JPH0274591A - Deposition of diamond film - Google Patents

Deposition of diamond film

Info

Publication number
JPH0274591A
JPH0274591A JP22529788A JP22529788A JPH0274591A JP H0274591 A JPH0274591 A JP H0274591A JP 22529788 A JP22529788 A JP 22529788A JP 22529788 A JP22529788 A JP 22529788A JP H0274591 A JPH0274591 A JP H0274591A
Authority
JP
Japan
Prior art keywords
substrate
diamond film
plasma
gas
vicinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22529788A
Other languages
Japanese (ja)
Other versions
JP2645867B2 (en
Inventor
Toyohiko Kobayashi
豊彦 小林
Kenji Nakajima
健志 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP22529788A priority Critical patent/JP2645867B2/en
Publication of JPH0274591A publication Critical patent/JPH0274591A/en
Application granted granted Critical
Publication of JP2645867B2 publication Critical patent/JP2645867B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently provide a high quality diamond film having excellent adhesivity to a substrate without relating to the surface condition of the substrate and not causing any crack and peeling by limiting the C/H ratio of reactive gases is the vicinity of the substrate in a process for depositing the diamond film on the substrate with a high temperature plasma. CONSTITUTION:When thermal plasma is generated in mixed gases comprising a hydrocarbon gas, hydrogen gas and a rare gas with high frequency to deposit a diamond film on a substrate, the C/H ratio of the reactive gases at in the vicinity of the substrate is set to >=0.07. The setting of the above-mentioned condition increases the concentration of active seeds per unit volume in the plasma and cools the plasma in the vicinity of the substrate to produce a non- equilibrium state, consequently raising the supersaturation degree of the active seed concentration to bring a remarkable increase in the generation rate of nuclei.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温プラズマを用いるダイヤモンド膜の析出
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for depositing a diamond film using high temperature plasma.

〔従来の技術〕[Conventional technology]

基体面に形成される合成ダイヤモンドの膜は、卓越した
硬度、耐摩耗性、高弾性率等を有しているため、すでに
切削工具、耐摩耗工具、軸受、摺動部材などに有用され
ているが、近時、その熱的、光学的、電気的特性を利用
した機能材料としての用途が期待されている。
The synthetic diamond film formed on the substrate surface has excellent hardness, wear resistance, and high elastic modulus, so it is already useful in cutting tools, wear-resistant tools, bearings, sliding parts, etc. However, in recent years, it has been expected to be used as a functional material that takes advantage of its thermal, optical, and electrical properties.

従来、ダイヤモンドの気相析出法としては、熱によって
原料ガスおよび水素の分解をおこなう熱CVD法、直流
、高周波、マイクロ波励起によるプラズマ中で原料ガス
および水素の分解をおこなうプラズマCVD法、炭化水
素のプラズマ分解をイオン銃なとでおこない電界により
イオンを引出して蒸着するイオンビームM着法等が知ら
れている。
Conventional diamond vapor phase deposition methods include thermal CVD, which decomposes raw material gas and hydrogen using heat, plasma CVD, which decomposes raw material gas and hydrogen in plasma using direct current, high frequency, or microwave excitation, and hydrocarbon deposition. An ion beam M deposition method is known in which plasma decomposition of ions is carried out using an ion gun or the like, and ions are drawn out and deposited using an electric field.

これらの方法は工業的見地からいずれも低圧下の条件で
おこなわれており、このため、反応初期において基体表
面に析出するダイヤモンド結晶核の数が少なくて所定膜
厚のダイヤモンド膜を形成するのに著しく長時間を要す
る。この欠点を解消するため、基体表面を粗面化(特開
昭60−200897号公報)したり、1−未満の研磨
粉で研磨する方法(特開昭62−108798号公報)
が試みられている。
From an industrial standpoint, all of these methods are carried out under conditions of low pressure, and therefore, the number of diamond crystal nuclei that precipitate on the substrate surface in the early stage of the reaction is small, making it difficult to form a diamond film of a predetermined thickness. It takes a very long time. In order to eliminate this drawback, methods include roughening the surface of the substrate (Japanese Unexamined Patent Publication No. 60-200897) and polishing with polishing powder of less than 1% (Japanese Unexamined Patent Publication No. 62-108798).
is being attempted.

一方、上記の低圧条件とは逆に、比較的高い圧力で高温
プラズマを利用して活性種濃度を増大させることによっ
て高品位の合成ダイヤモンドを高速で成長させる方法(
特開昭62−158195号公報)が提案されている。
On the other hand, contrary to the low-pressure conditions mentioned above, there is a method of growing high-grade synthetic diamond at high speed by increasing the concentration of active species using high-temperature plasma at relatively high pressure (
JP-A-62-158195) has been proposed.

〔発明が解決しようとする手段) しかしながら、上記特開昭62−158195号の発明
に代表される従来の熱プラズマで合成される膜状のダイ
ヤモンドは基体との接着性に難点があり、合成中あるい
は合成後にダイヤモンド膜に発生した亀裂によって容易
に基体面から剥離する現象を招く問題があった。
[Means to be Solved by the Invention] However, film-like diamond synthesized using conventional thermal plasma, as typified by the invention of JP-A No. 62-158195, has a difficulty in adhesion to the substrate, and Alternatively, there is a problem in that the diamond film easily peels off from the substrate surface due to cracks that occur in the diamond film after synthesis.

発明者らは、高温プラズマを用いる場合の上記問題点を
解消する目的で鋭意研究を重ねた結果、基体の近傍にお
ける反応ガスの炭素と水素の組成比を一定値以上に設定
保持すると、基体の表面状態に係りなく析出ダイヤモン
ド膜との接着性が著しく向上するとの知見を得て本発明
の開発に至ったものである。
As a result of intensive research aimed at resolving the above-mentioned problems when using high-temperature plasma, the inventors found that if the composition ratio of carbon and hydrogen in the reactive gas near the substrate is set and maintained above a certain value, the substrate The present invention was developed based on the finding that the adhesion to the precipitated diamond film is significantly improved regardless of the surface condition.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明によるダイヤモンド膜の析出方法は、
炭化水素ガス、水素ガスおよび希ガスからなる混合ガス
に高周波による熱プラズマを発生させて基体面にダイヤ
モンド膜を析出する方法において、基体の近傍における
反応ガスのC/H比を0.07以上に設定することを構
成上の特徴とする。
That is, the method for depositing a diamond film according to the present invention is as follows:
In a method of depositing a diamond film on a substrate surface by generating thermal plasma using high frequency in a mixed gas consisting of hydrocarbon gas, hydrogen gas, and rare gas, the C/H ratio of the reaction gas in the vicinity of the substrate is set to 0.07 or more. The configuration feature is to set.

プラズマ発生用の反応ガス源としては、メタン、エタン
、プロパン、ブタン、エチレン、ベンゼン等の炭化水素
ガスおよび水素ガスとアルゴン、ヘリウムのような希ガ
スが用いられる。また、ダイヤモンド膜を形成するため
の基体には、モリブデン、珪素、ステンレス鋼などの金
属、アルミナ、炭化珪素のようなセラミック材料が適用
される。
Hydrocarbon gases such as methane, ethane, propane, butane, ethylene, and benzene, hydrogen gas, and rare gases such as argon and helium are used as reactive gas sources for plasma generation. Furthermore, metals such as molybdenum, silicon, and stainless steel, and ceramic materials such as alumina and silicon carbide are used as the substrate for forming the diamond film.

ダイヤモンド膜の析出反応は、基体の温度を500〜1
500°Cに上昇し、系内の圧力を10−4〜1気圧に
保持した状態で基体の近傍における反応ガスのC/H比
を0.07以上に設定する。このC/H比が0.07を
下部ると析出するダイヤモンド膜が樹枝状断面を呈する
ようになり、基体との接着性が顕著に減退する。
The precipitation reaction of the diamond film is carried out at a temperature of the substrate of 500 to 1
The temperature is raised to 500° C., and the C/H ratio of the reaction gas in the vicinity of the substrate is set to 0.07 or more while the pressure in the system is maintained at 10 −4 to 1 atm. When the C/H ratio falls below 0.07, the precipitated diamond film begins to exhibit a dendritic cross section, and its adhesion to the substrate is significantly reduced.

−IIに、炭化水素ガスまたはこの分解生成物であるC
H,C,C2等のイオンやラジカルは希ガス中への拡散
速度がt+zやHに比べて著しく小さいため、プラズマ
発生室内において均一な拡散状態を得ることは難しい。
-II, C which is a hydrocarbon gas or its decomposition product
Since the diffusion rate of ions and radicals such as H, C, and C2 into the rare gas is significantly lower than that of t+z and H, it is difficult to obtain a uniform diffusion state within the plasma generation chamber.

したがって、上記C/H比の調整は、炭化水素ガスと希
ガスおよび水素ガスを別ルートを介し相互にam制御し
ながらプラズマ発生室内に導入する方式が効果的である
。導入された炭化水素およびその分解生成物はプラズマ
発生室内で均一に拡散せず、プラズマ発生室内径よりも
小さな径を有して基体面に達することが発光分光分析に
よって確かめられている。
Therefore, it is effective to adjust the C/H ratio by introducing a hydrocarbon gas, a rare gas, and a hydrogen gas into the plasma generation chamber through separate routes while mutually controlling the AM. It has been confirmed by emission spectroscopy that the introduced hydrocarbons and their decomposition products do not diffuse uniformly within the plasma generation chamber and reach the substrate surface with a diameter smaller than the inside diameter of the plasma generation chamber.

例えば、第1図に示すような周辺部に高周波電tAlに
連結するワークコイル2、上部に反応ガス供給装置3と
パルプ4.5.6.7を介して各接続する中央ノズル8
を備えた三重構造の送入筒9、そして下部に基体IOを
載置した支持具11と排気装置12とを備えるプラズマ
発生室13により構成された高周波プラズマトーチを用
い、中央ノズル8から送入する炭化水素ガスと希ガスの
噴出速度を最外筒から送入する水素ガスの流速より増す
ことにより基体近傍におけるCH,C,czなどのイオ
ンやラジカル濃度(活性種濃度)を相対的に高位に調整
することが可能となる。
For example, as shown in FIG. 1, a work coil 2 connected to a high-frequency electric current tAl is connected to the peripheral part, and a central nozzle 8 connected to the reactant gas supply device 3 and pulp 4,5,6,7 is connected to the upper part.
A high-frequency plasma torch is configured with a triple-structured feeding cylinder 9 equipped with a plasma generating chamber 13 equipped with a support 11 on which a substrate IO is placed at the bottom, and an exhaust device 12. By increasing the jetting velocity of the hydrocarbon gas and rare gas to be supplied from the outermost cylinder than the flow velocity of the hydrogen gas introduced from the outermost cylinder, the concentration of ions and radicals (concentration of active species) such as CH, C, and cz in the vicinity of the substrate can be relatively high. It is possible to adjust to.

〔作 用〕[For production]

熱プラズマによるダイヤモンド膜の形成時に基体の近傍
における反応ガスのC/H比を0.07以上に条件設定
すると、プラズマ中の単位体積当りにおける活性種濃度
が増大するとともにプラズマが基体近傍で冷却されて非
平衡状態を生じ、その結果活性種濃度の過飽和度が上昇
し核発生率の著しい増加をもたらす。
If the C/H ratio of the reactive gas in the vicinity of the substrate is set to 0.07 or more during the formation of a diamond film by thermal plasma, the concentration of active species per unit volume in the plasma increases and the plasma is cooled in the vicinity of the substrate. This results in a non-equilibrium state, resulting in an increase in the degree of supersaturation of the active species concentration, leading to a significant increase in the nucleation rate.

また、C/H比が0.07未満の場合に析出されるダイ
ヤモンド膜の断面は樹枝状を呈しているが、この比が0
.07以上では巨視的に塊状のダイヤモンド粒からなる
高接着性の連続膜に転化する。
Furthermore, the cross section of the diamond film deposited when the C/H ratio is less than 0.07 has a dendritic shape;
.. 07 or higher, it transforms into a highly adhesive continuous film consisting of macroscopically massive diamond grains.

このような多様の作用を受けて、表面状態が鏡面、粗面
に拘らず常に接着性に優れ、亀裂、剥離の生じない高品
質のダイヤモンド膜が効率よく析出する。
As a result of these various effects, a high-quality diamond film with excellent adhesion and no cracking or peeling is efficiently deposited regardless of whether the surface is mirror-like or rough.

〔実施例〕〔Example〕

以下、本発明を実施例および比較例に基づいて説明する
The present invention will be described below based on Examples and Comparative Examples.

実施例1 第1図に示した高周波プラズマトーチを用い、バルブ4
を介し0.44!/分の流速でメタンガスを流し、同時
にバルブ5を介し101/分の流速でアルゴンガスを送
って、両者の混合ガスとして中央ノズル8(直径2mm
)から噴出した。バルブ6からは421/分の流速でア
ルゴンガスを、そしてバルブ7を介し7.0 ffi 
7分で水素ガスを最外筒に送入した。この場合の、基体
近傍における反応ガスのC/ H比は約0.4であった
Example 1 Using the high frequency plasma torch shown in FIG.
0.44 via! Methane gas was flowed at a flow rate of 1/min, and argon gas was simultaneously sent through the valve 5 at a flow rate of 101/min.
) erupted from Argon gas from valve 6 at a flow rate of 421/min and 7.0 ffi through valve 7.
Hydrogen gas was introduced into the outermost cylinder in 7 minutes. In this case, the C/H ratio of the reaction gas near the substrate was about 0.4.

基体10には表面を研磨しないモリブデンを用い、基体
温度を890℃に保持した。その他、プラズマ発生室1
3(直径55m5.長さ190ai)の圧カニ1気圧、
電源周波数:4MHz、真空管人カニ65KVAの条件
により熱プラズマを発生させ、10分間に亘って基体面
にダイヤモンド膜を析出させた。
The substrate 10 was made of molybdenum whose surface was not polished, and the substrate temperature was maintained at 890°C. Others, plasma generation chamber 1
3 (diameter 55m5. length 190ai) pressure crab 1 atm,
A thermal plasma was generated under the conditions of a power supply frequency of 4 MHz and a vacuum tube power of 65 KVA, and a diamond film was deposited on the substrate surface for 10 minutes.

得られたダイヤモンド膜は厚さ16〜18nの接着性の
良好な均質膜で、第2図の32M写真(倍率1440倍
)に示した結晶構造のように塊状のダイヤモンド粒が連
続した層状を呈していて亀裂および界面剥離は全く認め
られなかった。
The obtained diamond film was a homogeneous film with a thickness of 16 to 18 nm with good adhesion, and exhibited a continuous layered structure of massive diamond grains, as shown in the 32M photograph (1440x magnification) in Figure 2. No cracks or interfacial peeling were observed.

実施例2 中央ノズル8の直径を4隣とし、基体10に鏡面仕上げ
したシリコンウェハーを用いたほかは実施例1と同一の
条件によりダイヤモンド膜の析出をおこなった。この場
合の基体近傍における反応ガスのC/H比は約0.1で
あった。得られたダイヤモンド膜は、実施例1と同様に
亀裂、剥離のない接着性に優れた均質膜であった。
Example 2 A diamond film was deposited under the same conditions as in Example 1, except that the diameter of the central nozzle 8 was 4-adjacent, and a mirror-finished silicon wafer was used as the substrate 10. In this case, the C/H ratio of the reaction gas near the substrate was about 0.1. As in Example 1, the obtained diamond film was a homogeneous film with excellent adhesion and no cracks or peeling.

比較例 中央ノズル8の直径を10鴫としてメタンガスの噴出速
度を低めたほかは、実施例1と同一の条件によりダイヤ
モンド膜の析出を実施した。この際の基体近傍における
反応ガスのC/H比は0.026であった。
Comparative Example A diamond film was deposited under the same conditions as in Example 1, except that the diameter of the central nozzle 8 was set to 10 mm and the jetting speed of methane gas was lowered. At this time, the C/H ratio of the reaction gas near the substrate was 0.026.

このようにして析出形成されたダイヤモンド膜は、第3
図の32M写真(倍率1680倍)に示した結晶構造の
ように樹枝状断面を有する結晶性を呈するもので、界面
剥離の容易な亀裂が認められた。
The diamond film precipitated in this way is
The crystal structure shown in the 32M photograph (magnification: 1680x) exhibits crystallinity with a dendritic cross section, and cracks that easily caused interfacial peeling were observed.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明に従えば基体の表面性状に関係な
く熱プラズマにより亀裂、剥離等のない極めて接着性の
良好なダイヤモンド膜を効率的に析出形成することがで
きる。
As described above, according to the present invention, it is possible to efficiently deposit and form a diamond film with extremely good adhesive properties without cracking, peeling, etc. using thermal plasma regardless of the surface condition of the substrate.

したがって、切削工具などの機械的部材をはじめ新用途
が期待されている機能材料を安価に製造し得る産業上の
効果がもたらされる。
Therefore, an industrial effect is brought about in which functional materials that are expected to have new uses, including mechanical parts such as cutting tools, can be manufactured at low cost.

3・・・反応ガス供給装置、 4.5.6.7・・・バルブ、 8・・・中央ノス)L
/、9・・・送入筒、    IO・・・基体、11・
・・支持具、    12・・・排気装置、13・・・
プラズマ発生室。
3... Reaction gas supply device, 4.5.6.7... Valve, 8... Central nozzle) L
/, 9... feeding tube, IO... base, 11.
...Support, 12...Exhaust device, 13...
Plasma generation room.

特許出願人  東海カーボン株式会社Patent applicant: Tokai Carbon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims]  1.炭化水素ガス、水素ガスおよび希ガスからなる混
合ガスに高周波による熱プラズマを発生させて基体面に
ダイヤモンド膜を析出する方法において、基体の近傍に
おける反応ガスのC/H比を0.07以上に設定するこ
とを特徴とするダイヤモンド膜の析出方法。
1. In a method of depositing a diamond film on a substrate surface by generating thermal plasma using high frequency in a mixed gas consisting of hydrocarbon gas, hydrogen gas, and rare gas, the C/H ratio of the reaction gas in the vicinity of the substrate is set to 0.07 or more. A method for depositing a diamond film, characterized in that:
JP22529788A 1988-09-08 1988-09-08 Method of depositing diamond film Expired - Lifetime JP2645867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22529788A JP2645867B2 (en) 1988-09-08 1988-09-08 Method of depositing diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22529788A JP2645867B2 (en) 1988-09-08 1988-09-08 Method of depositing diamond film

Publications (2)

Publication Number Publication Date
JPH0274591A true JPH0274591A (en) 1990-03-14
JP2645867B2 JP2645867B2 (en) 1997-08-25

Family

ID=16827132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22529788A Expired - Lifetime JP2645867B2 (en) 1988-09-08 1988-09-08 Method of depositing diamond film

Country Status (1)

Country Link
JP (1) JP2645867B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156092A (en) * 2015-02-25 2016-09-01 エフ イー アイ カンパニFei Company Multi-source gis for particle-optical apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156092A (en) * 2015-02-25 2016-09-01 エフ イー アイ カンパニFei Company Multi-source gis for particle-optical apparatus

Also Published As

Publication number Publication date
JP2645867B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
US5439492A (en) Fine grain diamond workpieces
Matsumoto et al. Synthesis of diamond films in a rf induction thermal plasma
US5674572A (en) Enhanced adherence of diamond coatings employing pretreatment process
US5387447A (en) Method for producing uniform cylindrical tubes of CVD diamond
US5491002A (en) Multilayer CVD diamond films
JPH0288497A (en) Production of single crystal diamond grain
JPH0274591A (en) Deposition of diamond film
JPH0238304A (en) Improved abrasive grain of fine diamond and production thereof
JPH05195224A (en) Method of obtaining thickly adhered diamond coating film by using intermediate screen made of metal
JP2686970B2 (en) Membrane diamond manufacturing method
JP2848498B2 (en) Method for synthesizing diamond, method for producing diamond-coated cutting tool, and method for producing diamond-coated cutting tool
JPH06262525A (en) Grinding wheel and its manufacture
JPH0667797B2 (en) Diamond synthesis method
Farabaugh et al. Growth of diamond films by hot filament chemical vapor deposition
JP2752753B2 (en) Synthesis method of diamond by combustion flame
JP3980138B2 (en) Diamond manufacturing method
EP0492160A1 (en) Symmetric CVD diamond articles and method of their preparation
JPS62256796A (en) Production of diamond
JPH03141199A (en) Production of single crystal cvd diamond
JPH085748B2 (en) Gas phase synthesis of diamond
JPH03103396A (en) Vapor-phase synthesis of diamond
JP2754259B2 (en) Combustion Flame Synthesis Method for Transparent Diamond
JPH075432B2 (en) Gas phase synthesis of diamond
JPH02192491A (en) Method for synthesizing diamond of vapor process
JPH02239191A (en) Multilayer diamond film and its production