JP4613637B2 - Method for manufacturing organic electroluminescence element - Google Patents

Method for manufacturing organic electroluminescence element Download PDF

Info

Publication number
JP4613637B2
JP4613637B2 JP2005046652A JP2005046652A JP4613637B2 JP 4613637 B2 JP4613637 B2 JP 4613637B2 JP 2005046652 A JP2005046652 A JP 2005046652A JP 2005046652 A JP2005046652 A JP 2005046652A JP 4613637 B2 JP4613637 B2 JP 4613637B2
Authority
JP
Japan
Prior art keywords
electrode layer
layer
side electrode
forming
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005046652A
Other languages
Japanese (ja)
Other versions
JP2006236649A (en
Inventor
彰男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2005046652A priority Critical patent/JP4613637B2/en
Publication of JP2006236649A publication Critical patent/JP2006236649A/en
Application granted granted Critical
Publication of JP4613637B2 publication Critical patent/JP4613637B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、テレビやパソコンモニタ、携帯電話等の携帯端末などに使用されるフラットパネルディスプレイや、面発光光源、照明、発光型広告体などとして、幅広い用途が期待される有機エレクトロルミネッセンス素子(以下、有機EL素子とする)に関するものである。   The present invention is an organic electroluminescence element (hereinafter, referred to as a flat panel display used for a portable terminal such as a television, a personal computer monitor, a mobile phone, etc.), a surface-emitting light source, illumination, a light-emitting advertising body, and the like. , An organic EL element).

有機EL素子は、広視野角、応答速度が速い、低消費電力などの利点から、ブラウン管や液晶ディスプレイに変わるフラットパネルディスプレイとして期待されている。   The organic EL element is expected as a flat panel display that is replaced with a cathode ray tube or a liquid crystal display because of advantages such as a wide viewing angle, a high response speed and low power consumption.

有機EL素子は、陽極層と陰極層との間に有機発光媒体層を挟持した構造であり、両電極間に電圧を印可し電流を流すことにより有機発光媒体層で発光が生じる自発光型の表示素子である。一般的に、陽極層には透明電極が用いられ、有機発光媒体層で生じた光は、透明陽極層側から取り出される。   An organic EL element has a structure in which an organic light emitting medium layer is sandwiched between an anode layer and a cathode layer, and a self-luminous type in which light is emitted from the organic light emitting medium layer by applying a voltage between both electrodes and passing a current. It is a display element. Generally, a transparent electrode is used for the anode layer, and light generated in the organic light emitting medium layer is extracted from the transparent anode layer side.

ディスプレイの駆動方式としては、パッシブマトリクス駆動とアクティブマトリクス駆動があるが、ディスプレイを大型、高精細化するためには、画素毎にスイッチ(TFT)で駆動するアクティブマトリクス駆動が低電圧駆動できるため有利である。しかし基材上に、TFT、透明陽極層を形成し、透明陽極層側から光を取り出す下面発光型素子(ボトムエミッション素子)は、基材上のTFTや配線などにより開口率が制限され、光の取出し効率が低下するといった問題があった。   There are two types of display drive methods: passive matrix drive and active matrix drive. To increase the size and definition of the display, active matrix drive driven by a switch (TFT) for each pixel can be driven at low voltage. It is. However, the bottom emission element (bottom emission element), in which a TFT and a transparent anode layer are formed on a base material and light is extracted from the transparent anode layer side, has an aperture ratio limited by the TFT or wiring on the base material. There was a problem that the take-out efficiency of the product was lowered.

これに対して、近年、TFT基材の反対側から光を取り出す上面発光型素子(トップエミッション素子)が考案された。上面発光型素子は、従来の下面発光素子よりも開口率を大きくすることができるため、光の取出し効率が向上する(特許文献1参照)。TFT基材の反対側から光を取り出す手段として、陰極層を透明電極化する方法、基材上に陽極層と陰極層を形成する順序を逆にする方法などが公知である。   On the other hand, in recent years, a top emission element (top emission element) that takes out light from the opposite side of the TFT substrate has been devised. Since the top emission element can have a larger aperture ratio than the conventional bottom emission element, the light extraction efficiency is improved (see Patent Document 1). As means for extracting light from the opposite side of the TFT substrate, a method of forming the cathode layer as a transparent electrode, a method of reversing the order of forming the anode layer and the cathode layer on the substrate, and the like are known.

このうち、前者の陰極層を透明電極化する方法によると、陰極層に透過率と抵抗率を両立する材料を用いる必要があるが、従来陰極層として用いられてきた金属材料では、この条件を満たすことが困難である。そこで、従来透明電極として陽極に使われていたITOを、陰極材料として使うことが考えられた。しかし、ITOを単独で用いるのは、電子注入性が損なわれるため好ましくない。そこで、電子注入性に優れた低仕事関数の金属材料を透過率に支障のない範囲で有機発光媒体層上に薄膜形成した後に、透過率と低効率に優れたITOなどの透明電極を、その上に積層形成する電極構造とすることにより、電子注入性と透光性、低抵抗性を両立する陰極層を形成することができることが知られていた。   Of these, according to the former method of converting the cathode layer to a transparent electrode, it is necessary to use a material having both transmittance and resistivity for the cathode layer. It is difficult to meet. Therefore, it has been considered to use ITO, which has been conventionally used for the anode as a transparent electrode, as a cathode material. However, it is not preferable to use ITO alone because electron injection properties are impaired. Therefore, after forming a thin film of a low work function metal material with excellent electron injection properties on the organic light emitting medium layer within a range that does not affect the transmittance, a transparent electrode such as ITO having excellent transmittance and low efficiency is obtained. It has been known that a cathode layer having both electron injecting property, translucency, and low resistance can be formed by forming an electrode structure laminated on top.

しかし、透明電極層として用いられるITOは、一般的にスパッタリング法などプラズマを用いた成膜法で有機発光媒体層上に形成されるため、透明電極層の成膜時にスパッタリング装置のプラズマ発生部から飛来したプラズマにより、有機発光媒体層がダメージを受け、製造した有機EL素子の発光効率の低下してしまうという問題があった。   However, since ITO used as a transparent electrode layer is generally formed on an organic light emitting medium layer by a film forming method using plasma such as a sputtering method, the plasma generating part of the sputtering apparatus is used when forming the transparent electrode layer. There has been a problem that the organic light emitting medium layer is damaged by the flying plasma, and the light emission efficiency of the manufactured organic EL element is lowered.

また、後者の基材上に陽極層と陰極層を形成する順序を逆にする方法においても、有機発光媒体層上に透明電極を、スパッタリング法などプラズマを用いた成膜法で形成するので、前者の方法と同様に、有機発光媒体層がプラズマによりダメージを受ける問題があった。
特開平2001−43980号公報
Also, in the method of reversing the order of forming the anode layer and the cathode layer on the latter substrate, a transparent electrode is formed on the organic light emitting medium layer by a film forming method using plasma, such as a sputtering method. Similar to the former method, there is a problem that the organic light emitting medium layer is damaged by plasma.
Japanese Patent Laid-Open No. 2001-43980

本発明は、上記問題を解決するためになされたものであり、その課題とするところは、上面発光型素子(トップエミッション素子)の作製において、有機発光媒体層がダメージを受けない素子及び製造方法を提供し、高発光効率の有機EL素子を製造することにある。   The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to provide an element in which an organic light emitting medium layer is not damaged in the production of a top-emitting element (top emission element) and a manufacturing method thereof. And providing an organic EL device with high luminous efficiency.

ところで、本発明者の検討によれば、有機EL素子の基材上に、基材側電極を成膜して、該基材側電極層上に有機発光媒体層と導電性を有する隔壁部を形成し、さらに隔壁部を接地電位としながら、封止側電極をスパッタリング法により形成すると、スパッタリング装置から発生する荷電粒子(以下、プラズマとする。)が、接地された導電性を有する隔壁部に吸収され、有機発光媒体層のダメージが低減することを見出した。また、この際に、特定の形態を有するマスクを同時に併用すると、有機発光媒体層のダメージが低減する効果がより高まることを見いだした。そして、このため、高発光効率の有機EL素子を製造することができたのである。   By the way, according to the study of the present inventor, a substrate-side electrode is formed on a substrate of an organic EL element, and an organic light emitting medium layer and a partition wall having conductivity are formed on the substrate-side electrode layer. When the sealing electrode is formed by sputtering while forming the partition wall at the ground potential, charged particles (hereinafter referred to as plasma) generated from the sputtering apparatus are applied to the grounded conductive partition wall. It was found that the organic light-emitting medium layer was absorbed and reduced in damage. Further, at this time, it was found that the effect of reducing the damage of the organic light emitting medium layer is further enhanced by simultaneously using a mask having a specific form. For this reason, an organic EL element with high luminous efficiency could be manufactured.

本発明はこのような知見に基づいてなされたもので、請求項1に記載の発明は、有機発光媒体層が透光性を有する封止側電極層及び基材側電極層に挟持された、有機エレクトロルミネッセンス素子の製造方法において、少なくとも、(a)基材上に基材側電極層を形成する工程、(b)前記基材側電極層上の一部に絶縁処理をする工程、(c)前記基材側電極層のうち絶縁処理がされた部位上に導電性材料を形成して導電性を有する隔壁部を形成する工程、(d)前記基材側電極層のうち絶縁処理がされない部位上に有機発光媒体層を形成する工程、(e)前記導電性を有する隔壁部を接地電位にしながら、スパッタリングにより、前記有機発光媒体層上に封止側電極層を成膜する工程、を含むことを特徴とする有機エレクトロルミネッセンス素子の製造方法である。
The present invention was made based on such knowledge, and the invention according to claim 1 is characterized in that the organic light emitting medium layer is sandwiched between a sealing side electrode layer and a substrate side electrode layer having translucency, In the method for producing an organic electroluminescent element, at least (a) a step of forming a base material side electrode layer on the base material, (b) a step of performing an insulation treatment on a part of the base material side electrode layer, (c ) A step of forming a conductive partition by forming a conductive material on a portion of the substrate-side electrode layer that has been subjected to an insulation treatment; and (d) no insulation treatment is performed on the substrate-side electrode layer. A step of forming an organic light emitting medium layer on the portion; (e) a step of forming a sealing-side electrode layer on the organic light emitting medium layer by sputtering while keeping the conductive partition wall at ground potential. Organic electroluminescence characterized by containing It is a manufacturing method for the device.

請求項2に記載の発明は、前記(e)導電性を有する隔壁部を接地しながら、封止側電極層を成膜する工程において、封止側電極層を成膜する工程をスパッタリング法により行い、前記導電性を有する隔壁部とスパッタリング装置のプラズマ発生部との間に、前記導電性を有する隔壁部のパターンと、同じ形状の開口部パターンを有するマスクとをパターンの向きを揃えて配置し、前記マスクと前記導電性を有する隔壁部のパターンを相対的に移動させながら、封止側電極層を形成することを特徴とする、請求項1記載の有機エレクトロルミネッセンス素子の製造方法である。
According to the second aspect of the present invention, in the step of forming the sealing side electrode layer while grounding the partition wall having conductivity (e), the step of forming the sealing side electrode layer is performed by a sputtering method. The pattern of the partition wall having conductivity and the mask having the opening pattern of the same shape are arranged between the partition wall having conductivity and the plasma generating part of the sputtering apparatus with the pattern orientation aligned. 2. The method of manufacturing an organic electroluminescence element according to claim 1, wherein the sealing-side electrode layer is formed while relatively moving the mask and the pattern of the partition wall having conductivity. .

請求項3に記載の発明は、前記(e)導電性を有する隔壁部を接地しながら、封止側電極層を成膜する工程において、封止側電極層を成膜する工程をスパッタリング法により行い、前記導電性を有する隔壁部とスパッタリング装置のプラズマ発生部との間に、前記導電性を有する隔壁部のパターンよりも、面積の小さい開口部のパターンを有するマスクを配置し、前記マスクと前記導電性を有する隔壁部のパターンを相対的に移動させながら、封止側電極層を形成することを特徴とする、請求項1記載の有機エレクトロルミネッセンス素子の製造方法である。
According to a third aspect of the present invention, in the step of forming the sealing-side electrode layer while grounding the partition wall having conductivity (e), the step of forming the sealing-side electrode layer is performed by a sputtering method. A mask having an opening pattern with a smaller area than the pattern of the conductive partition wall portion is disposed between the conductive partition wall portion and the plasma generating portion of the sputtering apparatus; and 2. The organic electroluminescence element manufacturing method according to claim 1, wherein the sealing-side electrode layer is formed while relatively moving the pattern of the partition wall having conductivity .

本発明によれば、上面発光型の有機EL素子(トップエミッション素子)の製造において、有機発光媒体層にプラズマによるダメージを与えないという効果を奏する。これにより、高発光効率の有機EL素子を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, in manufacture of a top emission type organic EL element (top emission element), there exists an effect that an organic light emitting medium layer is not damaged by a plasma. Thereby, an organic EL element with high luminous efficiency can be manufactured.

本発明は、上記問題点を解決するため鋭意検討した最良の実施形態であり、以下、本発明による有機EL素子の一例として、図1、図2に基づいて説明するが、本発明はこの構造に限定されるものではない。   The present invention is the best embodiment which has been intensively studied to solve the above problems, and will be described below with reference to FIG. 1 and FIG. 2 as an example of the organic EL device according to the present invention. It is not limited to.

以下、本発明による有機EL素子の一例として、基材/陽極層(基材側電極層)/有機発光媒体層/透明陰極層(封止側電極層)をこの順に積層した場合を、図1に基づいて説明する。本発明はこの構成に限定されるものではなく、基材/陰極層(基材側電極層)/有機発光媒体層/透明陽極層(封止側電極層)としてもよい。また陽極層、陰極層の両者に透明電極を用いてもよい。   Hereinafter, as an example of the organic EL device according to the present invention, a case where a base material / anode layer (base material side electrode layer) / organic light emitting medium layer / transparent cathode layer (sealing side electrode layer) are laminated in this order is shown in FIG. Based on The present invention is not limited to this configuration, and may be base material / cathode layer (base material side electrode layer) / organic light emitting medium layer / transparent anode layer (sealing side electrode layer). Moreover, you may use a transparent electrode for both an anode layer and a cathode layer.

以下に、本発明の有機EL素子の製造方法の一例を示す。   Below, an example of the manufacturing method of the organic EL element of this invention is shown.

まず、基材1を用意し、基材1上に基材側電極層2を成膜し、パターニングをおこなう(図1(a))。基材側電極層2の配線抵抗を低くするために、基材1上に、銅やアルミニウムなどの金属材料を補助電極として併設してもよい。基材1上に基材側電極層2を成膜する方法として、抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法などの乾式成膜法や、グラビア印刷法、スクリーン印刷法などの湿式成膜法などを用いることができる。基材側電極層2のパターニング方法としては、マスク蒸着法、フォトリソグラフィー法、ウェットエッチング法、ドライエッチング法などの既存のパターニング法を用いることができる。   First, the base material 1 is prepared, the base material side electrode layer 2 is formed on the base material 1, and patterning is performed (FIG. 1 (a)). In order to reduce the wiring resistance of the substrate-side electrode layer 2, a metal material such as copper or aluminum may be provided on the substrate 1 as an auxiliary electrode. As a method of forming the substrate-side electrode layer 2 on the substrate 1, dry film forming methods such as resistance heating vapor deposition, electron beam vapor deposition, reactive vapor deposition, ion plating, and sputtering, or gravure printing For example, a wet film forming method such as a screen printing method or the like can be used. As a patterning method for the substrate-side electrode layer 2, an existing patterning method such as a mask vapor deposition method, a photolithography method, a wet etching method, or a dry etching method can be used.

本発明に用いる、基材1の材料は、光の取り出し方向に応じて選択することが好ましい。基材1側から光を取り出したい場合は、透光性を有する基材を用いる。例えば、ガラス、石英や、ポリプロピレン、ポリエーテルサルフォン、ポリカーボネート、シクロオレフィンポリマー、ポリアリレート、ポリアミド、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリエチレンナフタレート等のプラスチックフィルムやシート、または、これらプラスチックフィルムやシートに酸化珪素、酸化アルミニウム等の金属酸化物や、弗化アルミニウム、弗化マグネシウム等の金属弗化物、窒化珪素、窒化アルミニウムなどの金属窒化物、酸窒化珪素などの金属酸窒化物、アクリル樹脂やエポキシ樹脂、シリコーン樹脂、ポリエステル樹脂などの高分子樹脂膜を単層もしくは積層させた基材を用いることができる。基材1側から光を取り出さない場合は、上記した透光性を有する基材の他、アルミニウムやステンレスなどの金属箔やシート、シリコン基材を用いることができる。また、上記した基材に、アルミニウム、銅、ニッケル、ステンレスなどの金属膜を積層させた非透光性基材などを、用いることができる。   The material of the substrate 1 used in the present invention is preferably selected according to the light extraction direction. In order to extract light from the substrate 1 side, a substrate having translucency is used. For example, glass, quartz, polypropylene, polyethersulfone, polycarbonate, cycloolefin polymer, polyarylate, polyamide, polymethyl methacrylate, polyethylene terephthalate, polyethylene naphthalate, etc., or these plastic films and sheets Metal oxide such as silicon oxide and aluminum oxide, metal fluoride such as aluminum fluoride and magnesium fluoride, metal nitride such as silicon nitride and aluminum nitride, metal oxynitride such as silicon oxynitride, acrylic resin and epoxy A base material in which a polymer resin film such as a resin, a silicone resin, or a polyester resin is laminated in a single layer or a laminate can be used. In the case where light is not extracted from the substrate 1 side, a metal foil or sheet such as aluminum or stainless steel, or a silicon substrate can be used in addition to the above-described substrate having translucency. In addition, a non-light-transmitting base material in which a metal film such as aluminum, copper, nickel, and stainless steel is stacked on the above base material can be used.

また、必要に応じて、基材1上に薄膜トランジスタ(TFT)を形成し、駆動用基材として用いても良い。TFTの材料としては、ポリチオフェンやポリアニリン、銅フタロシアニンやペリレン誘導体等の有機TFTを用いてもよく、アモルファスシリコンやポリシリコンTFTを用いてもよい。
前記基材1は、基材内部や表面に吸着した水分を極力低減することがより好ましく、そのため、あらかじめ加熱処理を行うことが望ましい。また、基材表面の密着性を向上させるために、超音波洗浄処理、コロナ放電処理、プラズマ処理、UVオゾン処理などの表面処理を、基材上に施すことが好ましい。また、必要に応じて、基材上にカラーフィルター層や光散乱層、光偏向層、平坦化層などを設けてもよい。
If necessary, a thin film transistor (TFT) may be formed on the substrate 1 and used as a driving substrate. As the TFT material, organic TFTs such as polythiophene, polyaniline, copper phthalocyanine, and perylene derivatives may be used, and amorphous silicon or polysilicon TFTs may be used.
The base material 1 more preferably reduces the moisture adsorbed on the inside or the surface of the base material as much as possible. Therefore, it is desirable to perform heat treatment in advance. Moreover, in order to improve the adhesiveness of the substrate surface, it is preferable to perform surface treatment such as ultrasonic cleaning treatment, corona discharge treatment, plasma treatment, UV ozone treatment on the substrate. Moreover, you may provide a color filter layer, a light-scattering layer, a light deflection layer, a planarization layer, etc. on a base material as needed.

本発明に係る基材側電極層2の材料は、有機発光媒体層への正孔注入性を損なわない、低抵抗な材料を用いることが好ましい。具体的には、酸化インジウムや酸化すずなどの金属酸化物や、ITO(インジウムスズ複合酸化物)やインジウム亜鉛複合酸化物、亜鉛アルミニウム複合酸化物などの金属複合酸化物や、金、白金を用いることができる。または、上記した材料の微粒子をエポキシ樹脂やアクリル樹脂などに分散した微粒子分散膜を、単層もしくは積層したものを用いることできる。   As the material of the substrate-side electrode layer 2 according to the present invention, it is preferable to use a low-resistance material that does not impair the hole injection property to the organic light emitting medium layer. Specifically, metal oxides such as indium oxide and tin oxide, metal composite oxides such as ITO (indium tin composite oxide), indium zinc composite oxide, zinc aluminum composite oxide, gold, and platinum are used. be able to. Alternatively, a single layer or a laminate of fine particle dispersion films in which fine particles of the above materials are dispersed in an epoxy resin, an acrylic resin, or the like can be used.

続いて、導電性を有する隔壁3を形成し、パターニングする(図1(b))。導電性を有する隔壁3を形成し、パターニングする方法としては、フォトリソ法や、スクリーン印刷、グラビア印刷などの印刷法、インクジェット法、転写法、蒸着法などを用いることができる。隔壁層3の膜厚としては、なるべく有機EL素子部の上部で荷電粒子を捕捉できるよう1〜50μm程度であることが好ましく、さらには5〜20μm程度であることがより好ましい。この際、膜厚が薄すぎると、飛来するプラズマを十分捉えることができない。また、膜厚が厚すぎると封止側電極層5が隔壁部3の裾部に成膜されない問題が発生する。   Subsequently, a partition wall 3 having conductivity is formed and patterned (FIG. 1B). As a method of forming and patterning the partition 3 having conductivity, a photolithography method, a printing method such as screen printing or gravure printing, an ink jet method, a transfer method, a vapor deposition method, or the like can be used. The thickness of the partition wall layer 3 is preferably about 1 to 50 μm, and more preferably about 5 to 20 μm so that charged particles can be captured as much as possible in the upper part of the organic EL element portion. At this time, if the film thickness is too thin, the flying plasma cannot be captured sufficiently. On the other hand, if the film thickness is too thick, there arises a problem that the sealing-side electrode layer 5 is not formed on the bottom of the partition wall 3.

導電性を有する隔壁3は、封止側電極の形成中に、有機発光媒体層がプラズマから受けるダメージを低減するために設けるものである。そのため、導電性を有する隔壁3のうち、少なくともプラズマが照射する部位において、導電性を有していれば本発明の目的を達成するのに足りる。また、一方、該導電性を有する隔壁3全体が導電性を有していると、基材側電極層2と封止側電極5を短絡させてしまう問題がある。このため、該導電性を有する隔壁3は、基材側電極層2に接する部分は絶縁性を有し、上部(封止側)のみ導電性を有する多層構成とすることが好ましい。また、基材側電極層2の一部を取り除く、基材側電極層2上の一部に絶縁膜を形成する等の方法により、基材側電極層2の一部に絶縁処理を施した後、基材側電極層2上の該絶縁した箇所上に導電性材料を形成して、導電性を有する隔壁3としてもよい。   The conductive partition wall 3 is provided to reduce damage to the organic light emitting medium layer from plasma during the formation of the sealing-side electrode. Therefore, it is sufficient to achieve the object of the present invention if it has conductivity in at least a portion irradiated with plasma in the partition wall 3 having conductivity. On the other hand, if the entire partition wall 3 having conductivity is conductive, there is a problem that the substrate-side electrode layer 2 and the sealing-side electrode 5 are short-circuited. For this reason, it is preferable that the electrically conductive partition wall 3 has a multilayer structure in which the portion in contact with the substrate-side electrode layer 2 is insulative and only the upper part (sealing side) is electrically conductive. Further, a part of the base-side electrode layer 2 was subjected to insulation treatment by a method such as removing a part of the base-side electrode layer 2 or forming an insulating film on a part of the base-side electrode layer 2. Thereafter, a conductive material may be formed on the insulated portion on the substrate-side electrode layer 2 to form the partition wall 3 having conductivity.

以下、導電性を有する隔壁3を2層構成として、下部の1層に絶縁層を用い絶縁部とし、上部の1層に導電性材料を用い導電部とした場合を例示する。前記絶縁部には、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、クレゾール樹脂、フェノール樹脂などの高分子樹脂に、感光性や熱硬化性、光硬化性等を付与したもの、又は酸化珪素、酸化アルミニウム、窒化珪素等の金属化合物を用いることができる。前記導電部には、金、銀、アルミ、クロムといった金属材料や、インジウム錫酸化物等の金属複合酸化物や、カーボン等の導電性材料、又は、これら導電性材料からなる微粒子を内部に分散させた高分子樹脂を用いることができる。   Hereinafter, a case where the partition wall 3 having conductivity has a two-layer structure, an insulating layer is used for the lower one layer as an insulating portion, and a conductive material is used for the upper one layer as a conductive portion will be exemplified. In the insulating part, a polymer resin such as epoxy resin, acrylic resin, polyimide resin, cresol resin, phenol resin, or the like, which is given photosensitivity, thermosetting property, photocuring property, or silicon oxide, aluminum oxide, A metal compound such as silicon nitride can be used. In the conductive part, a metal material such as gold, silver, aluminum and chromium, a metal composite oxide such as indium tin oxide, a conductive material such as carbon, or fine particles made of these conductive materials are dispersed inside. A polymer resin can be used.

続いて、有機発光媒体層4を、前記導電性を有する隔壁部のパターン間に形成する(図1c)。   Subsequently, an organic light emitting medium layer 4 is formed between the conductive partition wall patterns (FIG. 1c).

本発明における有機発光媒体層4は、発光物質を含む単層膜、あるいは多層膜で形成することができる。多層膜で形成する場合、例えば、正孔輸送層、電子輸送層からなる2層構成、あるいは正孔輸送層、発光層、電子輸送層からなる3層構成とすることができる。さらに、この多層膜中に、正孔(電子)注入機能と正孔(電子)輸送機能を分け、正孔(電子)輸送をプロックする層などを挿入することがより好ましい。   The organic light emitting medium layer 4 in the present invention can be formed of a single layer film or a multilayer film containing a light emitting substance. In the case of forming with a multilayer film, for example, a two-layer structure including a hole transport layer and an electron transport layer, or a three-layer structure including a hole transport layer, a light emitting layer, and an electron transport layer can be employed. Furthermore, it is more preferable to insert a layer that blocks the hole (electron) injection function and the hole (electron) transport function and blocks the hole (electron) transport into the multilayer film.

上記のように、有機発光媒体層を、正孔輸送層、発光層、電子輸送層からなる3層構成とした場合、正孔輸送材料としては、銅フタロシアニン、テトラ(t−ブチル)銅フタロシアニン等の金属フタロシアニン類及び無金属フタロシアニン類、キナクリドン化合物、1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン、N,N’−ジ(1−ナフチル)−N,N’−ジフェニル−1,1’−ビフェニル−4,4’−ジアミン等の芳香族アミン系低分子正孔注入輸送材料や、ポリアニリン、ポリチオフェン、ポリビニルカルバゾール、ポリ(3,4−エチレンジオキシチオフェン)とポリスチレンスルホン酸との混合物などの高分子正孔輸送材料、ポリチオフェンオリゴマー材料などを用いることができる。   As described above, when the organic light emitting medium layer has a three-layer structure including a hole transport layer, a light emitting layer, and an electron transport layer, examples of the hole transport material include copper phthalocyanine, tetra (t-butyl) copper phthalocyanine, and the like. Metal phthalocyanines and metal-free phthalocyanines, quinacridone compounds, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N′-diphenyl-N, N′-bis (3-methylphenyl) Fragrances such as -1,1′-biphenyl-4,4′-diamine, N, N′-di (1-naphthyl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine Group amine-based low-molecular-weight hole-injecting and transporting materials, polyaniline, polythiophene, polyvinylcarbazole, poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid Polymer hole transporting materials such as goods, and the like can be used polythiophene oligomer materials.

発光材料としては、9,10−ジアリールアントラセン誘導体、ピレン、コロネン、ペリレン、ルブレン、1,1,4,4−テトラフェニルブタジエン、トリス(8−キノリノラート)アルミニウム錯体、トリス(4−メチル−8−キノリノラート)アルミニウム錯体、ビス(8−キノリノラート)亜鉛錯体、トリス(4−メチル−5−トリフルオロメチル−8−キノリノラート)アルミニウム錯体、トリス(4−メチル−5−シアノ−8−キノリノラート)アルミニウム錯体、ビス(2−メチル−5−トリフルオロメチル−8−キノリノラート)[4−(4−シアノフェニル)フェノラート]アルミニウム錯体、ビス(2−メチル−5−シアノ−8−キノリノラート)[4−(4−シアノフェニル)フェノラート]アルミニウム錯体、トリス(8−キノリノラート)スカンジウム錯体、ビス〔8−(パラ−トシル)アミノキノリン〕亜鉛錯体及びカドミウム錯体、1,2,3,4−テトラフェニルシクロペンタジエン、ペンタフェニルシクロペンタジエン、ポリ−2,5−ジヘプチルオキシ−パラ−フェニレンビニレン、クマリン系蛍光体、ペリレン系蛍光体、ピラン系蛍光体、アンスロン系蛍光体、ポルフィリン系蛍光体、キナクリドン系蛍光体、N,N’−ジアルキル置換キナクリドン系蛍光体、ナフタルイミド系蛍光体、N,N’−ジアリール置換ピロロピロール系蛍光体等、Ir錯体等の燐光性発光体などの低分子系発光材料や、ポリフルオレン、ポリパラフェニレンビニレン、ポリチオフェン、ポリスピロなどの高分子材料や、これら高分子材料に前記低分子材料の分散または共重合した材料や、その他既存の発光材料を用いることができる。   As the light-emitting material, 9,10-diarylanthracene derivatives, pyrene, coronene, perylene, rubrene, 1,1,4,4-tetraphenylbutadiene, tris (8-quinolinolato) aluminum complex, tris (4-methyl-8-) Quinolinolato) aluminum complex, bis (8-quinolinolato) zinc complex, tris (4-methyl-5-trifluoromethyl-8-quinolinolato) aluminum complex, tris (4-methyl-5-cyano-8-quinolinolato) aluminum complex, Bis (2-methyl-5-trifluoromethyl-8-quinolinolato) [4- (4-cyanophenyl) phenolate] aluminum complex, bis (2-methyl-5-cyano-8-quinolinolato) [4- (4- Cyanophenyl) phenolate] aluminum complex, tri (8-quinolinolato) scandium complex, bis [8- (para-tosyl) aminoquinoline] zinc complex and cadmium complex, 1,2,3,4-tetraphenylcyclopentadiene, pentaphenylcyclopentadiene, poly-2,5- Diheptyloxy-para-phenylene vinylene, coumarin phosphor, perylene phosphor, pyran phosphor, anthrone phosphor, porphyrin phosphor, quinacridone phosphor, N, N'-dialkyl-substituted quinacridone phosphor , Naphthalimide-based phosphors, N, N′-diaryl-substituted pyrrolopyrrole-based phosphors, low-molecular light-emitting materials such as phosphorescent phosphors such as Ir complexes, polyfluorene, polyparaphenylene vinylene, polythiophene, polyspiro, etc. Of these low molecular weight materials. Or copolymerized material and can be used other existing luminescent materials.

電子輸送材料としては、2−(4−ビフィニルイル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール、オキサジアゾール誘導体やビス(10−ヒドロキシベンゾ[h]キノリノラート)ベリリウム錯体、トリアゾール化合物等を用いることができる。   As an electron transport material, 2- (4-bifinylyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole, 2,5-bis (1-naphthyl) -1,3, 4-oxadiazole, an oxadiazole derivative, a bis (10-hydroxybenzo [h] quinolinolato) beryllium complex, a triazole compound, or the like can be used.

有機発光媒体層4の膜厚は、単層または積層により形成する場合においても1000nm以下であり、好ましくは50〜250nmである。また、高分子EL素子の正孔輸送材料は、基材や陽極層の表面突起を覆う効果が大きいため、100〜250nm程度で成膜することがより好ましい。   The film thickness of the organic light-emitting medium layer 4 is 1000 nm or less, preferably 50 to 250 nm, even when formed by a single layer or a stacked layer. Moreover, since the hole transport material of the polymer EL element has a large effect of covering the surface protrusions of the base material and the anode layer, it is more preferable to form a film with a thickness of about 100 to 250 nm.

有機発光媒体層4の形成方法としては、真空蒸着法や、スピンコート、スプレーコート、フレキソ、グラビア、マイクログラビア、凹版オフセットなどのコーティング法、印刷法やインクジェット法などを用いることができる。高分子発光媒体層を溶液化する際には、形成方法に応じて、溶剤の蒸気圧、固形分比、粘度などを制御することが好ましい。溶剤としては、水、キシレン、アニソール、シクロヘキサノン、メシチレン、テトラリン、シクロヘキシルベンゼン、安息香酸メチル、安息香酸エチル、トルエン、エタノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、メタノール、イソプロピルアルコール、酢酸エチル、酢酸ブチルなどの単独溶媒でも、混合溶媒でも良い。また、塗工性向上のために、必要に応じて界面活性剤、酸化防止剤、粘度調整剤、紫外線吸収剤などの添加剤を適量混合することがより好ましい。塗布液の乾燥方法としては、EL特性に支障のない程度に溶剤を取り除ければ良く、加熱しても、減圧しても、加熱減圧しても良い。   As a method for forming the organic light emitting medium layer 4, a vacuum deposition method, a coating method such as spin coating, spray coating, flexo, gravure, micro gravure, intaglio offset, a printing method, an ink jet method, or the like can be used. When the polymer light emitting medium layer is made into a solution, it is preferable to control the vapor pressure, solid content ratio, viscosity, etc. of the solvent according to the forming method. Solvents include water, xylene, anisole, cyclohexanone, mesitylene, tetralin, cyclohexylbenzene, methyl benzoate, ethyl benzoate, toluene, ethanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, methanol, isopropyl alcohol, ethyl acetate, butyl acetate, etc. These may be a single solvent or a mixed solvent. In order to improve coatability, it is more preferable to mix an appropriate amount of additives such as surfactants, antioxidants, viscosity modifiers and ultraviolet absorbers as necessary. As a method for drying the coating solution, it is sufficient to remove the solvent to such an extent that the EL characteristics are not hindered.

次に、封止側電極層5を形成する(図1d)。以下では封止側電極層5が陰極層の場合を示すが、これに限定されるものではない。   Next, the sealing side electrode layer 5 is formed (FIG. 1d). Although the case where the sealing side electrode layer 5 is a cathode layer is shown below, it is not limited to this.

陰極としての封止側電極層5は、封止から光を取り出す場合、電子注入性と透光性を両立させる必要がある。このため、封止側電極層5を、電子注入層51と透明電極層52の2層構成とするのがより好ましい。
封止側電極層5を構成する電子注入層51の材料は、有機発光媒体層4への電子注入効率の高いことが求められ、Li、Ca、Cs、Baなど仕事関数の低いアルカリ金属やアルカリ土類金属や、これら金属の酸化化合物、弗化化合物、窒化化合物を、有機発光媒体層4に積層して用いることができる。また、上記の電子注入層の材料を、前記有機電子輸送材料に少量ドーピングして用いてもよい。電子注入層の膜厚としては、透過率に支障の無い範囲とする必要があり、0.1〜50nm程度が好ましく、さらには、10nm以下の膜厚とすることがより好ましい。電子注入層51の成膜方法としては、有機発光媒体層4に抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法などを用いることができるが、有機発光媒体層に与えるダメージの少ない蒸着法を用いることが特に好ましい。
The sealing-side electrode layer 5 as the cathode needs to have both electron injecting properties and translucency when extracting light from the sealing. For this reason, it is more preferable that the sealing-side electrode layer 5 has a two-layer configuration of the electron injection layer 51 and the transparent electrode layer 52.
The material of the electron injection layer 51 constituting the sealing-side electrode layer 5 is required to have a high electron injection efficiency into the organic light emitting medium layer 4, such as an alkali metal or alkali having a low work function such as Li, Ca, Cs, and Ba. An earth metal, an oxide compound, a fluoride compound, or a nitride compound of these metals can be laminated on the organic light emitting medium layer 4 and used. The material for the electron injection layer may be used by doping the organic electron transport material in a small amount. The thickness of the electron injection layer needs to be in a range that does not hinder the transmittance, and is preferably about 0.1 to 50 nm, and more preferably 10 nm or less. As a method for forming the electron injection layer 51, a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, or the like can be used for the organic light emitting medium layer 4. It is particularly preferable to use a vapor deposition method with little damage.

封止側電極層5を構成する透明電極層52の材料は、透明性と抵抗率がいずれも優れていることが求められる。具体的には、ITO(インジウムスズ複合酸化物)やインジウム亜鉛複合酸化物、亜鉛アルミニウム複合酸化物などの金属複合酸化物を用いることが望ましい。透明電極層52の膜厚としては、特に制限はなく、10nm〜1000nm程度が好ましく、さらには、100nm程度がより好ましい。透明電極層52の形成方法は、材料に応じて、抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法を用いることができる。特に、透光性と導電性で優れた透明電極層を得るためには、スパッタリング法を用いることがより好ましい。   The material of the transparent electrode layer 52 constituting the sealing electrode layer 5 is required to be excellent in both transparency and resistivity. Specifically, it is desirable to use a metal composite oxide such as ITO (indium tin composite oxide), indium zinc composite oxide, or zinc aluminum composite oxide. There is no restriction | limiting in particular as a film thickness of the transparent electrode layer 52, About 10 nm-about 1000 nm are preferable, Furthermore, about 100 nm is more preferable. As a method for forming the transparent electrode layer 52, a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, or a sputtering method can be used depending on the material. In particular, in order to obtain a transparent electrode layer excellent in translucency and conductivity, it is more preferable to use a sputtering method.

ところで、一般的に用いられている、DCマグネトロンスパッタ法やRFマグネトロンスパッタ法、対向ターゲットスパッタ法などの既知のスパッタリング法を有機EL素子の電極形成の用いると、封止側電極層の成膜時に、プラズマが有機発光媒体層4にダメージを与え、有機EL素子の発光効率低下の原因となる。そこで本発明では、図2に示すように、導電性を有する隔壁と、所定のパターンを有するマスク6を用いる。ここで、マスクがスパッタリング装置を遮蔽せず、成膜が進行する状態(図2(b))と、マスクがスパッタリング装置を遮蔽して、成膜が進行しない状態(図2(a))を交互に繰り返して、間欠成膜する。導電性を有する隔壁部と、マスクを併用することで、有機発光媒体層にダメージを与えるプラズマを有効に捕捉することができ、有機発光媒体層に与えるダメージを低減して、透明電極を封止側電極層として成膜することができる。間欠成膜の方法は、マスク6と導電性を有する隔壁部との位置関係が、相対的に、マスク面または基材面に対して平行に移動すればよい。具体的には、基材1を固定して、マスク6を往復揺動させるか、マスク6を固定して、基材1を搬送しながら成膜しても良い。例えば、導電性を有する隔壁3をストライプパターンにした場合、マスクも同形態のストライプパターンとし、導電性を有する隔壁3とマスクのストライプパターンの向きを合わせ、基材1を該ストライプパターンの向きの垂直方向に搬送しながら、成膜することが好ましい。また、プラズマを効率よく捕捉するため、マスク6が接地電位であることが好ましい。   By the way, when a known sputtering method such as a DC magnetron sputtering method, an RF magnetron sputtering method, or a counter target sputtering method, which is generally used, is used for forming an electrode of an organic EL element, the sealing-side electrode layer is formed. The plasma damages the organic light emitting medium layer 4 and causes a reduction in the light emission efficiency of the organic EL element. Therefore, in the present invention, as shown in FIG. 2, a conductive partition and a mask 6 having a predetermined pattern are used. Here, the mask does not shield the sputtering apparatus and the film formation proceeds (FIG. 2B), and the mask shields the sputtering apparatus and the film formation does not proceed (FIG. 2A). Intermittent film formation is repeated alternately. By using a conductive partition wall and a mask together, it is possible to effectively capture plasma that damages the organic light emitting medium layer, reducing damage to the organic light emitting medium layer, and sealing the transparent electrode It can form into a film as a side electrode layer. In the intermittent film forming method, the positional relationship between the mask 6 and the partition wall having conductivity may be relatively moved in parallel to the mask surface or the substrate surface. Specifically, the substrate 1 may be fixed and the mask 6 may be reciprocally swung, or the mask 6 may be fixed and the substrate 1 may be transported to form a film. For example, when the conductive partition wall 3 is formed in a stripe pattern, the mask is also formed in the same stripe pattern, the orientation of the conductive partition wall 3 and the stripe pattern of the mask is matched, and the base material 1 is aligned in the direction of the stripe pattern. It is preferable to form a film while transporting in the vertical direction. In order to capture the plasma efficiently, the mask 6 is preferably at the ground potential.

本発明のマスクは、スパッタリング装置から飛来するプラズマを捕捉し、プラズマから有機発光媒体層を保護するものである。マスクの材料としては、少なくとも導電性を有すればよくステンレス、アルミ、鉄、クロム、ニッケル、インバー材(鉄、ニッケル、コバ
ルト合金)などの金属や合金材料、もしくは、絶縁材料でもこれら金属、合金材料を表面にコーティングしたものであれば用いることができる。特に、強度が高く、熱膨張が少ないインバー材を用いることが好ましい。マスクの厚さは本発明の目的の範囲内で、任意に選択できる。ただし、マスクの厚さが厚すぎると、スパッタリング装置から飛来するターゲット原子を多く捕捉してしまい、封止側電極層の成膜速度が低下する。また薄すぎると、スパッタリング装置から飛来するプラズマを捕捉しきれないため、プラズマから有機発光媒体層を保護する効果が弱くなる。また、マスクのパターンは、基材上に形成される導電性を有する隔壁部のパターンに合わせて、マスクの開口部パターンを形成することが好ましいが、マスクの開口部パターンを前記パターンより若干小さめの面積として、プラズマ遮断効果を高めても良い。
The mask of the present invention captures plasma flying from a sputtering apparatus and protects the organic light emitting medium layer from the plasma. The mask material should be at least electrically conductive, such as stainless steel, aluminum, iron, chromium, nickel, invar material (iron, nickel, cobalt alloy), or an insulating material, or these metals and alloys. Any material whose surface is coated can be used. In particular, it is preferable to use an invar material having high strength and low thermal expansion. The thickness of the mask can be arbitrarily selected within the scope of the object of the present invention. However, if the thickness of the mask is too thick, many target atoms flying from the sputtering apparatus are captured, and the film formation rate of the sealing-side electrode layer decreases. On the other hand, if it is too thin, the plasma flying from the sputtering apparatus cannot be captured, and the effect of protecting the organic light emitting medium layer from the plasma is weakened. The mask pattern is preferably formed in accordance with the pattern of the conductive partition formed on the base material, but the mask pattern is slightly smaller than the pattern. As an area, the plasma blocking effect may be enhanced.

実施の形態に基づいた実施例1及び比較例1、2を図1、2に従って説明する。   Example 1 and Comparative Examples 1 and 2 based on the embodiment will be described with reference to FIGS.

<実施例1>
基材1としてガラスを用い、基材1上にスパッタリング法で基材側電極層2としてITO膜を150nm厚で形成した後に、フォトリソグラフィー法及びウェットエッチング法によって、ITO膜をパターンニングした(図1(a))。
次に、基材側電極層2上に、導電性を有する隔壁3として、ポジ型感光性を有するクレゾール樹脂を、フォトリソ法を用いてパターニングし、高さ5μmの導電性を有する隔壁のラインパターンを形成した。さらに、基材全面に、300nm厚のクロム膜をスパッタリング法で成膜した。さらに、フォトリソ・エッチング法でクロム膜を、クレゾール樹脂のパターンと同じパターンに形成し、2層構造の導電性を有する隔壁3とした。
次に、基材側電極層2上に、有機発光媒体層4として、正孔輸送層にポリ(3,4−エチレンジオキシチオフェン)とポリスチレンスルホン酸との混合物(20nm厚)、発光層にポリ[2−メトキシ−5−(2’−エチル−ヘキシロキシ)−1,4−フェニレン ビニレン](MEHPPV)(100nm厚)を、それぞれスピンコート法により形成した(図1(c))。
次に、有機発光媒体層4上に、封止側電極層の電子注入層51としてCa膜を5nm厚で形成した。
次に、Ca膜が形成された有機発光媒体層4上に、透明電極層52としてITO膜をスパッタリング法により100nm厚で形成した(図1(d)))。この時、図2で示すように、導電性を有する隔壁3の上層のクロム膜を接地しながら、ステンレス製のマスク6上を搬送しながらITO膜を形成した。このマスクの開口部には、導電性を有する隔壁部と同じパターンが形成されている。
作製した有機EL素子に7Vの電圧を印加した結果、基材側電極層および封止側電極層の両側から、それぞれ輝度約10000cd/m2の発光が確認できた。
<Example 1>
Glass was used as the substrate 1, and an ITO film was formed as a substrate-side electrode layer 2 with a thickness of 150 nm on the substrate 1 by a sputtering method, and then the ITO film was patterned by a photolithography method and a wet etching method (see FIG. 1 (a)).
Next, as a partition wall 3 having conductivity, a cresol resin having positive photosensitivity is patterned on the substrate-side electrode layer 2 by using a photolithography method, and the line pattern of the partition wall having a height of 5 μm is provided. Formed. Further, a chromium film having a thickness of 300 nm was formed on the entire surface of the substrate by a sputtering method. Further, a chromium film was formed in the same pattern as the pattern of the cresol resin by a photolithographic etching method to form a partition wall 3 having a two-layered conductivity.
Next, on the substrate side electrode layer 2, as the organic light emitting medium layer 4, the hole transport layer is a mixture of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid (20 nm thickness), and the light emitting layer is Poly [2-methoxy-5- (2′-ethyl-hexyloxy) -1,4-phenylene vinylene] (MEHPPV) (100 nm thickness) was formed by spin coating (FIG. 1 (c)).
Next, a Ca film having a thickness of 5 nm was formed on the organic light emitting medium layer 4 as the electron injection layer 51 of the sealing electrode layer.
Next, an ITO film having a thickness of 100 nm was formed by sputtering as the transparent electrode layer 52 on the organic light emitting medium layer 4 on which the Ca film was formed (FIG. 1D). At this time, as shown in FIG. 2, an ITO film was formed while being conveyed on the stainless steel mask 6 while grounding the chromium film on the upper layer of the partition wall 3 having conductivity. In the opening of the mask, the same pattern as the partition wall having conductivity is formed.
As a result of applying a voltage of 7 V to the produced organic EL element, light emission with a luminance of about 10000 cd / m 2 was confirmed from both sides of the substrate side electrode layer and the sealing side electrode layer.

<参考例1>
封止側電極層5(陰極)の材料としてAg膜を選択し、スパッタリング法を用いずに、真空蒸着法により100nm厚に成膜した以外は、実施例1と同様に製作した有機EL素子にも7Vの電圧を印加した結果、同様に輝度約10000cd/m2の発光が基材側電極側から確認できた。このことから、実施例1で作成した有機EL素子は、プラズマを用いないで製作された本参考例の有機EL素子と、同様の輝度を得られることが確認され、これにより、実施例1で作製した有機EL素子の有機発光媒体層が、プラズマによるダメージをうけていないことが確認された。
<Reference Example 1>
An organic EL element manufactured in the same manner as in Example 1 except that an Ag film was selected as a material for the sealing-side electrode layer 5 (cathode), and the film was formed to a thickness of 100 nm by a vacuum evaporation method without using a sputtering method. As a result of applying a voltage of 7 V, light emission with a luminance of about 10000 cd / m 2 was confirmed from the substrate side electrode side. From this, it was confirmed that the organic EL element produced in Example 1 can obtain the same luminance as the organic EL element of this reference example produced without using plasma. It was confirmed that the organic light emitting medium layer of the produced organic EL element was not damaged by plasma.

<比較例1>
封止側電極層5を形成する際に、マスク6を使用しないこと以外は実施例1と同様に作製した有機EL素子に、7Vの電圧を印加した結果、陽極層および陰極層両側から、輝度2000cd/m2の発光が確認できた。このことから、マスクを用いずに封止側電極層としてITO膜をスパッタリング形成したことにより、有機発光媒体層がプラズマによりダメージを受け、発光効率が1/5に低下することがわかった。
<Comparative Example 1>
As a result of applying a voltage of 7 V to the organic EL device produced in the same manner as in Example 1 except that the mask 6 is not used when forming the sealing-side electrode layer 5, the luminance is increased from both sides of the anode layer and the cathode layer. Light emission of 2000 cd / m 2 was confirmed. From this, it was found that by forming the ITO film as the sealing electrode layer without using the mask by sputtering, the organic light emitting medium layer was damaged by the plasma, and the light emission efficiency was reduced to 1/5.

<比較例2>
導電性を有する隔壁3を設けず、代わりにクレゾール樹脂のみを用いて、実施例1と銅形状の隔壁パターンを作製した以外は、実施例1と同様に有機EL素子を作成した。この有機EL素子に7Vの電圧を印加した結果、陽極層および陰極層両側から、輝度2000cd/m2の発光が確認できた。このことから、マスクを用いずに封止側電極層としてITO膜をスパッタリング形成したことにより、有機発光媒体層がプラズマによりダメージを受け、発光効率が1/5に低下することがわかった。
<Comparative Example 2>
An organic EL element was prepared in the same manner as in Example 1 except that the conductive partition wall 3 was not provided and only a cresol resin was used instead to prepare a copper-shaped partition pattern in Example 1. As a result of applying a voltage of 7 V to the organic EL element, light emission with a luminance of 2000 cd / m 2 was confirmed from both sides of the anode layer and the cathode layer. From this, it was found that by forming the ITO film as the sealing electrode layer without using the mask by sputtering, the organic light emitting medium layer was damaged by the plasma, and the light emission efficiency was reduced to 1/5.

<比較例3>
導電性を有する隔壁3を設けず、代わりにクレゾール樹脂のみを用いて、実施例1と同形状の隔壁パターンを作製し、さらにマスク6を設置せずITO膜を成膜した以外は、実施例1と同様に有機EL素子を作成した。この有機EL素子に7Vの電圧を印加した結果、陽極層および陰極層両側から、輝度2000cd/m2の発光が確認できた。このことから、マスクを用いずに封止側電極層としてITO膜をスパッタリング形成したことにより、有機発光媒体層がプラズマによりダメージを受け、発光効率が1/5に低下することがわかった。
<Comparative Example 3>
Example 1 except that the partition wall 3 having the same shape as that of Example 1 was prepared by using only the cresol resin instead of providing the partition wall 3 having conductivity, and that the ITO film was formed without installing the mask 6. An organic EL device was prepared in the same manner as in 1. As a result of applying a voltage of 7 V to the organic EL element, light emission with a luminance of 2000 cd / m 2 was confirmed from both sides of the anode layer and the cathode layer. From this, it was found that by forming the ITO film as the sealing electrode layer without using the mask by sputtering, the organic light emitting medium layer was damaged by the plasma, and the light emission efficiency was reduced to 1/5.

本発明の高分子EL素子及び製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the polymer EL element of this invention, and a manufacturing method. 本発明の高分子EL素子の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the polymer EL element of this invention.

符号の説明Explanation of symbols

1 基材
2 基材側電極層
3 導電性を有する隔壁
4 有機発光媒体層
5 封止側電極層
51 電荷注入層
52 透明電極層
6 マスク
DESCRIPTION OF SYMBOLS 1 Base material 2 Base material side electrode layer 3 Conductive partition 4 Organic luminescent medium layer 5 Sealing side electrode layer 51 Charge injection layer 52 Transparent electrode layer 6 Mask

Claims (3)

有機発光媒体層が透光性を有する封止側電極層及び基材側電極層に挟持された、有機エレクトロルミネッセンス素子の製造方法において、少なくとも、
(a)基材上に基材側電極層を形成する工程、
(b)前記基材側電極層上の一部に絶縁処理をする工程、
(c)前記基材側電極層のうち絶縁処理がされた部位上に導電性材料を形成して導電性を有する隔壁部を形成する工程、
(d)前記基材側電極層のうち絶縁処理がされない部位上に有機発光媒体層を形成する工程、
(e)前記導電性を有する隔壁部を接地電位にしながら、スパッタリングにより、前記有機発光媒体層上に封止側電極層を成膜する工程、を含むことを特徴とする有機エレクトロルミネッセンス素子の製造方法。
In the method for producing an organic electroluminescence element, in which the organic light emitting medium layer is sandwiched between the light-transmitting sealing side electrode layer and the base material side electrode layer, at least,
(A) forming a substrate-side electrode layer on the substrate;
(B) a step of performing an insulation treatment on a part of the substrate-side electrode layer;
(C) a step of forming a conductive partition by forming a conductive material on a portion of the substrate-side electrode layer that has been subjected to an insulation treatment;
(D) forming an organic light-emitting medium layer on a portion of the substrate-side electrode layer that is not insulated;
(E) the while the ground potential partition wall having conductivity, by sputtering, the organic light emitting medium step of forming a sealing-side electrode layer on the layer, organic electroluminescent device comprising the Manufacturing method.
前記(e)導電性を有する隔壁部を接地しながら、封止側電極層を成膜する工程において、
封止側電極層を成膜する工程をスパッタリング法により行い、
前記導電性を有する隔壁部とスパッタリング装置のプラズマ発生部との間に、前記導電性を有する隔壁部のパターンと、同じ形状の開口部パターンを有するマスクとをパターンの向きを揃えて配置し、
前記マスクと前記導電性を有する隔壁部のパターンを相対的に移動させながら、封止側電極層を形成することを特徴とする、請求項記載の有機エレクトロルミネッセンス素子の製造方法。
In the step of forming the sealing-side electrode layer while grounding the partition wall having conductivity (e),
The step of forming the sealing electrode layer is performed by sputtering,
Between the partition wall portion having conductivity and the plasma generating portion of the sputtering apparatus, the pattern of the partition wall portion having conductivity and the mask having the opening pattern of the same shape are arranged with the pattern direction aligned,
While relatively moving the pattern of the partition wall having the conductive and the mask, and forming a sealing-side electrode layer, a method of manufacturing an organic electroluminescent device according to claim 1, wherein.
前記(e)導電性を有する隔壁部を接地しながら、封止側電極層を成膜する工程において、
封止側電極層を成膜する工程をスパッタリング法により行い、
前記導電性を有する隔壁部とスパッタリング装置のプラズマ発生部との間に、前記導電性を有する隔壁部のパターンよりも、面積の小さい開口部のパターンを有するマスクを配置し、
前記マスクと前記導電性を有する隔壁部のパターンを相対的に移動させながら、封止側電極層を形成することを特徴とする、請求項記載の有機エレクトロルミネッセンス素子の製造方法。
In the step of forming the sealing-side electrode layer while grounding the partition wall having conductivity (e),
The step of forming the sealing electrode layer is performed by sputtering,
A mask having an opening pattern smaller in area than the pattern of the partition wall having conductivity is disposed between the partition wall having conductivity and the plasma generation unit of the sputtering apparatus,
While relatively moving the pattern of the partition wall having the conductive and the mask, and forming a sealing-side electrode layer, a method of manufacturing an organic electroluminescent device according to claim 1, wherein.
JP2005046652A 2005-02-23 2005-02-23 Method for manufacturing organic electroluminescence element Expired - Fee Related JP4613637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005046652A JP4613637B2 (en) 2005-02-23 2005-02-23 Method for manufacturing organic electroluminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005046652A JP4613637B2 (en) 2005-02-23 2005-02-23 Method for manufacturing organic electroluminescence element

Publications (2)

Publication Number Publication Date
JP2006236649A JP2006236649A (en) 2006-09-07
JP4613637B2 true JP4613637B2 (en) 2011-01-19

Family

ID=37044075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005046652A Expired - Fee Related JP4613637B2 (en) 2005-02-23 2005-02-23 Method for manufacturing organic electroluminescence element

Country Status (1)

Country Link
JP (1) JP4613637B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015172450A1 (en) * 2014-05-16 2015-11-19 京东方科技集团股份有限公司 Pixel unit and manufacturing method therefor and display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010231908A (en) * 2009-03-26 2010-10-14 Seiko Epson Corp Organic electroluminescent device, electronic equipment
WO2016178370A1 (en) * 2015-05-07 2016-11-10 コニカミノルタ株式会社 Thin-film electronic device manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003186420A (en) * 2001-12-21 2003-07-04 Seiko Epson Corp Active matrix substrate, electrooptic device, manufacturing method for electrooptic device, and electronic equipment
WO2004053816A1 (en) * 2002-12-10 2004-06-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and its fabricating method
WO2004068910A1 (en) * 2003-01-24 2004-08-12 Semiconductor Energy Laboratory Co. Ltd. Light-emitting device, method for manufacturing same and electric apparatus using such light-emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003186420A (en) * 2001-12-21 2003-07-04 Seiko Epson Corp Active matrix substrate, electrooptic device, manufacturing method for electrooptic device, and electronic equipment
WO2004053816A1 (en) * 2002-12-10 2004-06-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and its fabricating method
WO2004068910A1 (en) * 2003-01-24 2004-08-12 Semiconductor Energy Laboratory Co. Ltd. Light-emitting device, method for manufacturing same and electric apparatus using such light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015172450A1 (en) * 2014-05-16 2015-11-19 京东方科技集团股份有限公司 Pixel unit and manufacturing method therefor and display device

Also Published As

Publication number Publication date
JP2006236649A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4934774B2 (en) Organic light emitting transistor and display device
JP4647708B2 (en) Organic EL device and manufacturing method thereof
JP2003316296A (en) Circuit substrate, electro-optical device, electronics apparatus
JP2003195775A (en) Electro-optical device, manufacturing method therefor, circuit board, manufacturing method therefor, and electronic equipment
CN1897298A (en) Display device and method of manufacturing the same
JP2008135318A (en) Organic electroluminescent element, and its manufacturing method
JP4736676B2 (en) Active matrix driving type organic electroluminescence display device
WO2007043704A1 (en) Light-emitting device and display
JP2007194061A (en) Organic electroluminescent element and manufacturing method of the same
JP2012209209A (en) Organic electroluminescent panel manufacturing method
KR100706853B1 (en) Organic electroluminescent device and manufacturing method thereof
KR20100106366A (en) Electroluminescent devices comprising bus bars
JP4613637B2 (en) Method for manufacturing organic electroluminescence element
JP4609135B2 (en) Method for manufacturing organic electroluminescence element
JP2000323280A (en) Electroluminescent element and its manufacture
JP2008071608A (en) Manufacturing method of organic electroluminescent element
JP2011076759A (en) Manufacturing method of organic electroluminescent panel, and passivation layer film forming mask
JP2007095518A (en) Organic electroluminescent display
JP2013206613A (en) Organic el device and manufacturing method thereof
JP2013069615A (en) Organic el display and manufacturing method therefor
JP2011204366A (en) Method for manufacturing organic electroluminescent panel and organic electroluminescent panel using the same
JP2004004611A (en) Wiring board, electronic device, electrooptical device, and electronic apparatus
TWI262742B (en) Method for manufacturing organic electroluminescence device and electronic apparatus
JP2003323138A (en) Circuit substrate, electro-optical device and electronic apparatus
JP4736462B2 (en) Method for producing polymer electroluminescence device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees