JP4602940B2 - Induction heating steam generator - Google Patents

Induction heating steam generator Download PDF

Info

Publication number
JP4602940B2
JP4602940B2 JP2006164980A JP2006164980A JP4602940B2 JP 4602940 B2 JP4602940 B2 JP 4602940B2 JP 2006164980 A JP2006164980 A JP 2006164980A JP 2006164980 A JP2006164980 A JP 2006164980A JP 4602940 B2 JP4602940 B2 JP 4602940B2
Authority
JP
Japan
Prior art keywords
heating
steam
heating body
container
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006164980A
Other languages
Japanese (ja)
Other versions
JP2007333287A (en
Inventor
満 藤田
明彦 持田
宏巳 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Tokyo Electric Power Co Inc
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Fuji Electric Systems Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2006164980A priority Critical patent/JP4602940B2/en
Publication of JP2007333287A publication Critical patent/JP2007333287A/en
Application granted granted Critical
Publication of JP4602940B2 publication Critical patent/JP4602940B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、誘導加熱により発熱される加熱体により水を加熱して蒸気を発生するようにした誘導加熱式蒸気発生装置に関する。   The present invention relates to an induction heating type steam generator that generates steam by heating water with a heating element that generates heat by induction heating.

誘導加熱により発熱される加熱体により水を加熱して蒸気を発生させるようにした誘導加熱式蒸気発生装置としては、すでに特許文献1に開示のものが知られている。この特許文献1に開示の貫流形の蒸気発生装置の構成を図7および図8に示す。図7はその縦断面図、図8は図7におけるVIII−VIII線の平面断面図である。   As an induction heating type steam generating apparatus in which water is generated by a heating element that generates heat by induction heating and steam is generated, the one disclosed in Patent Document 1 is already known. The configuration of the once-through steam generator disclosed in Patent Document 1 is shown in FIGS. 7 is a longitudinal sectional view, and FIG. 8 is a plan sectional view taken along line VIII-VIII in FIG.

従来の誘導加熱式蒸気発生装置は、図7および図8から明らかなとおり、多数の大きさがせいぜい数cmの球または円柱状の磁性導電材の小片からなる加熱体13を充填した、複数のセラミックや耐熱ガラス等の非磁性でかつ非導電性の耐熱材の細管で構成された加熱管15を耐熱保護容器10内に収めて構成した加熱容器1の周囲に冷却水流通路22を有する導体で構成された加熱コイル2を配設し、この加熱コイル2の上下端部および中間の外周部に、加熱コイル2で発生された磁束の漏洩を防ぐために、それぞれ電気的に閉じられた複数の環状導体31〜34で構成されたシールドコイル3が設置される。このシールドコイル3の各導体は、電気的に閉じられ、内部に蒸気流通路を有する環状の導体で構成される。各環状導体の蒸気流通路は接続管35によって順次直列に接続されている。耐熱容器10と加熱管15との間の隙間には断熱材10aを充填して、加熱容器1から外部への放熱を低減するようにしている。   As is apparent from FIGS. 7 and 8, the conventional induction heating steam generator includes a plurality of heating elements 13 each consisting of a small number of spheres or cylindrical magnetic conductive materials each having a size of several centimeters at most. A conductor having a cooling water flow passage 22 around a heating vessel 1 constituted by housing a heating tube 15 constituted by a thin tube of non-magnetic and non-conductive heat-resistant material such as ceramic or heat-resistant glass in a heat-resistant protective vessel 10. The configured heating coil 2 is disposed, and a plurality of annular rings electrically closed at the upper and lower end portions and the intermediate outer peripheral portion of the heating coil 2 in order to prevent leakage of magnetic flux generated by the heating coil 2. A shield coil 3 composed of conductors 31 to 34 is installed. Each conductor of this shield coil 3 is electrically closed and is composed of an annular conductor having a vapor flow passage inside. The steam flow passages of the annular conductors are sequentially connected in series by a connecting pipe 35. The gap between the heat-resistant container 10 and the heating tube 15 is filled with a heat insulating material 10a so as to reduce heat radiation from the heating container 1 to the outside.

給水管41は、加熱コイル2の最下段のコイル導体21の冷却水通路22の入口管25に接続し、最上段のコイル導体21の冷却水流通路22の出口管26を接続管42により下部の給水ヘッダ部を構成する蓋体17に接続する。上部の蒸気ヘッダ部を構成する蓋体16から引出した蒸気取出管14は加熱容器1の外側に設置された気水ドラム5に接続する。   The water supply pipe 41 is connected to the inlet pipe 25 of the cooling water passage 22 of the lowermost coil conductor 21 of the heating coil 2, and the outlet pipe 26 of the cooling water flow passage 22 of the uppermost coil conductor 21 is connected to the lower part by the connection pipe 42. It connects with the cover body 17 which comprises a water supply header part. The steam extraction pipe 14 drawn out from the lid body 16 constituting the upper steam header section is connected to the steam-water drum 5 installed outside the heating container 1.

この気水ドラム5から給水管51を引出し、下部蓋体17に接続された接続管42に接続し、ドラム5から加熱容器1の給水ヘッダ部へ給水する。加熱容器1内の水量は、常に所定の水位Lを維持するように調整し、加熱体13が水から露出することがないようにする。さらに気水ドラム5から引出された蒸気管52をシールドコイル3の最上段の環状導体31の蒸気流通路の入口管3dに接続し、最下段の環状導体34の蒸気流通路の出口管3cに過熱蒸気供給管62を接続する。この過熱蒸気供給管62は、蒸気を必要とする負荷の設置場所まで延長され、負荷へ蒸気S´を供給する。   The water supply pipe 51 is drawn out from the air / water drum 5, connected to the connection pipe 42 connected to the lower lid 17, and water is supplied from the drum 5 to the water supply header portion of the heating container 1. The amount of water in the heating container 1 is adjusted so as to always maintain a predetermined water level L so that the heating body 13 is not exposed from the water. Further, the steam pipe 52 drawn from the steam drum 5 is connected to the inlet pipe 3d of the steam flow passage of the uppermost annular conductor 31 of the shield coil 3, and connected to the outlet pipe 3c of the steam flow passage of the lowermost annular conductor 34. The superheated steam supply pipe 62 is connected. The superheated steam supply pipe 62 is extended to a place where a load that requires steam is installed, and supplies steam S ′ to the load.

蒸気発生のために、図示しない高周波交流電源装置から加熱コイル2に10〜30kHz程度の高周波交流電力を供給する。そして、給水管41を介して貯水槽などの水源から加熱コイル2の導体21の内部に形成された冷却水流通路22の入口管25に水Wを供給する。この水は、加熱コイル2の冷却水流通路22を貫流して出口管26から接続管42を介して加熱容器1下部の蓋体17によって形成された給水ヘッダ部へ注入される。   In order to generate steam, high-frequency AC power of about 10 to 30 kHz is supplied to the heating coil 2 from a high-frequency AC power supply device (not shown). Then, water W is supplied from a water source such as a water storage tank 41 to the inlet pipe 25 of the cooling water flow passage 22 formed inside the conductor 21 of the heating coil 2 through the water supply pipe 41. This water flows through the cooling water flow passage 22 of the heating coil 2 and is injected from the outlet pipe 26 through the connection pipe 42 to the water supply header formed by the lid 17 at the lower part of the heating container 1.

加熱コイル2に高周波電力が供給されると、コイル導体21に流れる電流と抵抗によりジュール熱が発生し、また誘導加熱コイル2によって発生される高周波磁界により加熱容器1内の各加熱管15に充填された磁性導電材の小片からなる加熱体13にそれぞれ渦電流が生じ、この電流によるジュール熱が発生する。加熱容器1へ供給される水Wは、加熱コイル2内の冷却水流通路を貫流する過程で、コイル導体21を冷却することによって予備加熱され、温水となって加熱容器1の給水ヘッダ部へ供給される。ここから加熱管15に供給された水は、各加熱管においてその中に充填された多数の磁性導電材小片からなる加熱体13と接触し、この加熱体の発生する熱によって加熱されて蒸気Sとなって加熱管内を上昇して加熱容器1の上部の蓋体16によって形成された蒸気ヘッダ部に集まる。   When high-frequency power is supplied to the heating coil 2, Joule heat is generated by the current and resistance flowing in the coil conductor 21, and each heating tube 15 in the heating container 1 is filled by the high-frequency magnetic field generated by the induction heating coil 2. Eddy currents are respectively generated in the heating bodies 13 made of small pieces of the magnetic conductive material, and Joule heat is generated by the currents. The water W supplied to the heating container 1 is preheated by cooling the coil conductor 21 in the process of flowing through the cooling water flow passage in the heating coil 2 and supplied to the water supply header portion of the heating container 1 as hot water. Is done. The water supplied to the heating pipe 15 from here comes into contact with the heating body 13 composed of a number of pieces of magnetic conductive material filled therein in each heating pipe, and is heated by the heat generated by the heating body to be steam S. As a result, the inside of the heating pipe is raised and gathered in the steam header portion formed by the lid 16 at the top of the heating container 1.

加熱容器1の上部蒸気ヘッダ部内の蒸気は、蒸気取出管14を通して気水ドラム5に送られる。気水ドラム5へ送られた蒸気は水分を含んだ湿り蒸気であるので、この気水ドラム5において蒸気と水分(凝縮した液体分)が分離されこのドラム5内に貯えられる。そして水分の除かれた蒸気は、蒸気管52を通してシールドコイルの上端の環状導体31の蒸気流通路の入口管3dへ導かれ、4個の環状導体(31〜34)の蒸気流通路を貫流して下端の環状導体34の出口管3cに接続された過熱蒸気供給管62へ流れる。   The steam in the upper steam header portion of the heating container 1 is sent to the steam drum 5 through the steam take-out pipe 14. Since the steam sent to the steam-water drum 5 is wet steam containing moisture, the steam and moisture (condensed liquid component) are separated in the steam-water drum 5 and stored in the drum 5. Then, the steam from which moisture has been removed is guided to the inlet pipe 3d of the steam flow path of the annular conductor 31 at the upper end of the shield coil through the steam pipe 52, and flows through the steam flow paths of the four annular conductors (31 to 34). Then flows to the superheated steam supply pipe 62 connected to the outlet pipe 3c of the annular conductor 34 at the lower end.

シールドコイル3は、その各環状導体に加熱コイル2で発生される磁束により発生する循環電流によって自身が発生する磁束により、加熱コイル2の外部へ漏れる磁束を打ち消し、磁束の外部への漏洩を抑制する働きをする。各環状導体に流れる循環電流は当然のことながら導体自身の抵抗によってジュール熱を発生するが、この熱によってシールドコイル3内の蒸気流通路を流れる過程で蒸気Sが再加熱され、過熱蒸気S´となる。このようにして発生された過熱蒸気S´は、過熱蒸気供給管62によって蒸気を使用する負荷の設置場所まで運ばれる。
特開2006−064358号公報
The shield coil 3 cancels out the magnetic flux leaking to the outside of the heating coil 2 by the magnetic flux generated by the circulating current generated by the magnetic flux generated by the heating coil 2 in each annular conductor, and suppresses the leakage of the magnetic flux to the outside. To work. The circulating current flowing in each annular conductor naturally generates Joule heat due to the resistance of the conductor itself, but the steam S is reheated in the process of flowing through the steam flow passage in the shield coil 3 and the superheated steam S ′. It becomes. The superheated steam S ′ generated in this way is carried to the installation site of the load that uses the steam by the superheated steam supply pipe 62.
JP 2006-064358 A

このような従来装置は、非磁性でかつ非導電性の耐熱材で構成された加熱容器中に導電材の小片により構成した加熱体を充填し、この加熱体を電磁誘導により加熱し、加熱容器中に通水された水を前記加熱体の熱により加熱して蒸気を発生させるようにしているので、比較的効率よく蒸気を発生することができる利点を有する。   In such a conventional apparatus, a heating container composed of small pieces of conductive material is filled in a heating container composed of a non-magnetic and non-conductive heat-resistant material, and the heating element is heated by electromagnetic induction, Since the water passed through is heated by the heat of the heating element to generate steam, the steam can be generated relatively efficiently.

ところで、高周波磁界中に置かれた、導電材の柱状の小片からなる加熱体13に電磁誘導で流れる電流iは加わる磁束に対して直角方向に流れるため、全長に渡って一様な分布とはならず、特に、図4(b)に示すように、磁束Φに対して加熱体13の軸方向が傾斜している場合には、加熱体の磁界の磁束方向の両端部、特に両端の角部に電流iがより集中して流れる性質がある。このため、加熱体13の角部は温度が異常に高い高温点となる。
また、球状の小片からなる加熱体の場合も、図4(c)に示すように、電流iは、球状の加熱体13の中心部付近に集中して流れるため、中心部付近が高温点となる。
加熱体の長さが長くなってもこの現象は同じであるが、図4(a)に示すように、細長い加熱体13aの場合は、長さが長いため、加熱体のほぼ全長に亘って電流iが比較的均一に分布して流れ、加熱体13aの温度分布が小片の加熱体に比べて均一化する。
By the way, the current i flowing by electromagnetic induction in the heating body 13 made of a columnar piece of conductive material placed in a high-frequency magnetic field flows in a direction perpendicular to the applied magnetic flux. In particular, as shown in FIG. 4B, when the axial direction of the heating element 13 is inclined with respect to the magnetic flux Φ, both ends of the magnetic field in the magnetic field of the heating element, in particular, the corners at both ends. There is a property that the current i flows more concentrated in the part. For this reason, the corner | angular part of the heating body 13 becomes a high temperature point where temperature is abnormally high.
Also, in the case of a heating body composed of spherical small pieces, as shown in FIG. 4 (c), the current i concentrates and flows near the center of the spherical heating body 13, so that the vicinity of the center is a hot spot. Become.
This phenomenon is the same even when the length of the heating body is increased. However, as shown in FIG. 4A, in the case of the elongated heating body 13a, since the length is long, the heating body covers almost the entire length. The current i flows in a relatively uniform manner, and the temperature distribution of the heating element 13a is made uniform compared to the small heating element.

従来の装置においては、長さの短い小片からなる加熱体を加熱容器あるいは加熱管の中に多数充填していたので、加熱体の姿勢を一定に保つことができず、その角部の高温点が加熱容器または加熱管の内壁と接触する加熱体が多数生じるようになる。   In the conventional apparatus, since the heating body consisting of small pieces of short length was filled in the heating container or the heating tube, the posture of the heating body could not be kept constant, and the high temperature point at the corner A large number of heating bodies come into contact with the inner wall of the heating container or heating tube.

このような発熱体の角部の高温点が加熱容器または加熱管の内壁に接触すると、この部分において加熱容器または加熱管の容器壁の温度が局部的に高くなり、容器壁の温度分布が不均一となって、加熱容器の容器壁に大きな熱応力ひずみが発生し、最悪の場合、耐熱材によって構成された加熱容器または加熱管が破損する危険がる。   When such a hot spot at the corner of the heating element contacts the inner wall of the heating vessel or the heating tube, the temperature of the heating vessel or the heating tube is locally increased in this portion, and the temperature distribution on the vessel wall is not good. It becomes uniform and a large thermal stress strain is generated on the container wall of the heating container, and in the worst case, there is a risk that the heating container or the heating tube constituted by the heat-resistant material is broken.

この発明は、このような危険を解消するため、蒸気発生装置の加熱容器または加熱管内に納められた加熱体の角部の高温点が加熱容器および加熱管の内壁と接触することのないように構成した誘導加熱式蒸気発装置を提供することを課題とするものである。   In order to eliminate such a risk, the present invention prevents the hot spots at the corners of the heating body contained in the heating container or the heating pipe of the steam generator from coming into contact with the inner wall of the heating container and the heating pipe. It is an object of the present invention to provide an induction heating steam generator configured.

このよう課題を解決するため、この発明は、水の通流される非磁性でかつ非導電性の筒状の耐熱容器内に、導電材で構成した加熱体を挿入し、この加熱容器の外周に設けた加熱コイルにより加えられる高周波磁界により前記加熱体を誘導加熱し、この誘導加熱された加熱体により加熱容器中の水を加熱して蒸気を発生するようにした誘導加熱式蒸気発生装置おいて、前記加熱容器内に耐熱性の非磁性でかつ非導電性の加熱管を複数収容し、前記加熱体を細長い棒状の導電材で構成し、この加熱体を、前記各加熱管の中に、その軸方向を前記高周波磁界の磁束の方向と同じ向きにして、前記加熱管との間および相互間に通水路となる間隙をおいて複数分散して挿入配置し、かつ、前記加熱管の中の加熱体が、下端をそれぞれ前記加熱管の下端に結合された取付板に固着することによりその位置関係を固定保持され、上端を相互に連結板により連結することにより相互に連結固定されるようにしたことを特徴とするものである。 In order to solve such problems, the present invention inserts a heating body made of a conductive material into a non-magnetic and non-conductive cylindrical heat-resistant container through which water flows, and the outer periphery of the heating container An induction heating type steam generator that inductively heats the heating body by a high frequency magnetic field applied by a heating coil provided in the heating coil and heats the water in the heating container by the induction heating body to generate steam. A plurality of heat-resistant non-magnetic and non-conductive heating tubes are accommodated in the heating container, and the heating body is formed of an elongated rod-shaped conductive material, and the heating body is placed in each heating tube. , the axial direction in the same direction as the direction of the magnetic flux of the high-frequency magnetic field, at a gap which becomes water passage between and between each other and the heating pipe inserted disposed a plurality dispersion, and the heating tube The heating element inside has a lower end at the lower end of the heating tube. The positional relationship is fixed and held by fixing the bonded mounting plate, it is characterized in that it has to be connected and fixed to each other by coupling by mutually connecting plate upper end.

この発明においては、前記加熱体を前記加熱管の内壁から1mm以上離して、加熱体と加熱管とが接触しないようにすることが肝心である。そして、加熱体の外周面に軸方向に延びた条溝を複数均等に分散して設け、断面を凹凸にするとともに前記条溝の深さを高周波磁界の浸透深さ以上の深さとすることができる。 In the present invention, it is important that the heating body is separated from the inner wall of the heating tube by 1 mm or more so that the heating body and the heating tube do not come into contact with each other. Then, a plurality of grooves extending in the axial direction are uniformly distributed on the outer peripheral surface of the heating body, the cross section is made uneven, and the depth of the grooves is set to a depth greater than the penetration depth of the high-frequency magnetic field. it can.

この発明によれば、水の通流される耐熱性の非磁性でかつ非導電性の筒状の加熱容器の中に導電材で構成した加熱体を挿入し、この加熱体を前記加熱容器の外周から加える高周波磁界により誘導加熱し、この加熱された加熱体により加熱容器中の水を加熱して蒸気を発生するようにした誘導加熱式蒸気発生装置おいて、前記加熱体を細長い棒状の導電材で構成し、この棒状の加熱体を前記加熱容器内に加熱体の軸方向を前記高周波磁界の磁束の方向と同じ向きにして複数分散して挿入配置するようにしているので、加熱容器内に収納される加熱体の温度分布が従来の小片の加熱体で構成された場合より均一化し、高温点の発生がなくなり、加熱容器が加熱体によって局部的に過熱されることがなくなるため、加熱容器の容器壁の温度分布が比較的均一化されることにより加熱容器の容器壁の局部的な熱応力ひずみが軽減され、破損の危険が低減される。   According to the present invention, a heating body made of a conductive material is inserted into a heat-resistant non-magnetic and non-conductive cylindrical heating container through which water flows, and the heating body is connected to the outer periphery of the heating container. In an induction heating type steam generator in which water is heated by induction heating with a high frequency magnetic field applied from the heating vessel and water in the heating container is heated by the heated heating body, the heating body is formed into an elongated rod-shaped conductive material. The rod-shaped heating body is inserted into the heating container in such a manner that the axial direction of the heating body is the same as the direction of the magnetic flux of the high-frequency magnetic field. The temperature distribution of the heating element to be stored is made more uniform than that of the conventional heating element with a small piece, the generation of a high temperature point is eliminated, and the heating container is not locally heated by the heating element. The temperature distribution of the container wall is Manner homogenized by strain local thermal stress of the container wall of the heating vessel by is reduced, risk of breakage is reduced.

この場合、加熱体を加熱容器の内壁から1mm以上離して、加熱体が加熱容器内壁に接触しないようにすれば、加熱容器の容器壁が局部加熱されることがほぼ完全に防止できるので、加熱容器の熱応力による破損の危険をほぼ完全に回避することができる。   In this case, if the heating body is separated from the inner wall of the heating container by 1 mm or more so that the heating body does not contact the inner wall of the heating container, the container wall of the heating container can be almost completely prevented from being heated locally. The risk of breakage due to the thermal stress of the container can be almost completely avoided.

そして、前記棒状の加熱体の外周表面に軸方向に伸びた条溝を複数分散して設けることにより、加熱体の表面が凹凸状となり、加熱体の外周表面の周長を長くでき誘導電流の流れる経路の抵抗値を増やすことができることにより、加熱体の発熱量を増大できる。そして表面が凹凸状とすることにより、加熱体の表面積を拡大できるので、加熱体から加熱する水への熱伝達を高めることができる効果もある。   And, by providing a plurality of axially extending grooves on the outer peripheral surface of the rod-shaped heating body, the surface of the heating body becomes uneven, and the peripheral length of the outer peripheral surface of the heating body can be lengthened. Since the resistance value of the flowing path can be increased, the amount of heat generated by the heating element can be increased. And since the surface area of a heating body can be expanded by making the surface uneven | corrugated shape, there also exists an effect which can improve the heat transfer from the heating body to the water heated.

この発明の実施の形態を図に示す実施例に基づいて説明する。   Embodiments of the present invention will be described based on examples shown in the drawings.

図1および図2にこの発明の実施例による誘導加熱式蒸気発生装置を示す。図1はその縦断面図、図2は、図1のII−II線の平面断面図である。なお、図1は、装置の中心でなく図2のI−I線の位置で縦方向に切断した縦断面を示している。   1 and 2 show an induction heating type steam generator according to an embodiment of the present invention. 1 is a longitudinal sectional view thereof, and FIG. 2 is a plan sectional view taken along line II-II of FIG. FIG. 1 shows a longitudinal section cut in the longitudinal direction not at the center of the apparatus but at the position of the line II in FIG.

この図1および図2に示すこの発明の実施例の主たる構成は、図7および図8に示した従来装置と同じであるので、従来装置と同一の構成要素は同一の符号で示して、その詳細な説明を省略する。
この実施例において、前記の従来装置と異なるのは、加熱容器の本体部分を構成する耐熱容器10内に納めた非磁性でかつ非導電性の耐熱ガラス管またはセラミックス管等で構成した加熱管15内に納めた加熱体13aが、小片の磁性導電材で構成したのではなく、細長い棒状の磁性導電材で構成した点である。
The main configuration of the embodiment of the present invention shown in FIGS. 1 and 2 is the same as that of the conventional device shown in FIGS. 7 and 8. Therefore, the same components as those of the conventional device are denoted by the same reference numerals, Detailed description is omitted.
In this embodiment, the difference from the above-described conventional apparatus is that the heating tube 15 made of a non-magnetic and non-conductive heat-resistant glass tube or ceramic tube or the like housed in the heat-resistant vessel 10 constituting the main body portion of the heating vessel. The heating body 13a accommodated in the inside is not composed of a small piece of magnetic conductive material, but is composed of an elongated rod-shaped magnetic conductive material.

各加熱管15には複数の細長い棒状の加熱体13aが加熱管15の内壁に対しても接触しないように1mm以上の間隙をおいて分散して挿入される。加熱体13aは、軸方向を加えられる高周波磁界の磁束の方向と平行にして加熱管15内に挿入される。各加熱体13aは、上端がほぼ加熱コイル2の上端と同じ高さまで延ばされている。これにより、各加熱管15内に加熱管とその中に挿入された複数の棒状の加熱体13aとの間および加熱体相互間に加熱管15の軸方向に走る直線的な間隙が形成され、水の流通路15eとなる。   In each heating tube 15, a plurality of elongated rod-shaped heating bodies 13 a are dispersedly inserted with a gap of 1 mm or more so as not to contact the inner wall of the heating tube 15. The heating element 13a is inserted into the heating tube 15 in parallel with the direction of the magnetic flux of the high frequency magnetic field to which the axial direction is applied. Each heating body 13 a has an upper end that extends substantially to the same height as the upper end of the heating coil 2. Thereby, a linear gap running in the axial direction of the heating tube 15 is formed between the heating tube and the plurality of rod-shaped heating bodies 13a inserted therein and between the heating bodies in each heating tube 15, It becomes the water flow passage 15e.

加熱体13aと加熱管15の一部を拡大して示す図3(a)から明らかなように、各加熱体13aの下端は、その位置関係を固定的に保持するために、加熱管15の下端に結合された取付板15aにそれぞれネジ15c等の固着手段により固着されている。取付板15aには、加熱管15内の水の流通路15eとそれぞれ加熱容器1の上下の蓋体16および17によって形成された蒸気および水のヘッダ部とを連通させるために多数の貫通孔15dが設けられている。
加熱体15aの上端は、図3(b)に示すように、連結板15bにネジ止めすることによって相互に連結されている。
As is clear from FIG. 3 (a) showing a part of the heating body 13a and the heating tube 15 in an enlarged manner, the lower end of each heating body 13a is fixed to the heating tube 15 in order to keep the positional relationship fixed. The fixing plate 15a connected to the lower end is fixed by fixing means such as a screw 15c. A large number of through-holes 15d are provided in the mounting plate 15a in order to communicate the water flow passage 15e in the heating tube 15 with the steam and water header portions formed by the upper and lower lids 16 and 17 of the heating container 1, respectively. Is provided.
As shown in FIG. 3B, the upper ends of the heating elements 15a are connected to each other by screwing to the connecting plate 15b.

このように構成されたこの発明の蒸気発生装置は、従来装置と同様に次のようにして蒸気を発生する。   The steam generating apparatus of the present invention configured as described above generates steam as follows in the same manner as the conventional apparatus.

まず、図示しない高周波交流電源装置から加熱コイル2に10〜30kHz程度の高周波交流電力を供給する。そして、給水管41を介して貯水槽などの水源から加熱コイル2の導体21の内部に形成された冷却水流通路22の入口25に水Wを供給する。この水は、加熱コイル2の冷却水流通路22を貫流して出口26から接続管42を介して加熱容器1下部の蓋体17によって形成された給水ヘッダ部から加熱管15内に注入される。加熱管15内の水量は、水の沸騰による飛び跳ねも考慮して飛び跳ねた水が加熱体13a全体を濡らす程度となるように、水面が加熱体13aの上端以下のほぼ一定の量に保たれる。なお、装置全体の高さ方向が大きくなるが、加熱管15内の水量を加熱体13a全体が浸漬するほぼ一定の量に保つようにしてもよい。
加熱コイル2に高周波電力が供給されると、コイル導体21に流れる電流と抵抗によりジュール熱が発生し、また誘導加熱コイル2によって発生される高周波磁界によって加熱容器1内の各加熱管15に挿入された細い棒状の磁性導電材の加熱体13aにそれぞれ渦電流が生じ、この電流によるジュール熱が発生する。加熱容器1へ供給される水Wは、加熱コイル2内の冷却水流通路を貫流する過程で、コイル導体21を冷却することによって予備加熱され、温水となって加熱容器1の給水ヘッダ部へ供給される。ここから加熱管15に供給された水は、加熱体13a相互間の間隙等に形成された流通路15eを流通する過程で多数の細長い棒状の磁性導電材からなる加熱体13aと接触し、この加熱体の発生する熱によって加熱され、蒸気Sとなって加熱管内を上昇して加熱容器1の上部の蓋体16によって形成された蒸気ヘッダ部に集まる。
First, high frequency AC power of about 10 to 30 kHz is supplied to the heating coil 2 from a high frequency AC power supply device (not shown). Then, water W is supplied from a water source such as a water storage tank 41 to the inlet 25 of the cooling water flow passage 22 formed in the conductor 21 of the heating coil 2 through the water supply pipe 41. This water flows through the cooling water flow passage 22 of the heating coil 2 and is injected from the outlet 26 into the heating pipe 15 through the connection pipe 42 from the water supply header portion formed by the lid 17 at the lower part of the heating container 1. The amount of water in the heating tube 15 is kept at a substantially constant amount below the upper end of the heating body 13a so that the water splashed in consideration of splashing due to boiling of the water wets the entire heating body 13a. . In addition, although the height direction of the whole apparatus becomes large, you may make it keep the water quantity in the heating pipe | tube 15 to the substantially constant quantity which the whole heating body 13a immerses.
When high frequency power is supplied to the heating coil 2, Joule heat is generated by the current and resistance flowing through the coil conductor 21, and is inserted into each heating tube 15 in the heating container 1 by the high frequency magnetic field generated by the induction heating coil 2. Eddy currents are respectively generated in the thin bar-shaped magnetic conductive material heating bodies 13a, and Joule heat is generated by the currents. The water W supplied to the heating container 1 is preheated by cooling the coil conductor 21 in the process of flowing through the cooling water flow passage in the heating coil 2 and supplied to the water supply header portion of the heating container 1 as hot water. Is done. The water supplied from here to the heating tube 15 comes into contact with the heating body 13a made of a large number of elongated rod-like magnetic conductive materials in the process of flowing through the flow passage 15e formed in the gap between the heating bodies 13a. It is heated by the heat generated by the heating body, becomes steam S, rises in the heating tube, and collects in the steam header portion formed by the lid body 16 at the top of the heating container 1.

加熱容器1の上部蒸気ヘッダ部内の蒸気は、蒸気取出管14を通して気水ドラム5に送られ、この気水ドラム5において水分を含む湿り蒸気から水分(凝縮した液体分)が分離されこのドラム5内に貯えられる。そして水分の除かれた蒸気は、蒸気管52を通してシールドコイル3の上端の環状導体31の蒸気流通路の入口管3dへ導かれ、接続管35を介して4個の環状導体(31〜34)の蒸気流通路を直列に貫流して下端の環状導体34の出口管3cに接続された過熱蒸気供給管62へ流れる。   The steam in the upper steam header portion of the heating container 1 is sent to the steam-water drum 5 through the steam take-out pipe 14, and moisture (condensed liquid) is separated from the wet steam containing moisture in the steam-water drum 5. Stored within. The steam from which moisture has been removed is guided to the inlet pipe 3d of the steam flow passage of the annular conductor 31 at the upper end of the shield coil 3 through the steam pipe 52, and is connected to the four annular conductors (31 to 34) via the connection pipe 35. The steam flow passage flows in series to the superheated steam supply pipe 62 connected to the outlet pipe 3c of the annular conductor 34 at the lower end.

シールドコイル3は、その各環状導体に加熱コイル2で発生される磁束により発生する循環電流によって自身が発生する磁束により、加熱コイル2の外部へ漏れる磁束を打ち消し、磁束の外部への漏洩を抑制する働きをする。各環状導体に流れる循環電流は当然のことながら導体自身の抵抗によってジュール熱を発生するが、この熱によってシールドコイル3内の蒸気流通路を流れる過程で蒸気Sが再加熱され、過熱蒸気S´となる。このようにして発生された過熱蒸気S´は、過熱蒸気供給管62によって蒸気を使用する負荷の設置場所まで運ばれる。   The shield coil 3 cancels out the magnetic flux leaking to the outside of the heating coil 2 by the magnetic flux generated by the circulating current generated by the magnetic flux generated by the heating coil 2 in each annular conductor, and suppresses the leakage of the magnetic flux to the outside. To work. The circulating current flowing in each annular conductor naturally generates Joule heat due to the resistance of the conductor itself, but the steam S is reheated in the process of flowing through the steam flow passage in the shield coil 3 by this heat, and the superheated steam S ′. It becomes. The superheated steam S ′ generated in this way is transported to the installation location of the load that uses the steam by the superheated steam supply pipe 62.

この発明においては、加熱管15内に納められる加熱体13aが、細長い棒状の磁性導電材で構成されているので、高周波磁界中において加熱体13aには、図4(a)に矢印iで示すような誘導電流が発生する。加熱体13aを流れる電流iは、上下両端の角部に集中する現象を伴うが、長さが長いため加熱体13aの中間部分に流れる電流は、ほぼ均等に分布するようになるため、集中する電流が低減される。このため、加熱管15内の各加熱体13aは異常に高い高温点の発生が抑制される。
従来の柱状の小片からなる加熱体13の高温点の温度は、発明者らが行った加熱実験によれば、340℃以上の高温度となることが確認されており、この発明で使用する細長い棒状の加熱体13aの場合は、このような高温度なる個所はなく、加熱体全体の温度がかなり均一に分布する。
In the present invention, since the heating body 13a housed in the heating tube 15 is formed of an elongated rod-like magnetic conductive material, the heating body 13a is indicated by an arrow i in FIG. Such an induced current is generated. The current i flowing through the heating element 13a is accompanied by a phenomenon of concentrating at the corners at the upper and lower ends. However, since the length is long, the current flowing through the intermediate part of the heating element 13a is distributed almost evenly, and therefore concentrated. The current is reduced. For this reason, generation | occurrence | production of the abnormally high high temperature point is suppressed for each heating body 13a in the heating tube 15. FIG.
According to the heating experiment conducted by the inventors, it has been confirmed that the temperature at the high temperature point of the heating element 13 made of a conventional columnar piece is a high temperature of 340 ° C. or higher. In the case of the rod-shaped heating body 13a, there is no such high temperature portion, and the temperature of the entire heating body is distributed fairly uniformly.

この発明においては、細長い棒状の加熱体13aを加熱管15にその内壁に接触しないようにするために、1mm以上の間隙を設けて挿入する。このように間隔をおいて加熱体13aを加熱管15内に挿入すると、仮に加熱体13aに異常な高温点が生じても、加熱体13aと加熱管15との間に形成された流通路15e内を流通する水を介して加熱体13aの熱が加熱管15に伝達されることになる。このため、加熱管15の管壁は、この中で加熱される水の温度以上の温度となることはないので、局部的に著しい高い温度となることがなく、加熱管は全長に亘ってほぼ均等な温度となる。したがって、加熱管に加わる熱応力ひずみはほとんどなく、運転中に加熱管が破損される危険がなくなり、装置の安全性が向上する。   In this invention, in order to prevent the elongated rod-shaped heating body 13a from contacting the inner wall of the heating tube 15, it is inserted with a gap of 1 mm or more. When the heating body 13a is inserted into the heating pipe 15 at such an interval, even if an abnormal high temperature point occurs in the heating body 13a, the flow passage 15e formed between the heating body 13a and the heating pipe 15 is used. The heat of the heating body 13a is transmitted to the heating tube 15 through the water flowing through the inside. For this reason, since the tube wall of the heating tube 15 does not become a temperature higher than the temperature of the water heated therein, it does not become a remarkably high temperature locally. The temperature is equal. Therefore, there is almost no thermal stress strain applied to the heating tube, and there is no risk of the heating tube being damaged during operation, and the safety of the apparatus is improved.

また、この発明においては、加熱体13aの実効的な電気抵抗を高めて、発熱量を上げるとともに、加熱体から加熱する水への熱伝達効率を上げて加熱効率を高めるために、図5に示すように、加熱体13aの外周に軸方向に走る条溝13gを複数周方向に均等に分散して設け、加熱体13a外周表面を凹凸状にすることができる。そして、この場合、加熱体13aを磁性の導電材で構成するのがよい。   Further, in the present invention, in order to increase the effective electrical resistance of the heating body 13a to increase the heat generation amount and to increase the heat transfer efficiency from the heating body to the water to be heated to increase the heating efficiency, FIG. As shown, the groove 13g running in the axial direction is provided on the outer periphery of the heating body 13a so as to be evenly distributed in a plurality of circumferential directions, and the outer peripheral surface of the heating body 13a can be made uneven. In this case, the heating body 13a is preferably made of a magnetic conductive material.

棒状の導体に、磁束の方向が導体の軸方向と同じとなる高周波磁界を加えた場合、表皮効果により導体に流れる電流は、導体の表面付近を流れる。この現象は、導体が磁性を有するとより顕著になる。例えば、比透磁率が500、抵抗率が60e−8Ωmの磁性ステンレス鋼の棒材に20kHzの高周波磁界を加えた場合、これに流れる電流iは、棒材の表面から0.12mmの深さにかけて流れる。このため、前記の加熱体13aの外周に設けた条溝13gの深さを0.12mm以上の深さにすると、図6に点線矢印で示すように、加熱体13の表面付近を流れる電流の経路がこの溝によってジグザグ状に曲げられるため、電流の流れる距離が長くなって、実質的な抵抗が増大することにより、発熱体の発熱量を大きくすることができる。すなわち、加熱体13aの条溝13gの深さは、少なくとも印加される高周波磁界の周波数と棒材の物性値で決まる浸透深さ以上の深さにすることにより、発熱量を大きくすることができる。溝の断面形状は、三角形でも四角形でもよく、溝の形状、深さを適宜に選択することにより抵抗値を変えることができるので、設計の自由度が高くなる。   When a high-frequency magnetic field in which the magnetic flux direction is the same as the axial direction of the conductor is applied to the rod-shaped conductor, the current flowing through the conductor due to the skin effect flows near the surface of the conductor. This phenomenon becomes more prominent when the conductor has magnetism. For example, when a 20 kHz high frequency magnetic field is applied to a magnetic stainless steel bar having a relative permeability of 500 and a resistivity of 60e-8 Ωm, the current i flowing to the bar extends from the surface of the bar to a depth of 0.12 mm. Flowing. For this reason, when the depth of the groove 13g provided on the outer periphery of the heating body 13a is 0.12 mm or more, the current flowing near the surface of the heating body 13 as shown by the dotted arrow in FIG. Since the path is bent in a zigzag shape by the groove, the distance through which the current flows becomes long and the substantial resistance increases, so that the heat generation amount of the heating element can be increased. That is, the heat generation amount can be increased by setting the depth of the groove 13g of the heating element 13a to a depth not less than the penetration depth determined by at least the frequency of the applied high-frequency magnetic field and the physical properties of the bar. . The cross-sectional shape of the groove may be a triangle or a quadrangle, and the resistance value can be changed by appropriately selecting the shape and depth of the groove, so that the degree of freedom in design increases.

それと同時に外周に条溝を設けて外周面を凹凸状にした棒状の加熱体13aを用いることによって、この加熱体とこれによって加熱される水との接触面積が増大し、加熱体から水への熱伝達が高められるので、このように外周に多数の条溝13gを設けた加熱体13aを用いることにより、蒸気発生装置における水の加熱効率を向上させることができるようになる。   At the same time, by using a rod-shaped heating element 13a having a groove on the outer periphery and having an uneven outer peripheral surface, the contact area between the heating element and water heated thereby increases, Since heat transfer is enhanced, the heating efficiency of water in the steam generator can be improved by using the heating body 13a provided with a number of grooves 13g on the outer periphery.

この発明の実施例の誘導加熱式蒸気発生装置の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the induction heating type steam generator of the Example of this invention. 図1のII−II線の平面断面図である。FIG. 2 is a plan sectional view taken along line II-II in FIG. 1. (a)は、この発明の実施例における加熱体の下端の結合部分を拡大して示す部分断面図、(b)は、加熱体の上端の結合部分を拡大して示す部分斜視図である。(A) is the fragmentary sectional view which expands and shows the joint part of the lower end of the heating body in the Example of this invention, (b) is a fragmentary perspective view which expands and shows the joint part of the upper end of a heating body. この発明の作用説明図であり、(a)は、この発明における加熱体の電流分布図、(b)従来装置における加熱体の電流分布図である。It is an operation explanatory view of this invention, (a) is a current distribution figure of a heating object in this invention, and (b) is a current distribution figure of a heating object in a conventional device. (a)は、この発明に用いる加熱体を示す平面図、(b)は、この発明に用いる加熱体を示す斜視図である。(A) is a top view which shows the heating body used for this invention, (b) is a perspective view which shows the heating body used for this invention. この発明の作用説明図である。It is operation | movement explanatory drawing of this invention. 従来の誘導加熱式蒸気発生装置の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the conventional induction heating type steam generator. 図8におけるVIII−VIII線の平面断面図である。It is a plane sectional view of a VIII-VIII line in FIG.

1:加熱容器、13a:加熱体、13g:条溝、15:加熱管、2:加熱コイル、3
:シールドコイル、W:水、S:蒸気、S´:過熱蒸気。
1: heating container, 13a: heating element, 13g: groove, 15: heating tube, 2: heating coil, 3
: Shield coil, W: water, S: steam, S ': superheated steam.

Claims (3)

水の通流される非磁性でかつ非導電性の筒状の耐熱容器内に、導電材で構成した加熱体を挿入し、この加熱容器の外周に設けた加熱コイルにより加えられる高周波磁界により前記加熱体を誘導加熱し、この誘導加熱された加熱体により加熱容器中の水を加熱して蒸気を発生するようにした誘導加熱式蒸気発生装置おいて、前記加熱容器内に耐熱性の非磁性でかつ非導電性の加熱管を複数収容し、前記加熱体を細長い棒状の導電材で構成し、この加熱体を、前記各加熱管の中に、その軸方向を前記高周波磁界の磁束の方向と同じ向きにして、前記加熱管との間および相互間に通水路となる間隙をおいて複数分散して挿入配置し、かつ、前記加熱管の中の加熱体が、下端をそれぞれ前記加熱管の下端に結合された取付板に固着することによりその位置関係を固定保持され、上端を相互に連結板により連結することにより相互に連結固定されるようにしたことを特徴とする誘導加熱式蒸気発生装置。 A heating body made of a conductive material is inserted into a non-magnetic and non-conductive cylindrical heat-resistant container through which water flows, and the heating is performed by a high-frequency magnetic field applied by a heating coil provided on the outer periphery of the heating container. In an induction heating steam generator that heats the body and heats the water in the heating container with the induction heating body to generate steam , the heat-resistant non-magnetic material in the heating container. A plurality of non-conductive heating tubes are accommodated, and the heating body is formed of an elongated rod-shaped conductive material. The heating body is arranged in each of the heating tubes, the axial direction of which is the direction of the magnetic flux of the high-frequency magnetic field. in the same direction, at a gap which becomes water passage between and between each other and the heating pipe inserted disposed a plurality dispersion, and heating element in the heating tube, the lower end each of the heating tubes By adhering to the mounting plate connected to the lower end, Fixed holding the location relationship, induction heating steam generator being characterized in that so as to be fixedly connected to each other by coupling by mutually connecting plate upper end. 前記加熱管内に挿入された前記加熱体を加熱管の容器壁から1mm以上離して、加熱体が加熱管の容器壁に接触しないようにしたことを特徴とする請求項1に記載の誘導加熱式蒸気発生装置。 Wherein the inserted the heating body to heat pipe away from the vessel wall of the heating tube 1mm or more, the induction heating according to claim 1, characterized in that the heating body is prevented from contacting the vessel wall of the heating tube Steam generator. 前記加熱体の外周面に軸方向に延びた条溝を複数分散して設け加熱体の断面を凹凸状にするとともに、前記条溝の深さを高周波磁界の浸透深さ以上の深さとしたことを特徴とする請求項1または2に記載の誘導加熱式蒸気発生装置。 A plurality of strips extending in the axial direction are provided on the outer peripheral surface of the heating body in a distributed manner so that the cross section of the heating body is uneven, and the depth of the strips is greater than the penetration depth of the high-frequency magnetic field. The induction heating steam generator according to claim 1 or 2,
JP2006164980A 2006-06-14 2006-06-14 Induction heating steam generator Expired - Fee Related JP4602940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006164980A JP4602940B2 (en) 2006-06-14 2006-06-14 Induction heating steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006164980A JP4602940B2 (en) 2006-06-14 2006-06-14 Induction heating steam generator

Publications (2)

Publication Number Publication Date
JP2007333287A JP2007333287A (en) 2007-12-27
JP4602940B2 true JP4602940B2 (en) 2010-12-22

Family

ID=38932924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006164980A Expired - Fee Related JP4602940B2 (en) 2006-06-14 2006-06-14 Induction heating steam generator

Country Status (1)

Country Link
JP (1) JP4602940B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071637A (en) * 2008-08-20 2010-04-02 Hoshizaki Electric Co Ltd Heating cooker
CN102221192A (en) * 2010-10-16 2011-10-19 王春凌 Novel vertical type steam pressure electric boiler
JP5843388B2 (en) * 2010-10-29 2016-01-13 太平洋マテリアル株式会社 Injection system
JP5571016B2 (en) * 2011-02-28 2014-08-13 株式会社東芝 Power generation equipment
JP5809441B2 (en) * 2011-05-13 2015-11-10 ホシザキ電機株式会社 Steam generator
JP6341614B2 (en) * 2014-12-19 2018-06-13 トクデン株式会社 Fluid heating device
JP6494100B2 (en) * 2015-05-11 2019-04-03 トクデン株式会社 Fluid heating device
JP6516562B2 (en) * 2015-05-26 2019-05-22 トクデン株式会社 Fluid heating device
JP6938110B2 (en) * 2015-08-25 2021-09-22 中部電力株式会社 High temperature fluid generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313546A (en) * 2001-04-13 2002-10-25 Meidensha Corp Heating cell for electromagnetic induction type fluid heating device
JP2003100427A (en) * 2001-09-27 2003-04-04 Uchu Kankyo Kogaku Kenkyusho:Kk Steam generator
JP2003123950A (en) * 2001-10-12 2003-04-25 Hitachi Zosen Corp Heat treatment device
JP2005308385A (en) * 2004-03-22 2005-11-04 Osamu Yamada Gas heater
JP2006064367A (en) * 2004-07-27 2006-03-09 Fuji Electric Systems Co Ltd Induction heating type steam generating device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3553627B2 (en) * 1993-06-30 2004-08-11 株式会社瀬田技研 Electromagnetic induction heat converter
JPH09196302A (en) * 1996-01-24 1997-07-29 Matsushita Electric Ind Co Ltd Vapor producer
JP4004128B2 (en) * 1998-02-10 2007-11-07 虹技株式会社 Gas body heating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313546A (en) * 2001-04-13 2002-10-25 Meidensha Corp Heating cell for electromagnetic induction type fluid heating device
JP2003100427A (en) * 2001-09-27 2003-04-04 Uchu Kankyo Kogaku Kenkyusho:Kk Steam generator
JP2003123950A (en) * 2001-10-12 2003-04-25 Hitachi Zosen Corp Heat treatment device
JP2005308385A (en) * 2004-03-22 2005-11-04 Osamu Yamada Gas heater
JP2006064367A (en) * 2004-07-27 2006-03-09 Fuji Electric Systems Co Ltd Induction heating type steam generating device

Also Published As

Publication number Publication date
JP2007333287A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP4602940B2 (en) Induction heating steam generator
EP2213140B1 (en) Flow-through induction heater
JP3791694B1 (en) Induction heating steam generator
US7057144B2 (en) Induction heating device
ES2565241T3 (en) Washing device with induction heating
KR101192976B1 (en) Vacuumed heating equipment using electromagnetic induction
JP5654791B2 (en) Superheated steam generator
JP3758668B2 (en) Induction heating steam generator
JP2008270123A (en) Fluid temperature rising apparatus
JP2006064358A (en) Induction heating type steam generating device
KR20200029988A (en) Superheated Steam Generator
EP3760923A1 (en) Superheated steam generator and cooker
JP3642415B2 (en) Fluid heating device
KR101214630B1 (en) Boiler using high frequency induction heating
KR0142908B1 (en) Protecting device for induction poles and inductor provided with this device
JP2003297537A (en) Steam superheater
JP4345491B2 (en) Induction heating device
KR20210129802A (en) A Magnetic Induction Type of an Apparatus for Heating a Conduit
JP2010129175A (en) Induction heating device
Tomita et al. Superheated steam generator by induction heating
JP4848792B2 (en) Induction heating device
KR102218003B1 (en) Heater for a hot-water mat
JP2013093282A (en) Induction heating liquid heating method, induction heating liquid heater and liquid heating system using induction heating liquid heater
JP2008292010A (en) Fluid temperature rising device and heating cooker
JP2013058329A (en) Induction heating liquid heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4602940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees