JP5893659B2 - Low thermal expansion cast alloy and manufacturing method thereof - Google Patents

Low thermal expansion cast alloy and manufacturing method thereof Download PDF

Info

Publication number
JP5893659B2
JP5893659B2 JP2014045971A JP2014045971A JP5893659B2 JP 5893659 B2 JP5893659 B2 JP 5893659B2 JP 2014045971 A JP2014045971 A JP 2014045971A JP 2014045971 A JP2014045971 A JP 2014045971A JP 5893659 B2 JP5893659 B2 JP 5893659B2
Authority
JP
Japan
Prior art keywords
thermal expansion
content
less
mass
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014045971A
Other languages
Japanese (ja)
Other versions
JP2015168865A (en
JP2015168865A5 (en
Inventor
半田 卓雄
卓雄 半田
志民 劉
志民 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chuzo Co Ltd
Original Assignee
Nippon Chuzo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54071232&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5893659(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Chuzo Co Ltd filed Critical Nippon Chuzo Co Ltd
Priority to JP2014045971A priority Critical patent/JP5893659B2/en
Priority to PCT/JP2014/079097 priority patent/WO2015136766A1/en
Priority to KR1020167007739A priority patent/KR102077297B1/en
Priority to CN201480059372.XA priority patent/CN106103767B/en
Priority to TW103139053A priority patent/TWI568861B/en
Publication of JP2015168865A publication Critical patent/JP2015168865A/en
Publication of JP2015168865A5 publication Critical patent/JP2015168865A5/ja
Publication of JP5893659B2 publication Critical patent/JP5893659B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、例えば半導体製造装置などの超精密機器部材に適した、熱膨張が極めて小さい低熱膨張鋳造合金およびその製造方法に関する。   The present invention relates to a low thermal expansion cast alloy having a very low thermal expansion suitable for an ultra-precision equipment member such as a semiconductor manufacturing apparatus and a method for manufacturing the same.

従来から、超精密機器の精度維持、向上を目的として、低熱膨張合金が使用されており、中でも、32%Ni−5%Co−残部Feの合金(以下、スーパーインバー)は、室温付近の熱膨張係数が1×10−6/℃以下であり、圧延材や鍛造材(以下、鋼材)が商品化され、市販されている(例えば非特許文献1)。 Conventionally, low thermal expansion alloys have been used for the purpose of maintaining and improving the precision of ultra-precise equipment. Among them, the alloy of 32% Ni-5% Co-remaining Fe (hereinafter referred to as Super Invar) has a heat around room temperature. The expansion coefficient is 1 × 10 −6 / ° C. or less, and rolled materials and forged materials (hereinafter referred to as steel materials) are commercialized and commercially available (for example, Non-Patent Document 1).

また、特許文献1には、重量%で、C:0.1%以下、Ni:30〜34%、Co:4〜6%を含む鉄基合金からなり、Mn:0.1〜1.0%とS:0.02〜0.15%を含有するとともに、Mn/54.94>S/32.06とした快削性低熱膨張鋳物用合金が提案されている。   Patent Document 1 includes an iron-based alloy containing, by weight, C: 0.1% or less, Ni: 30 to 34%, Co: 4 to 6%, and Mn: 0.1 to 1.0. % And S: 0.02 to 0.15%, and a free-cutting low thermal expansion casting alloy with Mn / 54.94> S / 32.06 has been proposed.

一方、特許文献2および特許文献3には、それぞれ熱膨張係数が0.5×10-6/℃であるスーパーインバーを、マイクロ波導波管の共振器および半導体液浸露光装置のウエハーステージに用いることが記載されている。 On the other hand, in Patent Document 2 and Patent Document 3, a super invar having a thermal expansion coefficient of 0.5 × 10 −6 / ° C. is used for a resonator of a microwave waveguide and a wafer stage of a semiconductor immersion exposure apparatus. It is described.

特開2002−206142号公報JP 2002-206142 A 特開2010−206615号公報JP 2010-206615 A 特開2005−183416号公報JP 2005-183416 A

株式会社不二越、技術資料、[平成26年3月7日検索]、インターネット<URL:HTTP://www.nachi-fujikoshi.co.jp/kou/fm_alloy/fm_alloy_exeo.pdf>Fujikoshi Co., Ltd., Technical data, [Search on March 7, 2014], Internet <URL: HTTP://www.nachi-fujikoshi.co.jp/kou/fm_alloy/fm_alloy_exeo.pdf>

ところで、上述のスーパーインバー鋼材は、1×10−6/℃以下の熱膨張係数を確実に得るためには、Cを0.02%以下の不純物レベルに抑えなければならいとされていた。本発明者の知見によれば、このような低Cのスーパーインバーを大気溶解して鋳造する場合、ガス欠陥が多発し、工業的な製造は非常に困難であるため、真空溶解を行う必要がある。通常の鋳造業者にとって高価な設備を用いて複雑な操業を行うことは非現実的であり、低Cのスーパーインバー鋳造品を製造することは事実上不可能である。 By the way, the above-mentioned Super Invar steel material has been required to suppress C to an impurity level of 0.02% or less in order to reliably obtain a thermal expansion coefficient of 1 × 10 −6 / ° C. or less. According to the inventor's knowledge, when such a low C super invar is melted and cast in the atmosphere, gas defects frequently occur and industrial production is very difficult, so it is necessary to perform vacuum melting. is there. It is impractical to perform complex operations using expensive equipment for ordinary casters, and it is virtually impossible to produce a low-C super invar casting.

一方、特許文献1の低熱膨張鋳物用合金は、Ni含有量およびCo含有量はスーパーインバーと同等であり、Cの含有量を0.1%以下と大気鋳造可能な範囲まで許容しているが、実施例ではC含有量が0.008〜0.011%と極めて低い合金しか開示されておらず、そのような極めて低いC含有量において熱膨張係数が0.773×10-6/℃以下であることが示されているにすぎない。すなわち、特許文献1においても、1×10-6/℃以下の熱膨張係数を得るためにはCを0.01%程度の極めて低い値とする必要があることを示唆している。このため、特許文献1に、薄肉大型鋳物の製造に適した合金を提供し得るとの記載があるものの、実際にはC含有量を低くする必要があるため、やはり大気溶解・鋳造することは非常に難しく、通常の鋳造業者が特許文献1の技術を用いて鋳造合金を工業的に利用することは困難であると考えられる。 On the other hand, in the alloy for low thermal expansion casting of Patent Document 1, the Ni content and the Co content are equivalent to those of Super Invar, and the C content is allowed to be within 0.1% or less to an air casting range. In the examples, only an alloy having a very low C content of 0.008 to 0.011% is disclosed, and the coefficient of thermal expansion is 0.773 × 10 −6 / ° C. or less at such a very low C content. It is only shown that. That is, Patent Document 1 also suggests that in order to obtain a thermal expansion coefficient of 1 × 10 −6 / ° C. or less, C needs to be an extremely low value of about 0.01%. For this reason, although it is described in Patent Document 1 that an alloy suitable for the production of a thin-walled large casting can be provided, since it is actually necessary to reduce the C content, it is still necessary to melt and cast in the atmosphere. It is very difficult, and it is considered difficult for an ordinary caster to industrially use a cast alloy using the technique of Patent Document 1.

また、非特許文献1に示されているスーパーインバー鋼材は、板材や棒材などの単純形状にしか適用できず、精密装置に用いる複雑形状品や大型部品は、切削加工や溶接組立てによって製作する必要があるが、スーパーインバーの被削性および溶接性が低いため、多大の工数・費用を要するという問題もある。   In addition, Super Invar steel shown in Non-Patent Document 1 can be applied only to simple shapes such as plates and rods, and complicated shapes and large parts used for precision devices are manufactured by cutting or welding assembly. Although it is necessary, there is also a problem that a great number of man-hours and costs are required due to the low machinability and weldability of Super Invar.

特許文献1では、このような問題を、所定量のSおよびMnを添加してマトリックス中のMnSにより被削性を改善させることにより解決するとしているが、上述したように、特許文献1の合金も1×10-6/℃以下の低熱膨張係数とするためにはCを0.01%程度の極めて低い値とする必要があり、大気鋳造が困難であることから、実際には複雑形状品や大型部品に適用することはできず、このような問題を本質的に解決できるものではない。 In Patent Document 1, such a problem is solved by adding a predetermined amount of S and Mn and improving machinability by MnS in the matrix. However, as described above, the alloy of Patent Document 1 is used. However, in order to obtain a low coefficient of thermal expansion of 1 × 10 −6 / ° C. or less, it is necessary to set C to an extremely low value of about 0.01%, and air casting is difficult. It cannot be applied to large parts, and such problems cannot be solved essentially.

本発明は、かかる事情に鑑みてなされたものであって、通常の大気溶解および大気鋳造が可能なレベルのCを含有しながら、スーパーインバーと同等の極めて小さい熱膨張係数を有する低熱膨張鋳造合金およびその製造方法を提供することを課題とする。   The present invention has been made in view of such circumstances, and has a low thermal expansion cast alloy having an extremely small thermal expansion coefficient equivalent to that of Super Invar, while containing C at a level capable of ordinary atmospheric dissolution and casting. It is another object of the present invention to provide a manufacturing method thereof.

また、通常の大気溶解が可能なレベルのCを含有しながら、スーパーインバーと同等の極めて小さな熱膨張係数を有し、かつスーパーインバーよりも優れた被削性を有する低熱膨張鋳造合金およびその製造方法を提供することを課題とする。   Further, a low thermal expansion cast alloy having a very low thermal expansion coefficient equivalent to that of Super Invar and containing a machinability superior to Super Invar, while containing C at a level capable of normal atmospheric dissolution, and its production It is an object to provide a method.

本発明者らは、上記課題を解決すべく検討を重ねた結果、合金中のC含有量を大気溶解および大気鋳造が可能なレベルにしても、
i)Co含有量をC含有量に応じて調整し、
ii)Co含有量に応じてNi含有量を規定する
ことにより、スーパーインバーと同等の極めて小さい熱膨張係数を得られることを見出した。
As a result of repeated investigations to solve the above problems, the present inventors have made the C content in the alloy a level that enables atmospheric dissolution and atmospheric casting,
i) adjusting the Co content according to the C content;
ii) It was found that by defining the Ni content according to the Co content, an extremely small thermal expansion coefficient equivalent to that of Super Invar can be obtained.

従来は、C、Ni、Coが熱膨張係数に及ぼす影響について詳細には検討されていなかった。例えば、特許文献1では、C、NiおよびCoの範囲の限定理由が記載されているものの、実施例の組成はCが0.01%程度のスーパーインバー組成(32%Ni-5%Co−Fe)のみであり、それにより1×10-6/℃以下の熱膨張係数が得られているものの、特許請求範囲の組成において1×10-6/℃以下の熱膨張係数が得られることは示されていない。 Conventionally, the effects of C, Ni, and Co on the thermal expansion coefficient have not been studied in detail. For example, although Patent Document 1 describes the reasons for limiting the ranges of C, Ni, and Co, the composition of the example is a super invar composition (32% Ni-5% Co—Fe with C of about 0.01%). ) it is only thereby 1 although × 10 -6 / ° C. or less of the thermal expansion coefficient is obtained, it is shown that the thermal expansion coefficient of 1 × 10 -6 / ° C. or less in the composition of claims is obtained It has not been.

従来の知見を総括すると、スーパーインバーのC含有量とCo含有量の範囲は図1の領域Aで示す範囲になる。すなわち、従来は、Cを不純物程度に抑えれば、4〜6%Coの範囲で確実に1×10-6/℃以下の熱膨張係数にできるが、Cが増加するとその範囲は狭くなり、Cが0.05%超ではCo量を調整しても1×10-6/℃以下の熱膨張係数を得ることは不可能であると考えられていた。 Summarizing the conventional knowledge, the range of C content and Co content of Super Invar is the range indicated by region A in FIG. That is, conventionally, if C is suppressed to an impurity level, the coefficient of thermal expansion can be surely reduced to 1 × 10 −6 / ° C. or less in the range of 4 to 6% Co, but the range becomes narrower as C increases. If C exceeds 0.05%, it has been considered impossible to obtain a thermal expansion coefficient of 1 × 10 −6 / ° C. or less even if the amount of Co is adjusted.

従来のスーパーインバー組成(図1の領域A)のうち、大気溶解の鋳造品を得ることが可能なCが0.02%超〜0.05%以下の範囲(図1の領域B)では、1×10-6/℃以下の熱膨張係数が得られることになるが、大気溶解で鋳造品を製造する場合、Cに加えて、熱膨張係数を増加させるSiやMnを脱酸や鋳造性改善の目的で添加するため、実際には熱膨張係数が1×10-6/℃超となる領域を生ずる。したがって、1×10-6/℃以下の熱膨張係数を得るには、特許文献1に見られるように、Cをより低く制限する必要がある。その結果、鋳造材料においては、図1の領域Bが低C側に平行移動した形になり、極限られた範囲に成分調整しなければならず、適正鋳造品を確実に製造することは難しいと考えられていた。 In the conventional super invar composition (region A in FIG. 1), in which C capable of obtaining an air-dissolved casting is more than 0.02% to 0.05% or less (region B in FIG. 1), Although a thermal expansion coefficient of 1 × 10 −6 / ° C. or less can be obtained, when producing a cast product by melting in the atmosphere, in addition to C, Si and Mn that increase the thermal expansion coefficient are deoxidized and castability Since it is added for the purpose of improvement, a region where the thermal expansion coefficient actually exceeds 1 × 10 −6 / ° C. is generated. Therefore, in order to obtain a thermal expansion coefficient of 1 × 10 −6 / ° C. or lower, it is necessary to limit C lower as seen in Patent Document 1. As a result, in the casting material, the region B in FIG. 1 is translated to the low C side, the components must be adjusted to a limited range, and it is difficult to reliably produce an appropriate cast product. It was thought.

これに対して、本発明では、C含有量を大気溶解・大気鋳造が可能な0.02%超の範囲を前提に、1×10-6/℃以下の熱膨張係数が得られる組成を検討した結果、C含有量とCo含有量の範囲が図1の領域Cの範囲を満たすとともに、Co含有量に応じてNi含有量を規定することにより、1×10-6/℃以下の熱膨張係数が得られることを新たに見出したのである。 On the other hand, in the present invention, a composition that can obtain a thermal expansion coefficient of 1 × 10 −6 / ° C. or less is premised on the assumption that the C content exceeds 0.02%, which allows atmospheric melting and casting. As a result, the range of C content and Co content satisfies the range of region C in FIG. 1, and by defining the Ni content according to the Co content, thermal expansion of 1 × 10 −6 / ° C. or less It was newly found that the coefficient can be obtained.

また、C含有量、Co含有量、およびNi含有量を上記のように規定した上で、さらに、S含有量、Mn含有量およびこれらの比を所定範囲に規定することにより、合金組織中に硫化物を適切に分布させて工具潤滑を促進することができ、1×10-6/℃以下の低膨張率でかつ凝固割れを生じさせずに良好な被削性を有する鋳造合金が得られることを見出した。 Further, after defining the C content, the Co content, and the Ni content as described above, and further defining the S content, the Mn content, and their ratio within a predetermined range, Tool lubrication can be promoted by appropriately distributing sulfides, and a cast alloy having a low machinability of 1 × 10 −6 / ° C. or less and good machinability without causing solidification cracks can be obtained. I found out.

そして、上記組成の合金を1×10-6/℃以下の低膨張率とするためには、熱処理を適切に制御することが有効であることも見出した。 It has also been found that it is effective to appropriately control the heat treatment in order to make the alloy having the above composition a low expansion coefficient of 1 × 10 −6 / ° C. or less.

本発明は上記知見に基づいて完成されたものであり、以下の(1)〜(7)を提供する。   This invention is completed based on the said knowledge, and provides the following (1)-(7).

(1)質量%で、
C :0.02%超、0.15%以下、
Si:0.3%以下、
Mn:0.25〜0.6%、
Ni:29〜32.5%、
Co:5〜9.5%
を含有し、
かつC含有量(質量%)を[C]、Co含有量(質量%)を[Co]と表した場合に、これらが(a)[Co]≧40×[C]+3、(b)[C]≦0.15、(c)[Co]≦(70/3)×[C]+6、(d)[C]>0.02、(e)[Co]≧−20×[C]+6を満たす範囲であり、
Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]で表した場合に、[Ni]+0.8×[Co]と表されるNi量が、35.5〜36.5%の範囲であり、残部がFeおよび不可避的不純物からなる(ただし、C:0.052%、Si:0.19%、Mn:0.61%、Ni:32.21%、Co:5.07%を含有し、残部がFeおよび不可避的不純物からなる組成を除く)ことを特徴とする低熱膨張鋳造合金。
(1) In mass%,
C: more than 0.02%, 0.15% or less,
Si: 0.3% or less,
Mn: 0.25 to 0.6%,
Ni: 29-32.5%,
Co: 5 to 9.5%
Containing
When the C content (mass%) is expressed as [C] and the Co content (mass%) is expressed as [Co], these are (a) [Co] ≧ 40 × [C] +3, (b) [ C] ≦ 0.15, (c) [Co] ≦ (70/3) × [C] +6, (d) [C]> 0.02, (e) [Co] ≧ −20 × [C] +6 Is a range that satisfies
When the Ni content (mass%) is represented by [Ni] and the Co content (mass%) is represented by [Co], the Ni equivalent represented by [Ni] + 0.8 × [Co] is 35. 5 to 36.5%, the balance being Fe and inevitable impurities (however, C: 0.052%, Si: 0.19%, Mn: 0.61%, Ni: 32.21%) , Co: 5.07%, except for the composition composed of Fe and unavoidable impurities in the balance) .

(2)質量%で、
C :0.02%超、0.15%以下、
Si:0.3%以下、
Mn:0.25〜0.6%、
S:0.015〜0.035%
Ni:29〜32.5%、
Co:5〜9.5%
を含有し、
かつC含有量(質量%)を[C]、Co含有量(質量%)を[Co]と表した場合に、これらが(a)[Co]≧40×[C]+3、(b)[C]≦0.15、(c)[Co]≦(70/3)×[C]+6、(d)[C]>0.02、(e)[Co]≧−20×[C]+6を満たす範囲であり、
かつNi含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]で表した場合に、
[Ni]+0.8×[Co]と表されるNi量が、35.5〜36.5%の範囲であり、
さらに、Mn含有量(質量%)を[Mn]、S含有量(質量%)を[S]、鋳造品の最大肉厚(mm)をtで表した場合に、[Mn]/[S]≧46−1335/t+13430/t2を満たし、残部がFeおよび不可避的不純物からなることを特徴とする低熱膨張鋳造合金。
(2) In mass%,
C: more than 0.02%, 0.15% or less,
Si: 0.3% or less,
Mn: 0.25 to 0.6%,
S: 0.015-0.035%
Ni: 29-32.5%,
Co: 5 to 9.5%
Containing
When the C content (mass%) is expressed as [C] and the Co content (mass%) is expressed as [Co], these are (a) [Co] ≧ 40 × [C] +3, (b) [ C] ≦ 0.15, (c) [Co] ≦ (70/3) × [C] +6, (d) [C]> 0.02, (e) [Co] ≧ −20 × [C] +6 Is a range that satisfies
And when the Ni content (mass%) is represented by [Ni] and the Co content (mass%) is represented by [Co],
The Ni equivalent expressed as [Ni] + 0.8 × [Co] is in the range of 35.5 to 36.5%,
Furthermore, when Mn content (% by mass) is represented by [Mn], S content (% by mass) is represented by [S], and the maximum thickness (mm) of the cast product is represented by t, [Mn] / [S] A low thermal expansion cast alloy characterized by satisfying ≧ 46−1335 / t + 1430 / t 2 , the balance being Fe and inevitable impurities.

(3)上記(1)または(2)に記載の組成を有し、20〜25℃の平均熱膨張係数が1×10-6/℃以下であることを特徴とする低熱膨張鋳造合金。 (3) A low thermal expansion cast alloy having the composition as described in (1) or (2) above, having an average coefficient of thermal expansion of 20 to 25 ° C. of 1 × 10 −6 / ° C. or less.

(4)上記(1)または(2)に記載の組成を有し、20〜25℃の平均熱膨張係数が0.5×10-6/℃以下であることを特徴とする低熱膨張鋳造合金。 (4) A low thermal expansion cast alloy having the composition described in the above (1) or (2) and having an average thermal expansion coefficient of 20 to 25 ° C. of 0.5 × 10 −6 / ° C. or less. .

(5)上記(1)または(2)に記載の組成を有する合金を、700〜950℃の温度範囲で加熱後、5℃/sec.以上の冷却速度で、450℃以下まで冷却することを特徴とする低熱膨張鋳造合金の製造方法。   (5) After heating the alloy having the composition described in (1) or (2) above in a temperature range of 700 to 950 ° C., 5 ° C./sec. The manufacturing method of the low thermal expansion cast alloy characterized by cooling to 450 degrees C or less with the above cooling rate.

本発明によれば、通常の大気溶解および大気鋳造が可能なレベルのCを含有しながら、スーパーインバーと同等の極めて小さい熱膨張係数を有する低熱膨張鋳造合金およびその製造方法が提供される。   According to the present invention, there is provided a low thermal expansion cast alloy having a very low thermal expansion coefficient equivalent to that of Super Invar and a method for producing the same, while containing C at a level that allows normal atmospheric dissolution and atmospheric casting.

また、本発明によれば、通常の大気溶解が可能なレベルのCを含有しながら、スーパーインバーと同等の極めて小さな熱膨張係数を有し、かつスーパーインバーよりも優れた被削性を有する低熱膨張鋳造合金およびその製造方法が提供される。   In addition, according to the present invention, low heat having a very low thermal expansion coefficient equivalent to that of Super Invar and having a machinability superior to that of Super Invar while containing C at a level capable of normal atmospheric dissolution. Expanded cast alloys and methods for making the same are provided.

本発明の合金および従来技術の合金におけるC含有量とCo含有量の範囲を示す図である。It is a figure which shows the range of C content and Co content in the alloy of this invention, and the alloy of a prior art. 本発明の合金と従来のスーパーインバーにおける熱膨張係数に及ぼすC含有量の影響を示す図である。It is a figure which shows the influence of C content which acts on the thermal expansion coefficient in the alloy of this invention, and the conventional super invar. 凝固割れ性評価試験片を示す図である。It is a figure which shows a solidification cracking evaluation test piece. 凝固割れに及ぼす鋳造品の最大肉厚とMn/Sとの関係を示す図である。It is a figure which shows the relationship between the maximum thickness of the casting and solid Mn / S which influences a solidification crack.

以下、添付図面を参照して本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

<第1の実施形態>
第1の実施形態は、通常の大気溶解および大気鋳造が可能なレベルのCを含有しながら、スーパーインバーと同等の低熱膨張係数の鋳造合金を得るものである。
<First Embodiment>
The first embodiment is to obtain a cast alloy having a low thermal expansion coefficient equivalent to that of Super Invar while containing C at a level that allows normal atmospheric dissolution and atmospheric casting.

以下、本実施形態における限定理由について詳細に説明する。なお、特に断わらない限り成分における%表示は質量%、熱膨張係数は20〜25℃の平均熱膨張係数である。   Hereinafter, the reason for limitation in the present embodiment will be described in detail. In addition, unless otherwise indicated, the% display in a component is a mass%, and a thermal expansion coefficient is an average thermal expansion coefficient of 20-25 degreeC.

[化学成分]
・C:0.02%超、0.15%以下
Cは熱膨張係数を著しく増加させる元素であり、従来のスーパーインバー組成(32%Ni−5%Co−残Fe)においては、Cを0.02%を超えて含有させると、1×10-6/℃以下の低熱膨張係数が得難いとされていた。しかし、Cはスーパーインバー組成の低熱膨張合金鋳造品の鋳造性や健全性を改善する効果があり、本発明では大気溶解においても健全な鋳造品が得られるように、適正な鋳造設計を行って、C含有量を0.02%超とする。具体的には、図1に示すように(詳細は後述)、Co量をC量に応じて調整することにより、C含有量が0.02%を超えても1×10-6/℃以下の低熱膨張係数を得ることを可能にした。しかし、その含有量が0.15%を超えると、組織中の一部に黒鉛を析出するようになり、固溶Cの量が変化するため、Co量の調整によっても1×10-6/℃以下の熱膨張係数が得られなくなる。したがって、C含有量を0.02%超、0.15%以下の範囲とする。
[Chemical composition]
C: more than 0.02% and not more than 0.15% C is an element that remarkably increases the coefficient of thermal expansion. In the conventional super invar composition (32% Ni-5% Co-residual Fe), C is 0 If the content exceeds 0.02%, it has been difficult to obtain a low thermal expansion coefficient of 1 × 10 −6 / ° C. or less. However, C has an effect of improving the castability and soundness of a low thermal expansion alloy cast product having a super invar composition, and in the present invention, an appropriate casting design is performed so that a sound cast product can be obtained even in air melting. The C content is more than 0.02%. Specifically, as shown in FIG. 1 (details will be described later), by adjusting the Co content according to the C content, even if the C content exceeds 0.02%, it is 1 × 10 −6 / ° C. or less. It was possible to obtain a low coefficient of thermal expansion. However, if its content exceeds 0.15%, graphite starts to precipitate in a part of the structure, and the amount of solute C changes. Therefore, even by adjusting the Co amount, 1 × 10 −6 / A coefficient of thermal expansion of less than 0 ° C cannot be obtained. Therefore, the C content is set to a range of more than 0.02% and 0.15% or less.

図2に従来合金(スーパーインバー)および本発明合金におけるC含有量と熱膨張率との関係を示す。この図に示すように、本発明においてはC含有量が多くても低熱膨張が得られることがわかる。   FIG. 2 shows the relationship between the C content and the coefficient of thermal expansion in the conventional alloy (Super Invar) and the alloy of the present invention. As shown in this figure, it can be seen that in the present invention, low thermal expansion is obtained even if the C content is large.

・Si:0.3%以下
Siは脱酸および湯流れ性改善を目的として添加する元素である。しかし、その含有量が0.3%超ではCと同様に熱膨張係数の増加が無視できなくなる。したがって、Si含有量を0.3%以下とする。
-Si: 0.3% or less Si is an element added for the purpose of deoxidation and improvement of hot water flow. However, if its content exceeds 0.3%, an increase in the coefficient of thermal expansion cannot be ignored like C. Therefore, the Si content is set to 0.3% or less.

・Mn:0.25〜0.6%
Mnは脱酸に有効な元素である。しかし、その含有量が0.25%未満ではその効果が少なく、0.6%を超えると熱膨張係数の増加が大きくなる。したがって、Mn含有量を0.25〜0.6%の範囲とする。
・ Mn: 0.25 to 0.6%
Mn is an element effective for deoxidation. However, if the content is less than 0.25%, the effect is small, and if it exceeds 0.6%, the thermal expansion coefficient increases greatly. Therefore, the Mn content is in the range of 0.25 to 0.6%.

・Co:5〜9.5%
Coは後述のNiとともに熱膨張係数を決定する重要な元素であり、しかもNi単独添加の場合より小さな熱膨張係数を得るためには不可欠な元素である。
5%未満では熱膨張係数が1×10-6/℃超となり、9.5%超では後述のC量に対してCo量を調整してもやはり熱膨張係数が1×10-6/℃を超える。したがって、Co含有量を5〜9.5%の範囲とする。
・ Co: 5 to 9.5%
Co is an important element that determines the thermal expansion coefficient together with Ni, which will be described later, and is an indispensable element for obtaining a smaller thermal expansion coefficient than when Ni alone is added.
If it is less than 5%, the coefficient of thermal expansion exceeds 1 × 10 −6 / ° C., and if it exceeds 9.5%, the coefficient of thermal expansion is still 1 × 10 −6 / ° C. even if the amount of Co is adjusted with respect to the amount of C described later. Over. Therefore, the Co content is in the range of 5 to 9.5%.

Ni:29〜32.5%
NiはCoとともに熱膨張係数を決定する重要な元素であり、Co量に応じて後述の範囲に調整することによって熱膨張係数を1×10-6/℃以下にできる。しかし、Niが29%未満、または32.5%超では、前記の調整によっても熱膨張係数が1×10-6/℃超になる。したがって、Niを29〜32.5%の範囲とする。
Ni: 29-32.5%
Ni is an important element that determines the thermal expansion coefficient together with Co, and the thermal expansion coefficient can be reduced to 1 × 10 −6 / ° C. or less by adjusting it to the range described later according to the amount of Co. However, if Ni is less than 29% or more than 32.5%, the thermal expansion coefficient exceeds 1 × 10 −6 / ° C. even by the above adjustment. Therefore, Ni is made 29 to 32.5% of range.

・CoおよびCが
(a)[Co]≧40×[C]+3、
(b)[C]≦0.15、
(c)[Co]≦(70/3)×[C]+6、
(d)[C]>0.02、
(e)[Co]≧−20×[C]+6
を満たす範囲
・[Ni]+0.8×[Co]が35.5〜36.5%の範囲
本発明者らが、合金中のC含有量とCo含有量とを詳細に検討した結果、従来検討されてこなかった、図1の領域Cに示す(a)[Co]≧40×[C]+3、(b)[C]≦0.15、(c)[Co]≦(70/3)×[C]+6、(d)[C]>0.02、(e)[Co]≧−20×[C]+6を満たす範囲とすれば、[Ni]+0.8×[Co]と表されるNi等量が、35.5〜36.5%の範囲で、1×10-6/℃以下の熱膨張係数が得られることが新たに見出された。ただし、[C]、[Co]、[Ni]は、各元素の含有量(質量%)である。
Co and C are (a) [Co] ≧ 40 × [C] +3,
(B) [C] ≦ 0.15,
(C) [Co] ≦ (70/3) × [C] +6,
(D) [C]> 0.02.
(E) [Co] ≧ −20 × [C] +6
[Ni] + 0.8 × [Co] is in a range of 35.5 to 36.5% As a result of detailed examinations of the C content and Co content in the alloy, (A) [Co] ≧ 40 × [C] +3, (b) [C] ≦ 0.15, (c) [Co] ≦ (70/3) shown in the region C of FIG. X [C] +6, (d) [C]> 0.02, (e) If [Co] ≧ −20 × [C] +6 is satisfied, [Ni] + 0.8 × [Co] It was newly found that a thermal expansion coefficient of 1 × 10 −6 / ° C. or less can be obtained when the Ni equivalent is in the range of 35.5 to 36.5%. However, [C], [Co], and [Ni] are contents (mass%) of each element.

図1の領域Cを外れる場合には、以下のような不都合が生じる。すなわち、[Co]<40×[C]+3(領域Cの下側)では熱膨張係数が1×10-6/℃を超え、[Co]<−20×[C]+6の領域(領域Cの下側)では、鋳造合金において1×10-6/℃以下の熱膨張係数を確実に得ることが難しく、[Co]>(70/3)×[C]+6の領域(領域Cの上側)では、組織の一部にマルテンサイト変態による膨張が起こり、[C]>0.15の領域(領域Cの右側)ではCが固溶限を超え、過飽和に固溶したり、黒鉛として析出したりして、熱膨張係数が不安定となり、[C]≦0.02の領域(領域Cの左側)では鋳造品に欠陥が多発するようになる。 When the area C is out of FIG. 1, the following inconvenience occurs. That is, in [Co] <40 × [C] +3 (below the region C), the thermal expansion coefficient exceeds 1 × 10 −6 / ° C., and the region of [Co] <− 20 × [C] +6 (region C In the lower side), it is difficult to reliably obtain a thermal expansion coefficient of 1 × 10 −6 / ° C. or lower in the cast alloy, and the region [Co]> (70/3) × [C] +6 (the upper side of the region C) ), Expansion occurs due to martensitic transformation in a part of the structure, and in the region of [C]> 0.15 (on the right side of region C), C exceeds the solid solubility limit and is dissolved in supersaturation or precipitated as graphite. As a result, the coefficient of thermal expansion becomes unstable, and in the region [C] ≦ 0.02 (left side of region C), defects frequently occur in the cast product.

また、Fe−Ni−Co合金の低熱膨張性は、[Ni]+0.8×[Co]で表されるNi等量が35.5〜36.5%の範囲で顕著に得られ、35.5%未満でも、36.6%超でも所望の低熱膨張性が得難くなる。したがって、Ni等量を35.5〜36.5%の範囲とする。   Further, the low thermal expansion of the Fe—Ni—Co alloy is remarkably obtained when the Ni equivalent represented by [Ni] + 0.8 × [Co] is in the range of 35.5 to 36.5%. Even if it is less than 5% or more than 36.6%, it is difficult to obtain a desired low thermal expansion property. Therefore, the Ni equivalent is set in the range of 35.5 to 36.5%.

残部は、Feおよび不可避的不純物である。本実施形態ではSは不純物として含まれる。   The balance is Fe and inevitable impurities. In this embodiment, S is contained as an impurity.

[製造条件]
これらの組成範囲の合金を高温加熱後に急冷すると、熱膨張係数を小さくできる。その理由として、急冷時に発生する内応力の作用で磁化状態が変化し、自発磁化ひずみに影響するためであると考えられる。加熱温度が700℃未満では、低熱膨張効果が不十分となり、また、950℃超では効果の向上がなく、かえって変形や割れを生ずる危険がある。加熱後、450℃までの平均冷却速度が5℃/sec.未満では、内応力発生が小さく、熱膨張係数の低減効果が少ない。したがって、700〜950℃の温度範囲で加熱した後、5℃/sec.以上の冷却速度で、450℃以下まで冷却する。
[Production conditions]
When an alloy having these composition ranges is rapidly cooled after high-temperature heating, the thermal expansion coefficient can be reduced. The reason for this is considered to be that the magnetization state changes due to the action of internal stress generated during rapid cooling, which affects the spontaneous magnetization strain. If the heating temperature is less than 700 ° C., the low thermal expansion effect is insufficient, and if it exceeds 950 ° C., the effect is not improved and there is a risk of causing deformation or cracking. After heating, the average cooling rate up to 450 ° C. is 5 ° C./sec. If the ratio is less than 1, the generation of internal stress is small, and the effect of reducing the thermal expansion coefficient is small. Therefore, after heating in the temperature range of 700 to 950 ° C., 5 ° C./sec. It cools to 450 degrees C or less with the above cooling rate.

以上のような本実施形態の鋳造合金は、1×10-6/℃以下の低熱膨張率を得ることができ、さらに組成を適正化することにより、0.5×10-6/℃以下という極めて低い熱膨張率を得ることができる。 The cast alloy of the present embodiment as described above can obtain a low coefficient of thermal expansion of 1 × 10 −6 / ° C. or less, and is 0.5 × 10 −6 / ° C. or less by optimizing the composition. An extremely low coefficient of thermal expansion can be obtained.

第1の実施形態では、スーパーインバーと同等の低熱膨張係数を有しつつ、通常の大気溶解および大気鋳造が可能なレベルのCを含有するので、低熱膨張鋳造合金を得ることができる。このため、低熱膨張の複雑形状品や大型部品を溶接することなく得ることができる。   In the first embodiment, since it has a low thermal expansion coefficient equivalent to that of Super Invar and contains C at a level that allows normal atmospheric melting and atmospheric casting, a low thermal expansion cast alloy can be obtained. For this reason, it can obtain without welding the complicated shape goods and large sized parts of low thermal expansion.

<第2の実施形態>
第2の実施形態は、通常の大気溶解および大気鋳造が可能なレベルのCを含有しながら、スーパーインバーと同等の熱膨張係数を得ることができ、さらに被削性も優れたものである。
<Second Embodiment>
The second embodiment can obtain a thermal expansion coefficient equivalent to that of Super Invar while containing C at a level that allows normal atmospheric dissolution and atmospheric casting, and has excellent machinability.

以下、本実施形態における限定理由について詳細に説明する。
本実施形態では、C、Si、Co、Niの含有量、およびC含有量とCo含有量との関係、Ni当量の範囲、ならびに製造条件については第1の実施形態と同様である。以下、第2の実施形態に特有な条件について説明する。
Hereinafter, the reason for limitation in the present embodiment will be described in detail.
In the present embodiment, the contents of C, Si, Co, and Ni, the relationship between the C content and the Co content, the Ni equivalent range, and the manufacturing conditions are the same as in the first embodiment. Hereinafter, conditions unique to the second embodiment will be described.

・Mn:0.25〜0.6%
Mnは脱酸に有効な元素であり、また、後述のようにSと硫化物を形成して被削性の向上に重要な役割を果たす。その含有量が0.25%未満ではその効果が少なく、0.6%を超えると熱膨張係数の増加が大きくなる。したがって、Mn含有量を0.25〜0.6%の範囲とする。
・ Mn: 0.25 to 0.6%
Mn is an element effective for deoxidation, and also plays an important role in improving machinability by forming sulfides with S as described later. If the content is less than 0.25%, the effect is small, and if it exceeds 0.6%, the thermal expansion coefficient increases greatly. Therefore, the Mn content is in the range of 0.25 to 0.6%.

・S:0.015〜0.035%
SはMnと硫化物を形成し、被削性向上に寄与するため、本実施形態では積極的に添加する。しかし、合金中に多量に含まれると、低融点のFeSが結晶粒界に生成して脆化し、延性の低下や割れの原因となり、0.035%を超えると複雑形状や大型の鋳造品に凝固割れを生じやすくなる。一方、その含有量が0.015%未満では被削性向上効果が小さい。したがって、S含有量を0.015〜0.035%の範囲とする。
・ S: 0.015-0.035%
Since S forms sulfides with Mn and contributes to improvement of machinability, it is positively added in this embodiment. However, if it is contained in a large amount in the alloy, low melting point FeS is formed at the grain boundary and becomes brittle, causing ductility and cracking. If it exceeds 0.035%, it becomes a complicated shape or a large casting. Prone to solidification cracking. On the other hand, if the content is less than 0.015%, the machinability improving effect is small. Therefore, the S content is in the range of 0.015 to 0.035%.

・[Mn]/[S]≧46−1335/t+13430/t2
(ただし、[Mn]、[S]はこれらの含有量、tは鋳造品の最大肉厚(mm)を表す)
[Mn]/[S]は、硫化物の生成量や組成を左右し、凝固割れの傾向を決定する重要なパラメータとなる。また凝固割れの傾向は、MnとSの比のみならず、tにも影響される。前述のMnおよびSの範囲において、[Mn]/[S]が46−1335/t+13430/t2未満では、Sに対しMnが不足し、過剰なSが上述のFeSを形成し、凝固割れ等の原因となる。一方、[Mn]/[S]が46−1335/t+13430/t2以上では、Sは高融点のMnSとして存在するため凝固割れを起こしにくくなる。
[Mn] / [S] ≧ 46-1335 / t + 1430 / t 2
(However, [Mn] and [S] are their contents, and t is the maximum thickness (mm) of the cast product)
[Mn] / [S] influences the amount and composition of sulfides and is an important parameter for determining the tendency of solidification cracking. The tendency of solidification cracking is influenced not only by the ratio of Mn and S but also by t. In the range of Mn and S described above, when [Mn] / [S] is less than 46-1335 / t + 1430 / t 2 , Mn is insufficient with respect to S, and excessive S forms the above-described FeS, which causes solidification cracking, etc. Cause. On the other hand, when [Mn] / [S] is 46-1335 / t + 1430 / t 2 or more, since S exists as MnS having a high melting point, it is difficult to cause solidification cracking.

凝固割れに対する鋳造品の最大肉厚t(mm)の影響は、図3に示す凝固割れ試験片のR(mm)と関係があるため、割れ試験片を用いてtと凝固割れの関係を把握することができる。本発明者の知見によれば、Rとtの関係は、ほぼt=500/Rで表される。すなわち、Rが小さいほど厚肉の鋳造品を模擬することとなる。   Since the influence of the maximum thickness t (mm) of the cast product on solidification cracking is related to R (mm) of the solidification cracking specimen shown in FIG. 3, the relation between t and solidification cracking is grasped using the cracking specimen. can do. According to the knowledge of the present inventor, the relationship between R and t is approximately expressed by t = 500 / R. That is, as R is smaller, a thick cast product is simulated.

実際に図3に示す凝固割れ試験片のRの大きさと[Mn]/[S]による凝固割れの有無を、表2に示す実施例のNo.21〜24を用いて把握した結果を図4に示す。図4には、Rの大きさとともに相当する最大肉厚(mm)も示している。 Actually, the size of R of the solidification cracking test piece shown in FIG. The results obtained using 21 to 24 are shown in FIG. FIG. 4 also shows the maximum thickness t (mm) corresponding to the size of R.

図4に示すように、Rが小さいほど、すなわち相当肉厚が大きいほど、凝固割れが発生し難い[Mn]/[S]の値が大きくなり、凝固割れが発生し難くなる境界線は46−1335/t+13430/t2で表される。したがって、[Mn]/[S]≧46−1335/t+13430/t2と規定する。例えば、最大肉厚が100mmの鋳造品に対してはMn/Sをおよそ34程度にすれば効果的に凝固割れを防止することができる。 As shown in FIG. 4, the smaller the R, that is, the greater the corresponding wall thickness, the larger the value of [Mn] / [S] that is less likely to cause solidification cracks, and the boundary line that is less likely to cause solidification cracks is 46. It is represented by −1335 / t + 1430 / t 2 . Therefore, it is defined as [Mn] / [S] ≧ 46−1335 / t + 1430 / t 2 . For example, solidification cracking can be effectively prevented by setting Mn / S to about 34 for a casting having a maximum thickness of 100 mm.

本実施形態においては、C、Si、Mn、S、Co、Niの残部は、Feおよび不可避的不純物である。   In the present embodiment, the balance of C, Si, Mn, S, Co, and Ni is Fe and inevitable impurities.

なお、本実施形態では、第1の実施形態の合金にさらにSを含有した組成であるが、本実施形態の範囲のS含有量であれば、熱膨張に影響を与えない。すなわち、本実施形態の鋳造合金も第1の実施形態の鋳造合金と同様、1×10-6/℃以下の低熱膨張率を得ることができ、さらに組成を適正化することにより、0.5×10-6/℃以下という極めて低い熱膨張率を得ることができる。 In the present embodiment, the alloy of the first embodiment further contains S. However, if the S content is within the range of the present embodiment, thermal expansion is not affected. That is, the cast alloy of the present embodiment can obtain a low coefficient of thermal expansion of 1 × 10 −6 / ° C. or less, as well as the cast alloy of the first embodiment. A very low coefficient of thermal expansion of × 10 −6 / ° C. or less can be obtained.

第2の実施形態では、スーパーインバーと同等の低熱膨張係数を有しつつ、通常の大気溶解および大気鋳造が可能なレベルのCを含有し、しかも凝固割れを生じさせずに被削性を向上させた、快削性低熱膨張鋳造合金を得ることができる。このため、低熱膨張の複雑形状品や大型部品を、溶接することなく、かつ良好な切削性で製作することができる。   In the second embodiment, while having a low thermal expansion coefficient equivalent to that of Super Invar, it contains C at a level that allows normal atmospheric dissolution and casting, and improves machinability without causing solidification cracking. Thus, a free-cutting low thermal expansion cast alloy can be obtained. For this reason, it is possible to manufacture a complex shape product or a large component with low thermal expansion without welding and with good machinability.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

<第1の実施例>
第1の実施例は、第1の実施形態に対応するものである。
ここでは、表1に示す各化学組成の合金を高周波誘導炉で大気溶解し、JIS
G0307の図1b)に準拠した供試材を鋳造した。いずれも鋳型にはCO法珪砂型を用いた。
<First embodiment>
The first example corresponds to the first embodiment.
Here, alloys having chemical compositions shown in Table 1 are melted in the atmosphere in a high frequency induction furnace, and JIS
A specimen according to FIG. 1b) of G0307 was cast. In either case, a CO 2 silica sand mold was used as a mold.

各供試材に表3の条件の熱処理を施した後、φ6×12mmの熱膨張試験片を採取し、20〜25℃間の平均熱膨張係数をレーザー干渉式熱膨張計によって測定した。 After subjecting each test material to heat treatment under Condition 8 in Table 3, a φ6 × 12 mm thermal expansion test piece was sampled, and an average thermal expansion coefficient between 20 and 25 ° C. was measured with a laser interference thermal dilatometer.

その結果を表1に示す。表1に示すように、本発明合金であるNo.1〜7はいずれも20〜25℃間の平均熱膨張係数が1×10-6/℃以下であり、そのうちNo.1とNo.2およびNo.7は0.5×10-6/℃以下で、特にNo.1では0.2×10-6/℃未満であり、従来のスーパーインバーと同等であって、最近の厳しい要求にも応えられる特性を持っていることが確認された。また、これらは全て鋳造欠陥がなく、良好な鋳造性が得られた。 The results are shown in Table 1. As shown in Table 1, no. Nos. 1 to 7 all have an average coefficient of thermal expansion between 20 and 25 ° C. of 1 × 10 −6 / ° C. or less. 1 and No. 2 and no. No. 7 is 0.5 × 10 −6 / ° C. or less . 1 is less than 0.2 × 10 −6 / ° C., which is equivalent to a conventional super invar, and has been confirmed to have characteristics that can meet recent severe demands. Moreover, all of these had no casting defects and good castability was obtained.

一方、比較例では、No.8はCが下限未満であったため、ガス欠陥が発生し、鋳造性が悪かった。また、No.9〜15については、No.9はSiとNiが上限を超え、Coが下限未満であり、No.10はNiが下限未満、Coが上限超で、さらにC含有量とCo含有量との関係が図1の発明範囲から外れており、マルテンサイト変態を生じ、No.11およびNo.12は個々の元素は範囲内であるが、C含有量とCo含有量との関係が図1の発明範囲から外れており、マルテンサイト変態を生じ、No.13およびNo.14は共に個々の元素は範囲内であるが、Ni等量がNo.13は下限未満であり、No.14は上限を超えており、さらにNo.15はCが上限を超え組織中に黒鉛を生じ、組織が不安定になり、いずれも所望の熱膨張係数が得られなかった。   On the other hand, in the comparative example, no. Since C was less than the lower limit of No. 8, gas defects occurred and the castability was poor. No. For Nos. 9-15, no. No. 9 has Si and Ni exceeding the upper limit, Co being less than the lower limit, No. 10 has Ni below the lower limit, Co exceeds the upper limit, and the relationship between the C content and the Co content is outside the scope of the invention of FIG. 11 and no. No. 12 is within the range of each element, but the relationship between the C content and the Co content is out of the scope of the invention of FIG. 13 and no. 14 is within the range of the individual elements, but the Ni equivalent is No. 14. 13 is less than the lower limit. 14 exceeds the upper limit. In No. 15, C exceeded the upper limit, graphite was formed in the structure, the structure became unstable, and none of the desired thermal expansion coefficients could be obtained.

Figure 0005893659
Figure 0005893659

<第2の実施例>
第2の実施例は、第2の実施形態に対応するものである。
ここでは、表2に示す各化学組成の合金を高周波誘導炉で大気溶解し、JIS
G0307の図1b)に準拠した供試材および60mm×250mm×25mmの被削性試験片を、また表2のNo.21〜No.24とNo.37の合金については図3に示す凝固割れ試験片を鋳造した。いずれも鋳型にはCO法珪砂型を用いた。
<Second embodiment>
The second example corresponds to the second embodiment.
Here, alloys of chemical compositions shown in Table 2 are melted in the atmosphere in a high frequency induction furnace, and JIS
G0307 according to FIG. 1b) and a test piece of 60 mm × 250 mm × 25 mm machinability test piece, 21-No. 24 and no. For the alloy No. 37, a solidified cracking test piece shown in FIG. 3 was cast. In either case, a CO 2 silica sand mold was used as a mold.

第1の実施例と同じ熱処理を施した後、φ6×12mmの熱膨張試験片を供試材から採取し、20〜25℃間の平均熱膨張係数をレーザー干渉式熱膨張計によって測定した。   After performing the same heat treatment as in the first example, a φ6 × 12 mm thermal expansion test piece was taken from the test material, and the average thermal expansion coefficient between 20 and 25 ° C. was measured with a laser interference thermal dilatometer.

割れ試験片は、図3中の4種類のR部の割れの有無を染色浸透探傷検査法にて確認した。   The crack test piece confirmed the presence or absence of the crack of four types of R parts in FIG. 3 with the dyeing | penetration penetrant inspection method.

被削性試験は、60mm×250mmの2面が平行となるよう平面研削した後、φ5mmの高速度鋼製工具を装着したドリル用い、回転数1274RPM、送り0.2mm/回転、潤滑無しで深さ10mmの穴加工を行い、25穴以上穿孔できた場合を被削性良好と判定した。   In the machinability test, surface grinding was performed so that two surfaces of 60 mm x 250 mm were parallel, and then a drill equipped with a high-speed steel tool of φ5 mm was used. A hole having a thickness of 10 mm was drilled, and a case where 25 holes or more could be drilled was determined to have good machinability.

これらの結果を表2に示す。表2に示すように、本発明合金はであるNo.21〜28は、いずれも20〜25℃間の平均熱膨張係数が1×10-6/℃以下であり、そのうちNo.21とNo.27およびNo.28は0.5×10-6/℃以下で、特にNo.28は0.2×10-6/℃と従来のスーパーインバーと同等であって、最近の厳しい要求にも応えられる特性を持っていることが確認された。また、鋳造の際にガス欠陥が生じず、また凝固割れ試験片のいずれのR部にも割れは確認できず、良好な耐凝固割れ性を示した。さらに、被削性も良好であった。 These results are shown in Table 2. As shown in Table 2, the alloy of the present invention is No. Nos. 21 to 28 all have an average coefficient of thermal expansion of 1 × 10 −6 / ° C. or less between 20 to 25 ° C. 21 and no. 27 and no. 28 is 0.5 × 10 −6 / ° C. or less . No. 28 is 0.2 × 10 −6 / ° C., which is equivalent to the conventional super invar, and it has been confirmed that it has characteristics that can meet recent severe demands. In addition, no gas defects were produced during casting, and no cracks could be confirmed in any R part of the solidification cracking test piece, indicating good solidification cracking resistance. Furthermore, machinability was also good.

一方、比較例では、No.29はCが下限未満であったため、熱膨張係数は低いが、ガス欠陥が発生し、鋳造性が悪かった。また、No.30〜35については、No.30はSiが上限を超え、C含有量とCo含有量との関係が図1の発明範囲から外れており、No.31は個々の元素は範囲内であるがC含有量とCo含有量との関係が図1の発明範囲から外れており、No.32はNiが下限未満で、Cが上限超で組織中に黒鉛を生じ、組織が不安定になり、No.33はNiが下限未満でマルテンサイト変態を生じ、No.34はNi等量が下限未満であり、No.35はNi等量が上限超であり、No.36はCoが下限未満であり、いずれも所望の熱膨張係数が得られなかった。さらに、比較例のNo.37はMn/Sの値が、R20で割れが発生しない15より小さかったため、割れ試験片のすべてのR部に割れが認められた。さらにまた、比較例のNo.38は、Sが下限未満であったため、被削性は良くなかった。   On the other hand, in the comparative example, no. Since C was less than the lower limit of No. 29, the coefficient of thermal expansion was low, but gas defects occurred and the castability was poor. No. For Nos. 30 to 35, no. In No. 30, Si exceeded the upper limit, and the relationship between the C content and the Co content deviated from the scope of the invention of FIG. No. 31 is within the range of the individual elements, but the relationship between the C content and the Co content is out of the invention range of FIG. In No. 32, Ni is less than the lower limit, C exceeds the upper limit, graphite is formed in the structure, and the structure becomes unstable. No. 33 causes martensitic transformation when Ni is less than the lower limit. No. 34 has Ni equivalent below the lower limit. No. 35 has a Ni equivalent exceeding the upper limit. In No. 36, Co was less than the lower limit, and any desired thermal expansion coefficient could not be obtained. Furthermore, No. of the comparative example. In No. 37, the value of Mn / S was smaller than 15 at which cracks did not occur at R20. Therefore, cracks were observed in all R parts of the cracked test pieces. Furthermore, the comparative example No. In No. 38, machinability was not good because S was less than the lower limit.

Figure 0005893659
Figure 0005893659

<第3の実施例>
第3の実施例は、製造条件に関するものである。
ここでは、まず、表1のNo.5の組成を有し、表3に示す条件1〜13の各熱処理条件で熱処理した複数の試験体を準備し、熱膨張係数を求めた。その結果を表4に示す。表4に示すように、700〜950℃の温度範囲で加熱後、5℃/sec.以上の冷却速度で、450℃以下まで冷却する条件を満たす条件5、6、8、9、11であれば、熱膨張係数が1×10-6/℃以下となり、割れも発生しないことが確認された。これに対し、これを外れる条件1、2、3、4、7、10、12では熱膨張係数が1×10-6/℃を超え、条件13では熱膨張係数が1×10-6/℃以下であるが、試験体に微細な割れが認められた。
<Third embodiment>
The third embodiment relates to manufacturing conditions.
Here, first, in Table 1, No. A plurality of test bodies having a composition of 5 and heat-treated under the respective heat treatment conditions 1 to 13 shown in Table 3 were prepared, and the thermal expansion coefficient was obtained. The results are shown in Table 4. As shown in Table 4, after heating in the temperature range of 700 to 950 ° C., 5 ° C./sec. If conditions 5, 6, 8, 9, and 11 satisfying the conditions for cooling to 450 ° C. or lower at the above cooling rate, the thermal expansion coefficient is 1 × 10 −6 / ° C. or lower and cracks are not generated. It was done. On the other hand, in conditions 1, 2, 3, 4, 7, 10, and 12 that deviate from this, the thermal expansion coefficient exceeds 1 × 10 −6 / ° C., and in condition 13 the thermal expansion coefficient is 1 × 10 −6 / ° C. Although it is as follows, fine cracks were observed in the specimen.

次に、表2のNo.25の組成合金を、同様に、表3に示す条件1〜13の各熱処理条件で熱処理した複数の試験体を準備し、熱膨張係数を求めた。その結果を表5に示す。表5に示すように、No.5の組成と同様に、700〜950℃の温度範囲で加熱後、5℃/sec.以上の冷却速度で、450℃以下まで冷却する条件を満たす条件5、6、8、9,11であれば、熱膨張係数が1×10-6/℃以下となり、割れも発生しないことが確認された。これに対し、これを外れる条件1、2、3、4、7、10、12では熱膨張係数が1×10-6/℃を超え、条件13では熱膨張係数が1×10-6/℃以下であるが、試験体に微細な割れが認められた。 Next, no. Similarly, a plurality of test bodies were prepared by heat-treating 25 composition alloys under the respective heat treatment conditions 1 to 13 shown in Table 3, and the thermal expansion coefficient was obtained. The results are shown in Table 5. As shown in Table 5, no. Similarly to the composition of No. 5, after heating in a temperature range of 700 to 950 ° C., 5 ° C./sec. If conditions 5, 6, 8, 9, and 11 satisfying the conditions for cooling to 450 ° C. or lower at the above cooling rate, the thermal expansion coefficient is 1 × 10 −6 / ° C. or lower and cracks are not generated. It was done. On the other hand, in conditions 1, 2, 3, 4, 7, 10, and 12 that deviate from this, the thermal expansion coefficient exceeds 1 × 10 −6 / ° C., and in condition 13 the thermal expansion coefficient is 1 × 10 −6 / ° C. Although it is as follows, fine cracks were observed in the specimen.

Figure 0005893659
Figure 0005893659

Figure 0005893659
Figure 0005893659

Figure 0005893659
Figure 0005893659

Claims (5)

質量%で、
C :0.02%超、0.15%以下、
Si:0.3%以下、
Mn:0.25〜0.6%、
Ni:29〜32.5%、
Co:5〜9.5%
を含有し、
かつC含有量(質量%)を[C]、Co含有量(質量%)を[Co]と表した場合に、これらが(a)[Co]≧40×[C]+3、(b)[C]≦0.15、(c)[Co]≦(70/3)×[C]+6、(d)[C]>0.02、(e)[Co]≧−20×[C]+6を満たす範囲であり、
Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]で表した場合に、[Ni]+0.8×[Co]と表されるNi当量が、35.5〜36.5%の範囲であり、残部がFeおよび不可避的不純物からなる(ただし、C:0.052%、Si:0.19%、Mn:0.61%、Ni:32.21%、Co:5.07%を含有し、残部がFeおよび不可避的不純物からなる組成を除く)ことを特徴とする低熱膨張鋳造合金。
% By mass
C: more than 0.02%, 0.15% or less,
Si: 0.3% or less,
Mn: 0.25 to 0.6%,
Ni: 29-32.5%,
Co: 5 to 9.5%
Containing
When the C content (mass%) is expressed as [C] and the Co content (mass%) is expressed as [Co], these are (a) [Co] ≧ 40 × [C] +3, (b) [ C] ≦ 0.15, (c) [Co] ≦ (70/3) × [C] +6, (d) [C]> 0.02, (e) [Co] ≧ −20 × [C] +6 Is a range that satisfies
When the Ni content (mass%) is represented by [Ni] and the Co content (mass%) is represented by [Co], the Ni equivalent represented by [Ni] + 0.8 × [Co] is 35.5. ˜36.5%, the balance being Fe and inevitable impurities (provided that C: 0.052%, Si: 0.19%, Mn: 0.61%, Ni: 32.21%, Co: 5.07% is contained, and the balance is excluding the composition consisting of Fe and inevitable impurities).
質量%で、
C :0.02%超、0.15%以下、
Si:0.3%以下、
Mn:0.25〜0.6%、
S:0.015〜0.035%
Ni:29〜32.5%、
Co:5〜9.5%
を含有し、
かつC含有量(質量%)を[C]、Co含有量(質量%)を[Co]と表した場合に、これらが(a)[Co]≧40×[C]+3、(b)[C]≦0.15、(c)[Co]≦(70/3)×[C]+6、(d)[C]>0.02、(e)[Co]≧−20×[C]+6を満たす範囲であり、
かつNi含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]で表した場合に、[Ni]+0.8×[Co]と表されるNi当量が、35.5〜36.5%の範囲であり、
さらに、Mn含有量(質量%)を[Mn]、S含有量(質量%)を[S]、鋳造品の最大肉厚(mm)をtで表した場合に、[Mn]/[S]≧46−1335/t+13430/t2を満たし、残部がFeおよび不可避的不純物からなることを特徴とする低熱膨張鋳造合金。
% By mass
C: more than 0.02%, 0.15% or less,
Si: 0.3% or less,
Mn: 0.25 to 0.6%,
S: 0.015-0.035%
Ni: 29-32.5%,
Co: 5 to 9.5%
Containing
When the C content (mass%) is expressed as [C] and the Co content (mass%) is expressed as [Co], these are (a) [Co] ≧ 40 × [C] +3, (b) [ C] ≦ 0.15, (c) [Co] ≦ (70/3) × [C] +6, (d) [C]> 0.02, (e) [Co] ≧ −20 × [C] +6 Is a range that satisfies
And when Ni content (mass%) is represented by [Ni] and Co content (mass%) is represented by [Co], the Ni equivalent represented by [Ni] + 0.8 × [Co] is 35. 5 to 36.5% of range,
Furthermore, when Mn content (% by mass) is represented by [Mn], S content (% by mass) is represented by [S], and the maximum thickness (mm) of the cast product is represented by t, [Mn] / [S] A low thermal expansion cast alloy characterized by satisfying ≧ 46−1335 / t + 1430 / t 2 , the balance being Fe and inevitable impurities.
請求項1または請求項2に記載の組成を有し、20〜25℃の平均熱膨張係数が1×10-6/℃以下であることを特徴とする低熱膨張鋳造合金。 A low thermal expansion cast alloy having the composition according to claim 1 or 2 and having an average thermal expansion coefficient of 20 to 25 ° C of 1 x 10 -6 / ° C or less. 請求項1または請求項2に記載の組成を有し、20〜25℃の平均熱膨張係数が0.5×10-6/℃以下であることを特徴とする低熱膨張鋳造合金。 A low thermal expansion cast alloy having the composition according to claim 1 or 2 and having an average coefficient of thermal expansion of 20 to 25 ° C of 0.5 × 10 -6 / ° C or less. 請求項1または請求項2に記載の組成を有する合金を、700〜950℃の温度範囲で加熱後、5℃/sec.以上の冷却速度で、450℃以下まで冷却することを特徴とする低熱膨張鋳造合金の製造方法。   The alloy having the composition according to claim 1 or 2 is heated in a temperature range of 700 to 950 ° C, and then 5 ° C / sec. The manufacturing method of the low thermal expansion cast alloy characterized by cooling to 450 degrees C or less with the above cooling rate.
JP2014045971A 2014-03-10 2014-03-10 Low thermal expansion cast alloy and manufacturing method thereof Active JP5893659B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014045971A JP5893659B2 (en) 2014-03-10 2014-03-10 Low thermal expansion cast alloy and manufacturing method thereof
PCT/JP2014/079097 WO2015136766A1 (en) 2014-03-10 2014-10-31 Low thermal expansion casting alloy and method for producing same
KR1020167007739A KR102077297B1 (en) 2014-03-10 2014-10-31 Low thermal expansion casting alloy and method for producing same
CN201480059372.XA CN106103767B (en) 2014-03-10 2014-10-31 Low thermal expansion foundry alloy and its manufacturing method
TW103139053A TWI568861B (en) 2014-03-10 2014-11-11 Low thermal expansion casting alloy and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014045971A JP5893659B2 (en) 2014-03-10 2014-03-10 Low thermal expansion cast alloy and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2015168865A JP2015168865A (en) 2015-09-28
JP2015168865A5 JP2015168865A5 (en) 2015-12-17
JP5893659B2 true JP5893659B2 (en) 2016-03-23

Family

ID=54071232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014045971A Active JP5893659B2 (en) 2014-03-10 2014-03-10 Low thermal expansion cast alloy and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP5893659B2 (en)
KR (1) KR102077297B1 (en)
TW (1) TWI568861B (en)
WO (1) WO2015136766A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230082149A1 (en) * 2020-04-27 2023-03-16 Shinhokoku Material Corp. Low thermal expansion cast steel and method of production of same
EP4183501A1 (en) * 2020-07-17 2023-05-24 Shinhokoku Material Corp. Low thermal expansion casting and method for producing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350446A (en) * 1986-08-19 1988-03-03 Hitachi Metarupureshijiyon:Kk Low thermal expansion alloy
JPH11279707A (en) * 1998-03-31 1999-10-12 Nippon Chuzo Kk Free machining low thermal expansion alloy and its production
JP2001011580A (en) * 1999-07-02 2001-01-16 Shin-Hokoku Steel Corp LOW TEMPERATURE STABLE TYPE Ni-Co-Fe BASE LOW THERMAL EXPANSION ALLOY
JP2001192776A (en) * 1999-10-29 2001-07-17 Dainippon Printing Co Ltd Extension type shadow mask
JP4253100B2 (en) * 2000-03-17 2009-04-08 日本鋳造株式会社 Low thermal expansion alloy with excellent machinability and manufacturing method thereof
JP2002206142A (en) 2000-12-28 2002-07-26 Kobe Steel Ltd Free cutting low thermal expansion alloy for casting
JP4615210B2 (en) 2003-12-16 2011-01-19 財団法人国際科学振興財団 Immersion exposure equipment
JP2010206615A (en) 2009-03-04 2010-09-16 Mitsubishi Electric Corp Optical microwave oscillator

Also Published As

Publication number Publication date
TW201534740A (en) 2015-09-16
KR20160131997A (en) 2016-11-16
WO2015136766A1 (en) 2015-09-17
JP2015168865A (en) 2015-09-28
TWI568861B (en) 2017-02-01
CN106103767A (en) 2016-11-09
KR102077297B1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
JP5299610B2 (en) Method for producing Ni-Cr-Fe ternary alloy material
TWI606124B (en) Steel for mechanical structure for cold room processing and manufacturing method thereof
JP6046591B2 (en) Austenitic heat-resistant cast steel
CN105143480A (en) Copper-nickel-tin alloy with high toughness
JP6188643B2 (en) Extremely low thermal expansion alloy and manufacturing method thereof
JP7310978B2 (en) Manufacturing method of precipitation hardening Ni alloy
JP6656013B2 (en) Low thermal expansion cast steel product and method of manufacturing the same
JP2019065344A (en) Low thermal expansion alloy
JP5893659B2 (en) Low thermal expansion cast alloy and manufacturing method thereof
JP5273952B2 (en) Hot forging die and manufacturing method thereof
JP4253100B2 (en) Low thermal expansion alloy with excellent machinability and manufacturing method thereof
JP6793583B2 (en) Low thermal expansion alloy
JP6753850B2 (en) High-strength, low-heat expansion casting alloys for high temperatures, their manufacturing methods, and castings for turbines
JP6949352B2 (en) Low thermal expansion alloy
JP2015168865A5 (en)
JP6205854B2 (en) Vacuum carburizing method
JP2010095747A (en) Method for producing low thermal-expansion cast iron material
JP6085210B2 (en) Case-hardened steel with excellent rolling fatigue characteristics and method for producing the same
CN106103767B (en) Low thermal expansion foundry alloy and its manufacturing method
JP6872786B2 (en) Low thermal expansion cast steel and forged steel with low anisotropy and little aging
JP6692466B2 (en) Low thermal expansion alloy
JP5518244B1 (en) Low thermal expansion casting
JP6270559B2 (en) Low thermal expansion casting
JP2022158883A (en) Steel wire for machine structural component and its manufacturing method
TWI491744B (en) Austenitic alloy and method of making the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151102

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20151102

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160224

R150 Certificate of patent or registration of utility model

Ref document number: 5893659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250