JP4615210B2 - Immersion exposure equipment - Google Patents

Immersion exposure equipment Download PDF

Info

Publication number
JP4615210B2
JP4615210B2 JP2003417504A JP2003417504A JP4615210B2 JP 4615210 B2 JP4615210 B2 JP 4615210B2 JP 2003417504 A JP2003417504 A JP 2003417504A JP 2003417504 A JP2003417504 A JP 2003417504A JP 4615210 B2 JP4615210 B2 JP 4615210B2
Authority
JP
Japan
Prior art keywords
wafer
water
exposure apparatus
optical system
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003417504A
Other languages
Japanese (ja)
Other versions
JP2005183416A (en
Inventor
忠弘 大見
成利 須川
究 武久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foundation for Advancement of International Science
Original Assignee
Foundation for Advancement of International Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foundation for Advancement of International Science filed Critical Foundation for Advancement of International Science
Priority to JP2003417504A priority Critical patent/JP4615210B2/en
Publication of JP2005183416A publication Critical patent/JP2005183416A/en
Application granted granted Critical
Publication of JP4615210B2 publication Critical patent/JP4615210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、半導体集積回路の製造時の露光工程で用いられる露光装置に関し、詳しくは液浸光学系を用いた液浸型露光装置に関する。   The present invention relates to an exposure apparatus used in an exposure process when manufacturing a semiconductor integrated circuit, and more particularly to an immersion type exposure apparatus using an immersion optical system.

一般に、半導体集積回路の製造時の露光工程で用いられる露光機において、解像性能を上げるために、露光装置の縮小投影光学系を構成する多数のレンズのうち最もウエハに近いレンズ(以下、最終レンズと呼ぶ。)と、ウエハとの間を液体で満たして、縮小投影光学系の開口数(NA)を大きくすることで、解像性能を向上させる液浸光学系と呼ばれる手法が提案されている。例えば、波長193nmのArFエキシマレーザを光源とした露光装置(以下、ArF露光機と呼ぶ。)に適用したものはArF液浸光学系と呼ばれ、レンズとウエハとの間を水で満たすことで、解像性能を向上できることが知られている。すなわち、水の屈折率が1.3〜1.4であるため、ワーキングディスタンスが空気で満たされる場合より、NAが1.3〜1.4倍に大きくなることから、NAに反比例する解像度が小さくなる(解像性能が高くなる)ことが指摘されている。例えば、図1に構成をしめしたArF露光装置100において、露光中には、図3に示したように、縮小投影光学系3とウエハ4との間に、水6を満たすことが検討されている。   In general, in an exposure apparatus used in an exposure process at the time of manufacturing a semiconductor integrated circuit, in order to improve resolution performance, a lens closest to a wafer (hereinafter referred to as the final lens) among many lenses constituting a reduction projection optical system of an exposure apparatus. A method called an immersion optical system has been proposed that improves the resolution performance by filling the space between the lens and the wafer with a liquid and increasing the numerical aperture (NA) of the reduction projection optical system. Yes. For example, what is applied to an exposure apparatus using an ArF excimer laser with a wavelength of 193 nm as a light source (hereinafter referred to as an ArF exposure machine) is called an ArF immersion optical system, and is filled with water between a lens and a wafer. It is known that the resolution performance can be improved. That is, since the refractive index of water is 1.3 to 1.4, the NA is 1.3 to 1.4 times larger than when the working distance is filled with air. It has been pointed out that it becomes smaller (resolution performance becomes higher). For example, in the ArF exposure apparatus 100 having the configuration shown in FIG. 1, it is considered that water 6 is filled between the reduction projection optical system 3 and the wafer 4 during exposure, as shown in FIG. Yes.

なお、この技術に関しては、例えば、SEMICON Japan 2002、Technical programs for the semiconductor equipment and materials industries、第3-15〜3-16(非特許文献1)において示されている。   This technique is described in, for example, SEMICON Japan 2002, Technical programs for the semiconductor equipment and materials industries, Nos. 3-15 to 3-16 (Non-Patent Document 1).

ところで、露光装置は、マスク(レチクルと呼ばれる場合もある。)に描かれた回路パターンをウエハ上に転写する装置であるが、半導体集積回路を製造するには、30枚前後の異なるマスクが必要になるため、それらの露光パターンが精度良く重なるように、ウエハ上へのパターン転写の位置精度は非常に高く、最小線幅より1桁小さい必要がある。例えば、最小線幅100nmの場合は、位置精度としての誤差を10nm以下にする必要がある。そのため、特にウエハを移動させるウエハステージなど、装置を構成するパーツの多くは、熱による膨張を最小限に抑制する必要がある。したがって、それらの材質としては、熱膨張率が極めて小さいセラミック(低熱膨張セラミック)や、一般に、インバー、あるいはスーパーインバーと呼ばれる低熱膨張合金が広く利用されている。ただし、これら低熱膨張セラミックと低熱膨張合金の両方が一般に利用されており、特に剛性が必要な部分には、低熱膨張合金を利用することが好ましい。
SEMICON Japan 2002、Technical programs for the semiconductor equipment and materials industries、第3-15〜3-16
By the way, the exposure apparatus is an apparatus for transferring a circuit pattern drawn on a mask (sometimes called a reticle) onto a wafer. To manufacture a semiconductor integrated circuit, about 30 different masks are required. Therefore, the positional accuracy of pattern transfer onto the wafer is very high so that these exposure patterns overlap with high accuracy, and it is necessary to be one digit smaller than the minimum line width. For example, when the minimum line width is 100 nm, it is necessary to set the error as the position accuracy to 10 nm or less. For this reason, many parts constituting the apparatus, such as a wafer stage for moving the wafer in particular, need to suppress thermal expansion to a minimum. Therefore, ceramics having a very low thermal expansion coefficient (low thermal expansion ceramic) and generally low thermal expansion alloys called invar or super invar are widely used as these materials. However, both the low thermal expansion ceramic and the low thermal expansion alloy are generally used, and it is preferable to use the low thermal expansion alloy particularly for a portion requiring rigidity.
SEMICON Japan 2002, Technical programs for the semiconductor equipment and materials industries, 3-15-3-16

前記液浸光学系を構成する場合の課題として、最終レンズとウエハとの間に満たされた水がウエハから溢れてしまい、ウエハステージの可動部に水が被ることがある。特にウエハの周囲に近い部分を露光する場合は、水がウエハからはみ出して、ウエハステージに掛かるが多い。しかも露光装置は、特に量産工場では、高い稼働率で長期間連続運転される場合が多いため、水によってウエハーステージを構成する金属部品が錆びていくことが問題であった。なお、錆びにくい金属として、ステンレスがあるが、熱膨張率は約17×10のマイナス6乗もあり、ウエハステージの部品材料として利用することは困難であった。   A problem in configuring the immersion optical system is that the water filled between the final lens and the wafer overflows from the wafer, and the movable part of the wafer stage is covered with water. In particular, when exposing a portion close to the periphery of the wafer, water often protrudes from the wafer and is applied to the wafer stage. Moreover, since the exposure apparatus is often operated continuously for a long period of time at a high operating rate particularly in a mass production factory, the problem is that the metal parts constituting the wafer stage are rusted by water. In addition, although there exists stainless steel as a metal which is hard to rust, it has a thermal expansion coefficient of about minus 10 to the power of about 17 × 10, making it difficult to use it as a component material for the wafer stage.

特にウエハーステージでは、低熱膨張合金であるインバーあるいはスーパーインバーが構成部品の材質として多く利用されているが、これらが非常に錆びやすいことから、液浸光学系を適用する際に問題になっていた。すなわち、インバーはニッケルが約42%(残りは鉄)、スーパーインバーはニッケルが31〜32%、コバルトが5%程度、鉄が約62%の合金であり、ニッケルの含有量が低く、鉄の含有量が多いことから、非常に錆びやすくなる。したがって、これらのような低熱膨張合金から成るウエハステージを用いた露光装置に対して液浸光学系を適用して使用していくと、次第にウエハステージが錆びてしまうことが問題であり、さらに錆びがパーティクルとなって、ウエハを汚染することもあった。   Especially in the wafer stage, invar or super invar, which is a low thermal expansion alloy, is widely used as the material of the component parts. However, since these are very rusting, it has become a problem when applying an immersion optical system. . That is, invar is about 42% nickel (the rest is iron), super invar is an alloy with about 31 to 32% nickel, about 5% cobalt and about 62% iron, with a low nickel content, Since the content is large, it becomes very easy to rust. Therefore, when the immersion optical system is applied to an exposure apparatus using a wafer stage made of such a low thermal expansion alloy, the wafer stage gradually rusts. May become particles and contaminate the wafer.

なお、前記インバーやスーパーインバーのようなニッケル合金において、反対に非常に錆びにくいことで知られているモネルではニッケルは63%以上、インコネルではニッケルは72%以上も含まれており、鉄の含有率は低い。しかしながら熱膨張率は、モネルでは15.8×10のマイナス6乗、インコネルでは14.4×10のマイナス6乗であり、スーパーインバーの場合の約0.5×10のマイナス6乗に比べると、桁違いに大きいため、ウエハステージの部材として利用することは困難である。   In addition, in nickel alloys such as Invar and Super Invar, on the contrary, Monel, which is known to be extremely resistant to rust, contains 63% or more of nickel, and Inconel contains 72% or more of nickel. The rate is low. However, the coefficient of thermal expansion is 15.8 × 10 minus 6th power for Monel, and 14.4 × 10 minus 6th power for Inconel, compared to about 0.5 × 10 minus 6th power for Super Inver. Since it is extremely large, it is difficult to use as a wafer stage member.

本発明の目的は、液浸光学系を適用した露光装置において、低熱膨張合金から成るウエハーステージに水が掛かっても、全く錆びないような露光方法、及び露光装置を提供することである。   An object of the present invention is to provide an exposure method and an exposure apparatus that do not rust at all even when water is applied to a wafer stage made of a low thermal expansion alloy in an exposure apparatus to which an immersion optical system is applied.

前記目的を達成するために、本発明では、最終レンズとウエハとの間に満たす水の中に水素を溶解させたものである。これによると、この水はいわゆる水素水と呼ばれ、水自体が還元性を有するようになるため、接触する金属が錆びないようになる。なお、特に水素の溶存濃度としては、0.1〜1.6ppm、好ましくは、1.2〜1.4ppm程度含めたものが好ましく、飽和濃度未満が好ましい。これは、水素の溶存濃度をあまり高くすると水素が泡となって発生することもあるからである。 In order to achieve the object, in the present invention, hydrogen is dissolved in water filled between the final lens and the wafer. According to this, this water is called so-called hydrogen water, and the water itself has reducibility, so that the metal in contact does not rust. As the particular dissolved concentration of hydrogen, 0 .1~1.6Ppm, preferably, preferably those including about 1.2~1.4Ppm, below the saturation concentration is preferred. This is because if the dissolved concentration of hydrogen is too high, hydrogen may be generated as bubbles.

本発明によると、ウエハーステージの構成部品における金属材料全てが全く錆びなくなるため、ウエハ全体、さらにはウエハーステージ自体を水に浸す構造の液浸光学系を構成しても長期間問題なく稼働させることができる。   According to the present invention, since all the metal materials in the components of the wafer stage are not rusted at all, even if an immersion optical system having a structure in which the entire wafer and further the wafer stage itself is immersed in water is configured, it can be operated without a long-term problem. Can do.

以上のように、本発明の液浸光学系を適用したスキャン型露光装置によると、ウエハステージを構成する部材の多くにおいて、しかも周囲雰囲気に接する露出した部分にも、非常に錆びやすいスーパーインバーを用いることができるようになった。   As described above, according to the scanning exposure apparatus to which the immersion optical system of the present invention is applied, a super invar that is very rustable is formed on many exposed parts in contact with the ambient atmosphere in many of the members constituting the wafer stage. It can be used now.

さらに、これによって、従来多用されていた低熱膨張セラミックを利用しなくても済むようになり、その結果、セラミックで構成する場合よりも剛性が高くなることから、ステージを高速にスキャンしても、反力による変形等も大幅に低減されるようになった。   In addition, this makes it unnecessary to use a low thermal expansion ceramic that has been used frequently in the past, and as a result, the rigidity is higher than that of the case of being made of ceramic, so even if the stage is scanned at high speed, Deformation caused by reaction force has been greatly reduced.

以下、本発明の実施形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の第1の実施例としてのArF露光装置100の構成図である。露光光であるレーザ光L1は、マスク1の照射領域R1を照射する。マスク1を通過したレーザ光L2は縮小倍率1/4の縮小投影光学系3に入射し、ウエハ4上の照射領域R2を照射する。すなわち、縮小投影光学系3によって、マスク1の照射領域R1内のパターンが、ウエハ4の照射領域R2に縮小投影される。   FIG. 1 is a block diagram of an ArF exposure apparatus 100 as a first embodiment of the present invention. Laser light L1 that is exposure light irradiates the irradiation region R1 of the mask 1. The laser beam L2 that has passed through the mask 1 enters the reduction projection optical system 3 having a reduction magnification of 1/4, and irradiates the irradiation region R2 on the wafer 4. That is, the reduction projection optical system 3 reduces and projects the pattern in the irradiation region R1 of the mask 1 onto the irradiation region R2 of the wafer 4.

マスク1は、マスクステージ2におけるYステージ2a上に載せられており、Y方向(図中のスキャン方向S1)に往復移動(すなわち往復スキャン)できるようになっている。一方、ウエハ4はウエハステージ5におけるYステージ5c上に載せられており、Y方向(図中のスキャン方向S2)に往復スキャンできるようになっているが、露光中には、マスク1の移動方向とは反対方向に同期しながら往復スキャンしている。 The mask 1 is placed on the Y stage 2a in the mask stage 2, and can reciprocate (that is, reciprocating scan) in the Y direction (scanning direction S1 in the figure). On the other hand, the wafer 4 is placed on the Y stage 5c in the wafer stage 5, and can be reciprocally scanned in the Y direction (scanning direction S2 in the figure). A reciprocating scan is performed in synchronization with the opposite direction.

ウエハ4が載せられたウエハステージ5のYステージ5cは、X方向に移動できるXステージ5b上に載せられており、これによってウエハ4はX方向(図中のステップ方向S3)にもステップ移動できるようになっている。   The Y stage 5c of the wafer stage 5 on which the wafer 4 is placed is placed on the X stage 5b that can move in the X direction, whereby the wafer 4 can also be stepped in the X direction (step direction S3 in the figure). It is like that.

本実施例では、ウエハ4における照射領域R2と縮小投影光学系3との間に、水6が供給され、液浸光学系が適用できる構造になっている。ただし、図1ではウエハ4と縮小投影光学系3とを多少離して描かれているが、実際にはこれらの間隔は約1mmと小さくなっている。ウエハ4と縮小投影光学系との関係を図2を用いて、以下に説明する。   In the present embodiment, water 6 is supplied between the irradiation region R2 on the wafer 4 and the reduction projection optical system 3, so that an immersion optical system can be applied. However, in FIG. 1, the wafer 4 and the reduction projection optical system 3 are drawn somewhat apart from each other, but in reality, the distance between them is as small as about 1 mm. The relationship between the wafer 4 and the reduction projection optical system will be described below with reference to FIG.

図2は図1に示した第1実施例におけるArF露光装置100における縮小投影光学系3とウエハ4との間に水6を供給する場合の断面図である。水6は、吐出ノズル7から放出され、縮小投影光学系3における一番下に取り付けられている最終レンズ9と、ウエハ4との間に供給される。また、最終レンズ9とウエハ4との間に満たされた水は、吸引ノズル8から吸引される。すなわち、露光中には、吐出ノズル7から常に新しい水6が供給されるようになっている。ここで、吐出ノズル7及び吸引ノズル8については、特願2003年149375号の図3(b)に示された吐出ノズルと吸引ノズルとの組合せを使用することができる。具体的に説明すると、吐出ノズル7及び吸引ノズル8は最終レンズ9を備えた縮小投影光学系3に、当該縮小投影光学系3のスキャン方向Yを横切ように、即ち、ステップ方向Xに平行に、最終レンズ9を挟むように位置付けられている。更に、図示された例では、実際には最終レンズ9の右側(又は左側)に、吐出ノズル7と吸引ノズル8が図2の紙面に対して垂直方向に交互に複数個配置されている。また、最終レンズ9のY方向中央部には、X方向に伸びる吐出ノズル及び吸引ノズル(図示せず)が設けられている。この例では、ウエハ4がスキャン方向の+Y又は−Y方向にスキャンされている間に、水素水を吐出ノズル7から吐出し、当該水素水を吸引ノズル8で吸引する。尚、吐出ノズル7と吸引ノズル8との組合せの代わりに、吐出ノズルだけが配置される構成を採用しても良い。   FIG. 2 is a cross-sectional view when water 6 is supplied between the reduction projection optical system 3 and the wafer 4 in the ArF exposure apparatus 100 in the first embodiment shown in FIG. The water 6 is discharged from the discharge nozzle 7 and supplied between the wafer 4 and the final lens 9 mounted at the bottom of the reduction projection optical system 3. Further, water filled between the final lens 9 and the wafer 4 is sucked from the suction nozzle 8. That is, new water 6 is always supplied from the discharge nozzle 7 during exposure. Here, for the discharge nozzle 7 and the suction nozzle 8, the combination of the discharge nozzle and the suction nozzle shown in FIG. 3B of Japanese Patent Application No. 2003 149375 can be used. More specifically, the discharge nozzle 7 and the suction nozzle 8 cross the scan direction Y of the reduction projection optical system 3 with the final lens 9 so as to cross the scan direction Y, that is, parallel to the step direction X. The final lens 9 is positioned therebetween. Furthermore, in the illustrated example, actually, a plurality of discharge nozzles 7 and suction nozzles 8 are alternately arranged on the right side (or left side) of the final lens 9 in a direction perpendicular to the paper surface of FIG. Further, a discharge nozzle and a suction nozzle (not shown) extending in the X direction are provided at the center of the final lens 9 in the Y direction. In this example, while the wafer 4 is being scanned in the + Y or −Y direction of the scan direction, hydrogen water is discharged from the discharge nozzle 7 and the hydrogen water is sucked by the suction nozzle 8. Instead of the combination of the discharge nozzle 7 and the suction nozzle 8, a configuration in which only the discharge nozzle is arranged may be employed.

本発明では、この水6が一般に水素水と呼ばれる水であり、本実施例では、含有水素濃度として、水素が水1リットル中に1.5mg(1.5ppm)含まれており、還元性の高い水を使用している。その結果、水6が金属に長期間接触しても、その金属は全く錆びることがない。これによって、図1に示されたウエハステージ5を構成するほとんどの部品の材料にスーパーインバーを用いることができ、低熱膨張率のウエハステージを構成できる。   In the present invention, this water 6 is generally called hydrogen water, and in this embodiment, hydrogen is contained in 1.5 liters (1.5 ppm) in 1 liter of water as the concentration of hydrogen contained, and is highly reducible. You are using water. As a result, even if the water 6 contacts the metal for a long time, the metal does not rust at all. As a result, a super invar can be used for the material of most of the parts constituting the wafer stage 5 shown in FIG. 1, and a wafer stage having a low thermal expansion coefficient can be constituted.

尚、純水に対して水素ガスを添加して金属の錆びを防止することについては、本発明者等の出願に係る特願2003−038941号明細書においても指摘されているが、液浸型露光装置を低熱膨張合金によって構成することについては指摘されていない。   In addition, although it is pointed out also in Japanese Patent Application No. 2003-038941 concerning the application of the present inventors about adding hydrogen gas with respect to pure water and preventing a metal rust, immersion type It is not pointed out that the exposure apparatus is composed of a low thermal expansion alloy.

本発明は半導体デバイスの製造時に使用されるマスク、ウエハの露光に使用することができると共に、LEEPL等の露光装置にも適用できる。   The present invention can be used for exposure of masks and wafers used in the manufacture of semiconductor devices, and can also be applied to exposure apparatuses such as LEEPL.

本発明に使用されるArF露光装置100の構成を概略的に示す図である。It is a figure which shows schematically the structure of the ArF exposure apparatus 100 used for this invention. 本発明において使用される液浸光学系の断面を概略的に示す図である。It is a figure which shows roughly the cross section of the immersion optical system used in this invention. 液浸光学系を概略的に説明する断面図である。It is sectional drawing which illustrates an immersion optical system roughly.

符号の説明Explanation of symbols

1 マスク
2 マスクステージ
2a Yステージ
3 縮小投影光学系
4 ウエハ
5 ウエハステージ
5a ステージ台
5b Xステージ
5c Yステージ
6 水
7 吐出ノズル
8 吸引ノズル
9 最終レンズ
100 ArF露光装置
L1、L2 レーザ光
R1、R2 照射領域
S1、S2 スキャン方向
S3 ステップ方向
DESCRIPTION OF SYMBOLS 1 Mask 2 Mask stage 2a Y stage 3 Reduction projection optical system 4 Wafer 5 Wafer stage 5a Stage base 5b X stage 5c Y stage 6 Water 7 Discharge nozzle 8 Suction nozzle 9 Final lens 100 ArF exposure apparatus L1, L2 Laser light R1, R2 Irradiation area S1, S2 Scan direction S3 Step direction

Claims (4)

縮小投影光学系におけるウエハ側に最も近い光学部材とウエハとの間を水で満たして該縮小投影光学系の開口数を大きくした液浸型露光装置において、
前記水に接する部分を有するウエハステージが、鉄を含有する低熱膨張合金から成っており、
前記水に水素が含まれることを特徴とする液浸型露光装置。
In an immersion type exposure apparatus in which the space between the optical member closest to the wafer side in the reduction projection optical system and the wafer is filled with water to increase the numerical aperture of the reduction projection optical system,
The wafer stage having a portion in contact with water is made of a low thermal expansion alloy containing iron,
An immersion type exposure apparatus, wherein the water contains hydrogen.
前記低熱膨張合金がスーパーインバーであることを特徴とする請求項1に記載の液浸型露光装置。   2. The immersion type exposure apparatus according to claim 1, wherein the low thermal expansion alloy is Super Invar. 前記水素を含有する水を前記光学部材とウエハとの間に吐出する手段を備えることを特徴とする請求項1または2に記載の液浸型露光装置。   3. The immersion type exposure apparatus according to claim 1, further comprising means for discharging the water containing hydrogen between the optical member and the wafer. 前記水素を含有する水を吸引する手段を有していることを特徴とする請求項3に記載の液浸型露光装置。   4. The immersion type exposure apparatus according to claim 3, further comprising means for sucking water containing hydrogen.
JP2003417504A 2003-12-16 2003-12-16 Immersion exposure equipment Expired - Fee Related JP4615210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003417504A JP4615210B2 (en) 2003-12-16 2003-12-16 Immersion exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003417504A JP4615210B2 (en) 2003-12-16 2003-12-16 Immersion exposure equipment

Publications (2)

Publication Number Publication Date
JP2005183416A JP2005183416A (en) 2005-07-07
JP4615210B2 true JP4615210B2 (en) 2011-01-19

Family

ID=34779981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003417504A Expired - Fee Related JP4615210B2 (en) 2003-12-16 2003-12-16 Immersion exposure equipment

Country Status (1)

Country Link
JP (1) JP4615210B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847841B1 (en) * 2007-05-17 2008-07-23 주식회사 동부하이텍 Semiconductor device manufacturing method and exposure apparatus therefor
JP5893659B2 (en) 2014-03-10 2016-03-23 日本鋳造株式会社 Low thermal expansion cast alloy and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
JP2001241818A (en) * 2000-02-25 2001-09-07 Tadahiro Omi High efficient device cooling system and cooling method
JP2004245905A (en) * 2003-02-10 2004-09-02 Tadahiro Omi Mask fabricating device
JP2004251928A (en) * 2003-02-17 2004-09-09 Tadahiro Omi Mask making apparatus and aligner for manufacture of semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124873A (en) * 1992-10-09 1994-05-06 Canon Inc Liquid-soaking type projection exposure apparatus
JP2753930B2 (en) * 1992-11-27 1998-05-20 キヤノン株式会社 Immersion type projection exposure equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
JP2001241818A (en) * 2000-02-25 2001-09-07 Tadahiro Omi High efficient device cooling system and cooling method
JP2004245905A (en) * 2003-02-10 2004-09-02 Tadahiro Omi Mask fabricating device
JP2004251928A (en) * 2003-02-17 2004-09-09 Tadahiro Omi Mask making apparatus and aligner for manufacture of semiconductor device

Also Published As

Publication number Publication date
JP2005183416A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP4378136B2 (en) Exposure apparatus and device manufacturing method
JP3862678B2 (en) Exposure apparatus and device manufacturing method
US7532304B2 (en) Lithographic apparatus and device manufacturing method
EP1326139B1 (en) Exposure apparatus and device manufacturing method
KR101647859B1 (en) Apparatus and method to control vacuum at porous material using multiple porous materials
US7532309B2 (en) Immersion lithography system and method having an immersion fluid containment plate for submerging the substrate to be imaged in immersion fluid
US20060192930A1 (en) Exposure apparatus
JP2006049815A (en) Aligner
US20100097584A1 (en) Exposure apparatus and device fabrication method
JP2020112695A (en) Exposure apparatus, exposure method and method for manufacturing article
JP3977377B2 (en) Exposure apparatus and device manufacturing method
JP4615210B2 (en) Immersion exposure equipment
KR20080004540A (en) Exposure apparatus, exposure method, and device production method
KR20090113779A (en) Exposure apparatus and device manufacturing method
KR100859244B1 (en) Exposure apparatus and device manufacturing method
JP4164508B2 (en) Exposure apparatus and device manufacturing method
KR20120024618A (en) Cleaning method, exposure method, and device manufacturing method
JP2006319065A (en) Exposure apparatus
JP2005302880A (en) Immersion aligner
JP4533416B2 (en) Exposure apparatus and device manufacturing method
JP2006060016A (en) Fluid supply and exhaust device and exposure apparatus having same
JP2007012954A (en) Exposure device
JP2006332530A (en) Projection optical system, exposure apparatus, and method of manufacturing device
JP3997243B2 (en) Exposure apparatus and device manufacturing method
JP4720293B2 (en) Exposure apparatus and device manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060810

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees