JP3758668B2 - Induction heating steam generator - Google Patents

Induction heating steam generator Download PDF

Info

Publication number
JP3758668B2
JP3758668B2 JP2005219769A JP2005219769A JP3758668B2 JP 3758668 B2 JP3758668 B2 JP 3758668B2 JP 2005219769 A JP2005219769 A JP 2005219769A JP 2005219769 A JP2005219769 A JP 2005219769A JP 3758668 B2 JP3758668 B2 JP 3758668B2
Authority
JP
Japan
Prior art keywords
heating
induction heating
steam
coil
steam generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005219769A
Other languages
Japanese (ja)
Other versions
JP2006064367A (en
Inventor
満 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2005219769A priority Critical patent/JP3758668B2/en
Publication of JP2006064367A publication Critical patent/JP2006064367A/en
Application granted granted Critical
Publication of JP3758668B2 publication Critical patent/JP3758668B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Induction Heating (AREA)

Description

この発明は、誘導加熱により水を加熱して蒸気を発生するようにした誘導加熱式蒸気発生装置に関する。   The present invention relates to an induction heating steam generator that generates steam by heating water by induction heating.

通常の蒸気発生装置は、特許文献1に示されるように液体燃料やガス燃料を燃焼させて発生する燃焼ガスにより細管中に通流される水を加熱して蒸気を発生するようにしている。この従来の蒸気発生装置110は、効率よく蒸気を発生し、所望の蒸気圧力を得るため、図6に示すように周囲を断熱材111でおおい、下方に取りつけられたバーナ116でガスや液体燃料等を燃焼させて発生した高温の燃焼ガスを、それぞれ細管で構成され、多段に重ねて設けられた節炭器112、蒸発器113および過熱器114の中に通し、これらに熱を供給する。
節炭器112は、蒸発器113に供給する水Wをバーナ116の燃焼ガスの熱で予備加熱する。蒸発器113は、節炭器112で予備加熱された水を加熱し、蒸気を発生させる。そして、過熱器114は、蒸発器113で発生された蒸気Sを再加熱して所望の過熱蒸気S´として外部の負荷へ供給する。蒸発器113で生成された蒸気は湿った蒸気であるが、蒸発器113と過熱器114との間に設けた水と蒸気を貯留する気水ドラム115によって水分と蒸気とに分離される。燃焼排ガスは、上方から煙突などの排気筒を介して外部へ排出される。
As shown in Patent Document 1, an ordinary steam generator is configured to generate steam by heating water passed through a narrow tube by combustion gas generated by burning liquid fuel or gas fuel. In this conventional steam generator 110, in order to efficiently generate steam and obtain a desired steam pressure, the surroundings are covered with a heat insulating material 111 as shown in FIG. 6, and a gas or liquid fuel is burned by a burner 116 attached below. The high-temperature combustion gas generated by burning the gas is passed through the economizer 112, the evaporator 113, and the superheater 114, each of which is composed of thin tubes and provided in multiple stages, and supplies heat thereto.
The economizer 112 preheats the water W supplied to the evaporator 113 with the heat of the combustion gas of the burner 116. The evaporator 113 heats the water preheated by the economizer 112 and generates steam. Then, the superheater 114 reheats the steam S generated by the evaporator 113 and supplies it to the external load as the desired superheated steam S ′. The steam generated in the evaporator 113 is wet steam, but is separated into moisture and steam by the steam-water drum 115 that stores water and steam provided between the evaporator 113 and the superheater 114. Combustion exhaust gas is discharged to the outside through an exhaust pipe such as a chimney from above.

このような、燃焼ガスを使用する従来の蒸気発生装置は、燃料を燃やす関係から煙突などの排気筒が必要なため、特別に設けたボイラ室などに限定して設置する必要があった。このため、蒸気発生装置の設置場所から離れた場所に蒸気を必要とする負荷が置かれた場合は、この負荷設置場所まで断熱された長い配管により蒸気を導く必要があるが、蒸気の熱容量は約0.5cal/g/degと小さいため、配管での熱損失により蒸気温度の低下が大きくなる。これを改善するためには、配管の途中にリボンヒータを巻きつけたり、その他の加熱手段を設置したりして蒸気を再加熱することが必要となる。
このような不都合を解消するために、特許文献2に示されるように、燃焼ガスによらないで、誘導加熱によって蒸気を発生させる誘導加熱式蒸気発生装置が提案されている。
この特許文献2に開示された誘導加熱式蒸気発生装置120は、図7に示すように、蒸気発生容器121と蒸気過熱容器122とを2重に重ねて設け、その外側を誘導加熱コイル123により取り囲んで構成している。この装置は、誘導加熱コイル123により、導電性の容器121および122を電磁誘導により発熱させ、その熱により内側の蒸気発生容器121内に給水口124から給水された水Wを加熱して蒸気Sを発生させ、この蒸気発生容器121で発生された蒸気Sを外側の蒸気過熱容器122内に導き、ここで再度加熱して過熱蒸気S´として蒸気取出口125から取り出すものである。
Since such a conventional steam generator using combustion gas requires an exhaust pipe such as a chimney because of the fuel burning, it must be installed only in a specially provided boiler room. For this reason, when a load that requires steam is placed at a location remote from the installation location of the steam generator, it is necessary to guide the steam through a long pipe insulated to this load installation location. Since it is as small as about 0.5 cal / g / deg, the drop in steam temperature increases due to heat loss in the piping. In order to improve this, it is necessary to reheat the steam by wrapping a ribbon heater in the middle of the piping or installing other heating means.
In order to eliminate such inconvenience, an induction heating type steam generator that generates steam by induction heating without using combustion gas has been proposed as disclosed in Patent Document 2.
As shown in FIG. 7, the induction heating type steam generator 120 disclosed in Patent Document 2 is provided with a steam generation container 121 and a steam superheat container 122 which are overlapped with each other, and the outside is provided by an induction heating coil 123. Surrounds and configures. In this apparatus, the conductive containers 121 and 122 are heated by electromagnetic induction by the induction heating coil 123, and the water W supplied from the water supply port 124 into the inner steam generation container 121 is heated by the heat to generate steam S. The steam S generated in the steam generating container 121 is guided into the outer steam superheated container 122, where it is heated again and taken out from the steam outlet 125 as superheated steam S ′.

このような構成によれば、燃料を燃焼させる必要がないので設置場所の制限がなく、蒸気を必要とする負荷の設置場所に隣接して設置することができる。このために、蒸気発生装置から負荷へ蒸気を導く配管が短くなることによりこの配管での熱損失が小さくなるので再加熱装置などの設置が不要となり、燃焼ガスによる加熱装置を用いた蒸気発生装置の不都合を解消することができる。
特開2001−033004号公報 特開2002−022107号公報
According to such a configuration, since it is not necessary to burn the fuel, there is no restriction on the installation location, and it can be installed adjacent to the installation location of the load that requires steam. For this reason, since the pipe for introducing the steam from the steam generator to the load is shortened, heat loss in this pipe is reduced, so that it is not necessary to install a reheating device or the like, and the steam generator using the combustion gas heating device Can be eliminated.
JP 2001-033004 A JP 2002-022107 A

しかしながら、前記の従来の誘導加熱式蒸気発生装置においては、冷却水により吸収された熱は損失とし放出されるだけで回収されることがないので、これは加熱効率を低下させる大きな要因となる。
また、誘導加熱コイルにより蒸気発生容器および蒸気加熱容器それ自体を発熱させてその熱によって容器内に供給される水または蒸気を加熱するようにしているので、水または蒸気と加熱体である蒸気発生容器および加熱
蒸気発生容器とが容器の内壁で接触するだけであるため、両者の接触面積が小さく、容器から水または蒸気への熱伝達効率が悪く、全体の加熱効率を高くできないという問題がある。
また、蒸気を必要とする機器に隣接して設置されるボイラは、ボイラ室に置かれた大容量ボイラで発生された蒸気を分岐して各機器へ供給する場合と比較し、機器毎の蒸気使用量の変動(負荷変動)への追従性能を高くすることが求められる。
However, in the above-described conventional induction heating steam generator, the heat absorbed by the cooling water is only lost as a loss and is not recovered, which is a major factor for reducing the heating efficiency.
In addition, since the steam generation container and the steam heating container itself are heated by the induction heating coil and the water or steam supplied into the container is heated by the heat, the steam generation that is water or steam and the heating body is generated. Since the container and the heating steam generation container are only in contact with the inner wall of the container, the contact area between the two is small, the heat transfer efficiency from the container to water or steam is poor, and the overall heating efficiency cannot be increased. .
In addition, the boiler installed adjacent to the equipment that requires steam is different from the case where the steam generated in a large-capacity boiler placed in the boiler room is branched and supplied to each equipment. It is required to improve the follow-up performance to fluctuations in usage (load fluctuation).

この発明は、従来の誘導加熱式蒸気発生装置における前記のような問題を解決して、加熱効率が高く、蒸気使用量の変動に対応しやすい誘導加熱式蒸気発生装置を提供することを課題とするものである。   It is an object of the present invention to provide an induction heating steam generator that solves the above-described problems in the conventional induction heating steam generator and has high heating efficiency and can easily cope with fluctuations in the amount of steam used. To do.

このような課題を解決するため、請求項1の発明は、誘導加熱コイルにより加熱される加熱容器により、水を加熱して蒸気を発生させる誘導加熱式蒸気発生装置において、前記誘導加熱コイルの外周部または上下端部に電気的に閉じられた環状コイルからなるシールドコイルを所要数配設し、前記シールドコイルを形成する導体内に冷却水流通路を設けたことを特徴とする。
請求項2の発明は、前記加熱容器で発生された蒸気を前記シールドコイルの冷却水流通路を通して外部へ過熱蒸気として取り出すことを特徴とする。
請求項3の発明は、請求項2に記載の誘導加熱式蒸気発生装置において、前記過熱蒸気を前記容器本体に供給することを特徴とする。
請求項4の発明は、請求項1〜3のいずれかに記載の誘導加熱式蒸気発生装置において、前記誘導加熱コイルまたはシールドコイルの導体の一部または全部を銅またはアルミニウムなどの高導電性材で形成した導電板と冷却水流通路を形成するステンレス鋼などの不錆材で形成したパイプとを一体に接合して形成した複合導体で構成したことを特徴とする。
In order to solve such problems, the invention of claim 1 is directed to an induction heating steam generator that generates steam by heating water by a heating container heated by an induction heating coil. A required number of shield coils made up of annular coils electrically closed at the upper or lower end portions are arranged, and a cooling water flow passage is provided in a conductor forming the shield coil.
The invention of claim 2 is characterized in that the steam generated in the heating vessel is taken out as superheated steam to the outside through the cooling water flow passage of the shield coil.
According to a third aspect of the present invention, in the induction heating steam generator according to the second aspect, the superheated steam is supplied to the container body.
A fourth aspect of the present invention is the induction heating steam generator according to any one of the first to third aspects, wherein a part or all of the conductor of the induction heating coil or shield coil is made of a highly conductive material such as copper or aluminum. It is characterized by comprising a composite conductor formed by integrally joining a conductive plate formed in (1) and a pipe formed of a non-rust material such as stainless steel forming a cooling water flow passage.

請求項5の発明は、請求項1〜3のいずれかに記載の誘導加熱式蒸気発生装置において、前記加熱容器は、非磁性で非導電性の耐熱材で形成した容器本体と、この容器本体内に充填した多数の導電性金属の小片からなる発熱体とにより構成したことを特徴とする。
加熱容器を導電性の金属材で構成すると、加熱容器の外周側に誘導電流が流れ、容器内の金属小片を通る磁束密度が減少し、金属小片の発熱が低下し、かつ加熱容器の発熱も容器外に逃げやすく、発熱効率が低下する。
請求項6の発明は、請求項5に記載の誘導加熱式蒸気発生装置において、前記発熱体を磁性を有するステンレス鋼の小片で形成したことを特徴とする。
発熱体に誘起される誘導電流は、この発熱体の表面からその厚みの深さ方向に指数関数的に減少する分布を示す。全誘導電流は表面に流れる電流値に下式で表される浸透深さλを掛けた値と見なすことができる。
The invention according to claim 5 is the induction heating steam generator according to any one of claims 1 to 3, wherein the heating container is a container body formed of a non-magnetic non-conductive heat-resistant material, and the container body It is characterized by comprising a heating element composed of a number of small pieces of conductive metal filled therein.
When the heating container is made of a conductive metal material, an induced current flows on the outer peripheral side of the heating container, the magnetic flux density passing through the metal pieces in the container is reduced, the heat generation of the metal pieces is reduced, and the heating container also generates heat. Easily escape from the container, reducing heat generation efficiency.
According to a sixth aspect of the present invention, in the induction heating steam generator according to the fifth aspect, the heating element is formed of a small piece of stainless steel having magnetism.
The induced current induced in the heating element has a distribution that decreases exponentially from the surface of the heating element in the depth direction of the thickness. The total induced current can be regarded as a value obtained by multiplying the value of the current flowing on the surface by the penetration depth λ expressed by the following equation.

λ=(2×ρ/(2πf×μ0×μs))1/2
ここで、ρ:発熱体の抵抗率、f:周波数、μ0:真空の透磁率、μs:金属の比透磁率例えば、f=20kHz、ρ=100μΩ・cmとすると、λは非磁性発熱体では3.6mm、磁性発熱体では、0.1mmと、磁性発熱体は、浸透深さが浅くなり、発熱体の表面付近に集中して誘導電流が流れるため、磁性発熱体の方が非磁性発熱体より加熱効率を高くできる。
請求項7の発明は、請求項1〜3のいずれかに記載の誘導加熱式蒸気発生装置において、前記容器本体を非磁性で非導電性の耐熱材で形成した複数の細管で構成したことを特徴とする。
請求項8の発明は、請求項1〜3のいずれかに記載の誘導加熱式蒸気発生装置において、前記誘導加熱コイルを形成する導体内に冷却水流通路を設け、前記加熱容器に供給する水を、この加熱容器に供給する前に、前記誘導加熱コイルの冷却水流通路を通してから加熱容器に供給することを特徴とする。
λ = (2 × ρ / (2πf × μ 0 × μ s )) 1/2
Here, ρ: resistivity of the heating element, f: frequency, μ 0 : permeability of vacuum, μ s : relative permeability of metal For example, if f = 20 kHz and ρ = 100 μΩ · cm, λ is non-magnetic heat generation 3.6mm for the body and 0.1mm for the magnetic heating element, the penetration depth of the magnetic heating element is shallow, and the induced current flows near the surface of the heating element. Heating efficiency can be made higher than that of a magnetic heating element.
The invention of claim 7 is the induction heating steam generator according to any one of claims 1 to 3, wherein the container body is composed of a plurality of thin tubes formed of a non-magnetic non-conductive heat-resistant material. Features.
The invention according to claim 8 is the induction heating steam generator according to any one of claims 1 to 3, wherein a cooling water flow passage is provided in a conductor forming the induction heating coil, and water supplied to the heating container is supplied. And before supplying to this heating container, it supplies to a heating container through the cooling water flow path of the said induction heating coil, It is characterized by the above-mentioned.

この発明においては、誘導加熱式蒸気発生装置において、前記誘導加熱コイルの外周部または上下端部に電気的に閉じられた環状コイルからなるシールドコイルを所要数配設し、前記シールドコイルを形成する導体内に冷却水流通路を設けたので、シールドコイルにおける抵抗損失を回収でき、これによって熱効率を高めることができる。
そして、この発明によれば、加熱容器を非磁性で非導電性の耐熱材で形成するとともに、この中に導電性金属の小片からなる発熱体を多数充填して構成することにより、この発熱体が容器内で誘導加熱により発熱し、容器内に供給される水と接触する際、小片の各発熱体がそれぞれ全表面を水と接触するため、水との接触面積が拡大し、発熱体から水への熱伝達が良好となって、蒸気発生装置の熱効率を高めることができる。
さらに、この加熱容器を、非磁性で非導電性の耐熱材で形成した複数の細管で構成することにより、ボイラ内の水量を減じることができるため、簡易ボイラに適した構造となるとともに、水との接触面積が大きいため、蒸気使用量の変動に追従しやすい誘導加熱式蒸気発生装置とすることができる。
In this invention, in the induction heating type steam generator, the shield coil is formed by arranging a required number of shield coils composed of annular coils electrically closed at the outer periphery or upper and lower ends of the induction heating coil. Since the cooling water flow passage is provided in the conductor, the resistance loss in the shield coil can be recovered, thereby improving the thermal efficiency.
And according to this invention, while forming a heating container with a nonmagnetic and nonelectroconductive heat-resistant material, it is filled with many heat generating bodies which consist of a small piece of conductive metal in this, and this heat generating body is comprised. When heat is generated by induction heating in the container and comes into contact with water supplied to the container, each heating element of the small piece comes into contact with water on the entire surface, so the contact area with water is expanded, and Heat transfer to water becomes good, and the thermal efficiency of the steam generator can be increased.
Furthermore, since this heating vessel is composed of a plurality of thin tubes formed of a non-magnetic non-conductive heat-resistant material, the amount of water in the boiler can be reduced, so that the structure becomes suitable for a simple boiler, Since the contact area is large, it is possible to provide an induction heating steam generator that can easily follow fluctuations in the amount of steam used.

このような課題を解決するため、請求項1の発明は、誘導加熱コイルにより加熱される加熱容器により、水を加熱して蒸気を発生させる誘導加熱式蒸気発生装置において、前記誘導加熱コイルの外周部または上下端部に電気的に閉じられた環状コイルからなるシールドコイルを所要数配設し、前記シールドコイルを形成する導体内に冷却水流通路を設け、前記加熱容器で発生された蒸気を前記シールドコイルの冷却水流通路を通して外部へ過熱蒸気として取り出すことを特徴とする。 In order to solve such problems, the invention of claim 1 is directed to an induction heating steam generator that generates steam by heating water by a heating container heated by an induction heating coil. A required number of shield coils made up of annular coils electrically closed at the upper or lower and lower ends, a cooling water flow passage is provided in a conductor forming the shield coil, and the steam generated in the heating vessel is It is characterized by taking out as superheated steam to the outside through the cooling water flow passage of the shield coil .

請求項の発明は、請求項に記載の誘導加熱式蒸気発生装置において、前記誘導加熱コイルまたはシールドコイルの導体の一部または全部を銅またはアルミニウムなどの高導電性材で形成した導電板と冷却水流通路を形成するステンレス鋼などの不錆材で形成したパイプとを一体に接合して形成した複合導体で構成したことを特徴とする。 A second aspect of the present invention, in the induction heating steam generator according to claim 1, wherein the induction heating coil or the conductive plate forming part or all of the conductor of the shield coil in highly conductive material such as copper or aluminum And a pipe formed of a non-rust material such as stainless steel that forms the cooling water flow passage is integrally formed of a composite conductor formed by joining together.

請求項の発明は、請求項に記載の誘導加熱式蒸気発生装置において、前記加熱容器は、非磁性で非導電性の耐熱材で形成した容器本体と、この容器本体内に充填した多数の導電性金属の小片からなる発熱体とにより構成したことを特徴とする。
加熱容器を導電性の金属材で構成すると、加熱容器の外周側に誘導電流が流れ、容器内の金属小片を通る磁束密度が減少し、金属小片の発熱が低下し、かつ加熱容器の発熱も容器外に逃げやすく、発熱効率が低下する。
Numerous invention of claim 3, in the induction heating steam generator according to claim 1, wherein the heating vessel comprises a container body formed with a non-magnetic non-conductive heat-resistant material, filled into the container body And a heating element made of a small piece of conductive metal.
When the heating container is made of a conductive metal material, an induced current flows on the outer peripheral side of the heating container, the magnetic flux density passing through the metal pieces in the container is reduced, the heat generation of the metal pieces is reduced, and the heating container also generates heat. Easily escape from the container, reducing heat generation efficiency.

請求項の発明は、請求項に記載の誘導加熱式蒸気発生装置において、前記発熱体を磁性を有するステンレス鋼の小片で形成したことを特徴とする。
発熱体に誘起される誘導電流は、この発熱体の表面からその厚みの深さ方向に指数関数的に減少する分布を示す。全誘導電流は表面に流れる電流値に下式で表される浸透深さλを掛けた値と見なすことができる。
According to a fourth aspect of the present invention, in the induction heating steam generator according to the third aspect , the heating element is formed of a small piece of stainless steel having magnetism.
The induced current induced in the heating element has a distribution that decreases exponentially from the surface of the heating element in the depth direction of the thickness. The total induced current can be regarded as a value obtained by multiplying the value of the current flowing on the surface by the penetration depth λ expressed by the following equation.

加熱コイル2に高周波電力が供給されると、コイル導体21に流れる電流と抵抗によりジュール熱が発生し、また誘導加熱コイル2によって発生される高周波磁界によって加熱容器1内に充填された磁性材の小片からなる発熱体13にそれぞれ渦電流が生じ、この電流によるジュール熱が発生する。加熱容器1へ供給される水Wは、加熱コイル2内の冷却水流通路を貫流する過程で、コイル導体21の損失熱を吸収し、冷却することによって予備加熱され、温水となって加熱容器1へ供給される。加熱容器1に供給された水は、容器1内に多数充填された磁性材小片からなる発熱体13と接触し、この発熱体の発生する熱によって加熱されて蒸気Sとなる。
加熱容器1内で発生された蒸気Sは、容器の上部空間に集まり、この上部空間から引き出された蒸気取出管14を通して気水ドラム5に送られる。気水ドラム5へ送られた蒸気は水分を含んだ湿り蒸気であるので、この気水ドラム5において蒸気と水分が分離され水分はドラム5内に貯えられる。そして水分の除かれた蒸気は、蒸気管52を通してシールドコイルの下端の環状導体34の冷却水通路の入口管へ導かれ、4個の環状導体(31〜34)の冷却水通路を貫流して上端の環状導体31の出口管3dに接続された過熱蒸気供給管62へ流れる。
When high frequency power is supplied to the heating coil 2, Joule heat is generated by the current and resistance flowing in the coil conductor 21, and the magnetic material filled in the heating container 1 by the high frequency magnetic field generated by the induction heating coil 2. Eddy currents are respectively generated in the heating elements 13 made of small pieces, and Joule heat is generated by the currents. The water W supplied to the heating container 1 is preheated by absorbing the heat lost in the coil conductor 21 in the process of flowing through the cooling water flow passage in the heating coil 2 and cooling it to become the heating container 1. Supplied to. The water supplied to the heating container 1 comes into contact with a heating element 13 made of a small piece of magnetic material filled in the container 1 and is heated by the heat generated by the heating element to become steam S.
The steam S generated in the heating container 1 gathers in the upper space of the container, and is sent to the steam-water drum 5 through the steam extraction pipe 14 drawn from the upper space. Since the steam sent to the steam-water drum 5 is wet steam containing moisture, the steam and moisture are separated in the steam-water drum 5 and the moisture is stored in the drum 5. The steam from which moisture has been removed is guided to the inlet pipe of the cooling water passage of the annular conductor 34 at the lower end of the shield coil through the steam pipe 52 and flows through the cooling water passages of the four annular conductors (31 to 34). It flows to the superheated steam supply pipe 62 connected to the outlet pipe 3d of the annular conductor 31 at the upper end.

請求項の発明は、請求項に記載の誘導加熱式蒸気発生装置において、前記容器本体を非磁性で非導電性の耐熱材で形成した複数の細管で構成したことを特徴とする。 A fifth aspect of the present invention, in the induction heating steam generator according to claim 1, characterized by being composed of a plurality of tubules formed with the container body in a non-conductive heat-resistant material on the non-magnetic.

請求項の発明は、請求項に記載の誘導加熱式蒸気発生装置において、前記誘導加熱コイルを形成する導体内に冷却水流通路を設け、前記加熱容器に供給する水を、この加熱容器に供給する前に、前記誘導加熱コイルの冷却水流通路を通してから加熱容器に供給することを特徴とする。 According to a sixth aspect of the invention, in the induction heating steam generator according to claim 1, the cooling water flow path in the conductor forming the induction heating coil is provided, the water supplied to the heating vessel, the heating vessel Before supplying, it supplies to a heating container after passing through the cooling water flow path of the said induction heating coil, It is characterized by the above-mentioned.

このような場合は、加熱コイルを、図2に示すように、コイルの内側になる導電部分を電気抵抗の小さい銅やアルミニウムなどで形成した導体板21aで構成し、その外側に冷却水流通路を形成するステンレス鋼製のパイプ22aを溶接などにより接合した構造の複合導体をコイル導体21とするのがよい。このようにすることにより、加熱コイルにおける電流の流れる導電部分が低抵抗となるため、発生損失が低減され、冷却水の流れる部分をステンレス鋼のパイプで構成することによりして錆びの発生を防ぐことができる。
また、前記の蒸気の加熱を行うシールドコイル3は、加熱コイル2との距離を変えることにより、発熱量を変えることができる。シールドコイル3を加熱コイル2に接近させると、シールドコイル3における発熱量が大きり、蒸気をより高温の過熱蒸気とすることができる。
In such a case, as shown in FIG. 2, the heating coil is composed of a conductive plate 21a formed of copper, aluminum or the like having a low electrical resistance in the conductive portion inside the coil, and a cooling water flow passage is formed outside the heating coil. A composite conductor having a structure in which the stainless steel pipe 22a to be formed is joined by welding or the like is preferably used as the coil conductor 21. By doing so, since the conductive portion through which the current flows in the heating coil has a low resistance, the generation loss is reduced, and the portion through which the cooling water flows is constituted by a stainless steel pipe to prevent the occurrence of rust. be able to.
The shield coil 3 that heats the steam can change the amount of heat generated by changing the distance from the heating coil 2. When the shield coil 3 is brought close to the heating coil 2, the amount of heat generated in the shield coil 3 is increased, and the steam can be changed to a higher temperature superheated steam.

なお、蒸気の温度が高くなり過ぎるのを抑えるには、シールドコイル3を加熱コイル2から間隔を離して設置すればよいが、シールドコイル3を加熱コイル2から間隔を離して設置すると装置の高さおよび直径が大きなり、装置が大形となる不都合がある。
このような不都合を解消するためには、シールドコイル3のコイル導体を低抵抗化することが必要となる。コイル導体の低抵抗化は、前記した加熱コイル2と同様に図2に示すように低抵抗の導体板とステンレス鋼のような不錆性材パイプとを接合して構成した複合導体を使用することにより実現できる。このような、複合導体によりシールドコイルを構成することにより、シールドコイルの発生損失を低減できるため、シールドコイルを加熱コイルにより接近して配置でき、装置を小形化することができる。
In order to suppress the temperature of the steam from becoming too high, the shield coil 3 may be installed at a distance from the heating coil 2. However, if the shield coil 3 is installed at a distance from the heating coil 2, the height of the apparatus is increased. There is an inconvenience that the size and the diameter are large and the apparatus becomes large.
In order to eliminate such inconvenience, it is necessary to reduce the resistance of the coil conductor of the shield coil 3. The resistance of the coil conductor is reduced by using a composite conductor formed by joining a low-resistance conductor plate and a non-rusting material pipe such as stainless steel as shown in FIG. Can be realized. By configuring the shield coil with such a composite conductor, the generation loss of the shield coil can be reduced, so that the shield coil can be arranged closer to the heating coil and the apparatus can be miniaturized.

次に、この発明を貫流形の蒸気発生装置に適用した場合の実施例について説明する。
図4、図5に、この発明の第2の実施例として貫流形の蒸気発生装置を示す。図4はその縦断面図、図5は図4におけるV−V線の平面断面図である。
これらの図から明らかなように、この実施例2の装置は、加熱コイル2、シールドコイル3の形状および配置は前記実施例1の装置と同じである。
加熱容器1は、実施例1の装置とは異なり、上下の蒸気および水のヘッダ部を構成する非磁性の例えばステンレス鋼などの金属で形成した蓋体17a、17bと、それぞれ内部に磁性の金属小片で構成された発熱体13を多数充填されたセラミック等の非磁性の耐火材の細管で構成されたの複数加熱管15とにより構成されている。複数の加熱管15は上下両端をステンレス鋼等の非磁性金属で形成されたフランジ18、19に気密的に結合されて支持されている。蓋体16、17はフランジ18、19に気密的に接合され、加熱容器1の全体が気密に構成される。
Next, an embodiment when the present invention is applied to a once-through steam generator will be described.
4 and 5 show a once-through steam generator as a second embodiment of the present invention. 4 is a longitudinal sectional view thereof, and FIG. 5 is a plan sectional view taken along line VV in FIG.
As is clear from these drawings, the apparatus of the second embodiment is the same in shape and arrangement of the heating coil 2 and the shield coil 3 as the apparatus of the first embodiment.
Unlike the apparatus of the first embodiment, the heating container 1 includes lids 17a and 17b made of non-magnetic metal such as stainless steel that constitute the upper and lower steam and water headers, and a magnetic metal inside each of them. It is composed of a plurality of heating tubes 15 composed of thin tubes of nonmagnetic refractory material such as ceramic filled with a large number of heating elements 13 composed of small pieces. The plurality of heating tubes 15 are supported by being hermetically coupled to flanges 18 and 19 made of a nonmagnetic metal such as stainless steel at both upper and lower ends. The lids 16 and 17 are airtightly joined to the flanges 18 and 19 so that the entire heating container 1 is airtight.

さらに、必要ならば、加熱管15全体の外周に非導電性の耐熱材で構成した断熱容器10を設け、容器内の加熱管相互間の空所および加熱管と断熱容器の間の空所には非磁性で非導電性の断熱材10aを充填するようにしてもよい。これにより、加熱容器1からの外部への放熱を低減して加熱効率を高めることができる。
給水管41は、加熱コイル2の最下段のコイル導体21の冷却水通路22の入口25に接続し、最上段のコイル導体21の冷却水流通路22の出口26を接続管42により下部の給水ヘッダ部を構成する蓋体17に接続する。上部の蒸気ヘッダ部を構成する蓋体16から引出した蒸気取出管14を加熱容器1の外側に設置された気水ドラム5に接続する。この気水ドラム5から給水管51を引出し下部蓋体17に接続し、ドラム5から加熱容器1の給水ヘッダ部へ給水する。加熱容器1内の水量は、常に所定の水位Lを維持するように調整し、発熱体13が水から露出することがないようにする。さらに気水ドラム5から引出された蒸気管52をシールドコイル3の最上段の環状導体31の冷却水通路の入口管3cに接続し、最下段の環状導体34の冷却水通路の出口管3dに過熱蒸気供給管62を接続する。この過熱蒸気供給管62は、蒸気を必要とする負荷の設置場所まで延長され、負荷へ蒸気Sを供給する。
Furthermore, if necessary, a heat insulating container 10 made of a non-conductive heat-resistant material is provided on the outer periphery of the entire heating tube 15, and the space between the heating tubes in the container and the space between the heating tube and the heat insulating container are provided. May be filled with a non-magnetic non-conductive heat insulating material 10a. Thereby, the heat radiation from the heating container 1 to the outside can be reduced and the heating efficiency can be increased.
The water supply pipe 41 is connected to the inlet 25 of the cooling water passage 22 of the lowermost coil conductor 21 of the heating coil 2, and the outlet 26 of the cooling water flow path 22 of the uppermost coil conductor 21 is connected to the lower water supply header by the connection pipe 42. It connects with the lid 17 which comprises a part. The steam extraction pipe 14 drawn out from the lid body 16 constituting the upper steam header is connected to the steam-water drum 5 installed outside the heating container 1. A water supply pipe 51 is drawn out from the air / water drum 5 and connected to the lower lid 17 to supply water from the drum 5 to the water supply header of the heating container 1. The amount of water in the heating container 1 is adjusted so as to always maintain a predetermined water level L so that the heating element 13 is not exposed from the water. Further, the steam pipe 52 drawn out from the air-water drum 5 is connected to the inlet pipe 3c of the cooling water passage of the uppermost annular conductor 31 of the shield coil 3, and is connected to the outlet pipe 3d of the cooling water passage of the lowermost annular conductor 34. The superheated steam supply pipe 62 is connected. The superheated steam supply pipe 62 is extended to an installation place of a load that requires steam, and supplies the steam S to the load.

このように構成された実施例2の蒸気発生装置の動作はほとんど実施例1の装置と同じである。
蒸気発生のために、図示しない高周波交流電源装置から加熱コイル2に30kHz程度の高周波交流電力を供給する。そして、給水管41を介して貯水槽などの水源から加熱コイル2の導体21の内部に形成された冷却水流通路22の入口25に水Wを供給する。この水は、加熱コイル2の冷却水流通路22を貫流して出口26から接続管42を介して加熱容器1下部の給水ヘッダ部へに注入される。
加熱コイル2に高周波電力が供給されると、コイル導体21に流れる電流と抵抗によりジュール熱が発生し、また誘導加熱コイル2によって発生される高周波磁界によって加熱容器1内の各加熱管15に充填された磁性金属の小片からなる発熱体13にそれぞれ渦電流が生じ、この電流によるジュール熱が発生する。加熱容器1へ供給される水Wは、加熱コイル2内の冷却水流通路を貫流する過程で、コイル導体21を冷却することによって予備加熱され、温水となって加熱容器1の給水ヘッダ部へ供給される。ここから加熱管15に供給された水は、各加熱管においてその中に充填された多数の磁性金属小片からなる発熱体13と接触し、この発熱体の発生する熱によって加熱されて蒸気Sとなって加熱管内を上昇して加熱容器1の上部の蓋体16によって形成された蒸気ヘッダ部に集まる。
The operation of the steam generator according to the second embodiment configured as described above is almost the same as that of the first embodiment.
In order to generate steam, high frequency AC power of about 30 kHz is supplied to the heating coil 2 from a high frequency AC power supply device (not shown). Then, water W is supplied from a water source such as a water storage tank 41 to the inlet 25 of the cooling water flow passage 22 formed in the conductor 21 of the heating coil 2 through the water supply pipe 41. This water flows through the cooling water flow passage 22 of the heating coil 2 and is injected from the outlet 26 into the water supply header portion below the heating container 1 through the connection pipe 42.
When high frequency power is supplied to the heating coil 2, Joule heat is generated by the current and resistance flowing in the coil conductor 21, and each heating tube 15 in the heating container 1 is filled by the high frequency magnetic field generated by the induction heating coil 2. An eddy current is generated in each of the heating elements 13 made of small pieces of magnetic metal, and Joule heat is generated by this current. The water W supplied to the heating container 1 is preheated by cooling the coil conductor 21 in the process of flowing through the cooling water flow passage in the heating coil 2 and supplied to the water supply header portion of the heating container 1 as hot water. Is done. The water supplied from here to the heating tube 15 comes into contact with the heating element 13 made up of a number of magnetic metal pieces filled in each heating tube, and is heated by the heat generated by the heating element to produce steam S and As a result, the inside of the heating pipe rises and gathers in the steam header portion formed by the lid 16 at the top of the heating container 1.

加熱容器1の上部蒸気ヘッダ部内の蒸気は、蒸気取出管14を通して気水ドラム5に送られる。気水ドラム5へ送られた蒸気は水分を含んだ湿り蒸気であるので、この気水ドラム5において蒸気と水分(凝縮した液体分)が分離されこのドラム5内に貯えられる。そして水分の除かれた蒸気は、蒸気管52を通してシールドコイルの上端の環状導体31の冷却水通路の入口管3cへ導かれ、4個の環状導体(31〜34)の冷却水通路を貫流して下端の環状導体34の出口管3dに接続された過熱蒸気供給管62へ流れる。
シールドコイル3は、その各環状導体に加熱コイル2で発生される磁束により発生する循環電流によって発生された磁束により、加熱コイル2の外部へ漏れる磁束を打ち消し、磁束の外部への漏洩を抑制する働きをする。各環状導体に流れる循環電流は当然のことながら導体自身の抵抗によってジュール熱を発生するが、この熱によってシールドコイル3内の冷却水流通路3bを流れる過程で蒸気Sが再加熱され、乾燥した過熱蒸気S´となる。このようにして発生された過熱蒸気S´は、過熱蒸気供給管62によって蒸気を使用する負荷の設置場所まで運ばれる。
The steam in the upper steam header portion of the heating container 1 is sent to the steam drum 5 through the steam take-out pipe 14. Since the steam sent to the steam-water drum 5 is wet steam containing moisture, the steam and moisture (condensed liquid component) are separated in the steam-water drum 5 and stored in the drum 5. The steam from which moisture has been removed is guided to the inlet pipe 3c of the cooling water passage of the annular conductor 31 at the upper end of the shield coil through the steam pipe 52, and flows through the cooling water passages of the four annular conductors (31 to 34). Then flows to the superheated steam supply pipe 62 connected to the outlet pipe 3d of the annular conductor 34 at the lower end.
The shield coil 3 cancels out the magnetic flux leaking to the outside of the heating coil 2 by the magnetic flux generated by the circulating current generated by the magnetic flux generated by the heating coil 2 in each annular conductor, and suppresses the leakage of the magnetic flux to the outside. Work. The circulating current flowing in each annular conductor naturally generates Joule heat due to the resistance of the conductor itself, but the steam S is reheated in the process of flowing through the cooling water flow passage 3b in the shield coil 3 and dried overheated. Steam S ′ is obtained. The superheated steam S ′ generated in this way is transported to the installation location of the load that uses the steam by the superheated steam supply pipe 62.

このように複数の細管によって加熱容器を構成すると、加熱容器が細分され、1つの細管内の収容水量が少なくなるので、ボイラとしての安全性を高めることができる。
この実施例2においても、加熱コイル2およびシールドコイル3には実施例1と同様に図2に示す銅やアルミニウムのような低抵抗の導電板21aとステンレスパイプのような不錆金属パイプ22bを結合して構成した複合導体を使用するのがよい。
When the heating container is constituted by a plurality of thin tubes as described above, the heating vessel is subdivided and the amount of water contained in one thin tube is reduced, so that the safety as a boiler can be improved.
Also in the second embodiment, the heating coil 2 and the shield coil 3 are provided with a low resistance conductive plate 21a such as copper or aluminum and a rust-free metal pipe 22b such as a stainless steel pipe as shown in FIG. It is preferable to use a composite conductor formed by bonding.

前記のように、この発明の蒸気発生装置は、水を加熱するための発熱体および水および蒸気の流通される流通路をステンレス鋼等の不銹材で構成することにより、発生した蒸気に錆などが混入するのを避けることができるので、食品加工などの不純物混入を嫌う用途の蒸気発生源とし利用するのに適している。   As described above, the steam generator according to the present invention is configured to rust the generated steam by forming the heating element for heating water and the flow path through which water and steam are circulated with stainless steel or other non-metallic material. Therefore, it is suitable for use as a steam generation source for applications that do not like impurities such as food processing.

この発明の第1の実施例の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of 1st Example of this invention. この発明に使用する加熱コイルのコイル導体の実施例を部分的に示す斜視図である。It is a perspective view which shows partially the Example of the coil conductor of the heating coil used for this invention. この発明に使用するシールドコイルのコイル導体を示す平面図である。It is a top view which shows the coil conductor of the shield coil used for this invention. この発明の第2の実施例の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of 2nd Example of this invention. 図4のV−V線の平面断面図である。It is a plane sectional view of the VV line of FIG. 従来の燃焼ガス式蒸気発生装置の例を示す構成図である。It is a block diagram which shows the example of the conventional combustion gas type steam generator. 従来の誘導加熱式蒸気発生装置の例を示す構成図である。It is a block diagram which shows the example of the conventional induction heating type steam generator.

符号の説明Explanation of symbols

1:加熱容器
13:加熱体
15:加熱管
2:加熱コイル
21:コイル導体
22:冷却水流通路
3:シールドコイル
3a:コイル導体
3b:冷却水流通路
W:水
S:蒸気
S´:過熱蒸気
1: Heating vessel 13: Heating body 15: Heating tube 2: Heating coil 21: Coil conductor 22: Cooling water flow passage 3: Shield coil 3a: Coil conductor 3b: Cooling water flow passage W: Water S: Steam S ': Superheated steam

Claims (6)

誘導加熱コイルにより加熱される加熱容器により、水を加熱して蒸気を発生させる誘導加熱式蒸気発生装置において、
前記誘導加熱コイルの外周部または上下端部に電気的に閉じられた環状コイルからなるシールドコイルを所要数配設し、
前記シールドコイルを形成する導体内に冷却水流通路を設け
前記加熱容器で発生された蒸気を前記シールドコイルの冷却水流通路を通して外部へ過熱蒸気として取り出すことを特徴とする誘導加熱式蒸気発生装置。
In an induction heating type steam generator that generates steam by heating water by a heating container heated by an induction heating coil,
A required number of shield coils made of an annular coil electrically closed at the outer periphery or upper and lower ends of the induction heating coil are disposed,
A cooling water flow passage is provided in the conductor forming the shield coil ,
An induction heating steam generator , wherein steam generated in the heating container is taken out as superheated steam to the outside through a cooling water flow passage of the shield coil .
請求項に記載の誘導加熱式蒸気発生装置において、前記誘導加熱コイルまたはシールドコイルの導体の一部または全部を銅またはアルミニウムなどの高導電性材で形成した導電板と冷却水流通路を形成するステンレス鋼などの不錆材で形成したパイプとを一体に接合して形成した複合導体で構成したことを特徴とする誘導加熱式蒸気発生装置。 The induction heating steam generator according to claim 1 , wherein a part or all of the conductor of the induction heating coil or shield coil is formed with a conductive plate and a cooling water flow passage formed of a highly conductive material such as copper or aluminum. An induction heating steam generator characterized by comprising a composite conductor formed by integrally joining a pipe formed of a non-rust material such as stainless steel. 請求項に記載の誘導加熱式蒸気発生装置において、
前記加熱容器は、非磁性で非導電性の耐熱材で形成した容器本体と、この容器本体内に充填した多数の導電性金属の小片からなる発熱体とにより構成したことを特徴とする誘導加熱式蒸気発生装置。
In the induction heating type steam generator according to claim 1 ,
The heating container is composed of a container body formed of a non-magnetic, non-conductive heat-resistant material, and a heating element made up of a large number of conductive metal pieces filled in the container body. Steam generator.
請求項に記載の誘導加熱式蒸気発生装置において、前記発熱体を磁性を有するステンレス鋼の小片で形成したことを特徴とする誘導加熱式蒸気発生装置。 The induction heating steam generator according to claim 3 , wherein the heating element is formed of a small piece of magnetic stainless steel. 請求項に記載の誘導加熱式蒸気発生装置において、前記容器本体を非磁性で非導電性の耐熱材で形成した複数の細管で構成したことを特徴とする誘導加熱式蒸気発生装置。 2. The induction heating steam generator according to claim 1 , wherein the container body is composed of a plurality of thin tubes formed of a non-magnetic non-conductive heat-resistant material. 請求項に記載の誘導加熱式蒸気発生装置において、
前記誘導加熱コイルを形成する導体内に冷却水流通路を設け、
前記加熱容器に供給する水を、この加熱容器に供給する前に、前記誘導加熱コイルの冷却水流通路を通してから加熱容器に供給することを特徴とする誘導加熱式蒸気発生装置。
In the induction heating type steam generator according to claim 1 ,
A cooling water flow passage is provided in the conductor forming the induction heating coil;
An induction heating steam generator, wherein the water supplied to the heating container is supplied to the heating container through the cooling water flow passage of the induction heating coil before being supplied to the heating container.
JP2005219769A 2004-07-27 2005-07-29 Induction heating steam generator Expired - Fee Related JP3758668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005219769A JP3758668B2 (en) 2004-07-27 2005-07-29 Induction heating steam generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004219046 2004-07-27
JP2005219769A JP3758668B2 (en) 2004-07-27 2005-07-29 Induction heating steam generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004365171A Division JP2006064358A (en) 2004-07-27 2004-12-17 Induction heating type steam generating device

Publications (2)

Publication Number Publication Date
JP2006064367A JP2006064367A (en) 2006-03-09
JP3758668B2 true JP3758668B2 (en) 2006-03-22

Family

ID=36110997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005219769A Expired - Fee Related JP3758668B2 (en) 2004-07-27 2005-07-29 Induction heating steam generator

Country Status (1)

Country Link
JP (1) JP3758668B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4602940B2 (en) * 2006-06-14 2010-12-22 富士電機システムズ株式会社 Induction heating steam generator
JP2008064367A (en) * 2006-09-06 2008-03-21 Fuji Electric Systems Co Ltd Induction heating type steam generating device
JP5240987B2 (en) 2007-12-25 2013-07-17 学校法人東京電機大学 Superheated steam generator, superheated steam generator, and superheated steam generation method
JP5519110B2 (en) * 2008-01-24 2014-06-11 ネピュレ株式会社 Superheated steam generator
JP5743677B2 (en) * 2011-04-25 2015-07-01 ホシザキ電機株式会社 Steam generator
JP5718748B2 (en) * 2011-07-11 2015-05-13 株式会社Ihi Induction heating device
JP5294435B2 (en) * 2012-02-28 2013-09-18 宮浦 富雄 Powerful steam generation method for IH stone-fired power generation
JP6404704B2 (en) * 2014-12-19 2018-10-10 トクデン株式会社 Fluid heating device
CN104713062A (en) * 2015-02-16 2015-06-17 宁波格林美孚新材料科技有限公司 High-frequency induction type steam generator

Also Published As

Publication number Publication date
JP2006064367A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
JP3758668B2 (en) Induction heating steam generator
JP3791694B1 (en) Induction heating steam generator
JP2006064358A (en) Induction heating type steam generating device
US5216215A (en) Electrically powered fluid heater including a coreless transformer and an electrically conductive jacket
JP5654791B2 (en) Superheated steam generator
JP5691830B2 (en) Induction heating steam generator
JP4602940B2 (en) Induction heating steam generator
JP2011122804A (en) Steam generating device
JP6217203B2 (en) Superheated steam generator
EP3760923A1 (en) Superheated steam generator and cooker
RU2658658C1 (en) Electric steam generator
RU2736270C1 (en) Electric vapor superheater
EP3011145B1 (en) Electric induction fluid heaters for fluids utilized in turbine-driven electric generator systems
JP2008064367A (en) Induction heating type steam generating device
KR102287260B1 (en) Induction heat steam boiler using commercial frequency
KR102154630B1 (en) Hybrid electric boiler apparatus and the boiling apparatus adapted to the boiler apparatus
JP2002083673A (en) High-temperature vapor generating apparatus
JP4987565B2 (en) Cooker
JP2021034294A (en) Superheated steam producing device
KR101809169B1 (en) Apparatus for Heating Fluid
RU200076U1 (en) ELECTRIC STEAM HEATER
CN216131912U (en) Superheated steam generator
JP2019113282A (en) Superheated steam generation device
JP4943234B2 (en) Fluid temperature raising device and cooking device
RU2782956C1 (en) Fluid induction heater

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3758668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees