JP6516562B2 - Fluid heating device - Google Patents
Fluid heating device Download PDFInfo
- Publication number
- JP6516562B2 JP6516562B2 JP2015106399A JP2015106399A JP6516562B2 JP 6516562 B2 JP6516562 B2 JP 6516562B2 JP 2015106399 A JP2015106399 A JP 2015106399A JP 2015106399 A JP2015106399 A JP 2015106399A JP 6516562 B2 JP6516562 B2 JP 6516562B2
- Authority
- JP
- Japan
- Prior art keywords
- heating
- forming portion
- heating mechanism
- path forming
- magnetic path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 title claims description 389
- 239000012530 fluid Substances 0.000 title claims description 110
- 230000007246 mechanism Effects 0.000 claims description 211
- 238000001816 cooling Methods 0.000 claims description 118
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 60
- 239000004020 conductor Substances 0.000 claims description 29
- 230000006698 induction Effects 0.000 claims description 27
- 230000015572 biosynthetic process Effects 0.000 claims description 16
- 239000002826 coolant Substances 0.000 claims description 16
- 230000004907 flux Effects 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 230000005674 electromagnetic induction Effects 0.000 claims description 9
- 229920006395 saturated elastomer Polymers 0.000 claims description 9
- 238000004804 winding Methods 0.000 claims description 9
- 239000011810 insulating material Substances 0.000 description 16
- 238000009825 accumulation Methods 0.000 description 5
- 239000010410 layer Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 229910000976 Electrical steel Inorganic materials 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- General Induction Heating (AREA)
Description
本発明は、電磁誘導を用いて、例えば水等の被加熱流体を加熱する流体加熱装置に関するものである。 The present invention relates to a fluid heating apparatus that heats a fluid to be heated, such as water, using electromagnetic induction.
従来の流体加熱装置としては、例えば特許文献1に示すように、閉磁路鉄心に一次コイルを巻回するとともに、被加熱流体が流れる加熱導体管を巻回したものがある。この流体加熱装置は、前記1次コイルに交流電圧を印加して、前記加熱導体管を電磁誘導により発熱させることによって、被加熱流体を加熱させる構成である。 As a conventional fluid heating device, for example, as shown in Patent Document 1, there is a device in which a primary coil is wound around a closed magnetic circuit core and a heating conductor tube in which a fluid to be heated flows is wound. The fluid heating device is configured to heat the fluid to be heated by applying an alternating voltage to the primary coil and causing the heating conductor tube to generate heat by electromagnetic induction.
しかしながら、電磁誘導により発熱した加熱導体管は、内部を流れる被加熱流体に熱を与えると同時に、外部に放熱して熱損失が生じてしまう。この放熱により周辺の構成要素が加熱されるため、別途の熱対策が必要となる。例えば、断熱材を設けることによって断熱を行うことはできるが、十分な断熱を行う(熱的安全性を確保する)ためには、断熱材の使用量が増えてしまう。 However, the heating conductor tube that generates heat due to electromagnetic induction gives heat to the fluid to be heated flowing inside, and at the same time releases heat to the outside, resulting in heat loss. Since the heat dissipation heats surrounding components, a separate heat countermeasure is required. For example, although heat insulation can be performed by providing a heat insulating material, in order to perform sufficient heat insulation (to ensure thermal safety), the amount of heat insulating material used increases.
また、液体が加熱されて気体に状態変化すると、その体積は大きく増加するので(水の場合は、約1700倍)、その対策として、被加熱流体の流路途中に高温に対応できる専用の蓄圧器が必要となってしまう。この専用の蓄圧器を設けると、装置構成が複雑になるだけでなく、装置の小型化が難しくなってしまう。 In addition, when the liquid is heated and changes its state to gas, its volume is greatly increased (about 1700 times in the case of water), as a countermeasure, dedicated pressure accumulation that can cope with high temperature in the flow path of the fluid to be heated You will need a bowl. The provision of the dedicated pressure accumulator not only complicates the apparatus configuration but also makes it difficult to miniaturize the apparatus.
そこで本発明は、上記問題点を解決すべくなされたものであり、熱的安全性を向上させるとともに、熱交換効率を向上させしつつ、専用の蓄圧器を設けることなく蓄圧機能を備えさせることをその主たる課題とするものである。 Therefore, the present invention has been made to solve the above-mentioned problems, and it is possible to provide a pressure accumulation function without providing a dedicated pressure accumulator while improving thermal safety and improving heat exchange efficiency. As its main task.
すなわち本発明に係る流体加熱装置は、被加熱流体を加熱する第1加熱機構と、前記第1加熱機構により加熱された被加熱流体をさらに加熱する第2加熱機構とを備え、前記第1加熱機構及び前記第2加熱機構が、円筒状鉄心と、前記円筒状鉄心の外側周面に設けられ、前記円筒状鉄心とともに閉磁路を形成する磁路形成部と、前記円筒状鉄心及び前記磁路形成部の間に設けられ、電磁誘導により発熱して内部を流れる被加熱流体を加熱する加熱流路形成部と、前記円筒状鉄心及び前記磁路形成部の間に設けられ、前記円筒状鉄心の内部に磁束を発生させる誘導コイルと、前記円筒状鉄心及び前記磁路形成部の間に設けられ、冷却媒体が流れる冷却管とを有し、前記第2加熱機構の加熱流路形成部の流路断面積が、前記第1加熱機構の加熱流路形成部の流路断面積よりも大きく、前記第2加熱機構の加熱流路形成部の流路容積が、前記第1加熱機構の加熱流路形成部の流路容積よりも大きいことを特徴とする。 That is, the fluid heating device according to the present invention comprises a first heating mechanism for heating the fluid to be heated, and a second heating mechanism for further heating the fluid to be heated heated by the first heating mechanism, and the first heating A mechanism and the second heating mechanism are provided on a cylindrical iron core, an outer circumferential surface of the cylindrical iron core, and a magnetic path forming portion forming a closed magnetic path together with the cylindrical iron core, the cylindrical iron core and the magnetic path A heating flow path forming portion provided between the forming portions and heating the fluid to be heated which generates heat by electromagnetic induction and flows inside, and is provided between the cylindrical iron core and the magnetic path forming portion, and the cylindrical iron core An induction coil for generating a magnetic flux inside, a cooling pipe provided between the cylindrical iron core and the magnetic path forming portion, and a cooling medium through which a cooling medium flows, and the heating flow path forming portion of the second heating mechanism The flow passage cross-sectional area is the heating flow of the first heating mechanism. The flow passage volume of the heating flow passage forming portion of the second heating mechanism is larger than the flow passage cross sectional area of the forming portion, and the flow passage volume of the heating flow passage forming portion of the first heating mechanism is larger. Do.
本発明では、円筒状鉄心及び磁路形成部の間に、熱源である加熱流路形成部を配置する構成としているので、加熱流路形成部から外部に漏れ出る熱を、磁路形成部の内側に閉じ込めることができる。そして、この構成において、円筒状鉄心及び前記磁路形成部の間に冷却媒体が流れる冷却管を設けているので、断熱材の使用量を削減しつつ流体加熱装置の熱的安全性を向上させることができる。 In the present invention, since the heating flow path forming portion which is a heat source is disposed between the cylindrical iron core and the magnetic path forming portion, the heat leaking from the heating flow path forming portion to the outside can be It can be locked inside. And, in this configuration, since the cooling core through which the cooling medium flows is provided between the cylindrical iron core and the magnetic path forming portion, the thermal safety of the fluid heating device is improved while reducing the amount of the heat insulating material used. be able to.
また、本発明では、第1加熱機構及び第2加熱機構を備える構成であるので、被加熱流体を所望の温度に加熱し易くすることができる。このとき、第2加熱機構の加熱流路形成部の流路断面積が、第1加熱機構の加熱流路形成部の流路断面積よりも大きいので、第2加熱機構の加熱流路形成部を流れる被加熱流体の流速を、第1加熱機構の加熱流路形成部を流れる被加熱流体の流速よりも小さくすることができ、第2加熱機構における熱交換効率を向上させることができ、所望の温度に加熱し易くすることができる。
ここで、加熱流路形成部の流路断面積とは、流路方向に直交する断面における流路断面積であり、加熱流路形成部が分岐した複数の内部流路を有する場合には、当該複数の内部流路の流路断面積の合計である。
Further, in the present invention, since the first heating mechanism and the second heating mechanism are provided, the fluid to be heated can be easily heated to a desired temperature. At this time, since the flow passage cross-sectional area of the heating flow passage forming portion of the second heating mechanism is larger than the flow passage cross-sectional area of the heating flow passage forming portion of the first heating mechanism, the heating flow passage forming portion of the second heating mechanism The flow velocity of the fluid to be heated flowing through the first heating mechanism can be made smaller than the flow velocity of the fluid to be heated flowing through the heating flow passage forming portion of the first heating mechanism, and the heat exchange efficiency in the second heating mechanism can be improved. Can be easily heated to the temperature of
Here, the flow passage cross-sectional area of the heating flow passage forming portion is a flow passage cross-sectional area in a cross section orthogonal to the flow passage direction, and in the case where the heating flow passage forming portion has a plurality of branched inner flow passages, It is the total of the flow-path cross-sectional area of the said several internal flow path.
さらに、本発明では、第2加熱機構の加熱流路形成部の流路断面積及び流路容積が、第1加熱機構の加熱流路形成部の流路断面積及び流路容積よりも大きいので、特に第2加熱機構の加熱流路が蓄圧機能を奏することになり、専用の蓄圧器を設ける必要が無く、また、加熱された被加熱流体の脈流を低減することができる。 Furthermore, in the present invention, the flow passage cross sectional area and the flow passage volume of the heating flow passage forming portion of the second heating mechanism are larger than the flow passage cross sectional area and the flow passage volume of the heating flow passage forming portion of the first heating mechanism. In particular, the heating flow passage of the second heating mechanism exhibits the pressure accumulation function, and there is no need to provide a dedicated pressure accumulator, and it is possible to reduce the pulsating flow of the heated fluid to be heated.
前記第1加熱機構の加熱流路形成部が、導体管を螺旋状に巻き回して形成されたものであり、前記第2加熱機構の加熱流路形成部が、円筒状導体の側壁にその軸方向に沿って複数の内部流路が形成されたものであることが望ましい。
この構成であれば、第1加熱機構の加熱流路形成部を螺旋状導管から構成しているので、被加熱流体に対する伝熱面積を大きくすることができる。また、第2加熱機構の加熱流路形成部が複数の内部流路を形成した円筒状導体から構成しているので、被加熱流体に対する伝熱面積を大きくするとともに、その流路断面積及び流路容積を第1加熱機構の加熱流路形成部の流路断面積及び流路容積よりも簡単な構成により大きくすることができる。
なお、第2加熱機構の加熱流路形成部を、第1加熱機構の加熱流路形成部と同様に、螺旋状導管から構成し、当該螺旋状導管の管径を第1加熱機構のものよりも大きくすることも考えられるが、複数の内部流路を形成した円筒状導体に比べて、流路断面積及び流路容積を大きくすることが難しい。
The heating flow passage forming portion of the first heating mechanism is formed by winding a conductor pipe in a spiral shape, and the heating flow passage forming portion of the second heating mechanism is formed on the side wall of the cylindrical conductor. It is desirable that a plurality of internal flow paths be formed along the direction.
With this configuration, since the heating flow passage forming portion of the first heating mechanism is formed of a spiral conduit, the heat transfer area for the fluid to be heated can be increased. Further, since the heating flow passage forming portion of the second heating mechanism is formed of a cylindrical conductor in which a plurality of internal flow passages are formed, the heat transfer area for the fluid to be heated is increased, and the flow passage cross sectional area and flow The passage volume can be made larger than the passage cross sectional area and passage volume of the heating passage forming portion of the first heating mechanism by a simple configuration.
The heating channel forming portion of the second heating mechanism is formed of a spiral conduit in the same manner as the heating channel forming portion of the first heating mechanism, and the pipe diameter of the spiral conduit is made from that of the first heating mechanism. However, it is difficult to increase the flow passage cross-sectional area and the flow passage volume as compared with a cylindrical conductor in which a plurality of internal flow passages are formed.
前記冷却管が、前記加熱流路形成部及び前記磁路形成部の間に設けられた外側冷却管と、前記加熱流路形成部及び前記円筒状鉄心の間に設けられた内側冷却管とを含むことが望ましい。
この構成であれば、加熱流路形成部の径方向両側を外側冷却管及び内側冷却管で挟む構成とすることができ、加熱流路形成部から径方向両側に漏れ出た熱を遮断する機能を発揮するため、断熱材の使用量を削減しつつ流体加熱装置の熱的安全性を一層向上させることができる。
The cooling pipe includes an outer cooling pipe provided between the heating flow path forming portion and the magnetic path forming portion, and an inner cooling pipe provided between the heating flow path forming portion and the cylindrical iron core. It is desirable to include.
With this configuration, both sides in the radial direction of the heating flow path forming portion can be sandwiched by the outer cooling pipe and the inner cooling pipe, and the function of blocking the heat leaked to both sides in the radial direction from the heating flow path forming portion Thus, the thermal safety of the fluid heating device can be further improved while reducing the amount of heat insulating material used.
前記冷却管が前記加熱流路形成部に接続されており、前記被加熱流体が、前記冷却管を流れた後に、前記加熱流路形成部に流れるように構成されていることが望ましい。
この構成であれば、加熱流路形成部から外部に漏れ出た熱を利用して被加熱流体を予熱することができる。つまり、加熱流路形成部からの放熱による損失を低減して被加熱流体を効率良く加熱することができる。
It is desirable that the cooling pipe is connected to the heating flow path forming unit, and the fluid to be heated flows to the heating flow path forming unit after flowing through the cooling pipe.
With this configuration, it is possible to preheat the fluid to be heated using the heat leaked to the outside from the heating flow passage forming portion. That is, it is possible to efficiently heat the fluid to be heated by reducing the loss due to the heat radiation from the heating flow passage forming portion.
前記冷却管が、前記誘導コイルと電気的に接続されており、前記冷却管及び前記誘導コイルに、外部の交流電源が接続されていることが望ましい。
この構成であれば、円筒状鉄心の内部に磁束を発生させるためのコイル要素の巻き数を増やすことができる。
Preferably, the cooling pipe is electrically connected to the induction coil, and an external AC power supply is connected to the cooling pipe and the induction coil.
With this configuration, it is possible to increase the number of turns of the coil element for generating the magnetic flux inside the cylindrical core.
ここで、誘導コイルが外側冷却管の外周に巻回して設けられたものであれば、誘導コイルが高温になることを防ぎつつ、装置のより内部で加熱流路形成部から漏れ出た熱を被加熱流体に吸収させることができ、熱的安全性を向上させることができる。 Here, if the induction coil is wound around the outer periphery of the outer cooling pipe, the heat leaked from the heating flow path forming portion from the inside of the apparatus while preventing the induction coil from becoming high temperature is provided. It can be absorbed by the fluid to be heated, and thermal safety can be improved.
前記磁路形成部が、前記円筒状鉄心の径方向外側に設けられた円筒状をなす外側磁路形成部と、前記円筒状鉄心及び前記外側磁路形成部の軸方向両端部それぞれを連結する径方向磁路形成部とを有し、前記径方向磁路形成部に、冷却媒体が流れる冷却流路が設けられていることが望ましい。
この構成であれば、加熱流路形成部から軸方向両側に漏れ出た熱を遮断する機能を発揮するため、断熱材の使用量を削減しつつ流体加熱装置の熱的安全性を一層向上させることができる。
The magnetic path forming portion connects the cylindrical outer core path forming portion provided on the radially outer side of the cylindrical iron core, and both axial end portions of the cylindrical core and the outer magnetic path forming portion. It is desirable that a radial magnetic path forming portion be provided, and the radial magnetic path forming portion be provided with a cooling flow path through which a cooling medium flows.
With this configuration, since the function of blocking the heat leaked to both sides in the axial direction from the heating flow passage forming portion is exhibited, the thermal safety of the fluid heating device is further improved while reducing the amount of the heat insulating material used. be able to.
流体加熱装置のより一層小型化するためには、前記第1加熱機構の径方向磁路形成部の一方と、前記第2加熱機構の径方向磁路形成部の他方とが接続されていることが望ましい。 In order to further miniaturize the fluid heating device, one of the radial magnetic path forming portions of the first heating mechanism and the other of the radial magnetic path forming portions of the second heating mechanism are connected. Is desirable.
流体加熱装置の構成を簡略化するためには、前記第1加熱機構の径方向磁路形成部の一方に設けられた前記冷却流路と、前記第2加熱機構の径方向磁路形成部の他方に設けられた前記冷却流路とが共通とされていることが望ましい。 In order to simplify the configuration of the fluid heating device, the cooling flow path provided in one of the radial magnetic path forming portions of the first heating mechanism and the radial magnetic path forming portion of the second heating mechanism It is desirable that the cooling flow path provided on the other side be shared.
前記被加熱流体が、前記冷却流路を流れた後に、前記冷却管又は前記加熱流路形成部に流れるように構成されていることが望ましい。
この構成であれば、加熱流路形成部から軸方向両側に漏れ出た熱を利用して被加熱流体を予熱することができる。つまり、加熱流路形成部からの放熱による損失を低減して被加熱流体を効率良く加熱することができる。
It is desirable that the fluid to be heated flow to the cooling pipe or the heating flow path forming portion after flowing through the cooling flow path.
With this configuration, it is possible to preheat the fluid to be heated using the heat leaked to both sides in the axial direction from the heating flow passage forming portion. That is, it is possible to efficiently heat the fluid to be heated by reducing the loss due to the heat radiation from the heating flow passage forming portion.
前記被加熱流体が水であり、前記第1加熱機構及び前記第2加熱機構により過熱蒸気を生成するものであることが望ましい。このとき、前記第1加熱機構が、水を加熱して飽和水蒸気を生成するものであり、前記第2加熱機構が、飽和水蒸気を加熱して過熱水蒸気を生成するものであれば、本発明の効果を一層顕著にすることができる。 Preferably, the fluid to be heated is water, and the first heating mechanism and the second heating mechanism generate superheated steam. At this time, the first heating mechanism heats water to generate saturated steam, and the second heating mechanism heats saturated steam to generate superheated steam. The effect can be made more pronounced.
このように構成した本発明によれば、熱的安全性を向上させるとともに、熱交換効率を向上させしつつ、専用の蓄圧器を設けることなく蓄圧機能を備えさせることができる。 According to the present invention configured as described above, the thermal safety can be improved, and the heat exchange efficiency can be improved, and the pressure accumulation function can be provided without providing a dedicated pressure accumulator.
以下に本発明に係る流体加熱装置の一実施形態について図面を参照して説明する。 Hereinafter, an embodiment of a fluid heating device according to the present invention will be described with reference to the drawings.
<1.装置構成>
本実施形態に係る流体加熱装置100は、被加熱流体である水を加熱して過熱水蒸気を生成するものであり、図1に示すように、被加熱流体を加熱する第1加熱機構100Aと、この第1加熱機構100Aにより加熱された被加熱流体をさらに加熱する第2加熱機構100Bとを備えている。本実施形態では、第1加熱機構100Aは、主として、水を加熱して飽和水蒸気を生成する機能を奏するものであり、第2加熱機構100Bは、主として、飽和水蒸気を加熱して過熱水蒸気を生成する機能を奏するものである。
<1. Device configuration>
The fluid heating device 100 according to the present embodiment heats water, which is a fluid to be heated, to generate superheated steam, and as illustrated in FIG. 1, a first heating mechanism 100A that heats the fluid to be heated; The second heating mechanism 100B further heats the fluid to be heated heated by the first heating mechanism 100A. In the present embodiment, the first heating mechanism 100A mainly functions to heat water to generate saturated steam, and the second heating mechanism 100B mainly heats saturated steam to generate superheated steam. Play a function that
具体的に第1加熱機構100A及び第2加熱機構100Bは、図1及び図2に示すように、円筒状鉄心2と、この円筒状鉄心2の外側周面に設けられ、円筒状鉄心2とともに閉磁路を形成する磁路形成部3と、円筒状鉄心2及び磁路形成部3の間に設けられ、電磁誘導により発熱して内部を流れる被加熱流体を加熱する加熱流路形成部4と、円筒状鉄心2及び磁路形成部3の間に設けられ、円筒状鉄心2の内部に磁束を発生させる誘導コイル5と、円筒状鉄心2及び前記磁路形成部3の間に設けられ、冷却媒体が流れる冷却管6とを備えている。 Specifically, as shown in FIGS. 1 and 2, the first heating mechanism 100A and the second heating mechanism 100B are provided on the cylindrical iron core 2 and the outer peripheral surface of the cylindrical iron core 2, and together with the cylindrical iron core 2. A magnetic path forming portion 3 which forms a closed magnetic path, and a heating flow path forming portion 4 which is provided between the cylindrical iron core 2 and the magnetic path forming portion 3 and which generates heat by electromagnetic induction to heat the fluid to be heated flowing therein; An induction coil 5 provided between the cylindrical iron core 2 and the magnetic path forming portion 3 for generating magnetic flux inside the cylindrical iron core 2, and provided between the cylindrical iron core 2 and the magnetic path forming portion 3; And a cooling pipe 6 through which the cooling medium flows.
なお、円筒状鉄心2及び磁路形成部3から形成される内部空間において、加熱流路形成部4、誘導コイル5及び冷却管6等以外の部分には、断熱材102が充填されている。また、円筒状鉄心2及び磁路形成部3は、加熱流路形成部4、誘導コイル5、冷却管6及び断熱材102等を収容した状態で、軸方向に貫通する締結ボルト等の締結機構101により軸方向から締結して一体化される。 In the internal space formed of the cylindrical iron core 2 and the magnetic path forming portion 3, the heat insulating material 102 is filled in portions other than the heating flow path forming portion 4, the induction coil 5, the cooling pipe 6 and the like. In addition, the cylindrical iron core 2 and the magnetic path forming portion 3 are fastening mechanisms such as fastening bolts penetrating in the axial direction in a state in which the heating flow path forming portion 4, the induction coil 5, the cooling pipe 6 and the heat insulating material 102 are accommodated. It is fastened from the axial direction by 101 and integrated.
前記円筒状鉄心2は、いわゆるインボリュート鉄心であり、幅方向断面がインボリュート曲線状に湾曲した湾曲部を有する複数の珪素鋼板を円周方向に放射状に積み重ねて円筒状に形成したものである。 The cylindrical core 2 is a so-called involute core, and is formed in a cylindrical shape by radially stacking a plurality of silicon steel plates having curved portions whose cross section in the width direction is curved in an involute curve.
前記磁路形成部3は、円筒状鉄心2の径方向外側に設けられた円筒状をなす外側磁路形成部31と、円筒状鉄心2及び外側磁路形成部31の軸方向一端部を連結する第1径方向磁路形成部32と、円筒状鉄心2及び前記外側磁路形成部31の軸方向他端部を連結する第2径方向磁路形成部33とを有する。この磁路形成部3は、円筒状鉄心2との間に、概略円筒状の空間を形成するものである。 The magnetic path forming portion 3 connects one end in the axial direction of the cylindrical outer core path forming portion 31 and the cylindrical iron core 2 and the outer magnetic path forming portion 31 provided outside the cylindrical iron core 2 in the radial direction. And a second radial magnetic path forming portion 33 connecting the other axial end portion of the cylindrical iron core 2 and the outer magnetic path forming portion 31. The magnetic path forming portion 3 forms a substantially cylindrical space between itself and the cylindrical iron core 2.
前記外側磁路形成部31は、前記円筒状鉄心2と同様に、いわゆるインボリュート鉄心であり、幅方向断面がインボリュート曲線状に湾曲した湾曲部を有する複数の珪素鋼板を円周方向に放射状に積み重ねて円筒状に形成したものである。 The outer magnetic path forming portion 31 is a so-called involute core similar to the cylindrical core 2 and radially stacked a plurality of silicon steel plates having curved portions whose cross section in the width direction is curved in an involute curve. It has a cylindrical shape.
また、第1加熱機構100Aの第2径方向磁路形成部33と、第2加熱機構100Bの第1径方向磁路形成部32とは、例えば接合等により接続されている。つまり、第1加熱機構100A及び第2加熱機構100Bは、軸方向に沿って連続した一体のものとされている。 Further, the second radial magnetic path forming portion 33 of the first heating mechanism 100A and the first radial magnetic path forming portion 32 of the second heating mechanism 100B are connected, for example, by bonding or the like. That is, the first heating mechanism 100A and the second heating mechanism 100B are integrally formed continuously along the axial direction.
前記加熱流路形成部4は、第1加熱機構100Aと第2加熱機構100Bとでその構成が異なる。 The heating channel forming unit 4 differs in the configuration between the first heating mechanism 100A and the second heating mechanism 100B.
第1加熱機構100Aの加熱流路形成部4(以下、「加熱流路形成部4A」とする。)は、図3に示すように、前記円筒状鉄心2の外周に沿って螺旋状(コイル状)に巻回された導体管であり、互いに隣接する導体管要素(導体管において螺旋の一周分を構成する部分)は互いに短絡されている。本実施形態では、全ての導体管要素に亘って短絡片41Aを溶接等で接合することにより短絡されている。第1加熱機構100Aの加熱流路形成部4Aは、被加熱流体の導入口から導出口に至るまで分岐することなく1本の内部流路4sAを形成するものである。なお、この加熱流路形成部4Aは、円筒状鉄心2と同軸上に配置されている。なお、図1において、加熱流路形成部4Aは、単層巻きのものであったが、二層巻き以上のものであっても良い。 As shown in FIG. 3, the heating flow passage forming portion 4 (hereinafter referred to as "heating flow passage forming portion 4A") of the first heating mechanism 100A has a spiral shape (coil) along the outer periphery of the cylindrical iron core 2. Conductor tubes wound in the shape of a circle), and the mutually adjacent conductor tube elements (portions constituting one round of a spiral in the conductor tube) are short-circuited with each other. In the present embodiment, short circuiting is performed by joining the shorting strips 41A by welding or the like across all the conductor tube elements. The heating flow passage forming part 4A of the first heating mechanism 100A forms one internal flow passage 4sA without branching from the inlet to the outlet of the fluid to be heated. The heating flow passage forming portion 4A is disposed coaxially with the cylindrical iron core 2. In addition, in FIG. 1, although the heating flow-path formation part 4A was a thing of single-layer winding, you may be a thing of two or more-layer winding.
第2加熱機構100Bの加熱流路形成部4(以下、「加熱流路形成部4B」とする。)は、図4に示すように、円筒状導体41Bの側壁にその軸方向に沿って直線状に複数の内部流路4sBが形成されたものである。つまり、第2加熱機構100Bの加熱流路形成部4Bは、被加熱流体の導入口から導出口に至る途中で、複数の内部流路4sBに分岐した流路を形成するものである。具体的には、円筒状導体41Bの側壁の壁厚中央部に周方向に沿って穴あけ加工により複数の貫通孔(ドリル穴)を形成し、円筒状導体41Bの両端面に複数の貫通孔に連通する凹溝が形成された環状の閉塞リング42Bを接合することにより構成されている。複数の貫通孔は、等断面形状をなすものであり、円筒状導体41Bに周方向に等間隔に形成されている。なお、一方の閉塞リング42Bには、被加熱流体の導入口が形成されており、他方の閉塞リング42Bには、被加熱流体の導出口が形成されている。 As shown in FIG. 4, the heating flow passage forming portion 4 (hereinafter referred to as "heating flow passage forming portion 4B") of the second heating mechanism 100B is straight along the axial direction of the side wall of the cylindrical conductor 41B. A plurality of internal flow paths 4sB are formed in a shape of a circle. That is, the heating flow passage forming portion 4B of the second heating mechanism 100B forms a flow passage branched into the plurality of internal flow passages 4sB on the way from the introduction port of the fluid to be heated to the discharge port. Specifically, a plurality of through holes (drilled holes) are formed by drilling along the circumferential direction in the wall thickness central portion of the side wall of the cylindrical conductor 41B, and a plurality of through holes are formed on both end faces of the cylindrical conductor 41B. It is comprised by joining the cyclic | annular closure ring 42B in which the ditch | groove which communicates is formed. The plurality of through holes have an equal cross-sectional shape, and are formed in the cylindrical conductor 41B at equal intervals in the circumferential direction. An inlet for the fluid to be heated is formed in one closing ring 42B, and an outlet for the fluid to be heated is formed in the other closing ring 42B.
そして、図1に示すように、第1加熱機構100Aの加熱流路形成部4Aの導出口と第2加熱機構100Bの加熱流路形成部4Bの導入口とが接続配管11により接続されている。なお、接続配管11は、外側磁路形成部31の側壁を貫通する構成としてあるが、第1加熱機構100Aの第2径方向磁路形成部33及び第2加熱機構100Bの第1径方向磁路形成部32を貫通する構成としても良い。 Then, as shown in FIG. 1, the connection pipe 11 connects the outlet of the heating channel forming part 4A of the first heating mechanism 100A and the inlet of the heating channel forming part 4B of the second heating mechanism 100B. . Although the connection pipe 11 is configured to penetrate the side wall of the outer magnetic path forming portion 31, the first radial magnetic flux path forming portion 33 of the first heating mechanism 100A and the first radial magnetic field of the second heating mechanism 100B. The passage forming portion 32 may be penetrated.
また、第2加熱機構100Bの加熱流路形成部4Bの流路断面積が、第1加熱機構100Aの加熱流路形成部4Aの流路断面積よりも大きい構成とされている。ここで、前記流路断面積は、内部流路の流路方向に直交する断面であり、第2加熱機構100Bの加熱流路形成部4Bの流路断面積は、円筒状導体41Bの軸方向に直交する断面における複数の内部流路4sBの流路断面積の合計である。また、第1加熱機構100Aの加熱流路形成部4Aの流路断面積は、導体管の管軸方向に直交する断面における内部流路4sAの流路断面積である。この構成により、第1加熱機構100Aの加熱流路形成部4Aを流れる被加熱流体の流速よりも第2加熱機構100Bの加熱流路形成部4Bを流れる被加熱流体の流速の方が小さくなる。本実施形態では、第2加熱機構100Bの加熱流路形成部4Bの流路断面積を、第1加熱機構100Aの加熱流路形成部4Aの流路断面積の約100倍としており、第2加熱機構100Bの内部流路4sBを流れる被加熱流体の流速は、第1加熱機構100Aの内部流路4sAを流れる被加熱流体の流路の約1/100となる。 Further, the flow passage cross-sectional area of the heating flow passage forming part 4B of the second heating mechanism 100B is larger than the flow passage cross-sectional area of the heating flow passage forming part 4A of the first heating mechanism 100A. Here, the flow passage cross sectional area is a cross section orthogonal to the flow passage direction of the inner flow passage, and the flow passage cross sectional area of the heating flow passage forming portion 4B of the second heating mechanism 100B is the axial direction of the cylindrical conductor 41B. The total cross-sectional area of the plurality of internal flow paths 4sB in the cross section orthogonal to the Further, the flow passage cross-sectional area of the heating flow passage forming part 4A of the first heating mechanism 100A is a flow passage cross-sectional area of the internal flow passage 4sA in a cross section orthogonal to the tube axis direction of the conductor pipe. With this configuration, the flow velocity of the fluid to be heated flowing through the heating flow passage forming portion 4B of the second heating mechanism 100B is smaller than the flow velocity of the fluid to be heated flowing through the heating flow passage forming portion 4A of the first heating mechanism 100A. In the present embodiment, the flow passage cross-sectional area of the heating flow passage forming portion 4B of the second heating mechanism 100B is about 100 times the flow passage cross-sectional area of the heating flow passage forming portion 4A of the first heating mechanism 100A. The flow velocity of the fluid to be heated flowing through the internal flow passage 4sB of the heating mechanism 100B is about 1/100 of the flow passage of the fluid to be heated flowing through the internal flow passage 4sA of the first heating mechanism 100A.
さらに、第2加熱機構100Bの加熱流路形成部4Bの流路容積が、第1加熱機構100Aの加熱流路形成部4Aの流路容積よりも大きい構成とされている。本実施形態では、第2加熱機構100Bの加熱流路形成部4Bの流路容積が、第1加熱機構100Aの加熱流路形成部4Aの流路容積の500倍以上となるように構成されている。この構成により、第2加熱機構100Bの加熱流路形成部4Bが蓄圧器としての機能を奏することになる。 Furthermore, the flow passage volume of the heating flow passage forming part 4B of the second heating mechanism 100B is larger than the flow passage volume of the heating flow passage forming part 4A of the first heating mechanism 100A. In the present embodiment, the flow passage volume of the heating flow passage forming portion 4B of the second heating mechanism 100B is configured to be 500 times or more of the flow passage volume of the heating flow passage forming portion 4A of the first heating mechanism 100A. There is. With this configuration, the heating flow passage forming portion 4B of the second heating mechanism 100B functions as a pressure accumulator.
前記誘導コイル5は、例えば断面矩形状の中実導線を円筒状に巻回して構成されたものであり、円筒状鉄心2と同軸上に配置されている。本実施形態では、誘導コイル5の一端部及び他端部が、外側磁路形成部31の側壁から外部に延出しており、その延出部に設けられた外部端子T1、T2に外部の交流電源が接続される。なお、誘導コイル5は、径方向磁路形成部32、33から外部に延出する構成としても良い。また、誘導コイル5の円筒状外面には絶縁材9aが設けられている。なお、図2では、絶縁材9aなどの絶縁材は図示していない。 The induction coil 5 is formed, for example, by winding a solid wire having a rectangular cross section in a cylindrical shape, and is disposed coaxially with the cylindrical core 2. In this embodiment, one end portion and the other end portion of the induction coil 5 extend from the side wall of the outer magnetic path forming portion 31 to the outside, and the external terminals T1 and T2 provided in the extending portion exchange external AC. Power is connected. The induction coil 5 may be configured to extend from the radial direction magnetic path forming portions 32 and 33 to the outside. An insulating material 9 a is provided on the cylindrical outer surface of the induction coil 5. In FIG. 2, the insulating material such as the insulating material 9 a is not shown.
第1加熱機構100Aの誘導コイル5に交流電圧を印加することで、第1加熱機構100Aの円筒状鉄心2及び磁路形成部3に磁束が流れる。当該磁束によって加熱流路形成部である導体管4Aに短絡電流が流れて、導体管4Aがジュール発熱する。これより、導体管4Aを流れる被加熱流体である水が加熱されて飽和水蒸気が生成される。 By applying an alternating voltage to the induction coil 5 of the first heating mechanism 100A, a magnetic flux flows through the cylindrical iron core 2 and the magnetic path forming portion 3 of the first heating mechanism 100A. A short circuit current flows into conductor pipe 4A which is a heating channel formation part by the magnetic flux concerned, and conductor pipe 4A performs Joule heat generation. Thus, water, which is a heated fluid flowing through the conductor pipe 4A, is heated to generate saturated steam.
また、第2加熱機構100Bの誘導コイル5に交流電圧を印加することで、第2加熱機構100Bの円筒状鉄心2及び磁路形成部3に磁束が流れる。当該磁束によって加熱流路形成部である円筒状導体4Bに短絡電流が流れて、円筒状導体4Bがジュール発熱する。これより、円筒状導体4Bを流れる被加熱流体である飽和水蒸気が加熱されて過熱水蒸気が生成される。 Moreover, a magnetic flux flows into the cylindrical iron core 2 and magnetic path formation part 3 of the 2nd heating mechanism 100B by applying an alternating voltage to the induction coil 5 of the 2nd heating mechanism 100B. A short circuit current flows into cylindrical conductor 4B which is a heating channel formation part by the magnetic flux concerned, and cylindrical conductor 4B Joule heat generation. From this, the saturated steam which is a to-be-heated fluid which flows through cylindrical conductor 4B is heated, and superheated steam is generated.
前記冷却管6は、加熱流路形成部4及び外側磁路形成部31の間に設けられた螺旋状に巻回された外側冷却管61と、加熱流路形成部4及び円筒状鉄心2の間に設けられた螺旋状に巻回された内側冷却管62とを有している。なお、外側冷却管61及び内側冷却管62は直列的に接続されている。 The cooling pipe 6 includes a spirally wound outer cooling pipe 61 provided between the heating flow path forming portion 4 and the outer magnetic path forming portion 31, and the heating flow path forming portion 4 and the cylindrical iron core 2. And a spirally wound inner cooling pipe 62 provided therebetween. The outer cooling pipe 61 and the inner cooling pipe 62 are connected in series.
前記外側冷却管61は、加熱流路形成部4の径方向外側に、円筒状鉄心2と同軸上に配置されたものである。外側冷却管61及び加熱流路形成部4の間、具体的には外側冷却管61の円筒状内面に沿って絶縁材9bが設けられている。なお、図1において、外側冷却管61は、単層巻きのものであったが、二層巻き以上のものであっても良い。 The outer cooling pipe 61 is disposed on the radially outer side of the heating flow passage forming portion 4 coaxially with the cylindrical iron core 2. An insulating material 9 b is provided between the outer cooling pipe 61 and the heating flow path forming unit 4, specifically, along the cylindrical inner surface of the outer cooling pipe 61. In addition, in FIG. 1, although the outer side cooling pipe 61 was a thing of a single-layer winding, it may be a thing more than two-layer winding.
前記内側冷却管62は、加熱流路形成部4の径方向内側に、円筒状鉄心2と同軸上に配置されたものである。内側冷却管62及び加熱流路形成部4の間、具体的には内側冷却管62の円筒状外面に沿って絶縁材9cが設けられている。また、内側冷却管62の円筒状内面にも絶縁材9dが設けられている。なお、図1において、内側冷却管62は、単層巻きのものであったが、二層巻き以上のものであっても良い。 The inner cooling pipe 62 is disposed radially inward of the heating flow passage forming portion 4 coaxially with the cylindrical iron core 2. An insulating material 9 c is provided between the inner cooling pipe 62 and the heating flow passage forming portion 4, specifically, along the cylindrical outer surface of the inner cooling pipe 62. The insulating material 9 d is also provided on the cylindrical inner surface of the inner cooling pipe 62. In addition, in FIG. 1, although the inner side cooling pipe 62 was a thing of a single-layer winding, it may be a thing more than two-layer winding.
さらに本実施形態では、前記第1径方向磁路形成部32に、冷却媒体が流れる円環状の第1冷却流路7が設けられており、前記第2径方向磁路形成部33に、冷却媒体が流れる円環状の第2冷却流路8が設けられている。また、第1加熱機構100Aの第2径方向磁路形成部33に設けられた第2冷却流路8と、第2加熱機構100Bの第1径方向磁路形成部32に設けられた第1冷却流路7とが共通とされている。 Furthermore, in the present embodiment, the first radial magnetic path forming portion 32 is provided with the annular first cooling flow path 7 through which the cooling medium flows, and the second radial magnetic path forming portion 33 is cooled. An annular second cooling flow passage 8 through which the medium flows is provided. Further, the second cooling flow passage 8 provided in the second radial magnetic path forming portion 33 of the first heating mechanism 100A, and the first provided in the first radial magnetic path forming portion 32 of the second heating mechanism 100B. The cooling flow channel 7 is shared.
しかして本実施形態では、冷却管6及び冷却流路7、8に被加熱流体が流れるように構成されており、当該冷却管6及び冷却流路7、8を流れた被加熱流体が、第1加熱機構100Aの加熱流路形成部4A及び第2加熱機構100Bの加熱流路形成部4Bに流れるように構成されている。 Thus, in the present embodiment, the fluid to be heated flows in the cooling pipe 6 and the cooling channels 7 and 8, and the fluid to be heated which has flowed through the cooling pipe 6 and the cooling channels 7 and 8 It is comprised so that it may flow to the heating flow-path formation part 4A of 1 heating mechanism 100A, and the heating flow-path formation part 4B of the 2nd heating mechanism 100B.
具体的には、共通の冷却流路7(8)に被加熱流体の導入配管12が接続されるとともに、当該共通の冷却流路7(8)と第2加熱機構100Bの外側冷却管61とが接続配管13により接続されている。また、第2加熱機構100Bの内側冷却管62と第2加熱機構100Bの第2冷却流路8とが接続配管14により接続されている。この構成により、共通の冷却流路7(8)に導入された被加熱流体は、第2加熱機構100Bの外側冷却管61及び内側冷却管62をこの順で流れた後、第2加熱機構100Bの第2冷却流路8に流入する。 Specifically, the inlet pipe 12 for the fluid to be heated is connected to the common cooling channel 7 (8), and the common cooling channel 7 (8) and the outer cooling pipe 61 of the second heating mechanism 100B Are connected by the connection pipe 13. Further, the inner cooling pipe 62 of the second heating mechanism 100B and the second cooling flow path 8 of the second heating mechanism 100B are connected by the connection pipe. With this configuration, the fluid to be heated introduced into the common cooling flow path 7 (8) flows through the outer cooling pipe 61 and the inner cooling pipe 62 of the second heating mechanism 100B in this order, and then the second heating mechanism 100B Flows into the second cooling channel 8 of
第2加熱機構100Bの第2冷却流路8と第1加熱機構100Aの第1冷却流路7とは接続配管15により接続されている。この接続配管15は、第1加熱機構100Aの円筒状鉄心2及び第2加熱機構100Bの円筒状鉄心2の内部を通って設けられている。また、前記第1加熱機構100Aの第1冷却流路7と第1加熱機構100Aの内側冷却管62とが接続配管16により接続されている。さらに、第1加熱機構100Aの外側冷却管61と第1加熱機構100Aの加熱流路形成部4Aとが接続配管17により接続されている。この構成により、第2冷却流路8に流入した被加熱流体は、第1加熱機構100Aの内側冷却管62及び外側冷却管61をこの順で流れた後、第1加熱機構100Aの加熱流路形成部4A及び第2加熱機構100Bの加熱流路形成部4Bをこの順で流れる。そして、第2加熱機構100Bの加熱流路形成部4Bの導出口に接続された導出配管18から外部に導出される。なお、この導出配管18から導出される過熱水蒸気は、当該過熱水蒸気を用いて被処理物が処理される処理室に導入される。 The second cooling flow passage 8 of the second heating mechanism 100B and the first cooling flow passage 7 of the first heating mechanism 100A are connected by a connection pipe 15. The connection pipe 15 is provided through the inside of the cylindrical iron core 2 of the first heating mechanism 100A and the cylindrical iron core 2 of the second heating mechanism 100B. Further, the first cooling flow passage 7 of the first heating mechanism 100A and the inner cooling pipe 62 of the first heating mechanism 100A are connected by the connection pipe 16. Further, the outer cooling pipe 61 of the first heating mechanism 100A and the heating flow passage forming portion 4A of the first heating mechanism 100A are connected by the connection pipe 17. With this configuration, the fluid to be heated that has flowed into the second cooling channel 8 flows through the inner cooling pipe 62 and the outer cooling pipe 61 of the first heating mechanism 100A in this order, and then the heating channel of the first heating mechanism 100A. It flows through the heating channel forming part 4B of the forming part 4A and the second heating mechanism 100B in this order. And it is derived | led-out outside from the lead-out piping 18 connected to the outlet of the heating flow-path formation part 4B of 2nd heating mechanism 100B. In addition, the superheated steam derived | led-out from this lead-out piping 18 is introduce | transduced into the processing chamber where a to-be-processed object is processed using the said superheated steam.
次に、流体加熱装置100の被加熱流体の流れとともに被加熱流体の加熱態様について説明する。 Next, the flow of the fluid to be heated of the fluid heating device 100 and the heating mode of the fluid to be heated will be described.
共通の冷却流路7(8)に接続された導入配管12から、被加熱流体である水が導入される。そして、被加熱流体は、導入配管12から共通の冷却流路7(8)内に流入して、第1加熱機構100Aの第2径方向磁路形成部33及び第2加熱機構100Bの第1径方向磁路形成部32を冷却するとともに、それら径方向磁路形成部32、33により予熱される。その後、被加熱流体は、接続配管13を流れて、第2加熱機構100Bの外側冷却管61及び内側冷却管62に流入して、それら冷却管61、62を冷却するとともに、それら冷却管61、62により予熱される。なお、第1加熱機構100Aの第2径方向磁路形成部33は、第1加熱機構100Aの加熱流路形成部4Aにより加熱されており、第2加熱機構100Bの第1径方向磁路形成部32及び冷却管61、62は、第2加熱機構100Bの加熱流路形成部4Bにより加熱されている。 Water, which is a fluid to be heated, is introduced from the introduction pipe 12 connected to the common cooling flow path 7 (8). Then, the fluid to be heated flows from the introduction pipe 12 into the common cooling channel 7 (8), and the first radial magnetic path forming portion 33 of the first heating mechanism 100A and the first of the second heating mechanism 100B. The radial magnetic path forming portion 32 is cooled and preheated by the radial magnetic path forming portions 32 and 33. Thereafter, the fluid to be heated flows through the connection pipe 13 and flows into the outer cooling pipe 61 and the inner cooling pipe 62 of the second heating mechanism 100B to cool the cooling pipes 61 and 62, and the cooling pipes 61, It is preheated by 62. The second radial magnetic path forming portion 33 of the first heating mechanism 100A is heated by the heating flow path forming portion 4A of the first heating mechanism 100A, and the first radial magnetic path forming of the second heating mechanism 100B is formed. The portion 32 and the cooling pipes 61 and 62 are heated by the heating flow passage forming portion 4B of the second heating mechanism 100B.
また、第2加熱機構100Bの冷却管61、62を流れた被加熱流体は、接続配管14を流れて、第2加熱機構100Bの第2冷却流路8に流入して、第2加熱機構100Bの第2径方向磁路形成部33を冷却するとともに、その第2径方向磁路形成部33により予熱される。そして、被加熱流体は、接続配管15を流れて、第1加熱機構100Aの第1冷却流路7に流入して、第1加熱機構100Aの第1径方向磁路形成部32を冷却するとともに、その第1径方向磁路形成部32により予熱される。その後、被加熱流体は、接続配管16を流れて、第1加熱機構100Aの内側冷却管62及び外側冷却管61に流入して、それら冷却管61、62を冷却するとともに、それら冷却管61、62により予熱される。なお、第2加熱機構100Bの第2径方向磁路形成部33は、第2加熱機構100Bの加熱流路形成部4Bにより加熱されており、第1加熱機構100Aの第1径方向磁路形成部32及び冷却管61、62は、第1加熱機構100Aの加熱流路形成部4Aにより加熱されている。 Moreover, the to-be-heated fluid which flowed through the cooling pipes 61 and 62 of the 2nd heating mechanism 100B flows through the connection piping 14, flows in into the 2nd cooling channel 8 of the 2nd heating mechanism 100B, and the 2nd heating mechanism 100B. The second radial magnetic path forming portion 33 is cooled and preheated by the second radial magnetic path forming portion 33. Then, the fluid to be heated flows through the connection pipe 15 and flows into the first cooling channel 7 of the first heating mechanism 100A to cool the first radial magnetic path forming portion 32 of the first heating mechanism 100A. The first radial magnetic path forming portion 32 is preheated. Thereafter, the fluid to be heated flows through the connection pipe 16 and flows into the inner cooling pipe 62 and the outer cooling pipe 61 of the first heating mechanism 100A to cool the cooling pipes 61, 62, and the cooling pipes 61, It is preheated by 62. The second radial magnetic path forming portion 33 of the second heating mechanism 100B is heated by the heating flow path forming portion 4B of the second heating mechanism 100B, and the formation of the first radial magnetic path of the first heating mechanism 100A. The portion 32 and the cooling pipes 61 and 62 are heated by the heating flow passage forming portion 4A of the first heating mechanism 100A.
そして、第1加熱機構100Aの各冷却流路7、8及び冷却管61、62と第2加熱機構100Bの各冷却流路7、8及び冷却管61、62とにより予熱された被加熱流体が、接続配管17を流れて、第1加熱機構100Aの加熱流路形成部4A及び第2加熱機構100Bの加熱流路形成部4Bに流入する。このとき、第1加熱機構100Aの加熱流路形成部4Aを流れる被加熱流体は、誘導加熱された加熱流路形成部4Aにより加熱されて飽和水蒸気となる。また、第2加熱機構100Bの加熱流路形成部4Bを流れる被加熱流体は、誘導加熱された加熱流路形成部4Bにより加熱されて過熱水蒸気となる。この過熱水蒸気が、第2加熱機構100Bの加熱流路形成部4Bの下流端に接続された導出配管18から外部又は外部配管に導出される。 Then, the fluid to be heated which has been preheated by the cooling channels 7, 8 and the cooling pipes 61, 62 of the first heating mechanism 100A and the cooling channels 7, 8 and the cooling pipes 61, 62 of the second heating mechanism 100B is The flow flows through the connection pipe 17 and flows into the heating flow passage forming portion 4A of the first heating mechanism 100A and the heating flow passage forming portion 4B of the second heating mechanism 100B. At this time, the fluid to be heated flowing through the heating flow passage forming portion 4A of the first heating mechanism 100A is heated by the induction heating heated flow passage forming portion 4A and becomes saturated steam. Moreover, the to-be-heated fluid which flows through the heating flow-path formation part 4B of 2nd heating mechanism 100B is heated by the heating flow-path formation part 4B by which induction heating was carried out, and becomes superheated steam. This superheated steam is led to the external or external pipe from the lead-out pipe 18 connected to the downstream end of the heating flow path forming portion 4B of the second heating mechanism 100B.
<2.本実施形態の効果>
このように構成した流体加熱装置100によれば、円筒状鉄心2及び磁路形成部3の間に、熱源である加熱流路形成部4を配置する構成としているので、加熱流路形成部4から外部に漏れ出る熱を、磁路形成部3の内側に閉じ込めることができる。そして、この構成において、円筒状鉄心2及び磁路形成部3の間に冷却媒体(水)が流れる冷却管6を設けているので、断熱材101の使用量を削減しつつ流体加熱装置100の熱的安全性を向上させることができる。このとき、冷却管6を被加熱流体が流れる構成としているので、加熱流路形成部4から外部に漏れ出た熱を利用して被加熱流体を予熱することができ、加熱流路形成部4からの放熱による損失を低減して被加熱流体を効率良く加熱することができる。
<2. Effects of this embodiment>
According to the fluid heating device 100 configured as described above, the heating flow path forming unit 4 serving as a heat source is disposed between the cylindrical iron core 2 and the magnetic path forming unit 3. The heat leaked to the outside can be confined inside the magnetic path forming portion 3. Further, in this configuration, since the cooling pipe 6 in which the cooling medium (water) flows is provided between the cylindrical iron core 2 and the magnetic path forming portion 3, the amount of use of the heat insulating material 101 can be reduced. Thermal safety can be improved. At this time, since the fluid to be heated flows through the cooling pipe 6, the fluid to be heated can be preheated using the heat leaked from the heating flow passage forming portion 4 to the outside. It is possible to efficiently heat the fluid to be heated by reducing the loss due to the heat radiation from the heat source.
また、本実施形態では、第1加熱機構100A及び第2加熱機構100Bを備える構成であるので、被加熱流体を所望の温度に加熱し易くすることができる。このとき、第2加熱機構100Bの加熱流路形成部4Bの流路断面積が、第1加熱機構100Aの加熱流路形成部4Aの流路断面積よりも大きいので、第2加熱機構100Bの加熱流路形成部4Bを流れる被加熱流体の流速を、第1加熱機構100Aの加熱流路形成部4Aを流れる被加熱流体の流速よりも小さくすることができ、第2加熱機構100Bにおける熱交換効率を向上させることができ、所望の温度に加熱し易くすることができる。 Further, in the present embodiment, since the first heating mechanism 100A and the second heating mechanism 100B are provided, the fluid to be heated can be easily heated to a desired temperature. At this time, since the flow passage cross-sectional area of the heating flow passage forming part 4B of the second heating mechanism 100B is larger than the flow passage cross-sectional area of the heating flow passage forming part 4A of the first heating mechanism 100A, the second heating mechanism 100B The flow velocity of the heated fluid flowing through the heating flow passage forming unit 4B can be made smaller than the flow velocity of the heated fluid flowing through the heating flow passage forming unit 4A of the first heating mechanism 100A, and the heat exchange in the second heating mechanism 100B Efficiency can be improved and heating to the desired temperature can be facilitated.
さらに、本実施形態では、第2加熱機構100Bの加熱流路形成部4Bの流路断面積及び流路容積が、第1加熱機構100Aの加熱流路形成部4Aの流路断面積及び流路容積よりも大きいので、特に第2加熱機構100Bの加熱流路形成部4Bが蓄圧機能を奏することになり、専用の蓄圧器を設ける必要が無く、また、加熱された被加熱流体の脈流を低減することができる。 Furthermore, in the present embodiment, the flow passage cross-sectional area and the flow passage volume of the heating flow passage forming portion 4B of the second heating mechanism 100B are the flow passage cross-sectional area and the flow passage of the heating flow passage forming portion 4A of the first heating mechanism 100A. Since it is larger than the volume, in particular, the heating flow passage forming part 4B of the second heating mechanism 100B exhibits the pressure accumulation function, and there is no need to provide a dedicated pressure accumulator, and the pulsating flow of the heated heated fluid is It can be reduced.
<3.本発明の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。
<3. Modified Embodiment of the Present Invention>
The present invention is not limited to the above embodiment.
例えば、各加熱機構100A、100Bにおいて誘導コイル5と冷却管6とを電気的に接続し、それら誘導コイル5及び冷却管6に外部の交流電源により交流電圧を印加する構成としても良い。この構成により、円筒状鉄心2の内部に磁束を発生させるためのコイル要素の巻き数を増やすことができる。 For example, the induction coil 5 and the cooling pipe 6 may be electrically connected in each of the heating mechanisms 100A and 100B, and an alternating voltage may be applied to the induction coil 5 and the cooling pipe 6 by an external AC power supply. By this configuration, the number of turns of the coil element for generating the magnetic flux inside the cylindrical iron core 2 can be increased.
また、前記実施形態では、外側冷却管61の径方向外側に誘導コイル5を設ける構成であったが、誘導コイル5を外側冷却管61の径方向内側、又は、内側冷却管62の径方向内側に配置しても良い。 In the embodiment, the induction coil 5 is provided on the radially outer side of the outer cooling pipe 61. However, the induction coil 5 may be provided radially inward of the outer cooling pipe 61 or radially inner of the inner cooling pipe 62. You may arrange it.
さらに、前記実施形態では、第1加熱機構100Aの第2径方向磁路形成部33及び第2加熱機構100Bの第1径方向磁路形成部32が接合等により接続された構成であったが、それらの間に例えば断熱材等の中間部材を介して接続された構成としても良いし、第1加熱機構100Aの第2径方向磁路形成部33及び第2加熱機構100Bの第1径方向磁路形成部32が分離した構成としても良い。このとき、第1加熱機構100Aの第2冷却流路8及び第2加熱機構100Bの第1冷却流路7は共通では無く、それぞれ個別に設けても良い。 Furthermore, in the embodiment, the second radial magnetic path forming portion 33 of the first heating mechanism 100A and the first radial magnetic path forming portion 32 of the second heating mechanism 100B are connected by bonding or the like. Between them, for example, they may be connected via an intermediate member such as a heat insulating material, or the first radial direction of the second radial magnetic path forming portion 33 of the first heating mechanism 100A and the second heating mechanism 100B. The magnetic path forming portion 32 may be separated. At this time, the second cooling flow passage 8 of the first heating mechanism 100A and the first cooling flow passage 7 of the second heating mechanism 100B are not common, and may be individually provided.
その上、被加熱流体の各部を流れる経路については、前記実施形態に限られない。つまり、第1加熱機構100Aの加熱流路形成部4A及び第2加熱機構100Bの加熱流路形成部4Bに流入する前の予熱経路は、前記実施形態に限られない。例えば、前記実施形態では、被加熱流体の予熱経路は、第1加熱機構100Aの加熱流路形成部4Aに至るまで単一の経路であったが、分岐点又は合流点を有する複数の経路から構成されるものであっても良い。 Moreover, the paths flowing through the respective portions of the fluid to be heated are not limited to the above embodiment. That is, the preheating path before flowing into the heating flow path forming portion 4A of the first heating mechanism 100A and the heating flow path forming portion 4B of the second heating mechanism 100B is not limited to the above embodiment. For example, in the above embodiment, the preheating path of the fluid to be heated is a single path up to the heating flow path forming portion 4A of the first heating mechanism 100A, but a plurality of paths having branch points or junctions It may be configured.
加えて、第1冷却流路7及び第2冷却流路8は、前記実施形態のように、第1径方向磁路形成部32及び第2磁路形成部33の外面との間に形成されたものの他、被加熱流体が流れる配管により構成しても良い。この場合、第1冷却流路7及び第2冷却流路8となる配管を、第1径方向磁路形成部32及び第2磁路形成部33の外面に接触して設けることが考えられる。 In addition, the first cooling channel 7 and the second cooling channel 8 are formed between the outer surfaces of the first radial magnetic path forming portion 32 and the second magnetic path forming portion 33 as in the embodiment described above. Other than the above, it may be configured by piping through which the fluid to be heated flows. In this case, it is conceivable to provide the pipes to be the first cooling flow path 7 and the second cooling flow path 8 in contact with the outer surfaces of the first radial magnetic path forming portion 32 and the second magnetic path forming portion 33.
また、冷却管6及び冷却流路7、8に被加熱流体を流さずに、別の冷却媒体を流す構成としても良い。この場合、別途冷却媒体供給源が必要になるものの、冷却専用の冷却媒体を流すことができ、断熱材101の使用量を削減しつつ流体加熱装置100の熱的安全性を一層向上させることができる。 In addition, another cooling medium may be flowed without flowing the fluid to be heated through the cooling pipe 6 and the cooling channels 7 and 8. In this case, although a separate cooling medium supply source is required, a cooling medium dedicated to cooling can be allowed to flow, and the thermal safety of the fluid heating device 100 can be further improved while reducing the amount of use of the heat insulating material 101. it can.
さらに加えて、前記実施形態では、第1加熱機構100Aの加熱流路形成部4Aが螺旋状の導体管からなり、第2加熱機構100Bの加熱流路形成部4Bが複数の内部流路を有する円筒状導体からなるものであったが、各加熱流路形成部4の構成はこれに限られない。例えば、両者とも螺旋状の導体管からなるものであっても良いし、両者とも複数の内部流路を有する円筒状導体からなるものであっても良い。 Furthermore, in the embodiment, the heating flow passage forming portion 4A of the first heating mechanism 100A is formed of a spiral conductor pipe, and the heating flow passage forming portion 4B of the second heating mechanism 100B has a plurality of internal flow passages. Although it consisted of a cylindrical conductor, the structure of each heating flow-path formation part 4 is not restricted to this. For example, both may consist of a helical conductor pipe, and both may consist of a cylindrical conductor which has a plurality of internal flow paths.
また、本発明の流体加熱装置100は、複数の第1加熱機構100A及び複数の第2加熱機構100Bを有するものであっても良い。図5には、1つの第1加熱機構100Aと2つの第2加熱機構100Bとを有する流体加熱装置を示している。この場合、2つの第2加熱機構100Bの加熱流路形成部4Bが接続配管19を介して直列的に接続されており、当該2つの第2加熱機構100Bの加熱流路形成部4Bの上流に第1加熱機構100Aの加熱流路形成部4Aが接続配管11を介して接続される構成である。2つの第2加熱機構100Bは、前記実施形態の第1加熱機構100A及び第2加熱機構100Bと同じように、一方(上流側)の第2加熱機構100Bの第2径方向磁路形成部33と、他方(下流側)の第2加熱機構100Bの第1径方向磁路形成部32とが例えば接合等により接続されている。そして、各加熱機構100A、100Bの各冷却流路7、8及び冷却管61、62を流れた被加熱流体が、第1加熱機構100Aの加熱流路形成部4A及び第2加熱機構100Bの加熱流路形成部4Bを流れるように構成される。なお、下流側の第2加熱機構100Bの第1径方向磁路形成部32の下流端には導出配管18が接続されている。このように、第2加熱機構100Bを複数設ける構成であれば、流体加熱装置100における被加熱流体の加熱性能を向上させることができる。 Further, the fluid heating device 100 of the present invention may have a plurality of first heating mechanisms 100A and a plurality of second heating mechanisms 100B. FIG. 5 shows a fluid heating device having one first heating mechanism 100A and two second heating mechanisms 100B. In this case, the heating flow passage forming portions 4B of the two second heating mechanisms 100B are connected in series via the connection pipe 19, and upstream of the heating flow passage forming portions 4B of the two second heating mechanisms 100B. The heating flow passage forming part 4A of the first heating mechanism 100A is connected via the connection pipe 11. The two second heating mechanisms 100B are the same as the first heating mechanism 100A and the second heating mechanism 100B of the embodiment, but the second radial magnetic path forming portion 33 of the one (upstream) second heating mechanism 100B. The first radial magnetic path forming portion 32 of the other (downstream side) second heating mechanism 100B is connected, for example, by bonding or the like. Then, the fluid to be heated which has flowed through the cooling channels 7 and 8 and the cooling pipes 61 and 62 of the heating mechanisms 100A and 100B is heated by the heating channel forming portion 4A of the first heating mechanism 100A and the second heating mechanism 100B. It is comprised so that it may flow through the flow-path formation part 4B. A lead-out pipe 18 is connected to the downstream end of the first radial direction magnetic path forming portion 32 of the second heating mechanism 100B on the downstream side. As described above, the heating performance of the fluid to be heated in the fluid heating device 100 can be improved if the plurality of second heating mechanisms 100B are provided.
その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, it goes without saying that the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention.
100・・・流体加熱装置
100A・・・第1加熱機構
100B・・・第2加熱機構
2・・・円筒状鉄心
3・・・磁路形成部
31・・・外側磁路形成部
32・・・第1径方向磁路形成部
33・・・第2径方向磁路形成部
4・・・加熱流路形成部
5・・・誘導コイル
6・・・冷却管
61・・・外側冷却管
62・・・内側冷却管
7・・・第1冷却流路
8・・・第2冷却流路
100 ... fluid heating device 100A ... first heating mechanism 100B ... second heating mechanism 2 ... cylindrical iron core 3 ... magnetic path forming portion 31 ... outer magnetic path forming portion 32 ... First radial magnetic path forming portion 33 second radial magnetic path forming portion 4 heating flow path forming portion 5 induction coil 6 cooling pipe 61 outer cooling pipe 62 ... Inner cooling pipe 7 ... First cooling channel 8 ... Second cooling channel
Claims (9)
前記第1加熱機構により加熱された被加熱流体をさらに加熱する第2加熱機構とを備え、
前記第1加熱機構及び前記第2加熱機構が、
円筒状鉄心と、
前記円筒状鉄心の外側周面に設けられ、前記円筒状鉄心とともに閉磁路を形成する磁路形成部と、
前記円筒状鉄心及び前記磁路形成部の間に設けられ、電磁誘導により発熱して内部を流れる被加熱流体を加熱する加熱流路形成部と、
前記円筒状鉄心及び前記磁路形成部の間に設けられ、前記円筒状鉄心の内部に磁束を発生させる誘導コイルと、
前記円筒状鉄心及び前記磁路形成部の間に設けられ、冷却媒体が流れる冷却管とを有し、
前記第2加熱機構の加熱流路形成部の流路断面積が、前記第1加熱機構の加熱流路形成部の流路断面積よりも大きく、
前記第2加熱機構の加熱流路形成部の流路容積が、前記第1加熱機構の加熱流路形成部の流路容積よりも大きく、
前記冷却管が、前記加熱流路形成部及び前記磁路形成部の間に設けられた外側冷却管と、前記加熱流路形成部及び前記円筒状鉄心の間に設けられた内側冷却管とを含むことを特徴とする流体加熱装置。 A first heating mechanism for heating the fluid to be heated;
A second heating mechanism that further heats the fluid to be heated heated by the first heating mechanism;
The first heating mechanism and the second heating mechanism are
Cylindrical iron core,
A magnetic path forming portion provided on an outer circumferential surface of the cylindrical core and forming a closed magnetic path together with the cylindrical core;
A heating flow path forming portion provided between the cylindrical iron core and the magnetic path forming portion, which generates heat by electromagnetic induction and heats a fluid to be heated flowing therein;
An induction coil provided between the cylindrical iron core and the magnetic path forming portion for generating a magnetic flux inside the cylindrical iron core;
And a cooling pipe provided between the cylindrical iron core and the magnetic path forming portion, through which a cooling medium flows,
The flow passage cross-sectional area of the heating flow passage forming portion of the second heating mechanism is larger than the flow passage cross-sectional area of the heating flow passage forming portion of the first heating mechanism,
The volume of the flow passage of the heat flow path forming portion of the second heating mechanism, much larger than the volume of the flow passage of the heat flow path forming portion of the first heating mechanism,
The cooling pipe includes an outer cooling pipe provided between the heating flow path forming portion and the magnetic path forming portion, and an inner cooling pipe provided between the heating flow path forming portion and the cylindrical iron core. fluid heating apparatus which comprises.
前記第2加熱機構の加熱流路形成部が、円筒状導体の側壁にその軸方向に沿って複数の内部流路が形成されたものである請求項1記載の流体加熱装置。 The heating channel forming portion of the first heating mechanism is formed by winding a conductor pipe in a spiral shape,
The fluid heating device according to claim 1, wherein the heating flow passage forming portion of the second heating mechanism has a plurality of internal flow passages formed in the side wall of the cylindrical conductor along the axial direction.
前記被加熱流体が、前記冷却管を流れた後に、前記加熱流路形成部に流れるように構成されている請求項1又は2記載の流体加熱装置。 The cooling pipe is connected to the heating flow path forming unit,
The fluid heating apparatus according to claim 1 or 2 , wherein the fluid to be heated flows into the heating flow passage forming portion after flowing through the cooling pipe.
前記第1加熱機構により加熱された被加熱流体をさらに加熱する第2加熱機構とを備え、 A second heating mechanism that further heats the fluid to be heated heated by the first heating mechanism;
前記第1加熱機構及び前記第2加熱機構が、 The first heating mechanism and the second heating mechanism are
円筒状鉄心と、 Cylindrical iron core,
前記円筒状鉄心の外側周面に設けられ、前記円筒状鉄心とともに閉磁路を形成する磁路形成部と、 A magnetic path forming portion provided on an outer circumferential surface of the cylindrical core and forming a closed magnetic path together with the cylindrical core;
前記円筒状鉄心及び前記磁路形成部の間に設けられ、電磁誘導により発熱して内部を流れる被加熱流体を加熱する加熱流路形成部と、 A heating flow path forming portion provided between the cylindrical iron core and the magnetic path forming portion, which generates heat by electromagnetic induction and heats a fluid to be heated flowing therein;
前記円筒状鉄心及び前記磁路形成部の間に設けられ、前記円筒状鉄心の内部に磁束を発生させる誘導コイルと、 An induction coil provided between the cylindrical iron core and the magnetic path forming portion for generating a magnetic flux inside the cylindrical iron core;
前記円筒状鉄心及び前記磁路形成部の間に設けられ、冷却媒体が流れる冷却管とを有し、 And a cooling pipe provided between the cylindrical iron core and the magnetic path forming portion, through which a cooling medium flows,
前記第2加熱機構の加熱流路形成部の流路断面積が、前記第1加熱機構の加熱流路形成部の流路断面積よりも大きく、 The flow passage cross-sectional area of the heating flow passage forming portion of the second heating mechanism is larger than the flow passage cross-sectional area of the heating flow passage forming portion of the first heating mechanism,
前記第2加熱機構の加熱流路形成部の流路容積が、前記第1加熱機構の加熱流路形成部の流路容積よりも大きく、 The channel volume of the heating channel forming part of the second heating mechanism is larger than the channel volume of the heating channel forming part of the first heating mechanism,
前記冷却管が、前記誘導コイルと電気的に接続されており、 The cooling pipe is electrically connected to the induction coil;
前記冷却管及び前記誘導コイルに、外部の交流電源が接続されていることを特徴とする流体加熱装置。 An external AC power supply is connected to the cooling pipe and the induction coil.
前記第1加熱機構により加熱された被加熱流体をさらに加熱する第2加熱機構とを備え、
前記第1加熱機構及び前記第2加熱機構が、
円筒状鉄心と、
前記円筒状鉄心の外側周面に設けられ、前記円筒状鉄心とともに閉磁路を形成する磁路形成部と、
前記円筒状鉄心及び前記磁路形成部の間に設けられ、電磁誘導により発熱して内部を流れる被加熱流体を加熱する加熱流路形成部と、
前記円筒状鉄心及び前記磁路形成部の間に設けられ、前記円筒状鉄心の内部に磁束を発生させる誘導コイルと、
前記円筒状鉄心及び前記磁路形成部の間に設けられ、冷却媒体が流れる冷却管とを有し、
前記第2加熱機構の加熱流路形成部の流路断面積が、前記第1加熱機構の加熱流路形成部の流路断面積よりも大きく、
前記第2加熱機構の加熱流路形成部の流路容積が、前記第1加熱機構の加熱流路形成部の流路容積よりも大きく、
前記磁路形成部が、前記円筒状鉄心の径方向外側に設けられた円筒状をなす外側磁路形成部と、前記円筒状鉄心及び前記外側磁路形成部の軸方向両端部それぞれを連結する径方向磁路形成部とを有し、
前記径方向磁路形成部に、冷却媒体が流れる冷却流路が設けられており、
前記第1加熱機構の径方向磁路形成部の一方と、前記第2加熱機構の径方向磁路形成部の他方とが接続されている流体加熱装置。 A first heating mechanism for heating the fluid to be heated;
A second heating mechanism that further heats the fluid to be heated heated by the first heating mechanism;
The first heating mechanism and the second heating mechanism are
Cylindrical iron core,
A magnetic path forming portion provided on an outer circumferential surface of the cylindrical core and forming a closed magnetic path together with the cylindrical core;
A heating flow path forming portion provided between the cylindrical iron core and the magnetic path forming portion, which generates heat by electromagnetic induction and heats a fluid to be heated flowing therein;
An induction coil provided between the cylindrical iron core and the magnetic path forming portion for generating a magnetic flux inside the cylindrical iron core;
And a cooling pipe provided between the cylindrical iron core and the magnetic path forming portion, through which a cooling medium flows,
The flow passage cross-sectional area of the heating flow passage forming portion of the second heating mechanism is larger than the flow passage cross-sectional area of the heating flow passage forming portion of the first heating mechanism,
The channel volume of the heating channel forming part of the second heating mechanism is larger than the channel volume of the heating channel forming part of the first heating mechanism,
The magnetic path forming portion connects the cylindrical outer core path forming portion provided on the radially outer side of the cylindrical iron core, and both axial end portions of the cylindrical core and the outer magnetic path forming portion. And a radial magnetic path forming portion,
The radial magnetic path forming portion is provided with a cooling flow passage through which a cooling medium flows,
The fluid heating device in which one side of the radial direction magnetic path formation part of the 1st heating mechanism and the other of the radial direction magnetic path formation part of the 2nd heating mechanism are connected .
前記第1加熱機構により加熱された被加熱流体をさらに加熱する第2加熱機構とを備え、 A second heating mechanism that further heats the fluid to be heated heated by the first heating mechanism;
前記第1加熱機構及び前記第2加熱機構が、 The first heating mechanism and the second heating mechanism are
円筒状鉄心と、 Cylindrical iron core,
前記円筒状鉄心の外側周面に設けられ、前記円筒状鉄心とともに閉磁路を形成する磁路形成部と、 A magnetic path forming portion provided on an outer circumferential surface of the cylindrical core and forming a closed magnetic path together with the cylindrical core;
前記円筒状鉄心及び前記磁路形成部の間に設けられ、電磁誘導により発熱して内部を流れる被加熱流体を加熱する加熱流路形成部と、 A heating flow path forming portion provided between the cylindrical iron core and the magnetic path forming portion, which generates heat by electromagnetic induction and heats a fluid to be heated flowing therein;
前記円筒状鉄心及び前記磁路形成部の間に設けられ、前記円筒状鉄心の内部に磁束を発生させる誘導コイルと、 An induction coil provided between the cylindrical iron core and the magnetic path forming portion for generating a magnetic flux inside the cylindrical iron core;
前記円筒状鉄心及び前記磁路形成部の間に設けられ、冷却媒体が流れる冷却管とを有し、 And a cooling pipe provided between the cylindrical iron core and the magnetic path forming portion, through which a cooling medium flows,
前記第2加熱機構の加熱流路形成部の流路断面積が、前記第1加熱機構の加熱流路形成部の流路断面積よりも大きく、 The flow passage cross-sectional area of the heating flow passage forming portion of the second heating mechanism is larger than the flow passage cross-sectional area of the heating flow passage forming portion of the first heating mechanism,
前記第2加熱機構の加熱流路形成部の流路容積が、前記第1加熱機構の加熱流路形成部の流路容積よりも大きく、 The channel volume of the heating channel forming part of the second heating mechanism is larger than the channel volume of the heating channel forming part of the first heating mechanism,
前記磁路形成部が、前記円筒状鉄心の径方向外側に設けられた円筒状をなす外側磁路形成部と、前記円筒状鉄心及び前記外側磁路形成部の軸方向両端部それぞれを連結する径方向磁路形成部とを有し、 The magnetic path forming portion connects the cylindrical outer core path forming portion provided on the radially outer side of the cylindrical iron core, and both axial end portions of the cylindrical core and the outer magnetic path forming portion. And a radial magnetic path forming portion,
前記径方向磁路形成部に、冷却媒体が流れる冷却流路が設けられており、 The radial magnetic path forming portion is provided with a cooling flow passage through which a cooling medium flows,
前記被加熱流体が、前記冷却流路を流れた後に、前記冷却管又は前記加熱流路形成部に流れるように構成されている流体加熱装置。 The fluid heating device, wherein the fluid to be heated is configured to flow to the cooling pipe or the heating channel forming portion after flowing through the cooling channel.
前記第1加熱機構及び前記第2加熱機構により過熱蒸気を生成するものである請求項1乃至7の何れか一項に記載の流体加熱装置。 The heated fluid is water,
The fluid heating device according to any one of claims 1 to 7 , wherein superheated steam is generated by the first heating mechanism and the second heating mechanism.
前記第2加熱機構が、飽和水蒸気を加熱して過熱水蒸気を生成するものである請求項8記載の流体加熱装置。 The first heating mechanism heats water to generate saturated steam,
The fluid heating device according to claim 8 , wherein the second heating mechanism heats saturated steam to generate superheated steam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015106399A JP6516562B2 (en) | 2015-05-26 | 2015-05-26 | Fluid heating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015106399A JP6516562B2 (en) | 2015-05-26 | 2015-05-26 | Fluid heating device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016219376A JP2016219376A (en) | 2016-12-22 |
JP6516562B2 true JP6516562B2 (en) | 2019-05-22 |
Family
ID=57579142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015106399A Active JP6516562B2 (en) | 2015-05-26 | 2015-05-26 | Fluid heating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6516562B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7100887B2 (en) * | 2018-09-11 | 2022-07-14 | トクデン株式会社 | Superheated steam generator |
JP7407438B2 (en) * | 2019-09-02 | 2024-01-04 | トクデン株式会社 | fluid heating device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5141749U (en) * | 1974-09-06 | 1976-03-27 | ||
JPH0355790A (en) * | 1989-07-24 | 1991-03-11 | Okano Valve Seizo Kk | High-frequency heating method and its device |
JP4602940B2 (en) * | 2006-06-14 | 2010-12-22 | 富士電機システムズ株式会社 | Induction heating steam generator |
JP2010175169A (en) * | 2009-01-30 | 2010-08-12 | Mitaka Koki Co Ltd | Steam generator |
JP5630829B2 (en) * | 2011-02-04 | 2014-11-26 | トクデン株式会社 | Superheated steam generator |
-
2015
- 2015-05-26 JP JP2015106399A patent/JP6516562B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016219376A (en) | 2016-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6760637B2 (en) | Fluid heating device | |
JP6431717B2 (en) | Fluid heating device | |
JP5630829B2 (en) | Superheated steam generator | |
JP2000051180A (en) | Coil system of mr device | |
JP5317284B2 (en) | Fluid heating device | |
JP6494100B2 (en) | Fluid heating device | |
CN110887034B (en) | Superheated steam generator | |
JP6516562B2 (en) | Fluid heating device | |
WO2018096718A1 (en) | Electromagnetic induction-heating device | |
JP2009041885A (en) | Fluid heating device | |
JP4963042B2 (en) | Heat transfer roller | |
JP7256539B2 (en) | Superheated steam generator | |
JP3642415B2 (en) | Fluid heating device | |
JP2012256763A (en) | Stationary induction apparatus, metal tube induction heating apparatus and involute iron core cooling structure | |
KR102446038B1 (en) | Motor apparatus | |
RU2223584C2 (en) | Electrical machine stator | |
JP6760636B2 (en) | Fluid heating device | |
JP7407438B2 (en) | fluid heating device | |
JP6746136B2 (en) | Fluid heating device | |
JP7065506B2 (en) | Superheated steam generator | |
JP7270976B2 (en) | Superheated steam generator | |
JP2023067382A (en) | Superheated steam generator | |
JP2023067383A (en) | Superheated steam generator | |
JP2023162579A (en) | Superheated steam generation device | |
JP2023162578A (en) | Superheated steam generation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190409 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190416 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6516562 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |