JP2006069805A - Method for manufacturing fine carbon fiber - Google Patents

Method for manufacturing fine carbon fiber Download PDF

Info

Publication number
JP2006069805A
JP2006069805A JP2004251437A JP2004251437A JP2006069805A JP 2006069805 A JP2006069805 A JP 2006069805A JP 2004251437 A JP2004251437 A JP 2004251437A JP 2004251437 A JP2004251437 A JP 2004251437A JP 2006069805 A JP2006069805 A JP 2006069805A
Authority
JP
Japan
Prior art keywords
gas
substrate
reducing gas
carrier gas
fine carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004251437A
Other languages
Japanese (ja)
Other versions
JP4545530B2 (en
Inventor
Daisuke Okamura
大輔 岡村
Jun Sasahara
潤 笹原
Tadahiro Kubota
忠弘 久保田
Nariaki Kuriyama
斉昭 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004251437A priority Critical patent/JP4545530B2/en
Publication of JP2006069805A publication Critical patent/JP2006069805A/en
Application granted granted Critical
Publication of JP4545530B2 publication Critical patent/JP4545530B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a long fine carbon fiber by a thermal CVD method. <P>SOLUTION: A substrate 1 having a catalyst metal layer 3 is treated by the CVD method under the stream of a gaseous starting material containing a reducing gas at a predetermined treating temperature. The mixing ratio of the reducing gas to the gaseous starting material is 0.5-1.5, and the treating temperature is 250-900°C. The gaseous starting material is a hydrocarbon gas or an alcohol gas. The reducing gas is one kind selected from H<SB>2</SB>, NH<SB>3</SB>, O<SB>2</SB>, CF<SB>4</SB>and SF<SB>6</SB>. The substrate 1 has a diffusion prevention layer 4 comprising any of nitrides, oxides or carbides, preferably silicon nitride or silicon oxide between a base body 2 and the catalyst metal layer 3. The substrate 1 is accommodated in a reaction furnace 11, and after filling the gaseous starting material containing the reducing gas and a carrier gas, only the carrier gas is filled. Thereafter, the inside of the reaction furnace is heated to the treating temperature under the gas stream comprising only the carrier gas or the carrier gas and the reducing gas, and the substrate 1 is treated by the CVD method under the gas stream comprising the gaseous starting material containing the reducing gas and the carrier gas. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、カーボンナノチューブ等の微細な炭化水素繊維を製造する方法に関するものである。   The present invention relates to a method for producing fine hydrocarbon fibers such as carbon nanotubes.

カーボンナノチューブは、炭素からなるナノメートルのオーダーの直径を有する円筒形チューブであり、水素吸蔵材料、燃料電池の触媒担体、電界放出ディスプレイ(FED)のエミッタ電極材料等の電子素子等の用途が検討されている。   A carbon nanotube is a cylindrical tube made of carbon and having a diameter on the order of nanometers. Applications of hydrogen storage materials, fuel cell catalyst carriers, field emission display (FED) emitter electrode materials, and other electronic devices are being studied. Has been.

前記カーボンナノチューブを製造するには、アーク放電法、熱化学蒸着法(以下、化学蒸着をCVDと略記することがある)、プラズマCVD法、スパッタ法、レーザーアブレーション法、SiC熱昇華法等の方法がある。このうち、前記基板に対して垂直に配向して形成されたカーボンナノチューブを得ることができる方法として熱CVD法がある。前記熱CVD法は、表面に触媒金属層を備える基板を、炭化水素ガスとキャリヤガスとからなる気流下、所定の処理温度で処理してカーボンナノチューブを製造する方法である(例えば特許文献1参照)。   In order to produce the carbon nanotubes, arc discharge method, thermal chemical vapor deposition method (hereinafter, chemical vapor deposition may be abbreviated as CVD), plasma CVD method, sputtering method, laser ablation method, SiC thermal sublimation method, etc. There is. Among these methods, there is a thermal CVD method as a method for obtaining carbon nanotubes formed by being oriented perpendicularly to the substrate. The thermal CVD method is a method of manufacturing a carbon nanotube by processing a substrate having a catalytic metal layer on the surface thereof at a predetermined processing temperature in an air stream composed of a hydrocarbon gas and a carrier gas (see, for example, Patent Document 1). ).

前記特許文献1には、前記炭化水素ガスとして、アセチレン、エチレン、プロピレン、ベンゼン等の不飽和炭化水素が挙げられている。また、前記キャリヤガスとしては、アルゴン、ヘリウム、窒素、水素等のガスが挙げられており、これらのガスの1種または2種以上の混合ガスを用いることができるとされているが、具体的にはアルゴンを単独で用いる例のみが記載されている。また、前記処理温度としては、700〜1000℃の範囲が好適とされている。   Patent Document 1 mentions unsaturated hydrocarbons such as acetylene, ethylene, propylene, and benzene as the hydrocarbon gas. Further, examples of the carrier gas include gases such as argon, helium, nitrogen, and hydrogen, and one or a mixture of two or more of these gases can be used. Describes only examples using argon alone. Moreover, as said process temperature, the range of 700-1000 degreeC is considered suitable.

しかしながら、前記製造方法では、得られるカーボンナノチューブは、欠陥やそれに起因する屈曲があり、あるいは周囲にアモルファスカーボン等からなる炭素堆積物が付着するために十分成長することができず、200μmを超える繊維長とすることが難しいとの不都合がある。
特開2003−277031号公報 特開2002−180252号公報(第3頁第3欄)
However, in the above manufacturing method, the obtained carbon nanotubes have defects and bending caused by the defects, or cannot be grown sufficiently because carbon deposits made of amorphous carbon or the like adhere to the surroundings, and the fibers exceed 200 μm. There is an inconvenience that it is difficult to make it long.
JP 2003-277031 A JP 2002-180252 A (page 3, column 3)

本発明は、かかる不都合を解消して、熱CVD法により長尺の微細炭素繊維を得ることができる製造方法を提供することを目的とする。   An object of the present invention is to provide a production method capable of solving such inconvenience and obtaining long fine carbon fibers by a thermal CVD method.

かかる目的を達成するために、本発明の製造方法は、基体と、該基体表面に形成された触媒金属層とを備える基板を、還元性ガスを含む原料ガス気流下、所定の処理温度で化学蒸着法により処理して微細炭素繊維を製造する方法において、該還元性ガスと該原料ガスとの混合比(還元性ガス/原料ガス)が0.5〜1.5の範囲にあり、該処理温度が250〜900℃の範囲であることを特徴とする。   In order to achieve such an object, the production method of the present invention comprises a substrate and a catalytic metal layer formed on the surface of the substrate, which are chemically treated at a predetermined processing temperature in a source gas stream containing a reducing gas. In the method for producing fine carbon fibers by treatment by vapor deposition, the mixing ratio of the reducing gas and the raw material gas (reducing gas / raw material gas) is in the range of 0.5 to 1.5, and the treatment The temperature is in the range of 250 to 900 ° C.

本発明の製造方法では、前記基板を、還元性ガスを含む原料ガス気流下、所定の処理温度で化学蒸着(CVD)法により処理することにより、微細炭素繊維が前記基板に対して垂直に配向して形成される。このとき、前記原料ガスは前記還元性ガスを含んでいるので、該還元性ガスにより前記微細炭素繊維に生じる欠陥が解消され、該微細炭素繊維が屈曲することなく成長する。また、前記還元性ガスにより前記微細炭素繊維の周囲にアモルファスカーボン等の炭素堆積物が付着することが抑制されるので、前記原料ガスが前記触媒金属層に接触しやすくなり、該微細炭素繊維の成長が助長される。   In the production method of the present invention, the fine carbon fiber is oriented perpendicularly to the substrate by treating the substrate by a chemical vapor deposition (CVD) method at a predetermined treatment temperature in a source gas stream containing a reducing gas. Formed. At this time, since the source gas contains the reducing gas, defects generated in the fine carbon fibers by the reducing gas are eliminated, and the fine carbon fibers grow without bending. Further, since the reducing gas suppresses adhesion of carbon deposits such as amorphous carbon around the fine carbon fibers, the raw material gas can easily come into contact with the catalytic metal layer, and the fine carbon fibers Growth is encouraged.

従って、本発明の製造方法によれば、前記基板上に繊維長200μm以上の長尺の前記微細炭素繊維を得ることができる。   Therefore, according to the production method of the present invention, the fine carbon fibers having a long fiber length of 200 μm or more can be obtained on the substrate.

このとき、前記還元性ガスと前記原料ガスとの混合比が0.5未満または1.5を超えると、前記微細炭素繊維の繊維長を700μm以上とすることができない。また、前記CVD法の処理温度が250℃未満であると原料ガスを分解することができず、前記微細炭素繊維の製造自体が困難になり、900℃を超えると前記微細炭素繊維の繊維長を700μm以上とすることができない。   At this time, if the mixing ratio of the reducing gas and the raw material gas is less than 0.5 or exceeds 1.5, the fiber length of the fine carbon fiber cannot be made 700 μm or more. Further, if the processing temperature of the CVD method is less than 250 ° C., the raw material gas cannot be decomposed, and the production of the fine carbon fibers becomes difficult. If the processing temperature exceeds 900 ° C., the fiber length of the fine carbon fibers is increased. It cannot be 700 μm or more.

本発明の製造方法では、前記原料ガスとして、炭化水素ガスまたはアルコールガスを用いることができる。また、前記還元性ガスとして、例えば、H、NH、O、CF、SFからなる群から選ばれる1種の化合物を挙げることができる。 In the production method of the present invention, hydrocarbon gas or alcohol gas can be used as the raw material gas. Examples of the reducing gas include one compound selected from the group consisting of H 2 , NH 3 , O 2 , CF 4 , and SF 6 .

熱CVD法において、Hを含む炭化水素ガスを用いてカーボンナノチューブを製造することは文献に記載がある(特許文献2参照)。前記文献に記載の熱CVD法は、表面にNiからなる触媒金属層を形成したSi基板を電気炉に挿通し、1200℃に加熱し、メタンガスを30cc/分、水素ガスを70cc/分及びアルゴンガスを400cc/分の速度で5分間流通するものである。しかし、本発明者らの検討によれば、かかる高温では前述のように前記微細炭素繊維の繊維長を700μm以上とすることができない。 In the thermal CVD method, the production of carbon nanotubes using a hydrocarbon gas containing H 2 is described in the literature (see Patent Document 2). In the thermal CVD method described in the above document, a Si substrate with a catalytic metal layer made of Ni on the surface is inserted into an electric furnace and heated to 1200 ° C., methane gas is 30 cc / min, hydrogen gas is 70 cc / min, and argon Gas is circulated at a rate of 400 cc / min for 5 minutes. However, according to the study by the present inventors, at such a high temperature, the fiber length of the fine carbon fiber cannot be made 700 μm or more as described above.

ところで、前記CVD法による処理は前記範囲の高温で行うので、時間の経過と共に前記触媒金属層と基体とが相互に拡散して、該触媒金属が失活することが懸念される。そこで、本発明の製造方法では、前記基板は、前記基体と前記触媒金属層との間に、該基体と該触媒金属層との相互拡散を防止する拡散防止層を備えることが好ましい。   By the way, since the treatment by the CVD method is carried out at a high temperature within the above range, there is a concern that the catalyst metal layer and the substrate diffuse to each other with time and the catalyst metal is deactivated. Therefore, in the production method of the present invention, it is preferable that the substrate is provided with a diffusion preventing layer for preventing mutual diffusion between the substrate and the catalyst metal layer between the substrate and the catalyst metal layer.

前記拡散防止層によれば、前記触媒金属層と前記基体との相互拡散が防止されるので、前記触媒金属層が触媒活性を維持することができ、前記微細炭素繊維の成長を助長することができる。前記拡散防止層としては、例えば、窒化物、酸化物または炭化物のいずれかからなるもの挙げることができ、さらに具体的には窒化珪素または酸化珪素からなるものを挙げることができる。   According to the diffusion preventing layer, mutual diffusion between the catalytic metal layer and the substrate is prevented, so that the catalytic metal layer can maintain catalytic activity and promote the growth of the fine carbon fibers. it can. Examples of the diffusion preventing layer include those made of any of nitride, oxide, and carbide, and more specifically, those made of silicon nitride or silicon oxide.

本発明の製造方法は、具体的には、前記基板を反応炉に収容する工程と、該反応炉に前記還元性ガスを含む前記原料ガスとキャリヤガスとを充填する工程と、該還元性ガスを含む該原料ガスと該キャリヤガスとを充填した後、該反応炉に該キャリヤガスのみを充填する工程と、該キャリヤガスのみを充填した後、該キャリヤガスのみからなる気流下または該キャリヤガスと該還元性ガスとからなる気流下に該反応炉内を前記範囲の処理温度に加熱する工程と、該加熱後、該基板を、該還元性ガスを含む該原料ガスと該キャリヤガスとからなる気流下、該処理温度で化学蒸着法により処理する工程とにより実施することができる。   Specifically, the manufacturing method of the present invention includes a step of housing the substrate in a reaction furnace, a step of filling the reaction furnace with the source gas containing the reducing gas and a carrier gas, and the reducing gas. A step of filling the reaction furnace with only the carrier gas after filling the raw material gas containing the carrier gas and the carrier gas; and after filling only the carrier gas, under an air flow comprising only the carrier gas or the carrier gas And heating the interior of the reactor to a treatment temperature within the above range under an air stream comprising the reducing gas, and after the heating, the substrate is separated from the source gas containing the reducing gas and the carrier gas. And a step of treating by chemical vapor deposition at the treatment temperature.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の製造方法に用いる基板の説明的断面図、図2は本実施形態の製造方法に用いるCVD装置の一例を示すシステム構成図、図3は本実施形態の製造方法のCVD法における熱履歴の一例を示すグラフである。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. 1 is an explanatory sectional view of a substrate used in the manufacturing method of the present embodiment, FIG. 2 is a system configuration diagram showing an example of a CVD apparatus used in the manufacturing method of the present embodiment, and FIG. 3 is a CVD of the manufacturing method of the present embodiment. It is a graph which shows an example of the heat history in a method.

本実施形態の微細炭素繊維の製造方法は、図1に示す基板1の表面に対して垂直方向に配向された長尺のカーボンナノチューブを製造するものである。基板1は、図1(a)に示すように、基体2の表面に直接触媒金属層3が形成されたものであってもよく、図1(b)に示すように基体2と接触媒金属層3との間に拡散防止層4を備えるものであってもよい。   The method for producing fine carbon fibers according to the present embodiment produces long carbon nanotubes oriented in the direction perpendicular to the surface of the substrate 1 shown in FIG. The substrate 1 may be a substrate in which a catalytic metal layer 3 is directly formed on the surface of a substrate 2 as shown in FIG. 1 (a), and the substrate 2 and the catalytic metal as shown in FIG. 1 (b). A diffusion preventing layer 4 may be provided between the layer 3 and the layer 3.

基体2は、Si、ガラス等従来公知の材料を用いることができる。触媒金属層3を形成する金属は、Fe、Co、Niの単体でもよく、これらの合金であってもよい。また、Fe、Co、Niの単体または合金と、W、Mo、Ta、Pt、Cr等の金属との合金であってもよい。触媒金属層3は、スパッタ、蒸着、スピンコート等により形成することができ、100nm以下の厚さであることが好ましい。   For the substrate 2, a conventionally known material such as Si or glass can be used. The metal forming the catalyst metal layer 3 may be a simple substance of Fe, Co, Ni, or an alloy thereof. Also, it may be an alloy of a simple substance or alloy of Fe, Co, Ni and a metal such as W, Mo, Ta, Pt, Cr. The catalytic metal layer 3 can be formed by sputtering, vapor deposition, spin coating or the like, and preferably has a thickness of 100 nm or less.

基体2と触媒金属層3との相互拡散を防止するために、拡散防止層4は、窒化物、酸化物または炭化物のいずれかからなるもの挙げることができ、さらに具体的には窒化珪素、酸化珪素等からなるものを挙げることができる。また、基板1は用途に応じて、触媒金属層3の下に、導電体層等を備えていてもよい。   In order to prevent mutual diffusion between the substrate 2 and the catalytic metal layer 3, the diffusion prevention layer 4 can be made of any one of nitride, oxide or carbide, and more specifically, silicon nitride, oxide. The thing which consists of silicon etc. can be mentioned. Moreover, the board | substrate 1 may be equipped with the conductor layer etc. under the catalyst metal layer 3 according to a use.

本実施形態では、次に、基板1を、図2に示す管状炉11に収容して、還元性ガスを含む炭化水素ガス気流下、250〜900℃の範囲の処理温度でCVD法による処理を行う。管状炉11はCVD法による処理のための反応炉であり、図2に示すように、外周部にヒーター12を備え、一方の端部に管状炉11に所定のガスを供給するガス供給導管13、他方の端部に管状炉11からガスを排出するガス排出導管14が接続されている。   In the present embodiment, next, the substrate 1 is accommodated in the tubular furnace 11 shown in FIG. 2, and processed by the CVD method at a processing temperature in the range of 250 to 900 ° C. in a hydrocarbon gas stream containing a reducing gas. Do. The tubular furnace 11 is a reaction furnace for processing by the CVD method. As shown in FIG. 2, a gas supply conduit 13 is provided with a heater 12 on the outer periphery and supplies a predetermined gas to the tubular furnace 11 at one end. A gas discharge conduit 14 for discharging gas from the tubular furnace 11 is connected to the other end.

ガス供給導管13は、上流側で支管15a,15b,15cに分岐しており、支管15aはキャリヤガス源16に、支管15bは炭化水素ガス源17に、支管15cは還元性ガス源18に、それぞれ接続されている。また、支管15a,15b,15cは、各ガス源16,17,18から供給されるガスを、所定の量で管状炉11に流通するマスフロー19a,19b,19cをそれぞれ備えている。一方、ガス排出導管14は、開閉弁20を備えている。   The gas supply conduit 13 branches to the branch pipes 15a, 15b and 15c on the upstream side, the branch pipe 15a to the carrier gas source 16, the branch pipe 15b to the hydrocarbon gas source 17, and the branch pipe 15c to the reducing gas source 18. Each is connected. Further, the branch pipes 15a, 15b, and 15c are respectively provided with mass flows 19a, 19b, and 19c that circulate gas supplied from the gas sources 16, 17, and 18 to the tubular furnace 11 in a predetermined amount. On the other hand, the gas discharge conduit 14 includes an on-off valve 20.

キャリヤガス源16から供給されるキャリヤガスとしては、ヘリウム、アルゴン、窒素等の不活性ガスを用いることができる。炭化水素ガス源17から供給される炭化水素ガスとしては、アセチレン、メタン、エチレン、ベンゼン等の炭化水素を挙げることができるが、さらに前記炭化水素に代えてアルコールを用いてもよい。   As the carrier gas supplied from the carrier gas source 16, an inert gas such as helium, argon or nitrogen can be used. Examples of the hydrocarbon gas supplied from the hydrocarbon gas source 17 include hydrocarbons such as acetylene, methane, ethylene, and benzene, but alcohol may be used in place of the hydrocarbon.

また、還元性ガス源18から供給される還元性ガスとしては、前記範囲の処理温度で熱分解して、C−C結合を切断する効果のあるガスを用いることができ、例えば、H、NH、O、CF、SFからなる群から選ばれる1種の化合物を挙げることができる。 Further, as the reducing gas supplied from the reducing gas source 18, a gas that is thermally decomposed at the treatment temperature within the above range and has an effect of cutting the C—C bond can be used, for example, H 2 , One compound selected from the group consisting of NH 3 , O 2 , CF 4 , and SF 6 can be given.

本実施形態では、基板1を管状炉11に収容した後、ガス排出導管14の開閉弁20を閉じると共に、各ガス源16,17,18から、前記キャリヤガス、前記炭化水素ガス、前記還元性ガスを供給し、管状炉11内を該キャリヤガス、該炭化水素ガス、該還元性ガスにより完全に置換することにより、管状炉11内に該キャリヤガス、該炭化水素ガス、該還元性ガスを充填する。前記各ガスは、後述のカーボンナノチューブ形成時と同一の組成とする。   In the present embodiment, after the substrate 1 is accommodated in the tubular furnace 11, the on-off valve 20 of the gas discharge conduit 14 is closed, and the carrier gas, the hydrocarbon gas, the reducing property are supplied from the gas sources 16, 17, 18. A gas is supplied, and the inside of the tubular furnace 11 is completely replaced with the carrier gas, the hydrocarbon gas, and the reducing gas, so that the carrier gas, the hydrocarbon gas, and the reducing gas are contained in the tubular furnace 11. Fill. Each gas has the same composition as that used when forming the carbon nanotubes described later.

次に、開閉弁20を開いて前記各ガスを排出した後、再び開閉弁20を閉じる。そして、キャリヤガス源16から前記キャリヤガスのみを供給し、管状炉11内を該キャリヤガスにより完全に置換することにより、管状炉11内に該キャリヤガスを充填する。   Next, after opening the on-off valve 20 and exhausting each gas, the on-off valve 20 is closed again. Then, only the carrier gas is supplied from the carrier gas source 16, and the tubular furnace 11 is completely replaced with the carrier gas, whereby the tubular furnace 11 is filled with the carrier gas.

次に、開閉弁20を開いて前記キャリヤガスを排出した後、再びキャリヤガス源16から該キャリヤガスのみを供給し、該キャリヤガスの気流下に管状炉11内を処理温度まで加熱する。前記加熱は、図3に示すように、例えば30分間で処理温度以上まで昇温し、その後、前記キャリヤガスの気流下に例えば20分間保持して該処理温度に安定するようにする。前記処理温度は、前記炭化水素ガスが熱分解する温度であることが必要であり、該炭化水素ガスに応じて250〜900℃の範囲で適宜選択される(図3の例では750℃)。尚、前記加熱は、前記キャリヤガスと共に前記還元性ガス源18から前記還元性ガスを供給し、管状炉11内を該キャリヤガスと該還元性ガスとにより完全に置換した後、該キャリヤガスと該還元性ガスとの混合ガスの気流下に行ってもよい。   Next, after opening the on-off valve 20 and discharging the carrier gas, only the carrier gas is supplied again from the carrier gas source 16, and the inside of the tubular furnace 11 is heated to the processing temperature under the flow of the carrier gas. As shown in FIG. 3, for example, the heating is performed by raising the temperature to a treatment temperature or higher in 30 minutes, and then maintaining the treatment temperature by maintaining it in the carrier gas stream for, for example, 20 minutes. The treatment temperature needs to be a temperature at which the hydrocarbon gas is thermally decomposed, and is appropriately selected within a range of 250 to 900 ° C. according to the hydrocarbon gas (750 ° C. in the example of FIG. 3). The heating is performed by supplying the reducing gas from the reducing gas source 18 together with the carrier gas, and completely replacing the inside of the tubular furnace 11 with the carrier gas and the reducing gas. You may carry out in the airflow of mixed gas with this reducing gas.

次に、管状炉11内の温度が処理温度に安定したならば、各ガス源16,17,18から、前記キャリヤガスと、前記炭化水素ガスと、前記還元性ガスとの混合ガスを所定の組成で供給し、管状炉11内を該混合ガスにより完全に置換した後、該混合ガス気流下、該処理温度に例えば20分間保持して、基板1上にカーボンナノチューブを形成する。前記混合ガスにおいて、前記還元性ガスと前記炭化水素ガスとの混合比A(還元性ガス/炭化水素ガス)は0.5〜1.5の範囲にあることが必要である。また、前記混合ガスにおいて、前記炭化水素ガスと前記キャリヤガスとの混合比B(還元性ガス/キャリヤガス)は、例えば、0.04〜0.08の範囲にある。前記組成とするために、前記混合ガスは、例えば、全流量を230sccm(standard cc per minute)とする場合、前記キャリヤガスの流量を200〜210sccm、前記炭化水素ガスの流量を10〜20sccm、前記還元性ガスの流量を10〜15sccmとする。   Next, when the temperature in the tubular furnace 11 is stabilized at the processing temperature, a mixed gas of the carrier gas, the hydrocarbon gas, and the reducing gas is supplied from each gas source 16, 17, 18 to a predetermined gas. After supplying the composition and completely replacing the inside of the tubular furnace 11 with the mixed gas, the carbon nanotubes are formed on the substrate 1 by holding at the processing temperature for 20 minutes under the mixed gas stream. In the mixed gas, the mixing ratio A (reducing gas / hydrocarbon gas) of the reducing gas and the hydrocarbon gas needs to be in the range of 0.5 to 1.5. In the mixed gas, the mixing ratio B (reducing gas / carrier gas) between the hydrocarbon gas and the carrier gas is, for example, in the range of 0.04 to 0.08. In order to obtain the composition, for example, when the total flow rate is 230 sccm (standard cc per minute), the carrier gas has a flow rate of 200 to 210 sccm, the hydrocarbon gas has a flow rate of 10 to 20 sccm, The flow rate of the reducing gas is 10 to 15 sccm.

そして、前記時間経過後は、図3に示すように放冷する。この結果、基板1上に、欠陥や屈曲が少なく、繊維長が700μm以上の長尺のカーボンナノチューブを得ることができる。次に、本発明の実施例と比較例とを示す。   And after the said time passage, it cools as shown in FIG. As a result, it is possible to obtain a long carbon nanotube with few defects and bends and a fiber length of 700 μm or more on the substrate 1. Next, examples of the present invention and comparative examples will be described.

実施例1では、図1(a)に示す構成の基板1を、図2に示す管状炉11に収容し、各ガス源16,17,18から、前記キャリヤガスと、前記炭化水素ガスと、前記還元性ガスとの混合ガスを供給してCVD処理を行った。   In Example 1, the substrate 1 having the configuration shown in FIG. 1A is accommodated in the tubular furnace 11 shown in FIG. 2, and the carrier gas, the hydrocarbon gas, and the like from each gas source 16, 17, 18, A CVD process was performed by supplying a mixed gas with the reducing gas.

基板1は、Siからなる基体2上に直接Feからなる厚さ50オングストロームの触媒金属層3が形成されている。また、前記混合ガスにおいて、前記キャリヤガスとしてはヘリウム、前記炭化水素ガスとしてはアセチレン、前記還元性ガスとしては水素を用いた。   In the substrate 1, a catalytic metal layer 3 made of Fe and having a thickness of 50 angstroms is directly formed on a base 2 made of Si. In the mixed gas, helium is used as the carrier gas, acetylene is used as the hydrocarbon gas, and hydrogen is used as the reducing gas.

前記CVD処理は、基板1を管状炉11に収容した後、ガス排出導管14の開閉弁20を閉じ、各ガス源16,17,18から、ヘリウム、アセチレン、水素を、後述のカーボンナノチューブ形成時と同一の組成で供給し、管状炉11内をヘリウム、アセチレン、水素で完全に置換することにより、管状炉11内にヘリウム、アセチレン、水素を充填した。   In the CVD process, after the substrate 1 is accommodated in the tubular furnace 11, the on-off valve 20 of the gas discharge conduit 14 is closed, and helium, acetylene, and hydrogen are supplied from the gas sources 16, 17, 18 to form carbon nanotubes described later. The tube furnace 11 was filled with helium, acetylene, and hydrogen by completely replacing the inside of the tube furnace 11 with helium, acetylene, and hydrogen.

次に、開閉弁20を開いて前記各ガスを排出した後、再び開閉弁20を閉じ、キャリヤガス源16からヘリウムのみを供給し、管状炉11内をヘリウムで完全に置換することにより、管状炉11内にヘリウムを充填した。次に、開閉弁20を開いてヘリウムを排出した後、再びキャリヤガス源16からヘリウムのみを供給し、ヘリウム気流下に管状炉11内を、30分間で処理温度の750℃まで加熱し、その後、ヘリウム気流下に20分間保持して該処理温度に安定させた。   Next, after opening the on-off valve 20 and discharging each gas, the on-off valve 20 is closed again, only helium is supplied from the carrier gas source 16, and the inside of the tubular furnace 11 is completely replaced with helium. The furnace 11 was filled with helium. Next, after opening the on-off valve 20 and discharging helium, only helium is supplied again from the carrier gas source 16, and the inside of the tubular furnace 11 is heated to a processing temperature of 750 ° C. for 30 minutes under a helium stream, The mixture was held at a helium stream for 20 minutes to stabilize the treatment temperature.

次に、管状炉11内の温度が前記処理温度に安定したならば、各ガス源16,17,18から、ヘリウムと、アセチレンと、水素との混合ガスを、前記還元性ガス(水素)と前記炭化水素ガス(アセチレン)との混合比A(H/C)が1であり、前記還元性ガスと前記キャリヤガス(ヘリウム)との混合比B(H/He)が0.048である組成で供給し、管状炉11内を該混合ガスで完全に置換した後、該混合ガス気流下、該処理温度に20分間保持して、基板1上にカーボンナノチューブを形成させた後、放冷した。 Next, when the temperature in the tubular furnace 11 is stabilized at the processing temperature, a mixed gas of helium, acetylene, and hydrogen is supplied from each gas source 16, 17, 18 to the reducing gas (hydrogen). The mixing ratio A (H 2 / C 2 H 2 ) with the hydrocarbon gas (acetylene) is 1, and the mixing ratio B (H 2 / He) between the reducing gas and the carrier gas (helium) is 0. 0.048 was supplied and the inside of the tubular furnace 11 was completely replaced with the mixed gas, and then the processing temperature was maintained for 20 minutes under the mixed gas stream to form carbon nanotubes on the substrate 1. Then, it was allowed to cool.

処理条件と、得られたカーボンナノチューブの繊維長とを表1に示す。
〔比較例1〕
比較例1では、管状炉11内の温度が前記処理温度に安定した後、各ガス源16,17,18から、ヘリウムと、アセチレンと、水素との混合ガスを、前記混合比A(H/C)が0.3であり、前記還元性ガスと前記キャリヤガス(ヘリウム)との混合比B(H/He)が0.053である組成で供給した以外は、実施例1と全く同一にして、基板1上にカーボンナノチューブを形成させた。
Table 1 shows the treatment conditions and the fiber length of the obtained carbon nanotubes.
[Comparative Example 1]
In Comparative Example 1, after the temperature in the tubular furnace 11 was stabilized at the processing temperature, a mixed gas of helium, acetylene, and hydrogen was supplied from each gas source 16, 17, 18 to the mixing ratio A (H 2 / C 2 H 2 ) was 0.3, and the composition was supplied in such a manner that the mixing ratio B (H 2 / He) of the reducing gas to the carrier gas (helium) was 0.053. The carbon nanotubes were formed on the substrate 1 in exactly the same manner as in FIG.

処理条件と、得られたカーボンナノチューブの繊維長とを表1に示す。
〔比較例2〕
比較例2では、管状炉11内の温度が前記処理温度に安定した後、各ガス源16,17,18から、ヘリウムと、アセチレンと、水素との混合ガスを、前記混合比A(H/C)が3であり、前記還元性ガスと前記キャリヤガス(ヘリウム)との混合比B(H/He)が0.158である組成で供給した以外は、実施例1と全く同一にして、基板1上にカーボンナノチューブを形成させた。
Table 1 shows the treatment conditions and the fiber length of the obtained carbon nanotubes.
[Comparative Example 2]
In Comparative Example 2, after the temperature in the tubular furnace 11 is stabilized at the processing temperature, a mixed gas of helium, acetylene, and hydrogen is supplied from each gas source 16, 17, 18 to the mixing ratio A (H 2 / C 2 H 2 ) is 3, and the composition ratio of the reducing gas and the carrier gas (helium) B (H 2 / He) is 0.158, and the composition is supplied as in Example 1. Carbon nanotubes were formed on the substrate 1 in exactly the same manner.

処理条件と、得られたカーボンナノチューブの繊維長とを表1に示す。
〔比較例3〕
比較例3では、管状炉11内の温度が前記処理温度に安定した後、各ガス源16,17からヘリウムとアセチレンとを表1に示す組成で供給し、水素を全く含まない混合ガスを用いた以外は、実施例1と全く同一にして、基板1上にカーボンナノチューブを形成させた。
Table 1 shows the treatment conditions and the fiber length of the obtained carbon nanotubes.
[Comparative Example 3]
In Comparative Example 3, after the temperature in the tubular furnace 11 was stabilized at the processing temperature, helium and acetylene were supplied from the gas sources 16 and 17 in the composition shown in Table 1, and a mixed gas containing no hydrogen was used. Except for the above, carbon nanotubes were formed on the substrate 1 in exactly the same manner as in Example 1.

処理条件と、得られたカーボンナノチューブの繊維長とを表1に示す。   Table 1 shows the treatment conditions and the fiber length of the obtained carbon nanotubes.

実施例2〜4では、図1(b)に示す構成の基板1を用いた以外は、実施例1と同様にして、該基板1上にカーボンナノチューブを形成させた。基板1は、Siからなる基体2上に、窒化珪素(SiN)からなる厚さ3000オングストロームの拡散防止層4を介して、Feからなる厚さ50オングストロームの触媒金属層3が形成されている。   In Examples 2 to 4, carbon nanotubes were formed on the substrate 1 in the same manner as in Example 1 except that the substrate 1 having the configuration shown in FIG. In the substrate 1, a catalytic metal layer 3 made of Fe and having a thickness of 50 Å is formed on a base 2 made of Si via a diffusion prevention layer 4 made of silicon nitride (SiN) and having a thickness of 3000 Å.

処理条件と、得られたカーボンナノチューブの繊維長とを表1に示す。
〔比較例4〕
比較例4では、図1(b)に示す構成の基板1を用いた以外は、比較例1と全く同一にして、該基板1上にカーボンナノチューブを形成させた。
Table 1 shows the treatment conditions and the fiber length of the obtained carbon nanotubes.
[Comparative Example 4]
In Comparative Example 4, carbon nanotubes were formed on the substrate 1 in exactly the same manner as in Comparative Example 1, except that the substrate 1 having the configuration shown in FIG.

処理条件と、得られたカーボンナノチューブの繊維長とを表1に示す。
〔比較例5〕
比較例5では、図1(b)に示す構成の基板1を用いた以外は、比較例2と全く同一にして、該基板1上にカーボンナノチューブを形成させた。
Table 1 shows the treatment conditions and the fiber length of the obtained carbon nanotubes.
[Comparative Example 5]
In Comparative Example 5, carbon nanotubes were formed on the substrate 1 in exactly the same manner as in Comparative Example 2, except that the substrate 1 having the configuration shown in FIG.

処理条件と、得られたカーボンナノチューブの繊維長とを表1に示す。
〔比較例6〕
比較例6では、管状炉11内の温度が前記処理温度に安定した後、各ガス源16,17から、ヘリウムとアセチレンとを表1に示す組成で供給し、水素を全く含まない混合ガスを用いた以外は、比較例4と全く同一にして、基板1上にカーボンナノチューブを形成させた。
Table 1 shows the treatment conditions and the fiber length of the obtained carbon nanotubes.
[Comparative Example 6]
In Comparative Example 6, after the temperature in the tubular furnace 11 was stabilized at the processing temperature, helium and acetylene were supplied from the gas sources 16 and 17 in the composition shown in Table 1, and a mixed gas containing no hydrogen was obtained. Except for the use, carbon nanotubes were formed on the substrate 1 in exactly the same manner as in Comparative Example 4.

処理条件と、得られたカーボンナノチューブの繊維長とを表1に示す。
〔比較例7〕
比較例7では、前記処理温度を1000℃とした以外は、実施例2と全く同一にして、基板1上にカーボンナノチューブを形成させた。
Table 1 shows the treatment conditions and the fiber length of the obtained carbon nanotubes.
[Comparative Example 7]
In Comparative Example 7, carbon nanotubes were formed on the substrate 1 in exactly the same manner as in Example 2 except that the treatment temperature was 1000 ° C.

処理条件と、得られたカーボンナノチューブの繊維長とを表1に示す。   Table 1 shows the treatment conditions and the fiber length of the obtained carbon nanotubes.

Figure 2006069805

表1から、処理温度750℃で、前記混合ガスにおいて前記還元性ガス(水素)と前記炭化水素ガス(アセチレン)との混合比A(H/C)が0.5〜1.5の範囲にあり、前記還元性ガスと前記キャリヤガス(ヘリウム)との混合比B(H/He)が0.04〜0.08の範囲にある場合(実施例1〜4)には繊維長が700〜1000μmとなり、長尺のカーボンナノチューブが得られることが明らかである。
Figure 2006069805

From Table 1, at a treatment temperature of 750 ° C., the mixing ratio A (H 2 / C 2 H 2 ) of the reducing gas (hydrogen) and the hydrocarbon gas (acetylene) in the mixed gas is 0.5 to 1. When the mixing ratio B (H 2 / He) of the reducing gas and the carrier gas (helium) is in the range of 0.04 to 0.08 (Examples 1 to 4). It is clear that the fiber length is 700 to 1000 μm, and long carbon nanotubes can be obtained.

これに対して、混合比Aが0.5未満の場合(比較例1,4)、または混合比Aが1.5を超える場合(比較例2,5)には、いずれも繊維長が700μm未満となり、長尺のカーボンナノチューブを得ることができないことが明らかである。   On the other hand, when the mixing ratio A is less than 0.5 (Comparative Examples 1 and 4) or when the mixing ratio A exceeds 1.5 (Comparative Examples 2 and 5), the fiber length is 700 μm. It is clear that long carbon nanotubes cannot be obtained.

また、前記還元性ガスを全く含まない場合(比較例3,6)、前記還元性ガスを含んでいても前記処理温度が900℃を超える場合(比較例7)にも、いずれも繊維長が700μm未満であり、長尺のカーボンナノチューブを得ることができないことが明らかである。   Further, when the reducing gas is not included at all (Comparative Examples 3 and 6), and even when the reducing gas is included and the treatment temperature exceeds 900 ° C. (Comparative Example 7), the fiber length is all. It is clear that it is less than 700 μm, and long carbon nanotubes cannot be obtained.

本発明の製造方法に用いる基板の説明的断面図。Explanatory sectional drawing of the board | substrate used for the manufacturing method of this invention. 本発明の製造方法に用いるCVD装置の一例を示すシステム構成図。The system block diagram which shows an example of the CVD apparatus used for the manufacturing method of this invention. 本発明の製造方法のCVD法における熱履歴の一例を示すグラフ。The graph which shows an example of the thermal history in CVD method of the manufacturing method of this invention.

符号の説明Explanation of symbols

1…基板、 2…基体、 3…触媒金属層、 4…拡散防止層、 11…反応炉、 17…炭化水素ガス源、 18…還元性ガス源。   DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Base | substrate, 3 ... Catalyst metal layer, 4 ... Diffusion prevention layer, 11 ... Reactor, 17 ... Hydrocarbon gas source, 18 ... Reducing gas source.

Claims (7)

基体と、該基体表面に形成された触媒金属層とを備える基板を、還元性ガスを含む原料ガス気流下、所定の処理温度で化学蒸着法により処理して微細炭素繊維を製造する方法において、
該還元性ガスと該原料ガスとの混合比(還元性ガス/原料ガス)が0.5〜1.5の範囲にあり、該処理温度が250〜900℃の範囲であることを特徴とする微細炭素繊維の製造方法。
In a method for producing a fine carbon fiber by treating a substrate comprising a substrate and a catalytic metal layer formed on the surface of the substrate by a chemical vapor deposition method at a predetermined treatment temperature under a source gas stream containing a reducing gas,
The mixing ratio of the reducing gas and the source gas (reducing gas / source gas) is in the range of 0.5 to 1.5, and the treatment temperature is in the range of 250 to 900 ° C. A method for producing fine carbon fibers.
前記原料ガスは炭化水素ガスまたはアルコールガスであることを特徴とする請求項1記載の微細炭素繊維の製造方法。   2. The method for producing fine carbon fibers according to claim 1, wherein the source gas is a hydrocarbon gas or an alcohol gas. 前記還元性ガスは、H、NH、O、CF、SFからなる群から選ばれる1種の化合物であることを特徴とする請求項1または請求項2記載の微細炭素繊維の製造方法。 3. The fine carbon fiber according to claim 1, wherein the reducing gas is one compound selected from the group consisting of H 2 , NH 3 , O 2 , CF 4 , and SF 6 . Production method. 前記基板は、前記基体と前記触媒金属層との間に、該基体と該触媒金属層との相互拡散を防止する拡散防止層を備えることを特徴とする請求項1乃至請求項3のいずれか1項記載の微細炭素繊維の製造方法。   The said board | substrate is equipped with the diffusion prevention layer which prevents the mutual diffusion of this base | substrate and this catalyst metal layer between the said base | substrate and the said catalyst metal layer. The manufacturing method of the fine carbon fiber of Claim 1. 前記拡散防止層は、窒化物、酸化物または炭化物のいずれかからなることを特徴とする請求項4記載の微細炭素繊維の製造方法。   5. The method for producing fine carbon fibers according to claim 4, wherein the diffusion preventing layer is made of any one of nitride, oxide or carbide. 前記拡散防止層は、窒化珪素または酸化珪素からなることを特徴とする請求項5記載の微細炭素繊維の製造方法。   6. The method for producing fine carbon fibers according to claim 5, wherein the diffusion preventing layer is made of silicon nitride or silicon oxide. 前記基板を反応炉に収容する工程と、
該反応炉に前記還元性ガスを含む前記原料ガスとキャリヤガスとを充填する工程と、
該還元性ガスを含む該原料ガスと該キャリヤガスとを充填した後、該反応炉に該キャリヤガスのみを充填する工程と、
該キャリヤガスのみを充填した後、該キャリヤガスのみからなる気流下または該キャリヤガスと該還元性ガスとからなる気流下に該反応炉内を前記範囲の処理温度に加熱する工程と、
該加熱後、該基板を、該還元性ガスを含む該原料ガスと該キャリヤガスとからなる気流下、該処理温度で化学蒸着法により処理する工程とからなることを特徴とする請求項1乃至請求項6のいずれか1項記載の微細炭素繊維の製造方法。
Accommodating the substrate in a reactor;
Filling the reaction furnace with the source gas containing the reducing gas and a carrier gas;
Filling the reaction furnace with only the carrier gas after filling the source gas containing the reducing gas and the carrier gas;
After filling only the carrier gas, heating the inside of the reactor to a treatment temperature in the above range under an air stream consisting only of the carrier gas or an air stream consisting of the carrier gas and the reducing gas;
2. The method according to claim 1, further comprising a step of treating the substrate by chemical vapor deposition at the treatment temperature in an air stream comprising the source gas containing the reducing gas and the carrier gas after the heating. The manufacturing method of the fine carbon fiber of any one of Claim 6.
JP2004251437A 2004-08-31 2004-08-31 Method for producing fine carbon fiber Expired - Fee Related JP4545530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004251437A JP4545530B2 (en) 2004-08-31 2004-08-31 Method for producing fine carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004251437A JP4545530B2 (en) 2004-08-31 2004-08-31 Method for producing fine carbon fiber

Publications (2)

Publication Number Publication Date
JP2006069805A true JP2006069805A (en) 2006-03-16
JP4545530B2 JP4545530B2 (en) 2010-09-15

Family

ID=36150807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004251437A Expired - Fee Related JP4545530B2 (en) 2004-08-31 2004-08-31 Method for producing fine carbon fiber

Country Status (1)

Country Link
JP (1) JP4545530B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331989A (en) * 2006-06-16 2007-12-27 Univ Meijo Method for manufacturing carbon nanotube
WO2012153816A1 (en) * 2011-05-10 2012-11-15 国立大学法人静岡大学 Method and apparatus for producing carbon nanotubes
WO2013018509A1 (en) * 2011-07-29 2013-02-07 東京エレクトロン株式会社 Pretreatment method and carbon nanotube formation method
JP2015096454A (en) * 2013-11-15 2015-05-21 住友電気工業株式会社 Manufacturing method of carbon nano-structure, and carbon nano-structure assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115058A (en) * 2000-10-06 2002-04-19 Ulvac Japan Ltd Process for depositing graphite nanofiber thin film by thermal cvd process
JP2002115059A (en) * 2000-10-06 2002-04-19 Ulvac Japan Ltd Method for controlling diameter of graphite nanofiber
JP2002115064A (en) * 2000-10-10 2002-04-19 Ulvac Japan Ltd Method for cleaning cvd system for graphite nanofiber thin film deposition
JP2002180252A (en) * 2000-12-13 2002-06-26 National Institute Of Advanced Industrial & Technology Method of manufacturing carbon nanotube
JP2003277031A (en) * 2002-03-26 2003-10-02 Fujikura Ltd Method for manufacturing carbon nanotube
JP2004319675A (en) * 2003-04-15 2004-11-11 Matsushita Electric Ind Co Ltd Carbon nanotube inductor and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115058A (en) * 2000-10-06 2002-04-19 Ulvac Japan Ltd Process for depositing graphite nanofiber thin film by thermal cvd process
JP2002115059A (en) * 2000-10-06 2002-04-19 Ulvac Japan Ltd Method for controlling diameter of graphite nanofiber
JP2002115064A (en) * 2000-10-10 2002-04-19 Ulvac Japan Ltd Method for cleaning cvd system for graphite nanofiber thin film deposition
JP2002180252A (en) * 2000-12-13 2002-06-26 National Institute Of Advanced Industrial & Technology Method of manufacturing carbon nanotube
JP2003277031A (en) * 2002-03-26 2003-10-02 Fujikura Ltd Method for manufacturing carbon nanotube
JP2004319675A (en) * 2003-04-15 2004-11-11 Matsushita Electric Ind Co Ltd Carbon nanotube inductor and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331989A (en) * 2006-06-16 2007-12-27 Univ Meijo Method for manufacturing carbon nanotube
WO2012153816A1 (en) * 2011-05-10 2012-11-15 国立大学法人静岡大学 Method and apparatus for producing carbon nanotubes
CN103582609A (en) * 2011-05-10 2014-02-12 国立大学法人静冈大学 Method and apparatus for producing carbon nanotubes
EP2708506A1 (en) * 2011-05-10 2014-03-19 National University Corporation Shizuoka University Method and apparatus for producing carbon nanotubes
EP2708506A4 (en) * 2011-05-10 2014-11-26 Univ Shizuoka Nat Univ Corp Method and apparatus for producing carbon nanotubes
JP5965901B2 (en) * 2011-05-10 2016-08-10 国立大学法人静岡大学 Carbon nanotube production equipment
JP2016147803A (en) * 2011-05-10 2016-08-18 国立大学法人静岡大学 Carbon nano-tube production method and apparatus
US9428391B2 (en) 2011-05-10 2016-08-30 National University Corporation Shizuoka University Method and apparatus for producing carbon nanotubes
WO2013018509A1 (en) * 2011-07-29 2013-02-07 東京エレクトロン株式会社 Pretreatment method and carbon nanotube formation method
JP2015096454A (en) * 2013-11-15 2015-05-21 住友電気工業株式会社 Manufacturing method of carbon nano-structure, and carbon nano-structure assembly

Also Published As

Publication number Publication date
JP4545530B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
CN100462301C (en) Method for preparing carbon nano tube array
EP1987878A1 (en) Catalyst for carbon nanostructure growth, process for producing carbon nanostructure, raw-material gas and carrier gas for producing the same, and apparatus for producing the same
JP4581146B2 (en) Manufacturing apparatus and manufacturing method of aligned carbon nanotube assembly
JP3484441B2 (en) Method for producing carbon nanotube
EP1061041A1 (en) Low-temperature thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotube using the same
US20070020167A1 (en) Method of preparing catalyst for manufacturing carbon nanotubes
US20110020211A1 (en) High Throughput Carbon Nanotube Growth System, and Carbon Nanotubes and Carbon Nanofibers Formed Thereby
JP2010504268A (en) Growth of carbon nanotubes using metal-free nanoparticles
US9834445B2 (en) Porous graphene member, method for manufacturing same, and apparatus for manufacturing same using the method
CN102352490B (en) Preparation method for nitrogen-doped carbon nanometer tube
JPH08225395A (en) Production of diamond doped with boron
Lee et al. Direct growth of amorphous silica nanowires by solid state transformation of SiO2 films
KR101294362B1 (en) Method for graphene hybrid film comprising hexagonal boron nitride
JP2008201648A (en) Carbon nanotube production apparatus and carbon nanotube production method
JP4545530B2 (en) Method for producing fine carbon fiber
JP4977982B2 (en) Method for producing linear carbon material and method for producing functional device
JP2005279624A (en) Catalyst, method and apparatus for producing carbon nanotube
KR20080012009A (en) Method of forming a carbon nanotube
JP2003277031A (en) Method for manufacturing carbon nanotube
KR102177472B1 (en) Source for depositing graphene oxide and method of forming graphene oxide thin film using the same
JP2005112659A (en) Apparatus and method for manufacturing carbon nanotube
JP4617142B2 (en) Thin film manufacturing method
Devaux et al. On the low-temperature synthesis of SWCNTs by thermal CVD
JP2016088787A (en) Method for producing oriented carbon nanotube aggregates
JP2006036613A (en) Method for forming cubic silicon carbide crystal film on silicon substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140709

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees