JP4595487B2 - Deposition method of gas barrier silicon oxide thin film by CVD method - Google Patents

Deposition method of gas barrier silicon oxide thin film by CVD method Download PDF

Info

Publication number
JP4595487B2
JP4595487B2 JP2004309206A JP2004309206A JP4595487B2 JP 4595487 B2 JP4595487 B2 JP 4595487B2 JP 2004309206 A JP2004309206 A JP 2004309206A JP 2004309206 A JP2004309206 A JP 2004309206A JP 4595487 B2 JP4595487 B2 JP 4595487B2
Authority
JP
Japan
Prior art keywords
gas
thin film
silicon oxide
oxide thin
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004309206A
Other languages
Japanese (ja)
Other versions
JP2006118020A (en
Inventor
敏明 掛村
浩人 鹿島
功 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2004309206A priority Critical patent/JP4595487B2/en
Publication of JP2006118020A publication Critical patent/JP2006118020A/en
Application granted granted Critical
Publication of JP4595487B2 publication Critical patent/JP4595487B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、プラスチックボトル等の3次元中空容器、プラスチックカップ、プラスチックトレー、紙容器、紙カップ、紙トレー、その他中空のプラスチック成形品等の表面にCVD法(化学蒸着法)によりガスバリア性酸化珪素薄膜を形成させる成膜方法に関する。   The present invention provides a gas barrier silicon oxide thin film by CVD (chemical vapor deposition) on the surface of a three-dimensional hollow container such as a plastic bottle, a plastic cup, a plastic tray, a paper container, a paper cup, a paper tray, and other hollow plastic molded products. The present invention relates to a film forming method for forming a film.

近年、プラスチック容器等の3次元中空容器表面に薄膜を成膜し、容器のガスバリア性、水蒸気バリア性、表面の濡れ性等を向上させる試みがなされている。これらの機能性薄膜を成膜する方法の1つとしては、プラズマ助成式CVD法により、プロセスガスの化学反応を利用して容器表面に薄膜を形成させる方法がある。例えば特許文献1に示されているように、容器の外形とほぼ相似形で中空状の外部電極と、容器の外形とほぼ相似の内部電極の間に容器を設置して成膜を行う方法や、特許文献2に示されているように、外部電極と内部電極を共に容器の表面からほぼ一定の距離に配置して成膜を行う方法等である。   In recent years, attempts have been made to improve the gas barrier property, water vapor barrier property, surface wettability, and the like of a container by forming a thin film on the surface of a three-dimensional hollow container such as a plastic container. As one of the methods for forming these functional thin films, there is a method of forming a thin film on the surface of a container by using a chemical reaction of a process gas by a plasma assisted CVD method. For example, as shown in Patent Document 1, a method of forming a film by installing a container between a hollow external electrode that is substantially similar to the outer shape of the container and an internal electrode that is substantially similar to the outer shape of the container, As disclosed in Patent Document 2, a method of forming a film by arranging both the external electrode and the internal electrode at a substantially constant distance from the surface of the container is used.

このようなCVD法による酸化珪素薄膜の成膜を行う場合は、有機シリコーンガスと酸素などの酸化力を有するガスの混合ガスを原料とすることが一般的であるが、有機シリコーンガスと酸化力を有するガスの流量及びその混合比率を違えることにより、成膜される酸化珪素薄膜の性質を様々に変化させることができる。例えば、特許文献3に記載の成膜方法では、有機シリコーンガスと酸化力を有するガスの混合比が最適であれば高いバリア性の薄膜を得ることができるので、混合比が最適な混合比の範囲を少なくとも含んで変化するように有機シリコーンガスと酸化力を有するガスの供給量を変化させることにより、ガスバリア性に優れた薄膜を容易にかつ安定して得るようにしている。   When a silicon oxide thin film is formed by such a CVD method, a mixed gas of an organic silicone gas and a gas having an oxidizing power such as oxygen is generally used as a raw material. The properties of the silicon oxide thin film to be formed can be variously changed by changing the flow rate of the gas having a difference and the mixing ratio thereof. For example, in the film forming method described in Patent Document 3, a thin film having a high barrier property can be obtained if the mixing ratio of the organic silicone gas and the gas having oxidizing power is optimal. By changing the supply amount of the organic silicone gas and the gas having oxidizing power so as to change at least including the range, a thin film having excellent gas barrier properties can be obtained easily and stably.

しかし、特許文献3に記載されているような状態で有機シリコーン化合物ガスと酸化力を有するガスの混合比を変化させるだけでは、得られる薄膜のガスバリア性のレベルに限界があり、かつ成膜に要する時間も長くかかってしまうといった問題点があった。
特開平8−53117号公報 特開平8−175528号公報 特開2004−124134号公報
However, there is a limit to the level of gas barrier properties of the thin film obtained by simply changing the mixing ratio of the organic silicone compound gas and the gas having oxidizing power in the state described in Patent Document 3, and the film formation is limited. There was a problem that it took a long time.
JP-A-8-53117 JP-A-8-175528 JP 2004-124134 A

本発明は上記従来技術の問題点を解決するためになされたもので、CVD法を利用してガスバリア性に優れる酸化珪素薄膜を安定して、しかも短時間に成膜できるようにした成膜方法の提供を目的とする。   The present invention has been made to solve the above-mentioned problems of the prior art, and a film forming method capable of forming a silicon oxide thin film having excellent gas barrier properties stably and in a short time using a CVD method. The purpose is to provide.

本発明はかかる課題点を解決するものであり、請求項1記載の発明は、少なくとも有機シリコーン化合物ガスと酸化力を有するガスを用いてCVD法により容器の表面に酸化珪素薄膜を成膜する方法において、供給する有機シリコーン化合物ガスと酸化力を有するガスの流量比が良好なガスバリア性の酸化珪素薄膜を成膜し得る流量比の範囲を含みながら、少なくとも1回/秒以上の割合で繰り返し増減するように前記有機シリコーン化合物ガスの供給流量を増減させながら成膜を行うことを特徴とするCVD法によるガスバリア性酸化珪素薄膜の成膜方法である。 The present invention solves this problem, and the invention according to claim 1 is a method for forming a silicon oxide thin film on the surface of a container by a CVD method using at least an organosilicon compound gas and a gas having an oxidizing power. In this case, the flow rate ratio between the organosilicon compound gas to be supplied and the gas having oxidizing power is repeatedly increased / decreased at a rate of at least once / second while including the range of the flow rate ratio capable of forming a gas barrier silicon oxide thin film having a good flow rate. Thus, the film formation method of the gas barrier silicon oxide thin film by the CVD method is characterized in that the film formation is performed while increasing or decreasing the supply flow rate of the organosilicon compound gas.

また、請求項2記載の発明は、請求項1記載のCVD法によるガスバリア性酸化珪素薄膜の成膜方法において、有機シリコーン化合物ガスと酸化力を有するガスの流量比を良好なガスバリア性の酸化珪素薄膜の成膜し得る流量比の範囲を含みながら3回以上増減するように前記有機シリコーン化合物ガスの供給流量を増減させることを特徴とする。 According to a second aspect of the present invention, there is provided a gas barrier silicon oxide thin film formed by the CVD method according to the first aspect, wherein the flow rate ratio between the organosilicon compound gas and the gas having oxidizing power is good. The supply flow rate of the organosilicon compound gas is increased or decreased so as to increase or decrease three times or more while including the range of the flow rate ratio at which the thin film can be formed .

削除   Delete

さらにまた、請求項記載の発明は、請求項1又は2に記載のCVD法によるガスバリア性酸化珪素薄膜の成膜方法において、有機シリコーン化合物をヘキサメチルジシロキサン、酸化力を有するガスを酸素とし、これらのガスの流量比が1:10〜0.01:10
となる範囲を含みながら繰り返し増減するように前記有機シリコーン化合物ガスの供給量を増減させて成膜を行うことを特徴とする。
Furthermore, the invention described in claim 3 is the gas barrier silicon oxide thin film deposition method according to claim 1 or 2 , wherein the organosilicon compound is hexamethyldisiloxane and the gas having oxidizing power is oxygen. The flow ratio of these gases is 1:10 to 0.01: 10
The film formation is performed by increasing / decreasing the supply amount of the organosilicon compound gas so as to increase / decrease repeatedly while including the range.

本発明のCVD法によるガスバリア性酸化珪素薄膜の成膜方法によれば、ガスバリア性に優れる酸化珪素薄膜を容器表面に安定的にかつ短時間に成膜することができ、例えば酸化劣化しやすい内容物を収容するための、ガスバリア性に優れる酸化珪素薄膜を有する容器を安価に製造、提供することが可能になる。   According to the film formation method of the gas barrier silicon oxide thin film by the CVD method of the present invention, a silicon oxide thin film having excellent gas barrier properties can be stably and quickly formed on the surface of the container. A container having a silicon oxide thin film excellent in gas barrier properties for containing an object can be manufactured and provided at low cost.

以下、本発明を図面を参照にして詳細に説明する。図1は、本発明の成膜方法を実施する際に使用される成膜装置の一例を示す概略構成説明図である。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration explanatory view showing an example of a film forming apparatus used when the film forming method of the present invention is carried out.

この成膜装置は、薄膜を成膜しようとする容器1が収容できるだけの筒状のスペースを内部に持つ導電性材料製の外部電極2と、その片方の開口端に設置されている天蓋3と、もう一方の開口端に設置されていると共に、その一部に排気口4が設けてある底蓋5とが一体となって成膜チャンバーが構成されている。そして、この成膜チャンバーにはその内部を真空にするため、底蓋5の一部に設けられている排気口4を経由して真空ポンプ(図示せず)を具備している。また、表面に薄膜を成膜しようとする容器1を真空チャンバーの適正な位置に配置するための絶縁体製の容器保持部6が成膜チャンバー内に設置されている。一方、成膜チャンバー内にはその底蓋5の部分からガス導入管7が挿入されていて、その先端の原料ガス吐出口8より原料ガスが成膜チャンバー内にセットされている容器1の内部に供給されるようになっている。   This film forming apparatus includes an external electrode 2 made of a conductive material having a cylindrical space that can accommodate a container 1 in which a thin film is to be formed, and a canopy 3 installed at one open end thereof. A film forming chamber is configured by being integrated with a bottom cover 5 provided at the other opening end and provided with an exhaust port 4 at a part thereof. The film forming chamber is provided with a vacuum pump (not shown) through an exhaust port 4 provided in a part of the bottom cover 5 in order to make the inside of the film forming chamber vacuum. In addition, a container holder 6 made of an insulator is disposed in the film forming chamber in order to place the container 1 for forming a thin film on the surface at an appropriate position in the vacuum chamber. On the other hand, a gas introduction pipe 7 is inserted into the film forming chamber from the bottom lid 5 and the inside of the container 1 in which the source gas is set in the film forming chamber from the source gas discharge port 8 at the tip thereof. To be supplied.

このような構成の成膜装置を用いて容器の内表面にガスバリア性の酸化珪素薄膜を成膜する場合、まず真空ポンプを作動させ、成膜チャンバー内を一定の真空度に減圧する。次に、ガス導入管8より原料ガスをガス導入管7より供給した状態で外部電極2に高周波電力を印加し、容器1内に存在する原料ガスをプラズマ化させ、容器1の内面に酸化珪素の薄膜を形成する。 In the case of forming a gas barrier silicon oxide thin film on the inner surface of the container using the film forming apparatus having such a configuration, first, a vacuum pump is operated to depressurize the film forming chamber to a certain degree of vacuum. Next, the raw material gas from the gas introduction pipe 8 to the high-frequency power is applied to the external electrodes 2 in a state in which the fed by the gas introduction pipe 7 Rikyo, the raw material gas present in the container 1 is plasma, the inner surface of the container 1 A thin film of silicon oxide is formed.

本発明においては、少なくとも有機シリコーン化合物ガスと酸化力を有するガスの2種類のガスを用いてCVD法により容器の表面に酸化珪素薄膜を成膜する際、供給する有機シリコーン化合物ガスと酸化力を有するガスの流量比が良好なガスバリア性の酸化珪素薄膜を成膜し得る流量比の範囲を含みながら繰り返して増減するように前記ガスの供給流量を増減させながら成膜を行う。   In the present invention, when a silicon oxide thin film is formed on the surface of a container by a CVD method using at least two kinds of gases, that is, an organic silicone compound gas and an oxidizing power gas, The film formation is performed while increasing / decreasing the gas supply flow rate so as to repeatedly increase / decrease while including the range of the flow rate ratio in which the gas barrier silicon oxide thin film having a good gas flow rate ratio can be formed.

このような状態で有機シリコーン化合物ガスと酸化力を有するガスの供給量を増減しながら成膜を行うことにより、良好なガスバリア性を有する酸化珪素薄膜を成膜し得る流量比でガスを供給して成膜された部分が複数に渡り存在することになり(図2のような場合では11)、結果として得られる酸化珪素薄膜全体のガスバリア性が安定したものとなり、単に最適な混合比の範囲を含むように有機シリコーンガスと酸化力を有するガスの供給量を変化させて成膜する場合に較べて、ガスバリア性に優れる酸化珪素薄膜を安定的に得ることが可能となる。   In such a state, the film is formed while increasing / decreasing the supply amount of the organosilicon compound gas and the gas having oxidizing power, thereby supplying the gas at a flow rate ratio capable of forming a silicon oxide thin film having a good gas barrier property. As a result, the gas barrier property of the entire silicon oxide thin film becomes stable, and the optimum mixing ratio range is obtained. As compared with the case where the film is formed by changing the supply amount of the organic silicone gas and the gas having an oxidizing power so as to include, it is possible to stably obtain a silicon oxide thin film having excellent gas barrier properties.

この時、供給する有機シリコーン化合物ガスと酸化力を有するガスの流量比が良好なガスバリア性の酸化珪素薄膜の成膜がなされる流量比の範囲を含みながら繰り返して増減するように前記各ガスの供給流量を増減させる回数としては少なくとも3回以上が望ましい。3回未満では得られる酸化珪素薄膜のガスバリア性を向上させる効果が小さい。また、増減させる流量比の割合も1回/秒以上が望ましく、それ以下では成膜時間の短縮化の効果が薄い。   At this time, the flow rate ratio between the organosilicon compound gas to be supplied and the gas having an oxidizing power is repeatedly increased and decreased while including the range of the flow rate ratio in which the gas barrier silicon oxide thin film is formed. The number of times to increase or decrease the supply flow rate is preferably at least 3 times. If it is less than 3 times, the effect of improving the gas barrier property of the obtained silicon oxide thin film is small. In addition, the rate of the flow rate ratio to be increased or decreased is desirably 1 time / second or more, and if it is less than that, the effect of shortening the film formation time is small.

また、良好なガスバリア性の酸化珪素薄膜が成膜できる有機シリコーン化合物ガスと酸化力を有するガスの供給流量比は、用いる原料ガスの種類によって異なるが、例えば有機シリコーン化合物をヘキサメチルジシロキサンとし、酸化力を有するガスを酸素とした場合には、1:10〜0.01:10の範囲である。   In addition, the supply flow ratio of the organic silicone compound gas capable of forming a good gas barrier silicon oxide thin film and the gas having oxidizing power varies depending on the type of raw material gas used, for example, the organic silicone compound is hexamethyldisiloxane, When the gas having oxidizing power is oxygen, it is in the range of 1:10 to 0.01: 10.

また、有機シリコーン化合物としては、例えば1,1,3,3−テトラメチルジシロキサン、ヘキサメチルジシロキサン、ビニルトリメチルシラン、メチルトリメトキシシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン等を挙げることができる。この中では、特に1,1,3,3−テトラメチルジシロキサン、ヘキサメチルジシロキサン、オクタメチルシクロテトラシロキサンが好ましく用いられる。ただし、これらに限定されるものではなくアミノシラン、シラザン等も用いることができる。また、酸化力を有するガスとしては、例えば酸素、一酸化炭素、二酸化炭素、オゾン等を挙げることができるが、これらに限定されるものではない。   Examples of the organic silicone compound include 1,1,3,3-tetramethyldisiloxane, hexamethyldisiloxane, vinyltrimethylsilane, methyltrimethoxysilane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, and diethylsilane. Propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, octamethylcyclotetrasiloxane and the like. Of these, 1,1,3,3-tetramethyldisiloxane, hexamethyldisiloxane, and octamethylcyclotetrasiloxane are particularly preferably used. However, it is not limited to these and aminosilane, silazane, etc. can also be used. Examples of the gas having oxidizing power include, but are not limited to, oxygen, carbon monoxide, carbon dioxide, ozone, and the like.

しかし、安全性、価格及び入手の容易さの点から有機シリコーン化合物はヘキサメチルジシロキサン、酸化力を有するガスとしては酸素が好ましく、さらにこれらのガスを、良好なガスバリア性薄膜が成膜できるガスの流量比である1:10〜0.01:10の範囲を含んで少なくとも3回以上繰り返し増減するように供給して成膜を行うことが望ましい。ただし、例えば薄膜を形成させるための容器とガスバリア性薄膜との密着性を向上させるため、または容器が変形した場合でも薄膜のガスバリア性が劣化しないようにする目的で、成膜しようとする薄膜の両側に炭素リッチな酸化珪素の部分を設けることが必要な場合には、図3に示すように成膜工程の最初と最後に有機シリコーン化合物ガスの比率が大きくなるようにその流量を多くなるように調整して供給してもよい。以下、本発明の実施例を説明する。   However, from the viewpoint of safety, price, and availability, the organosilicon compound is hexamethyldisiloxane, oxygen is preferred as the gas having oxidizing power, and these gases can be used to form a good gas barrier thin film. It is desirable to perform film formation by supplying the liquid so as to increase or decrease repeatedly at least three times including the range of 1:10 to 0.01: 10. However, for example, to improve the adhesion between the container for forming the thin film and the gas barrier thin film, or to prevent the gas barrier property of the thin film from deteriorating even when the container is deformed, When it is necessary to provide carbon-rich silicon oxide portions on both sides, the flow rate should be increased so that the ratio of the organosilicon compound gas is increased at the beginning and end of the film forming process as shown in FIG. You may adjust and supply to. Examples of the present invention will be described below.

<実施例1>
図1に示すような成膜装置を用いて、容量が500mlのポリエチレンテレフタレート製容器の内表面に酸化珪素薄膜の成膜を下記のようにして行った。用いた有機シリコーン化合物ガスはヘキサメチルジシロキサンであり、また酸化力を有するガスは酸素であった。
<Example 1>
Using a film forming apparatus as shown in FIG. 1, a silicon oxide thin film was formed on the inner surface of a polyethylene terephthalate container having a capacity of 500 ml as follows. The organosilicon compound gas used was hexamethyldisiloxane, and the gas having an oxidizing power was oxygen.

成膜に当たっては、まず成膜チャンバー内を真空状態にした後、表1のプロファイルに示すように、有機シリコーンガスの流量と酸素ガスの流量初期値を10(sccm):100(sccm)とし、成膜開始から1秒後は有機シリコーンガスの流量と酸素ガスの流量を1(sccm):100(sccm)とし、それ以後は同様に1秒を経過する毎に、10:100、1:100、10:100、1:100とそれぞれのガス流量を変化させて成膜を行った。この時、印加した高周波電力は400ワットであった。 In forming the film, first, after the inside of the film forming chamber was evacuated, as shown in the profile of Table 1, the flow rate of the organic silicone gas and the initial flow rate of the oxygen gas were set to 10 (sccm): 100 (sccm), After 1 second from the start of film formation, the flow rate of the organic silicone gas and the flow rate of oxygen gas are set to 1 ( sccm): 100 (sccm), and thereafter , every time 1 second passes , 10: 100, 1: 100 Film formation was performed by changing the gas flow rates of 10: 100 and 1: 100. At this time, the applied high frequency power was 400 watts.

そして、酸化珪素薄膜が成膜された容器の酸素透過度をMOCON社製MOCON OXITRANを使用して測定した。この結果並びに成膜時の有機シリコーン化合物ガスと酸素の流量の変化を表1に示す And the oxygen permeability of the container in which the silicon oxide thin film was formed was measured using MOCON OXITRAN manufactured by MOCON. Table 1 shows the results and changes in the flow rates of the organosilicon compound gas and oxygen during film formation .

<比較例1>
有機シリコーン化合物ガスの流量と酸素の流量をそれぞれ表1に示すように2秒経過毎に変化させて成膜を行った以外は実施例1と同様の条件にして、ポリエチレンテレフタレ
ート製容器の内表面に酸化珪素薄膜の成膜を行った。酸化珪素薄膜が成膜された容器の酸素透過度と成膜時の有機シリコーンガスと酸素ガスの流量の変化を表1に示す
<Comparative Example 1>
The inner surface of the polyethylene terephthalate container was subjected to the same conditions as in Example 1 except that the film was formed by changing the flow rate of the organosilicon compound gas and the flow rate of oxygen every 2 seconds as shown in Table 1. A silicon oxide thin film was formed. Table 1 shows the oxygen permeability of the container in which the silicon oxide thin film was formed and the changes in the flow rates of the organic silicone gas and oxygen gas during the film formation .

<実施例2>
有機シリコーン化合物ガスの流量と酸素の流量をそれぞれ表1に示すように0.5秒経過毎に変化させて成膜を行った以外は実施例1と同様の条件にして、ポリエチレンテレフタレート製容器の内表面に酸化珪素薄膜の成膜を行った。酸化珪素薄膜が成膜された容器の酸素透過度と成膜時の有機シリコーンガスと酸素ガスの流量の変化を表1に示す
<Example 2>
As shown in Table 1, the conditions of the polyethylene terephthalate container were changed under the same conditions as in Example 1 except that the film was formed by changing the flow rate of the organosilicon compound gas and the flow rate of oxygen every 0.5 seconds as shown in Table 1. A silicon oxide thin film was formed on the inner surface. Table 1 shows the oxygen permeability of the container in which the silicon oxide thin film was formed and the changes in the flow rates of the organic silicone gas and oxygen gas during the film formation .

<実施例3>
有機シリコーン化合物ガスの流量と酸素の流量をそれぞれ表1に示すように1秒経過毎に変化させて成膜を行った以外は実施例1と同様の条件にして、ポリエチレンテレフタレート製容器の内表面に酸化珪素薄膜の成膜を行った。酸化珪素薄膜が成膜された容器の酸素透過度と成膜時の有機シリコーンガスと酸素ガスの流量の変化を表1に示す
<Example 3>
The inner surface of the polyethylene terephthalate container was subjected to the same conditions as in Example 1 except that the film was formed by changing the flow rate of the organosilicon compound gas and the flow rate of oxygen every 1 second as shown in Table 1. A silicon oxide thin film was formed. Table 1 shows the oxygen permeability of the container in which the silicon oxide thin film was formed and the changes in the flow rates of the organic silicone gas and oxygen gas during the film formation .

<実施例4>
有機シリコーン化合物ガスの流量と酸素の流量をそれぞれ表1に示すように1秒経過毎に変化させて成膜を行った以外は実施例1と同様の条件にして、ポリエチレンテレフタレート製容器の内表面に酸化珪素薄膜の成膜を行った。酸化珪素薄膜が成膜された容器の酸素透過度と成膜時の有機シリコーンガスと酸素ガスの流量の変化を表1に示す
<Example 4>
The inner surface of the polyethylene terephthalate container was subjected to the same conditions as in Example 1 except that the film was formed by changing the flow rate of the organosilicon compound gas and the flow rate of oxygen every 1 second as shown in Table 1. A silicon oxide thin film was formed. Table 1 shows the oxygen permeability of the container in which the silicon oxide thin film was formed and the changes in the flow rates of the organic silicone gas and oxygen gas during the film formation .

<実施例5>
有機シリコーン化合物ガスの流量と酸素の流量をそれぞれ表1に示すように1秒経過毎に変化させて成膜を行った以外は実施例1と同様の条件にして、ポリエチレンテレフタレート製容器の内表面に酸化珪素薄膜の成膜を行った。酸化珪素薄膜が成膜された容器の酸素透過度と成膜時の有機シリコーンガスと酸素ガスの流量の変化を表1に示す
<Example 5>
The inner surface of the polyethylene terephthalate container was subjected to the same conditions as in Example 1 except that the film was formed by changing the flow rate of the organosilicon compound gas and the flow rate of oxygen every 1 second as shown in Table 1. A silicon oxide thin film was formed. Table 1 shows the oxygen permeability of the container in which the silicon oxide thin film was formed and the changes in the flow rates of the organic silicone gas and oxygen gas during the film formation .

<比較例2>
有機シリコーン化合物ガスの流量と酸素の流量をそれぞれ表1に示すように1秒経過毎に変化させ、3秒間をかけて成膜を行った以外は実施例1と同様の条件にして、ポリエチレンテレフタレート製容器の内表面に酸化珪素薄膜の成膜を行った。酸化珪素薄膜が成膜された容器の酸素透過度と成膜時の有機シリコーンガスと酸素ガスの流量の変化を表1に示す
<Comparative Example 2>
Polyethylene terephthalate under the same conditions as in Example 1 except that the flow rate of the organosilicon compound gas and the flow rate of oxygen were changed every 1 second as shown in Table 1 and the film was formed over 3 seconds. A silicon oxide thin film was formed on the inner surface of the container. Table 1 shows the oxygen permeability of the container in which the silicon oxide thin film was formed and the changes in the flow rates of the organic silicone gas and oxygen gas during the film formation .

<比較例3>
有機シリコーン化合物ガスの流量と酸素の流量をそれぞれ表1に示すように1秒経過毎に変化させて成膜を行った以外は実施例1と同様の条件にして、ポリエチレンテレフタレート製容器の内表面に酸化珪素薄膜の成膜を行った。酸化珪素薄膜が成膜された容器の酸素透過度と成膜時の有機シリコーンガスと酸素ガスの流量の変化を表1に示す
<Comparative Example 3>
The inner surface of the polyethylene terephthalate container was subjected to the same conditions as in Example 1 except that the film was formed by changing the flow rate of the organosilicon compound gas and the flow rate of oxygen every 1 second as shown in Table 1. A silicon oxide thin film was formed. Table 1 shows the oxygen permeability of the container in which the silicon oxide thin film was formed and the changes in the flow rates of the organic silicone gas and oxygen gas during the film formation .

<比較例4>
有機シリコーン化合物ガスの流量と酸素の流量をそれぞれ表1に示すように1秒経過毎に変化させて成膜を行った以外は実施例1と同様の条件にして、ポリエチレンテレフタレート製容器の内表面に酸化珪素薄膜の成膜を行った。酸化珪素薄膜が成膜された容器の酸素透過度と成膜時の有機シリコーンガスと酸素ガスの流量の変化を表1に示す
<Comparative Example 4>
The inner surface of the polyethylene terephthalate container was subjected to the same conditions as in Example 1 except that the film was formed by changing the flow rate of the organosilicon compound gas and the flow rate of oxygen every 1 second as shown in Table 1. A silicon oxide thin film was formed. Table 1 shows the oxygen permeability of the container in which the silicon oxide thin film was formed and the changes in the flow rates of the organic silicone gas and oxygen gas during the film formation .

<比較例5>
図1に示すような成膜装置を用いて、容量が500mlのポリエチレンテレフタレート製容器の内表面に酸化珪素薄膜の成膜を下記のようにして行った。用いた有機シリコーン化合物ガスはヘキサメチルジシロキサンであり、また酸化力を有するガスは酸素であった
<Comparative Example 5>
Using a film forming apparatus as shown in FIG. 1, a silicon oxide thin film was formed on the inner surface of a polyethylene terephthalate container having a capacity of 500 ml as follows. The organosilicon compound gas used was hexamethyldisiloxane, and the gas having an oxidizing power was oxygen.

成膜に当たっては、まず成膜チャンバー内を真空状態にした後、表1のプロファイルに示すように、成膜開始時の有機シリコーン化合物ガスの流量と酸素ガスの流量を、初期値がそれぞれ10(sccm):100(sccm)であったものを5秒後には1(sccm):100(sccm)となるようにした以外は実施例1と同様の条件にして、比較のための実施例10にかかる成膜を行った In the film formation, first, after the inside of the film formation chamber was evacuated, as shown in the profile of Table 1, the initial flow rate of the organosilicon compound gas flow rate and the oxygen gas flow rate at the start of film formation was 10 ( sccm): 100 (sccm) was changed to 1 (sccm): 100 (sccm) after 5 seconds under the same conditions as in Example 1 except that it was changed to Example 10 for comparison. Such film formation was performed .

<比較例6>
成膜開始時の有機シリコーン化合物ガスの流量と酸素ガスの流量を、初期値がそれぞれ5(sccm):100(sccm)であったものを5秒後には1(sccm):100(sccm)となるようにした以外は実施例1と同様の条件にして、比較のための実施例11に係る成膜を行った
<Comparative Example 6>
The flow rate of the organic silicone compound gas and the flow rate of the oxygen gas at the start of film formation was 1 (sccm): 100 (sccm) after 5 seconds when the initial values were 5 (sccm): 100 (sccm), respectively. Except for the above, film formation according to Example 11 for comparison was performed under the same conditions as in Example 1 .

<比較例7>
成膜開始時の有機シリコーン化合物ガスの流量と酸素ガスの流量を1秒経過時までは初期値と同じとし、それから4秒後には1(sccm):100(sccm)となるようにした以外は実施例1と同様の条件にして、比較のための実施例12に係る成膜を行った。
<Comparative Example 7>
Except that the flow rate of the organic silicone compound gas and the flow rate of oxygen gas at the start of film formation are the same as the initial values until 1 second elapses, and then 1 (sccm): 100 (sccm) after 4 seconds. Under the same conditions as in Example 1, film formation according to Example 12 for comparison was performed.

Figure 0004595487
Figure 0004595487

本発明のDVD法によるガスバリア性酸化珪素薄膜の成膜方法に使用される成膜装置における構成の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of the structure in the film-forming apparatus used for the film-forming method of the gas-barrier silicon oxide thin film by DVD method of this invention. 本発明のDVD法によるガスバリア性酸化珪素薄膜の成膜方法において成される、有機シリコーン化合物ガスと酸化力を有するガスの流量比の変化の例を示す説明図である。It is explanatory drawing which shows the example of the change of the flow rate ratio of the organosilicon compound gas and the gas which has oxidizing power comprised in the film-forming method of the gas-barrier silicon oxide thin film by DVD method of this invention. 本発明のDVD法によるガスバリア性酸化珪素薄膜の成膜方法において成される、有機シリコーン化合物ガスと酸化力を有するガスの流量比の他の変化の例を示す説明図である。It is explanatory drawing which shows the example of the other change of the flow rate ratio of the organosilicon compound gas and the gas which has oxidizing power comprised in the film-forming method of the gas-barrier silicon oxide thin film by DVD method of this invention.

1・・・容器
2・・・外部電極
3・・・天蓋
4・・・排気口
5・・・底蓋
6・・・容器保持部
7・・・ガス導入管
8・・・ガス吐出口
DESCRIPTION OF SYMBOLS 1 ... Container 2 ... External electrode 3 ... Canopy 4 ... Exhaust port 5 ... Bottom cover 6 ... Container holding part 7 ... Gas introduction pipe 8 ... Gas discharge port

Claims (3)

少なくとも有機シリコーン化合物ガスと酸化力を有するガスを用いてCVD法により容器の表面に酸化珪素薄膜を成膜する方法において、供給する有機シリコーン化合物ガスと酸化力を有するガスの流量比が良好なガスバリア性の酸化珪素薄膜を成膜し得る流量比の範囲を含みながら、少なくとも1回/秒以上の割合で繰り返し増減するように前記有機シリコーン化合物ガスの供給流量を増減させながら成膜を行うことを特徴とするCVD法によるガスバリア性酸化珪素薄膜の成膜方法。 A gas barrier having a good flow rate ratio between an organosilicon compound gas to be supplied and a gas having an oxidizing power in a method of forming a silicon oxide thin film on the surface of a container by a CVD method using at least an organosilicon compound gas and a gas having an oxidizing power. Forming the film while increasing / decreasing the supply flow rate of the organosilicon compound gas so as to repeatedly increase / decrease at a rate of at least once / second while including the range of the flow rate ratio capable of forming a conductive silicon oxide thin film. A film forming method of a gas barrier silicon oxide thin film by a CVD method. 有機シリコーン化合物ガスと酸化力を有するガスの流量比を良好なガスバリア性の酸化珪素薄膜の成膜し得る流量比の範囲を含みながら3回以上増減するように前記有機シリコーン化合物ガスの供給流量を増減させることを特徴とする請求項1記載のCVD法によるガスバリア性酸化珪素薄膜の成膜方法。 The supply flow rate of the organosilicon compound gas is increased or decreased three times or more while including the range of the flow rate ratio in which the silicon oxide thin film having a good gas barrier property can be formed. 2. The method for forming a gas barrier silicon oxide thin film by CVD according to claim 1, wherein the number is increased or decreased. 有機シリコーン化合物をヘキサメチルジシロキサン、酸化力を有するガスを酸素とし、これらのガスの流量比が1:10〜0.01:10となる範囲を含みながら繰り返し増減するように前記有機シリコーン化合物ガスの供給量を増減させて成膜を行うことを特徴とする請求項1又は2記載のいずれかに記載のCVD法によるガスバリア性酸化珪素薄膜の成膜方法。 The organic silicone compound gas is hexamethyldisiloxane, the gas having oxidizing power is oxygen, and the organic silicone compound gas is repeatedly increased or decreased while including a range in which the flow ratio of these gases is 1:10 to 0.01: 10. 3. The method for forming a gas barrier silicon oxide thin film by a CVD method according to claim 1, wherein the film is formed by increasing / decreasing the amount of supply.
JP2004309206A 2004-10-25 2004-10-25 Deposition method of gas barrier silicon oxide thin film by CVD method Expired - Fee Related JP4595487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309206A JP4595487B2 (en) 2004-10-25 2004-10-25 Deposition method of gas barrier silicon oxide thin film by CVD method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309206A JP4595487B2 (en) 2004-10-25 2004-10-25 Deposition method of gas barrier silicon oxide thin film by CVD method

Publications (2)

Publication Number Publication Date
JP2006118020A JP2006118020A (en) 2006-05-11
JP4595487B2 true JP4595487B2 (en) 2010-12-08

Family

ID=36536169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309206A Expired - Fee Related JP4595487B2 (en) 2004-10-25 2004-10-25 Deposition method of gas barrier silicon oxide thin film by CVD method

Country Status (1)

Country Link
JP (1) JP4595487B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5233082B2 (en) * 2006-05-17 2013-07-10 東洋製罐グループホールディングス株式会社 Plasma processing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000255579A (en) * 1999-03-10 2000-09-19 Toppan Printing Co Ltd Plastic container and manufacture thereof
JP2004124134A (en) * 2002-09-30 2004-04-22 Toppan Printing Co Ltd Thin film deposition method and thin film deposition system
JP2004300479A (en) * 2003-03-28 2004-10-28 Toyo Seikan Kaisha Ltd Method for depositing chemical vapor-deposited film by plasma cvd method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000255579A (en) * 1999-03-10 2000-09-19 Toppan Printing Co Ltd Plastic container and manufacture thereof
JP2004124134A (en) * 2002-09-30 2004-04-22 Toppan Printing Co Ltd Thin film deposition method and thin film deposition system
JP2004300479A (en) * 2003-03-28 2004-10-28 Toyo Seikan Kaisha Ltd Method for depositing chemical vapor-deposited film by plasma cvd method

Also Published As

Publication number Publication date
JP2006118020A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
JP4747605B2 (en) Deposition film by plasma CVD method
EP1852522B1 (en) Vapor deposited film by plasma cvd method
JP5894303B2 (en) Gas barrier plastic molded body and method for producing the same
US20040149225A1 (en) Process and apparatus for depositing plasma coating onto a container
JP5695673B2 (en) Method for producing gas barrier plastic molding
JP4566719B2 (en) Carbon film coated plastic container manufacturing method, plasma CVD film forming apparatus and plastic container
JP2005089859A (en) Chemical vapor deposition film formed by plasma cvd process
JP4372833B1 (en) Method for producing gas barrier thin film coated plastic container
JP4854983B2 (en) Plasma CVD film forming apparatus and method for manufacturing plastic container having gas barrier property
JP4664658B2 (en) Plasma CVD film forming apparatus and method for manufacturing plastic container having gas barrier property
JP5273760B2 (en) Plastic container
JP4595487B2 (en) Deposition method of gas barrier silicon oxide thin film by CVD method
JP2006307346A (en) Thin-film-forming method and thin-film-forming apparatus
JP4722667B2 (en) Method for suppressing plasma generation outside reaction chamber, method for manufacturing gas barrier plastic container, and apparatus for manufacturing the same
JP5566334B2 (en) Gas barrier plastic molded body and method for producing the same
JP6888455B2 (en) Manufacturing method of gas barrier plastic container
JP4442182B2 (en) Method for forming metal oxide film
JP4794800B2 (en) Thin film deposition method and thin film deposition apparatus
JP2005097678A (en) Chemical-vapor-deposited film by plasma cvd method
JP4595484B2 (en) Film forming apparatus and film forming method for silicon oxide thin film by CVD method
JP4826042B2 (en) Film forming apparatus and film forming method for cup-shaped container
JP2003095273A (en) Plastic container
JP2006299332A (en) Plasma cvd film deposition apparatus, and method of manufacturing plastic container having barrier property
JP2009096475A (en) Method for manufacturing plastic container with mouth coated with ultrathin carbon film
JP2005015872A (en) Apparatus and method for forming film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Ref document number: 4595487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees