとし、基体10に鏡面仕上げ
したシリコンウエハーを用いたほかは実施例1と同一の
条件によりダイヤモンド膜の析出をおこなった。この場
合の基体近傍における反応ガスのC/H比は約0.1であっ
た。得られたダイヤモンド膜は、実施例1と同様に亀
裂、剥離のない接着性に優れた均質膜であった。
Example 2 A diamond film was deposited under the same conditions as in Example 1 except that the diameter of the central nozzle 8 was 4 mm and a mirror-finished silicon wafer was used for the substrate 10. In this case, the C / H ratio of the reaction gas near the substrate was about 0.1. The obtained diamond film was a homogeneous film having excellent adhesion without cracking and peeling, as in Example 1.

比較例 中央ノズル8の直径を10mmとしてメタンガスの噴出速
度を低めたほかは、実施例1と同一の条件によりダイヤ
モンド膜の析出を実施した。この際の基体近傍における
反応ガスのC/H比は0.026であった。
Comparative Example A diamond film was deposited under the same conditions as in Example 1 except that the diameter of the central nozzle 8 was 10 mm and the jetting speed of methane gas was reduced. At this time, the C / H ratio of the reaction gas in the vicinity of the substrate was 0.026.

このようにして析出形成されたダイヤモンド膜は、第
3図のSEM写真(倍率1680倍)に示した結晶構造のよう
に樹枝状断面を有する結晶性を呈するもので、界面剥離
の容易な亀裂が認められた。
The diamond film thus deposited has a crystalline structure having a dendritic cross section as shown in the crystal structure shown in the SEM photograph (1680 times magnification) of FIG. Admitted.

〔発明の効果〕〔The invention's effect〕

以上のとおり、本発明に従えば基体の表面性状に関係
なく熱プラズマにより亀裂、剥離等のない極めて接着性
の良好なダイヤモンド膜を効率的に析出形成することが
できる。
As described above, according to the present invention, it is possible to efficiently deposit and form a diamond film having very good adhesion without cracking or peeling by thermal plasma regardless of the surface properties of the substrate.

したがって、切削工具などの機械的部材をはじめ新用
途が期待されている機能材料を安価に製造し得る産業上
の効果がもたらされる。
Therefore, there is provided an industrial effect that it is possible to inexpensively manufacture functional materials, which are expected to have new uses, including mechanical members such as cutting tools.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の方法を実施するために用いる高周波プ
ラズマトーチを示した概略図である。第2図は本発明の
実施例で析出形成されたダイヤモンド膜の結晶構造を拡
大(倍率1440倍)したSEM写真、第3図は比較例により
析出形成されたダイヤモンド膜の結晶構造を拡大(倍率
1680倍)したSEM写真である。 1……高周波電源、2……ワークコイル、3……反応ガ
ス供給装置、4、5、6、7……バルブ、8……中央ノ
ズル、9……送入筒、10……基体、11……支持具、12…
…排気装置、13……プラズマ発生室。
FIG. 1 is a schematic diagram showing a high frequency plasma torch used to carry out the method of the present invention. FIG. 2 is an SEM photograph in which the crystal structure of the diamond film deposited and formed in the example of the present invention is enlarged (magnification: 1440 times). FIG. 3 is an enlarged crystal structure of the diamond film deposited and formed in the comparative example (magnification: magnification).
(1680x) DESCRIPTION OF SYMBOLS 1 ... High frequency power supply, 2 ... Work coil, 3 ... Reaction gas supply device, 4, 5, 6, 7 ... Valve, 8 ... Central nozzle, 9 ... Sending cylinder, 10 ... Base, 11 ...... Supports, 12 ...
... Exhaust device, 13 ... Plasma generation chamber.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭化水素ガス、水素ガスおよび希ガスから
なる混合ガスに高周波による熱プラズマを発生させて基
体面にダイヤモンド膜を析出する方法において、基体の
近傍における反応ガスのC/H比を0.07以上に設定するこ
とを特徴とするダイヤモンド膜の析出方法。
1. A method of generating a thermal plasma by high frequency in a mixed gas comprising a hydrocarbon gas, a hydrogen gas and a rare gas to deposit a diamond film on a substrate surface, wherein a C / H ratio of a reaction gas in the vicinity of the substrate is determined. A diamond film deposition method characterized by being set to 0.07 or more.
JP22529788A 1988-09-08 1988-09-08 Method of depositing diamond film Expired - Lifetime JP2645867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22529788A JP2645867B2 (en) 1988-09-08 1988-09-08 Method of depositing diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22529788A JP2645867B2 (en) 1988-09-08 1988-09-08 Method of depositing diamond film

Publications (2)

Publication Number Publication Date
JPH0274591A JPH0274591A (en) 1990-03-14
JP2645867B2 true JP2645867B2 (en) 1997-08-25

Family

ID=16827132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22529788A Expired - Lifetime JP2645867B2 (en) 1988-09-08 1988-09-08 Method of depositing diamond film

Country Status (1)

Country Link
JP (1) JP2645867B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3062329B1 (en) * 2015-02-25 2016-12-14 Fei Company Multi-source GIS for particle-optical apparatus

Also Published As

Publication number Publication date
JPH0274591A (en) 1990-03-14

Similar Documents

Publication Publication Date Title
KR910006784B1 (en) Method and apparatus for vapor deposition of diamond
US4434188A (en) Method for synthesizing diamond
US5674572A (en) Enhanced adherence of diamond coatings employing pretreatment process
US5523121A (en) Smooth surface CVD diamond films and method for producing same
US5491028A (en) Enhanced adherence of diamond coatings
JP2002506786A (en) Apparatus and method for diamond nucleation and deposition using hot filament DC plasma
JPH04232273A (en) Multilayered structure of carbide film and its manufacture
US5491002A (en) Multilayer CVD diamond films
JP2645867B2 (en) Method of depositing diamond film
RU2032765C1 (en) Method of diamond coating application from vapor phase and a device for it realization
US6558742B1 (en) Method of hot-filament chemical vapor deposition of diamond
JP2501589B2 (en) Vapor-phase synthetic diamond and its synthesis method
JP2686970B2 (en) Membrane diamond manufacturing method
JP2752753B2 (en) Synthesis method of diamond by combustion flame
JPH0667797B2 (en) Diamond synthesis method
JP2848498B2 (en) Method for synthesizing diamond, method for producing diamond-coated cutting tool, and method for producing diamond-coated cutting tool
Klages et al. Hot-filament deposition of diamond
JP2754259B2 (en) Combustion Flame Synthesis Method for Transparent Diamond
JP2619557B2 (en) Synthesis method of vapor phase diamond
Zhang et al. Diamond growth by hollow cathode arc chemical vapor deposition at low pressure range of 0.02–2 mbar
JP2581330B2 (en) Synthesis method of diamond by combustion flame
JPS62256796A (en) Production of diamond
JP3980138B2 (en) Diamond manufacturing method
JPS63129099A (en) Production of diamond thin film or diamondlike thin film
JPH055179A (en) Method and device for production of diamond film and mixture layer