JP4599514B2 - ラインジェネレータ - Google Patents

ラインジェネレータ Download PDF

Info

Publication number
JP4599514B2
JP4599514B2 JP2010117426A JP2010117426A JP4599514B2 JP 4599514 B2 JP4599514 B2 JP 4599514B2 JP 2010117426 A JP2010117426 A JP 2010117426A JP 2010117426 A JP2010117426 A JP 2010117426A JP 4599514 B2 JP4599514 B2 JP 4599514B2
Authority
JP
Japan
Prior art keywords
lens
line
axis
semiconductor laser
line generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010117426A
Other languages
English (en)
Other versions
JP2010278437A (ja
Inventor
剛正 黒田
陽介 中野
和幸 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nalux Co Ltd
Original Assignee
Nalux Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2009/004563 external-priority patent/WO2010137082A1/ja
Application filed by Nalux Co Ltd filed Critical Nalux Co Ltd
Priority to JP2010117426A priority Critical patent/JP4599514B2/ja
Publication of JP2010278437A publication Critical patent/JP2010278437A/ja
Application granted granted Critical
Publication of JP4599514B2 publication Critical patent/JP4599514B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

本発明は、半導体レーザ光源などを使用したラインジェネレータに関する。
建築現場、工事現場、工場などにおいて、位置決め、段差測定や不良検出を行うための基準線を設定するために、半導体レーザ、発光ダイオード、光ファイバなどの光源を使用したラインジェネレータが使用されている。
図27及び図28は、従来のラインジェネレータの構成の一例を示す図である。ラインジェネレータは、半導体レーザ光源1101、回転対称なコリメートレンズ1103及びロッドレンズ1105を含む。図27は、半導体レーザ光源1101の鉛直方向(Fast-Axis FA)の断面を示す図であり、図28は、半導体レーザ光源1101の水平方向(Slow-Axis SA)の断面を示す図である。図28において、半導体レーザ1101から出射された光は、回転対称なコリメートレンズ1103によって、SA方向にコリメートされ、3ミリメータの幅の光束となる。コリメート後の光束の幅は、ラインジェネレータによって生成されるラインの幅である。他方、図27において、半導体レーザ1101から出射された光は、回転対称なコリメートレンズ1103によって、FA方向にコリメートされ、約6ミリメータの幅の光束となる。回転対称なコリメートレンズ1103によって、コリメートされた光は、ロッドレンズ1105によって、FA方向に拡散されラインが生成される。
コリメートレンズ1103のサイズの制約から、FA方向に約10ミリメータの幅を有する光束の一部のみが使用されるので、光の利用効率は最大で約60%である。また、ロッドレンズを使用することにより、容易に広い放射角が得られるが、ライン輝度分布の制御を行うことはできない。
図29及び図30は、従来のラインジェネレータの構成の他の例を示す図である。ラインジェネレータは、半導体レーザ光源1201、回転対称なコリメートレンズ1203及びシリンダーレンズ1205を含む。図29は、半導体レーザ光源1201の鉛直方向(Fast-Axis FA)の断面を示す図であり、図30は、半導体レーザ光源1201の水平方向(Slow-Axis SA)の断面を示す図である。図30において、半導体レーザ1201から出射された光は、回転対称なコリメートレンズ1203によって、コリメートされ、3ミリメータの幅の光束となる。コリメート後の光束の幅は、ラインジェネレータによって生成されるラインの幅である。他方、図29において、半導体レーザ1201から出射された光は、回転対称なコリメートレンズ1203によって、FA方向にコリメートされ、約6ミリメータの幅の光束となる。回転対称なコリメートレンズ1203によって、コリメートされた光は、シリンダーレンズ1205によって、FA方向に拡散されラインが生成される
コリメートレンズ1203のサイズの制約から、FA方向に約10ミリメータの幅の光束の一部のみが使用されるので、光の利用効率は最大で約60%である。シリンダーレンズ1205の光学面形状を調整することでラインの輝度分布を任意に設計することができる。しかし、レンズの成形に使用する金型加工の制約により、シリンダー形状の接線角度を大きくすることが困難であり、広い放射角を得るのが困難である。また、ラインの特定の投影位置に対して焦点を合わせて輝度分布が一定になるように設計しているので、コリメートレンズ1203のフォーカス調整を行うと輝度分布が設計値から外れるという問題があった。
従来タイプのラインジェネレータは、たとえば、特開2008-58295号公報(特許文献1)に開示されている。また、米国特許第6069748号(特許文献2)は、別のタイプのラインジェネレータを開示している。
このように、光の利用効率が高く、広い放射角が得られ、ライン輝度分布の制御を容易に行うことのできるラインジェネレータは開発されていなかった。
特開2008-58295号公報 米国特許第6069748号
したがって、光の利用効率が高く、広い放射角が得られ、ライン輝度分布の制御を容易に行うことのできるラインジェネレータに対するニーズがある。
本発明によるラインジェネレータは、光源と、第1レンズ群と、第2レンズ群とを、含む。前記光源から、第1レンズ群及び第2レンズ群の面にともに垂直に入射する光束の位置を光軸とし、第1レンズ群は、前記光源からの光束が、前記光軸に垂直な面内の第1の方向にコリメートを行なわずに、前記光軸に垂直な面内の第1の方向に直交する第2の方向にのみコリメートまたは集光して、ラインの幅を定めるように構成され、第2レンズ群は、第1レンズ群を通過した光束が、ラインを生成するように構成されている。
本明細書及び特許請求の範囲においてレンズ群とは、全体で所定の機能を有する、1または複数のレンズである。
本発明によるラインジェネレータにおいて、第1レンズ群及び第2レンズ群の機能が明確に分離されている。したがって、第1レンズ群の光学面形状を調整することによってラインの幅を定め、第2レンズ群の光学面形状を調整することによって、ラインの輝度分布を任意に調整することができる。また、第1レンズ群によって、一方向(ラインの幅方向)にのみ光をコリメートまたは集光するので、第2レンズ群によって広い放射角が得られる。また、第1レンズ群を通過した光の大部分が第2レンズ群に入射するので、光の利用効率が高くなる。
本発明の実施形態によるラインジェネレータにおいて、第1レンズ群及び第2レンズ群の少なくとも一方が、前記光軸方向の位置を調整する機構をさらに備えている。
本実施形態によれば、第1レンズ群の光軸方向の位置を調整することにより、ラインの長手方向の輝度分布を変化させずに、ラインの焦点位置を容易に調整することができる。また、光源の光の放射状態にばらつきがある場合に、第2レンズの光軸方向の位置を調整することにより、ラインの焦点位置を維持したまま、ラインの長手方向の輝度分布が変化しないようにすることができる。
本発明の実施形態によるラインジェネレータにおいて、前記光源が半導体レーザであり、半導体レーザの鉛直方向(Fast-Axis FA)を第1の方向、前記半導体レーザの水平方向(Slow-Axis SA)を第2の方向としている。
本実施形態によれば、FA方向をライン幅の方向とすることにより、より小型のラインジェネレータを作製することができる。
本発明の実施形態によるラインジェネレータにおいて、前記光源が半導体レーザであり、半導体レーザの鉛直方向(Fast-Axis FA)を第2の方向、前記半導体レーザの水平方向(Slow-Axis SA)を第1の方向としている。
本実施形態によれば、SA方向をライン幅の方向とすることにより、より広い放射角が得られる。
本発明の実施形態によるラインジェネレータにおいて、第1レンズ群及び第2レンズ群の少なくとも一面が、第1の方向及び第2の方向に軸対象な形状であり、中心部と外周部で第1の方向の焦点距離が異なる自由曲面を有する。
本実施形態によれば、少なくとも一面に自由曲面を使用することにより、コリメート性能を向上させることができる。具体的には、ラインをより細く集光し、または、任意の面上にラインを集光することが可能となる。
本発明の実施形態によるラインジェネレータは、少なくとも一つの自由曲面を有する位相板をさらに備えている。
本実施形態によれば、作製難易度の高い自由曲面を有する光学素子を、レンズと独立して作製することができるので、作製難易度が低減される。
本発明の第1の実施例によるラインジェネレータの構成を示す図である。 本発明の第1の実施例によるラインジェネレータの構成を示す図である。 本発明の第1の実施例によるラインジェネレータの性能を示す図である。 本発明の第2の実施例によるラインジェネレータの構成を示す図である。 本発明の第2の実施例によるラインジェネレータの構成を示す図である。 本発明の第2の実施例によるラインジェネレータの性能を示す図である。 本発明の第3の実施例によるラインジェネレータの性能を示す図である。 本発明の第4の実施例によるラインジェネレータの構成を示す図である。 本発明の第4の実施例によるラインジェネレータの構成を示す図である。 本発明の第4の実施例によるラインジェネレータにおける第1及び第2レンズ間の間隔調整機能を示す図である。 本発明の第4の実施例によるラインジェネレータにおける半導体レーザと第1レンズ間の間隔隔調整機能を示す図である。 ラインジェネレータ及び像面の配置を示す図である。 本発明の第5の実施例によるラインジェネレータの構成を示す図である。 本発明の第5の実施例によるラインジェネレータの構成を示す図である。 本発明の第5の実施例によるラインジェネレータの性能を示す図である。 本発明の第6の実施例によるラインジェネレータの構成を示す図である。 本発明の第6の実施例によるラインジェネレータの構成を示す図である。 本発明の第7の実施例によるラインジェネレータの構成を示す図である。 本発明の第7の実施例によるラインジェネレータの構成を示す図である。 本発明の第8の実施例によるラインジェネレータの構成を示す図である。 本発明の第8の実施例によるラインジェネレータの構成を示す図である。 実施例8のラインジェネレータによって、光源面から5メートル離れた平面を照射した場合の光の強度分布を示す図である。 実施例8のラインジェネレータ500と照射面との関係を示す図である。 ラインジェネレータと照射面との通常の関係を示す図である。 第1レンズ又は第2レンズを光軸方向に移動させる機構の構成の一例を示す図である。 第1レンズ又は第2レンズを光軸方向に移動させる機構の構成の他の例を示す図である。 従来のラインジェネレータの構成の一例を示す図である。 従来のラインジェネレータの構成の一例を示す図である。 従来のラインジェネレータの構成の他の例を示す図である。 従来のラインジェネレータの構成の他の例を示す図である。
以下に本発明の実施例を説明する。本明細書において、「コリメートさせる(する)」という用語は、遠距離の点において集光させる(する)場合を含むものとする。レンズの材質は用途に応じて選択することができる。プラスチックは、割れにくく、成形により複雑な形状を安価に作製することができる。ガラスは、プラスチックに比べ熱膨張係数が小さく耐熱性が高いため、環境の変化の影響を受けにくく、信頼性が高い。
第1の実施例
図1及び図2は、本発明の第1の実施例によるラインジェネレータの構成を示す図である。ラインジェネレータは、半導体レーザ光源101、シリンダーレンズである第1レンズ103及びシリンダーレンズである第2レンズ105を含む。図1は、半導体レーザ光源101の鉛直方向(Fast-Axis FA)の断面を示す図であり、図2は、半導体レーザ光源101の水平方向(Slow-Axis SA)の断面を示す図である。図1において、半導体レーザ101から出射された光は、第1レンズ103によって、FA方向にコリメートされ、3ミリメータの幅の光束となる。コリメート後の光束の幅は、ラインジェネレータによって生成されるラインの幅である。ここで、第1レンズ103は、シリンダーレンズであるので、SA方向にコリメートは行なわれない。第1レンズ103によって、FA方向にコリメートされた光は、第2レンズ105によって、SA方向に拡散されラインが生成される。
SA方向において、第1レンズ103は、コリメートを行なわず、第2レンズ105が、広がりを持った光をさらに拡散する。すなわち、本実施例において、SA方向のコリメートは行なわれない。このため、従来タイプのラインジェネレータと比較して広い放射角が得られる。また、第1レンズ103を通過した光の大部分が第2レンズ105に入射するので、光の利用効率は、90%以上である。
第2レンズ105の光学面形状を調整することによって、ラインの輝度分布を均一にし、あるいは、任意の部分の輝度を強くすることができる。
本実施例において、第1レンズ103は、ラインの幅を定め、第2レンズ105は、長手方向に所定の輝度分布を有するラインを生成する。このように、第1レンズ103及び第2レンズ105の機能がはっきり分離されている。
FA方向をラインの幅の方向とする上記の構成の利点は以下のとおりである。FA方向は広がり角度が大きいため、短い光路長で十分なライン幅が得られ、光学系の小型化が可能となる。
表1は、第1の実施例によるラインジェネレータの光学系のデータを示す表である。ここで、光源の行の面間隔は、光源と第1レンズとの間隔を示す。第2面の行の面間隔は、第1レンズの厚さを示す。第3面の行の面間隔は、第1レンズと第2レンズとの間隔を示す。第4面の行の面間隔は、第2レンズの厚さを示す。表における長さの単位は、ミリメータである。以下の表についても同様である。

Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第1レンズの光学面(物体側の第2面及び像側の第3面)は以下の式で表せる。
Figure 0004599514
ここで、kは2次曲線の形状を定める定数、cは中心曲率、Rは中心曲率半径である。また、α2iは補正係数である。
表2は、第2面および第3面を表す式の係数及び定数を示す表である。
Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第2レンズの光学面(物体側の第4面及び像側の第5面)は以下の式で表せる。
Figure 0004599514
ここで、α2iは補正係数である。
表3は、第4面および第5面を表す式の係数及び定数を示す表である。
Figure 0004599514
図3は、第1の実施例によるラインジェネレータの性能を示す図である。図3の横軸は、投影面におけるライン上の点の、光軸とラインとの交点からの距離を示す。縦軸は、その点における光の相対的な強度を示す。ここで、投影面は、光源からの距離が、1000mmであり、光軸に垂直な面である。投影面におけるラインの輝度分布は、ほぼ一様である。
投影面におけるラインの輝度分布を一様にするには、第4面のパラメータを適切に定める。
第2の実施例
図4及び図5は、本発明の第2の実施例によるラインジェネレータの構成を示す図である。ラインジェネレータは、半導体レーザ光源201、シリンダーレンズである第1レンズ203及びシリンダーレンズである第2レンズ205を含む。図4は、半導体レーザ光源201の鉛直方向(Fast-Axis FA)の断面を示す図であり、図5は、半導体レーザ光源201の水平方向(Slow-Axis SA)の断面を示す図である。図5において、半導体レーザ201から出射された光は、第1レンズ203によって、SA方向にコリメートされ、3ミリメータの幅の光束となる。コリメート後の光束の幅は、ラインジェネレータによって生成されるラインの幅である。ここで、第1レンズ203は、シリンダーレンズであるので、FA方向にコリメートは行なわれない。第1レンズ203によって、SA方向にコリメートされた光は、第2レンズ205によって、FA方向に拡散されラインが生成される。
FA方向において、第1レンズ203は、コリメートを行なわず、第2レンズ205が、広がりを持った光を拡散する。すなわち、本実施例において、FA方向のコリメートは行なわれない。このため、従来タイプのラインジェネレータと比較して広い放射角が得られる。また、第1レンズ203を通過した光の大部分が第2レンズ205に入射するので、光の利用効率は、80%以上である。
第2レンズ205の光学面形状を調整することによって、ラインの輝度分布を均一にし、あるいは、任意の部分の輝度を強くすることができる。
本実施例において、第1レンズ203は、ラインの幅を定め、第2レンズ205は、長手方向に所定の輝度分布を有するラインを生成する。このように、第1レンズ203及び第2レンズ205の機能がはっきり分離されている。
SA方向をラインの幅の方向とする上記の構成の利点は以下のとおりである。FA方向は広がり角度が大きいため、容易に広い放射角が得られる。
表4は、第2の実施例によるラインジェネレータの光学系のデータを示す表である。

Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第1レンズの光学面(物体側の第2面及び像側の第3面)は以下の式で表せる。
Figure 0004599514
表5は、第2面および第3面を表す式の係数及び定数を示す表である。

Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第2レンズの光学面(物体側の第4面及び像側の第5面)は以下の式で表せる。
Figure 0004599514
ここで、kは2次曲線の形状を定める定数、cは中心曲率、Rは中心曲率半径である。また、α2iは補正係数である。
表6は、第4面および第5面を表す式の係数及び定数を示す表である。

Figure 0004599514
図6は、第2の実施例によるラインジェネレータの性能を示す図である。図6の横軸は、xz面において光線の進む方向の光軸に対する角度を示す。図6の縦軸は、その角度における光の相対的な強度を示す。光の相対的な強度は、0乃至約30度の角度においてほぼ一様である。
0乃至約30度の角度においてラインの輝度分布を一様にするには、第4面のパラメータを適切に定める。
第3の実施例
第3の実施例によるラインジェネレータの構成は、図4及び図5に示した第2の実施例の構成と同様である。
表7は、第3の実施例によるラインジェネレータの光学系のデータを示す表である。

Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第2面(第1レンズの物体側の面)は以下の式で表せる。
Figure 0004599514
表8は、第2面を表す式の係数及び定数を示す表である。
Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第3面(第1レンズの像側の面)は以下の式で表せる。第3面は、いわゆる自由曲面である。本実施例では、x軸方向及びy軸方向に軸対称な形状であり、y軸方向のレンズパワーがx軸方向のレンズパワーより大きく、また、y軸方向のレンズパワーがレンズ中心付近と外周部で異なるように自由曲面を定めている。
Figure 0004599514
表9は、第3面を表す式の係数及び定数を示す表である。

Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第2レンズの光学面(物体側の第4面及び像側の第5面)は以下の式で表せる。
Figure 0004599514
ここで、kは2次曲線の形状を定める定数、cは中心曲率、Rは中心曲率半径である。また、α2iは補正係数である。
表10は、第4面および第5面を表す式の係数及び定数を示す表である。

Figure 0004599514
図7は、第3の実施例によるラインジェネレータの性能を示す図である。図7の横軸は、xz面において光線の進む方向の光軸に対する角度を示す。図7の縦軸は、その角度における光の相対的な強度を示す。光の相対的な強度は、0乃至約45度の角度においてほぼ一様である。
0乃至約45度の角度においてラインの輝度分布を一様にするには、第4面のパラメータを適切に定める。
第3面に自由曲面を使用することにより、コリメート性能を向上させることができる。具体的には、ラインをより細く集光し、または、任意の面上にラインを集光することが可能となる。
第4の実施例
図8及び図9は、本発明の第4の実施例によるラインジェネレータの構成を示す図である。ラインジェネレータは、半導体レーザ光源301、シリンダーレンズである第1レンズ303及びシリンダーレンズである第2レンズ305を含む。図8は、半導体レーザ光源301の鉛直方向(Fast-Axis FA)の断面を示す図であり、図9は、半導体レーザ光源301の水平方向(Slow-Axis SA)の断面を示す図である。図9において、半導体レーザ301から出射された光は、第1レンズ303によって、SA方向にコリメートされ、3ミリメータの幅の光束となる。コリメート後の光束の幅は、ラインジェネレータによって生成されるラインの幅である。ここで、第1レンズ303は、シリンダーレンズであるので、FA方向にコリメートは行なわれない。第1レンズ303によって、SA方向にコリメートされた光は、第2レンズ305によって、FA方向に拡散されラインが生成される。
表11は、第4の実施例によるラインジェネレータの光学系のデータを示す表である。

Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第2面(第1レンズの物体側の面)は以下の式で表せる。
Figure 0004599514
表12は、第2面を表す式の係数及び定数を示す表である。

Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第3面(第1レンズの像側の面)は以下の式で表せる。第3面は、いわゆる自由曲面である。本実施例では、x軸方向及びy軸方向に軸対称な形状であり、y軸方向のレンズパワーがx軸方向のレンズパワーより大きく、また、y軸方向のレンズパワーがレンズ中心付近と外周部で異なるように自由曲面を定めている。
Figure 0004599514
表13は、第3面を表す式の係数及び定数を示す表である。

Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第2レンズの光学面(物体側の第4面及び像側の第5面)は以下の式で表せる。
Figure 0004599514
ここで、α2iは補正係数である。
表14は、第4面および第5面を表す式の係数及び定数を示す表である。

Figure 0004599514
本実施例において、第1レンズ303は、ラインの幅を定め、第2レンズ305は、長手方向に所定の輝度分布を有するラインを生成する。このように、第1レンズ303及び第2レンズ305の機能がはっきり分離されているので、たとえば、半導体レーザ光源301の光の放射状態に個体差がある場合に、第2レンズ305を光軸方向に移動させることによって、焦点位置を維持したまま、ラインの長手方向の輝度分布が変化しないようにすることができる。また、第1レンズ303を光軸方向に移動させることによってラインの焦点位置の調整を行っても、ラインの長手方向尾の輝度分布が変化しない。
図25は、第1レンズ又は第2レンズを光軸方向に移動させる機構の構成の一例を示す図である。図25(b)は、移動機構の斜視図である。移動機構は、鏡筒2001を含み、鏡筒の側面には長手方向にスリット2007が設けられる。図25(a)は、移動機構の長手方向の中心軸を含む断面の図である。鏡筒2001内にはレンズホルダ2003が中心軸(すなわち、光軸)方向に移動可能に設けられる。レンズホルダ2003には、とって2005が固定されている。とって2005は、スリット2007に沿って長手方向に移動させることができる。したがって、とって2005をスリット2007に沿って移動させることにより、レンズホルダ2003を光軸方向に移動させることができる。
図26は、第1レンズ又は第2レンズを光軸方向に移動させる機構の構成の他の例を示す図である。図26(a)は、移動機構の長手方向の中心軸を含む断面の図である。図26(b)は、移動機構の長手方向の中心軸に垂直な断面の図である。移動機構は、鏡筒3001を含み、鏡筒3001は、長手方向の一部に環状の部分3005を備える。環状の部分3005の内面にはネジが切られている。鏡筒3001内には、レンズホルダ3003が備わる。レンズホルダ3003の外面にはネジが切られ、環状の部分3005の内面のネジとかみ合うように構成されている。また、レンズホルダ3003は、鏡筒3001内において、ストッパ3007によって鏡筒3001に対して回転されないよう構成されている。そこで、環状の部分3005を鏡筒3001に対して回転させると、レンズホルダ3003は、回転することができないので長手方向に移動する。したがって、環状の部分3005を回転させることにより、レンズホルダ3003を光軸方向に移動させることができる。
図10は、第4の実施例によるラインジェネレータにおける第1及び第2レンズ間の間隔調整機能を示す図である。図10の横軸は、投影面におけるライン上の点の、光軸とラインとの交点からの距離を示す。縦軸は、その点における光の相対的な強度を示す。ここで、投影面は、光源からの距離が、100mmであり、光軸に垂直な面である。
図10のAは、光源(半導体レーザ)の広がり角度が30度(設計値)であり、第1レンズ303及び第2レンズ305の間隔が3mmの場合のラインの長手方向の光の強度分布を示す。光の強度分布は、ラインの長手方向にほぼ一様である。
図10のBは、上記の状態で半導体レーザの広がり角度が35度に変化した場合のラインの長手方向の光の強度分布を示す。60mm付近の光の強度は、光軸付近の強度に比較して20%以上増加している。
図10のCは、半導体レーザの広がり角度が35度の場合に、第1レンズ303及び第2レンズ305の間隔を2mmとした場合のラインの長手方向の光の強度分布を示す。レンズ間隔を調整した結果、光の強度分布は、ラインの長手方向にほぼ一様となった。
このように本実施例によれば、半導体レーザの広がり角度に設計値からのばらつきがある場合でも、第2レンズ305の光軸方向の位置を調整することにより、ラインの長手方向の光の強度分布を一様にすることができる。
図11は、第4の実施例によるラインジェネレータにおける半導体レーザと第1レンズ間の間隔調整機能を示す図である。図11の横軸は、投影面におけるライン上の点の、光軸とラインとの交点からの距離を示す。縦軸は、その点における光の相対的な強度を示す。
図12は、ラインジェネレータ及び像面の配置を示す図である。
図11のAは、半導体レーザと第1レンズ間の間隔を4.0mmとした場合の光の強度分布を示す。図12のAに示すように、第2レンズ305と像面との間の間隔は、65mmである。
図11のBは、半導体レーザと第1レンズ間の間隔を3.0mmとした場合の光の強度分布を示す。図12のBに示すように、第2レンズ305と像面との間の間隔は、100mmである。
図11のCは、半導体レーザと第1レンズ間の間隔を2.5mmとした場合の光の強度分布を示す。図12のCに示すように、第2レンズ305と像面との間の間隔は、170mmである。
図11のA、B、Cいずれの場合にも、ラインの長手方向の強度分布はほぼ一様である。このように本実施例によれば、半導体レーザと第1レンズ間の間隔を調整することによって像面の位置(フォーカス位置)を変えても、ラインの長手方向の光の強度分布は、ほぼ一様に維持される。
第5の実施例
図13及び図14は、本発明の第5の実施例によるラインジェネレータの構成を示す図である。ラインジェネレータは、半導体レーザ光源401、シリンダーレンズである第1レンズ403、シリンダーレンズである第2レンズ405及びシリンダーレンズである第3レンズ407を含む。図13は、半導体レーザ光源301の鉛直方向(Fast-Axis FA)の断面を示す図であり、図14は、半導体レーザ光源401の水平方向(Slow-Axis SA)の断面を示す図である。図14において、半導体レーザ401から出射された光は、第1レンズ403によって、SA方向にコリメートされ、3ミリメータの幅の光束となる。コリメート後の光束の幅は、ラインジェネレータによって生成されるラインの幅である。ここで、第1レンズ403は、シリンダーレンズであるので、FA方向にコリメートは行なわれない。第1レンズ403によって、SA方向にコリメートされた光は、第2レンズ405及び第3レンズ407によって、FA方向に拡散されラインが生成される。
表15は、第5の実施例によるラインジェネレータの光学系のデータを示す表である。

Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第2面(第1レンズの物体側の面)は以下の式で表せる。
Figure 0004599514
表16は、第2面を表す式の係数及び定数を示す表である。

Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第3面(第1レンズの像側の面)は以下の式で表せる。第3面は、いわゆる自由曲面である。本実施例では、x軸方向及びy軸方向に軸対称な形状であり、y軸方向のレンズパワーがx軸方向のレンズパワーより大きく、また、y軸方向のレンズパワーがレンズ中心付近と外周部で異なるように自由曲面を定めている。
Figure 0004599514
表17は、第3面を表す式の係数及び定数を示す表である。

Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第2レンズの光学面(物体側の第4面及び像側の第5面)は以下の式で表せる。
Figure 0004599514
ここで、α2iは補正係数である。
表18は、第4面および第5面を表す式の係数及び定数を示す表である。

Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第3レンズの光学面(物体側の第6面及び像側の第7面)は以下の式で表せる。
Figure 0004599514
ここで、kは2次曲線の形状を定める定数、cは中心曲率、Rは中心曲率半径である。
表19は、第6面および第7面を表す式の係数及び定数を示す表である。

Figure 0004599514
図15は、第5の実施例によるラインジェネレータの性能を示す図である。図15の横軸は、投影面におけるライン上の点の、光軸とラインとの交点からの距離を示す。縦軸は、その点における光の相対的な強度を示す。ここで、投影面は、光源からの距離が、100mmであり、光軸に垂直な面である。投影面におけるラインの輝度分布は、ほぼ一様である。
本実施例においては、ビームをFA方向に拡散する機能を2個のレンズ(第2レンズ405及び第3レンズ407)に分担させている。すなわち、第2レンズ405及び第3レンズ407が第2レンズ群を構成している。この結果、第2レンズ群の個々のレンズの設計及び製造が容易になる。
第6の実施例
図16及び図17は、本発明の第6の実施例によるラインジェネレータの構成を示す図である。ラインジェネレータは、半導体レーザ光源501、シリンダーレンズである第1レンズ503及び像側面(第5面)に自由曲面を有する第2レンズ505を含む。図16は、半導体レーザ光源501の鉛直方向(Fast-Axis FA)の断面を示す図であり、図17は、半導体レーザ光源501の水平方向(Slow-Axis SA)の断面を示す図である。図17において、半導体レーザ501から出射された光は、第1レンズ503によって、SA方向にコリメートされる。ここで、第1レンズ503は、シリンダーレンズであるので、FA方向にコリメートは行なわれない。第1レンズ503によって、SA方向にコリメートされた光は、第2レンズ505によって、FA方向に拡散され、SA方向に集光されてラインが生成される。
表20は、第6の実施例によるラインジェネレータの光学系のデータを示す表である。

Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第2面(第1レンズの物体側の面)及び第3面(第1レンズの像側の面)は以下の式で表せる。
Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第4面(第2レンズの物体側の面)は以下の式で表せる。
Figure 0004599514
表21は、第2乃至第4面を表す式の定数を示す表である。

Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第5面(第2レンズの像側の面)は以下の式で表せる。第5面は、いわゆる自由曲面である。
Figure 0004599514
表22は、第5面を表す式の係数及び定数を示す表である。

Figure 0004599514
本実施例のように、第2レンズ(群)に自由曲面を備える実施形態によれば、焦点距離や線幅が共通で、ライン長手方向の強度分布が異なるラインジェネレータを作製する場合に、第1レンズ(群)を同一仕様とし、第2レンズの自由曲面によってライン上の光の強度分布に応じて集光特性を補正することで、最適な集光性能を得ることができる。
第7の実施例
図18及び図19は、本発明の第7の実施例によるラインジェネレータの構成を示す図である。ラインジェネレータは、半導体レーザ光源601、シリンダーレンズである第1レンズ603及びシリンダーレンズである第2レンズ605を含む。さらに本実施例のラインジェネレータは、第1レンズ603及び第2レンズ605の間に、物体側の面(第4面)に自由曲面を有する位相板607を備える。図18は、半導体レーザ光源601の鉛直方向(Fast-Axis FA)の断面を示す図であり、図19は、半導体レーザ光源601の水平方向(Slow-Axis SA)の断面を示す図である。図19において、半導体レーザ601から出射された光は、第1レンズ603によって、SA方向にコリメートされる。ここで、第1レンズ603は、シリンダーレンズであるので、FA方向にコリメートは行なわれない。第1レンズ603によって、SA方向にコリメートされた光は、位相板607によって調整され、第2レンズ605によって、FA方向に拡散され、SA方向に集光されてラインが生成される。
表23は、第7の実施例によるラインジェネレータの光学系のデータを示す表である。

Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第2面(第1レンズの物体側の面)及び第3面(第1レンズの像側の面)は以下の式で表せる。
Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第6面(第2レンズの物体側の面)及び第7面(第2レンズの像側の面)は以下の式で表せる。
Figure 0004599514
表24は、第2面、第3面、第6面及び第7面を表す式の定数を示す表である。

Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第4面(位相板の像側の面)は以下の式で表せる。第4面は、いわゆる自由曲面である。
Figure 0004599514
表25は、第4面を表す式の係数を示す表である。なお、第5面は平面である。

Figure 0004599514
本実施例のように、自由曲面を有する位相板を備えた実施形態によれば、作製難易度の高い自由曲面を有する光学素子を、レンズと独立して作製することができるので、作製難易度が低減される。
第8の実施例
図20及び図21は、本発明の第8の実施例によるラインジェネレータの構成を示す図である。ラインジェネレータは、半導体レーザ光源701、像側(第3面)に自由曲面を有する第1レンズ703、シリンダーレンズである第2レンズ705及びシリンダーレンズである第3レンズ707を含む。図20は、半導体レーザ光源701の鉛直方向(Fast-Axis FA)の断面を示す図であり、図21は、半導体レーザ光源701の水平方向(Slow-Axis SA)の断面を示す図である。図21において、半導体レーザ701から出射された光は、第1レンズ703及び第2レンズ705によって、SA方向にコリメートされる。このように、第1レンズ703及び第2レンズ705は、第1レンズ群を構成する。第1レンズ群によって、SA方向にコリメートされた光は、第3レンズ707によって、FA方向に拡散されてラインが生成される。
表26は、第8の実施例によるラインジェネレータの光学系のデータを示す表である。

Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第2面(第1レンズの物体側の面)、第4面(第2レンズの物体側の面)及び第5面(第2レンズの像側の面)は以下の式で表せる。
Figure 0004599514
表27は、第2面、第4面及び第5面を表す式の係数を示す表である。

Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第3面(第1レンズの像側の面)は以下の式で表せる。第3面は、いわゆる自由曲面である。

Figure 0004599514
表28は、第3面を表す式の係数を示す表である。

Figure 0004599514
FA方向をx軸方向、SA方向をy軸方向として、第6面(第3レンズの物体側の面)及び第7面(第3レンズの像側の面)は以下の式で表せる。
Figure 0004599514
表29は、第6面及び第7面を表す式の係数を示す表である。

Figure 0004599514
図22は、実施例8のラインジェネレータによって、光源面から5メートル離れた平面を照射した場合の光の強度分布を示す図である。図22のグラフの横軸は、光源から照射面に下した垂線の足から照射位置までの距離を示し、縦軸は、任意単位の光の強度を示す。
図23は、実施例8のラインジェネレータ500と照射面との関係を示す図である。
本実施例のラインジェネレータによれば、第1レンズ群の第1レンズ703の形状によって集光性を向上させ、第2レンズ群(第3レンズ707)によってラインの長手方向の光の強度を制御することができる。本実施例においては、ラインの中心部(上記の垂線の足)の光の強度を高め、ラインの長さを確保するために、中心部から離れるにしたがって、強度を緩やかに変化させている。
ここで、自由曲面の利点について一般的に説明する。
図24は、ラインジェネレータと照射面との一般的な関係を示す図である。図24の点Aは、ラインジェネレータの光源から照射面に下した垂線の足の位置である。点Bは、点Aから離れたライン上の点である。光源から点Aに至る光線の光路長は、光源から点Bに至る光線の光路長よりも短い。このように光源からの出射角度によって照射面のライン上に至る点の光路長が異なるため、ライン全体を高精度にコリメートまたは集光するのは困難である。そこで、自由曲面を使用して焦点位置調整を行うことにより、平面または曲面である照射面上のラインの任意の点において、高精度に集光することが可能となる。
上記の実施例において、光源は半導体レーザを使用した。光源として、発光ダイオードまたは光ファイバを経由した光を使用してもよい。
101,201,301,401,501,601,701・・・・半導体レーザ光源
103,203,303,403,503,603,703・・・・第1レンズ
105,205,305,405,505,605,705・・・・第2レンズ
407,707・・・・第3レンズ

Claims (7)

  1. 光源と、第1レンズ群と、第2レンズ群とを、含むラインジェネレータであって、前記光源から、第1レンズ群及び第2レンズ群の面にともに垂直に入射する光束の位置を光軸とし、第1レンズ群は、前記光源からの光束が、前記光軸に垂直な面内の第1の方向にコリメートを行なわずに、前記光軸に垂直な面内の第1の方向に直交する第2の方向にのみコリメートまたは集光して、ラインの幅を定めるように構成され、第2レンズ群は、第1レンズ群を通過した光束が、ラインを生成するように構成されたラインジェネレータ。
  2. 第1レンズ群の、前記光軸方向の位置を調整することによって、ラインの長手方向の強度分布を維持したまま、ラインの像面の位置を調整できるように構成された請求項1に記載のラインジェネレータ。
  3. 第2レンズ群の、前記光軸方向の位置を調整することによって、ラインの長手方向の強度分布を調整できるように構成された請求項1または2に記載のラインジェネレータ。
  4. 前記光源が半導体レーザであり、半導体レーザの鉛直方向(Fast-Axis FA)を第2の方向、前記半導体レーザの水平方向(Slow-Axis SA)を第1の方向とした請求項1から3のいずれかに記載のラインジェネレータ。
  5. 前記光源が半導体レーザであり、半導体レーザの鉛直方向(Fast-Axis FA)を第1の方向、前記半導体レーザの水平方向(Slow-Axis SA)を第2の方向とした請求項1から3のいずれかに記載のラインジェネレータ。
  6. 第1レンズ群及び第2レンズ群の少なくとも一面が、第1の方向及び第2の方向に軸対象な形状であり、中心部と外周部で第1の方向の焦点距離が異なる自由曲面を有する請求項1から5のいずれかに記載のラインジェネレータ。
  7. 少なくとも一つの自由曲面を有する位相板をさらに備えた請求項1から6のいずれかに記載のラインジェネレータ。
JP2010117426A 2009-05-28 2010-05-21 ラインジェネレータ Active JP4599514B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010117426A JP4599514B2 (ja) 2009-05-28 2010-05-21 ラインジェネレータ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US18182209P 2009-05-28 2009-05-28
PCT/JP2009/004563 WO2010137082A1 (ja) 2009-05-28 2009-09-14 ラインジェネレータ
JP2010117426A JP4599514B2 (ja) 2009-05-28 2010-05-21 ラインジェネレータ

Publications (2)

Publication Number Publication Date
JP2010278437A JP2010278437A (ja) 2010-12-09
JP4599514B2 true JP4599514B2 (ja) 2010-12-15

Family

ID=43425067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010117426A Active JP4599514B2 (ja) 2009-05-28 2010-05-21 ラインジェネレータ

Country Status (1)

Country Link
JP (1) JP4599514B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113950637A (zh) * 2019-08-06 2022-01-18 纳卢克斯株式会社 线发生器用光学系统及线发生器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005152988A (ja) * 2003-11-28 2005-06-16 Matsushita Electric Ind Co Ltd レーザ加工装置
JP2007232696A (ja) * 2006-03-03 2007-09-13 Sts Kk 墨出用のレーザー照射装置
JP2009085690A (ja) * 2007-09-28 2009-04-23 Ayase:Kk レーザラインジェネレータ及びレーザラインジェネレータモジュール
JP2009097987A (ja) * 2007-10-17 2009-05-07 Audio Technica Corp 光源ユニットおよびレーザー墨出し器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005152988A (ja) * 2003-11-28 2005-06-16 Matsushita Electric Ind Co Ltd レーザ加工装置
JP2007232696A (ja) * 2006-03-03 2007-09-13 Sts Kk 墨出用のレーザー照射装置
JP2009085690A (ja) * 2007-09-28 2009-04-23 Ayase:Kk レーザラインジェネレータ及びレーザラインジェネレータモジュール
JP2009097987A (ja) * 2007-10-17 2009-05-07 Audio Technica Corp 光源ユニットおよびレーザー墨出し器

Also Published As

Publication number Publication date
JP2010278437A (ja) 2010-12-09

Similar Documents

Publication Publication Date Title
WO2010137082A1 (ja) ラインジェネレータ
US9541721B2 (en) Laser device
JP6393466B2 (ja) 発光装置
JP6165366B1 (ja) 平行光発生装置
US10025108B2 (en) Device for homogenizing laser radiation
KR102439748B1 (ko) 광학 소자 및 광학 시스템
US10795250B2 (en) Lighting apparatus and lighting tool for vehicle
US7580601B2 (en) Anamorphic aspherical beam focusing lens
JP2013145344A (ja) レーザ光整形用光学部品の設計方法、レーザ光整形用光学部品の製造方法、及び、レーザ光整形用光学系
JP4599514B2 (ja) ラインジェネレータ
JP7253612B2 (ja) 光線場をコリメートするための装置
US6400745B1 (en) Laser radiating optical system
JP2005157358A (ja) 特に高出力ダイオード・レーザに対するビーム整形のための屈折性・回折性ハイブリッド型レンズ
CN112673294B (zh) 复用光学系统
JP2008300095A (ja) 投光範囲を変更可能な投光光学系及びそれを備えた投光装置
TWI697162B (zh) 用於產生線狀的強度分佈的雷射輻射的裝置
US9857673B2 (en) Projector
JP6693680B2 (ja) 平行光発生装置
Matsuo et al. Thin micro lens array realizing wide and uniform illumination
EP2983033A1 (en) Laser projector for a creation of a strip of light
WO2010116862A1 (ja) コリメートレンズ
JP2021128260A (ja) 光学系装置
WO2012120566A1 (ja) レンズ、レンズ用金型及び金型加工方法
CN113950637A (zh) 线发生器用光学系统及线发生器
JPH0685399A (ja) レーザ光源装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4599514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250