JP4854983B2 - Plasma CVD film forming apparatus and method for manufacturing plastic container having gas barrier property - Google Patents

Plasma CVD film forming apparatus and method for manufacturing plastic container having gas barrier property Download PDF

Info

Publication number
JP4854983B2
JP4854983B2 JP2005121585A JP2005121585A JP4854983B2 JP 4854983 B2 JP4854983 B2 JP 4854983B2 JP 2005121585 A JP2005121585 A JP 2005121585A JP 2005121585 A JP2005121585 A JP 2005121585A JP 4854983 B2 JP4854983 B2 JP 4854983B2
Authority
JP
Japan
Prior art keywords
ribbon
plastic container
coil
container
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005121585A
Other languages
Japanese (ja)
Other versions
JP2006299331A (en
Inventor
圭秀 竹本
鹿毛  剛
晶久 老川
重和 多田
雄一 坂本
正樹 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Youtec Co Ltd
Mitsubishi Corp Plastics Ltd
Original Assignee
Youtec Co Ltd
Mitsubishi Corp Plastics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Youtec Co Ltd, Mitsubishi Corp Plastics Ltd filed Critical Youtec Co Ltd
Priority to JP2005121585A priority Critical patent/JP4854983B2/en
Publication of JP2006299331A publication Critical patent/JP2006299331A/en
Application granted granted Critical
Publication of JP4854983B2 publication Critical patent/JP4854983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、ガスバリア膜をプラスチック容器の内壁面に成膜するプラズマCVD(chemical vapor deposition)成膜装置とガスバリア性を有するプラスチック容器の製造方法に関する。   The present invention relates to a plasma CVD (chemical vapor deposition) film forming apparatus for forming a gas barrier film on an inner wall surface of a plastic container and a method for producing a plastic container having gas barrier properties.

プラスチック容器は、臭いが収着しやすく、またガスバリア性が壜や缶と比較して劣るため、ビールや発泡酒等の炭酸飲料には用いることが難しかった。そこで、プラスチック容器における収着性やガスバリア性の問題点を解決すべく、硬質炭素膜(ダイヤモンドライクカーボン(DLC)等)をコーティングする方法、装置が開示されている。そのうち、例えば対象とする容器の外形とほぼ相似形の内部空間を有する外部電極と、容器の内側に容器の口部から挿入され、原料ガス導入管を兼ねた内部電極を用いて、容器の内壁面に硬質炭素膜をコーティングする装置が開示されている(例えば特許文献1又は2を参照。)。このような装置では、容器内に原料ガスとしてアセチレンガスを供給した状態で、外部電極に高周波電圧を印加する。このとき、原料ガスが両電極間に発生する高周波由来の電力によりプラズマ化し、発生したプラズマ中のイオンは外部電極の高周波由来の電位差(自己バイアス)に誘引され容器内壁に衝突し、膜が形成される。   The plastic container easily absorbs odors and has a gas barrier property that is inferior to that of bottles and cans, so it has been difficult to use it for carbonated beverages such as beer and sparkling liquor. Accordingly, a method and apparatus for coating a hard carbon film (such as diamond-like carbon (DLC)) have been disclosed in order to solve the problems of sorption and gas barrier properties in plastic containers. Among them, for example, an external electrode having an internal space that is almost similar to the outer shape of the target container, and an internal electrode that is inserted into the inside of the container from the mouth of the container and also serves as a source gas introduction pipe, An apparatus for coating a wall surface with a hard carbon film is disclosed (for example, see Patent Document 1 or 2). In such an apparatus, a high frequency voltage is applied to the external electrode in a state where acetylene gas is supplied as a source gas into the container. At this time, the source gas is turned into plasma by the high-frequency power generated between both electrodes, and the ions in the generated plasma are attracted by the high-frequency potential difference (self-bias) of the external electrode and collide with the inner wall of the container to form a film. Is done.

また、誘導結合型プラズマを用いて、プラスチック容器の表面にDLC薄膜を成膜させる装置の技術もある(例えば特許文献3を参照。)。一般に誘導結合型プラズマを用いると、そのプラズマ密度は、容量結合型のプラズマ密度と比較して1桁以上高いことから薄膜の堆積速度が向上し成膜時間の短縮が可能となる利点がある。   There is also a technique of an apparatus for forming a DLC thin film on the surface of a plastic container using inductively coupled plasma (see, for example, Patent Document 3). In general, when inductively coupled plasma is used, the plasma density is higher by one digit or more than the capacitively coupled plasma density, so that there is an advantage that the deposition rate of the thin film is improved and the film formation time can be shortened.

さらに誘導結合型プラズマを用いたプラズマCVD成膜装置において、構造物の内面に均一に成膜することを目的とした技術もある(例えば特許文献4を参照。)。   Further, in a plasma CVD film forming apparatus using inductively coupled plasma, there is a technique for uniformly forming a film on the inner surface of a structure (see, for example, Patent Document 4).

特許第2788412号公報Japanese Patent No. 2788412 特許第3072269号公報Japanese Patent No. 3072269 WO 03/016149A1号公報WO 03 / 016149A1 特開2004−127739号公報Japanese Patent Laid-Open No. 2004-127739

しかし、特許文献1又は2に記載された技術では、対象とする容器の外形とほぼ相似形の内部空間を有する外部電極を形成しなければならないため、容器の形状ごとに対応した複数の外部電極を準備しなければならず、成膜装置のコストアップにつながっていた。   However, in the technique described in Patent Document 1 or 2, since an external electrode having an internal space that is substantially similar to the outer shape of the target container must be formed, a plurality of external electrodes corresponding to each shape of the container This has led to an increase in the cost of the film forming apparatus.

一方、特許文献3や特許文献4に記載された技術では、対象とする容器の外形とほぼ相似形の内部空間を有する外部電極を形成する必要はない。すなわち、所望の容器のうち最も大きな容器を収容することができるように大きなチャンバを用いれば良い。しかし、容器は、縦長形状をしていることが多く、縦長状に均一にプラズマ発生させることは容易ではない。そこで特許文献4に記載された技術は、縦列に配置した2つの丸状コイルに並列接続で高周波を供給することで、容器の縦長方向について電子密度を均一にできるとする装置である。   On the other hand, in the techniques described in Patent Document 3 and Patent Document 4, it is not necessary to form an external electrode having an internal space substantially similar to the outer shape of the target container. That is, a large chamber may be used so that the largest container among the desired containers can be accommodated. However, the container often has a vertically long shape, and it is not easy to generate plasma uniformly in the vertically long shape. Therefore, the technique described in Patent Document 4 is an apparatus that can make the electron density uniform in the longitudinal direction of the container by supplying high-frequency waves to two circular coils arranged in a column in parallel connection.

しかし、容器は、容量が異なると高さのみならず径も異なるため、コイルと容器の壁面との位置関係は、容量によってまちまちである。誘導結合型プラズマの場合、コイルによって作られる電界は、ファラデーの電磁誘導の法則による誘導電界のみならず、コイル表面の電荷が作る準静電界(静電界に準じる電界)が含まれる。この電界はプラスチック容器の壁面に直交する準静電界の電気力線を含んでいる。特許文献4の装置を含む従来の誘導結合型プラズマを用いる装置は、丸状コイルを使用する。丸状コイルを用いると、前記準静電界の電気力線は丸状コイルの中心軸に向かって集中し、丸状コイルの中心軸を取り囲むように形成される。したがって、容器高さ方向でみると、準静電界の電気力線は平行性が悪くなり、容器高さ方向に均一な膜質の成膜がなされ難かった。   However, since containers differ not only in height but also in diameter when the capacity is different, the positional relationship between the coil and the wall surface of the container varies depending on the capacity. In the case of inductively coupled plasma, the electric field generated by the coil includes not only the electric field induced by Faraday's law of electromagnetic induction, but also the quasi-electrostatic field (electric field according to the electrostatic field) created by the charge on the coil surface. This electric field includes electric field lines of a quasi-electrostatic field perpendicular to the wall surface of the plastic container. Conventional apparatuses using inductively coupled plasma including the apparatus of Patent Document 4 use a round coil. When a round coil is used, the electric field lines of the quasi-electrostatic field are concentrated toward the central axis of the round coil and are formed so as to surround the central axis of the round coil. Accordingly, when viewed in the container height direction, the parallel lines of electric field lines of the quasi-electrostatic field are poor, and it is difficult to form a uniform film quality in the container height direction.

そこで本発明の目的は、チャンバを交換することなく異なる容量の容器に対して、容器高さ方向に対して均一な膜質の成膜をすることができるプラズマCVD成膜装置を提供することである。また、異なる容量の容器に対して、容器高さ方向に対して均一な膜質の成膜が為されたガスバリア性を有するプラスチック容器の製造方法を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a plasma CVD film forming apparatus capable of forming a film having a uniform film quality in a container height direction with respect to containers having different capacities without exchanging chambers. . Another object of the present invention is to provide a method for producing a plastic container having gas barrier properties in which uniform film quality is formed in the container height direction for containers of different capacities.

本発明者らは、丸状コイルの代わりに断面形状が矩形のリボン状コイルを真空チャンバの壁面に沿って、リボン状コイルの幅方向の面と真空チャンバの側壁面とが向かい合わせの状態で、螺旋状に巻きつけることで、リボン状コイルに高周波電力を供給した時に発生する準静電界の電気力線をリボン状コイルの幅方向の表面に対して法線方向に近づけて形成させることを見出し、本発明を完成させた。すなわち、本発明に係るプラズマCVD成膜装置は、プラスチック容器を収容する真空チャンバと、該真空チャンバの側壁に沿って螺旋状に巻きつけられた、断面形状が矩形のリボン状コイルと、前記プラスチック容器の内部に挿脱可能に配置され、該プラスチック容器へ原料ガスを供給する原料ガス供給管と、 前記真空チャンバの内部ガスを排気する排気手段と、前記リボン状コイルに高周波電力を印加する高周波供給手段と、を有し、かつ、前記リボン状コイルの幅方向の面と前記真空チャンバの側壁面とが向き合っていることを特徴とする。 The inventors of the present invention have made a ribbon-shaped coil having a rectangular cross section instead of a round coil along the wall surface of the vacuum chamber , with the ribbon-shaped coil in the width direction surface facing the side wall surface of the vacuum chamber. By wrapping in a spiral shape, the electric field lines of the quasi-electrostatic field generated when high frequency power is supplied to the ribbon coil are formed close to the normal direction with respect to the surface in the width direction of the ribbon coil. The headline and the present invention were completed. That is, a plasma CVD film forming apparatus according to the present invention includes a vacuum chamber that accommodates a plastic container, a ribbon-shaped coil having a rectangular cross section wound spirally along the side wall of the vacuum chamber, and the plastic A raw material gas supply pipe that is detachably disposed inside the container and supplies a raw material gas to the plastic container, an exhaust means for exhausting the internal gas of the vacuum chamber, and a high frequency that applies high frequency power to the ribbon coil and supplying means, possess, and wherein the width direction of the surface of the ribbon-like coil and the side wall surface of the vacuum chamber is facing.

本発明に係るプラズマCVD成膜装置では、前記リボン状コイルは、厚さに対して幅が3倍以上の長さを有することが好ましい。準静電界の電気力線の集中を防ぎ、準静電界の電気力線をリボン状コイルの表面に対してより法線方向に近づけて形成することが可能となる。   In the plasma CVD film forming apparatus according to the present invention, the ribbon-shaped coil preferably has a length that is at least three times as wide as the thickness. The concentration of the electric field lines of the quasi-electrostatic field can be prevented, and the electric field lines of the quasi-electrostatic field can be formed closer to the normal direction with respect to the surface of the ribbon coil.

本発明に係るプラズマCVD成膜装置では、前記リボン状コイルの幅の長さをW、巻き数をN、前記真空チャンバの内部空間の高さをHと表記した場合、式1で表わされる被覆率Cが10〜30%であることが好ましい。
(式1)C(%)=W×N/H×100
準静電界の電気力線の集中を防ぎ、準静電界の電気力線をリボン状コイルの表面に対してより法線方向に近づけて形成することが可能となる。
In the plasma CVD film forming apparatus according to the present invention, when the width of the ribbon-shaped coil is W, the number of turns is N, and the height of the internal space of the vacuum chamber is H, the coating represented by Formula 1 The rate C is preferably 10 to 30%.
(Formula 1) C (%) = W × N / H × 100
The concentration of the electric field lines of the quasi-electrostatic field can be prevented, and the electric field lines of the quasi-electrostatic field can be formed closer to the normal direction with respect to the surface of the ribbon coil.

本発明に係るプラズマCVD成膜装置では、前記リボン状コイルの巻き数が4巻き以上8巻き以下であることが好ましい。巻き数が多いと、リボン状コイルに掛かるインピダンスが上昇し、電圧が上がるので、異常放電が起きやすく、或いは放電しなくなる。   In the plasma CVD film-forming apparatus according to the present invention, the number of turns of the ribbon-like coil is preferably 4 or more and 8 or less. If the number of turns is large, the impedance applied to the ribbon-shaped coil increases and the voltage increases, so that abnormal discharge is likely to occur or no discharge occurs.

本発明に係るプラズマCVD成膜装置では、前記リボン状コイルを螺旋状に巻きつけた前記真空チャンバを複数配置し、前記各リボン状コイルは、前記高周波供給手段に対して並列接続されている場合が含まれる。複数のチャンバを用いて同時に複数の容器に成膜することができる。   In the plasma CVD film forming apparatus according to the present invention, a plurality of the vacuum chambers in which the ribbon-like coils are spirally wound are arranged, and each ribbon-like coil is connected in parallel to the high-frequency supply means Is included. A plurality of chambers can be used to form a film in a plurality of containers at the same time.

本発明に係るガスバリア性を有するプラスチック容器の製造方法は、真空チャンバの側壁に沿って、断面形状が矩形のリボン状コイルが、該リボン状コイルの幅方向の面と前記真空チャンバの側壁面とが向い合わせの状態で、螺旋状に巻きつけられ、該リボン状コイルの巻き軸に対してプラスチック容器の軸がほぼ平行となるように、前記プラスチック容器を前記真空チャンバの内部に収容する工程と、前記真空チャンバの内部ガスを排気する工程と、前記プラスチック容器の内部に原料ガスを供給する工程と、前記リボン状コイルに高周波電力を供給して、前記原料ガスをプラズマ化させて、前記プラスチック容器の内壁面にガスバリア薄膜を成膜させる工程と、を有することを特徴とする。 According to the method of manufacturing a plastic container having gas barrier properties according to the present invention, a ribbon-shaped coil having a rectangular cross-section is formed along a side wall of the vacuum chamber and a side surface of the vacuum chamber along the side wall of the vacuum chamber. The plastic container is housed in the vacuum chamber so that the plastic container is substantially parallel to the winding axis of the ribbon-like coil , and the ribbon container is substantially parallel to the winding axis of the ribbon-like coil. Evacuating the internal gas of the vacuum chamber, supplying a raw material gas into the plastic container, supplying high-frequency power to the ribbon-like coil to plasma the raw material gas, Forming a gas barrier thin film on the inner wall surface of the container.

本発明に係るガスバリア性を有するプラスチック容器の製造方法では、前記リボン状コイルに高周波電力を供給した時に、準静電界の電気力線を、前記プラスチック容器の軸の横断面方向に対して平行に発生させることが好ましい。 In the method for manufacturing a plastic container having gas barrier properties according to the present invention, when high-frequency power is supplied to the ribbon-shaped coil, the electric field lines of the quasi-electrostatic field are parallel to the transverse cross-sectional direction of the axis of the plastic container. Preferably it is generated.

本発明に係るガスバリア性を有するプラスチック容器の製造方法では、前記ガスバリア薄膜として、炭素膜、珪素含有炭素膜又はSiO膜を成膜することが好ましい。 In the method for producing a plastic container having gas barrier properties according to the present invention, it is preferable to form a carbon film, a silicon-containing carbon film, or a SiO x film as the gas barrier thin film.

本発明に係るプラズマCVD成膜装置は、チャンバを交換することなく異なる容量の容器に対して、容器高さ方向に対して均一な膜質の成膜をすることができる。また、本発明に係るガスバリア性を有するプラスチック容器の製造方法は、異なる容量の容器に対して、容器高さ方向に対して均一な膜質の成膜が為された容器を製造できる。   The plasma CVD film forming apparatus according to the present invention can form a film having a uniform film quality in the container height direction for containers of different capacities without exchanging the chamber. The method for producing a plastic container having gas barrier properties according to the present invention can produce a container in which a film having a uniform film quality is formed in the container height direction for containers of different capacities.

以下本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。図1〜図3を参照しながら本実施形態に係るプラズマCVD成膜装置を説明する。なお、共通の部位・部品には同一符号を付した。   Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention is not construed as being limited to these descriptions. A plasma CVD film forming apparatus according to this embodiment will be described with reference to FIGS. In addition, the same code | symbol was attached | subjected to the common site | part and components.

図1は本実施形態に係るプラズマCVD成膜装置の一形態を示す概略構成図である。図1において真空チャンバ5については容器の鉛直方向の断面概略図である。図1に示すように本実施形態に係るプラズマCVD成膜装置100は、プラスチック容器7を収容する真空チャンバ5と、真空チャンバ5の側壁に沿って螺旋状に巻きつけられたリボン状コイル21と、プラスチック容器7の内部に挿脱可能に配置され、プラスチック容器へ原料ガスを供給する原料ガス供給管9と、真空チャンバ5の内部ガスを排気する排気手段19と、リボン状コイル21に高周波電力を印加する高周波供給手段11と、を有している。すなわち、プラズマCVD成膜装置100は、高周波ICP方式によって原料ガスをプラズマ化させるプラズマCVD成膜装置である。   FIG. 1 is a schematic configuration diagram showing an embodiment of a plasma CVD film forming apparatus according to the present embodiment. 1, the vacuum chamber 5 is a schematic cross-sectional view in the vertical direction of the container. As shown in FIG. 1, a plasma CVD film forming apparatus 100 according to the present embodiment includes a vacuum chamber 5 that houses a plastic container 7, and a ribbon-shaped coil 21 that is spirally wound along the side wall of the vacuum chamber 5. The raw material gas supply pipe 9 for supplying the raw material gas to the plastic container 7, the exhaust means 19 for exhausting the internal gas of the vacuum chamber 5, and the ribbon coil 21 are provided with high frequency power. And a high-frequency supply means 11 for applying. That is, the plasma CVD film forming apparatus 100 is a plasma CVD film forming apparatus that converts a source gas into plasma by a high frequency ICP method.

真空チャンバ5は、プラスチック容器7を出し入れするための開口部6を有し、且つプラスチック容器7を底から口まで完全に収容する容器収容部1と、開口部6の周端を気密状態で固定する固定部2と、固定部2の上に配置され、原料ガス供給管9を支持する蓋3とから構成されている。真空チャンバ5は、これらの部材が組み立てられ、気密化される。   The vacuum chamber 5 has an opening 6 for taking in and out the plastic container 7, and the container accommodating part 1 that completely accommodates the plastic container 7 from the bottom to the mouth and the peripheral end of the opening 6 are fixed in an airtight state. And a lid 3 disposed on the fixed portion 2 and supporting the source gas supply pipe 9. In the vacuum chamber 5, these members are assembled and hermetically sealed.

固定部2は、容器収容部1の内部空間の内径よりもやや大きな内径の貫通した円形穴を有しており、容器収容部1の開口部6の周端の形状に合わせて環状に凹部4を設けた下部固定部2aと、下部固定部2aと共に容器収容部1の開口部6の周端を挟持する上部固定部2bとを有している。下部固定部2aと開口部6の周端との接触部分には気密性とクッション性を有する樹脂製シール部材8が配置されている。   The fixing portion 2 has a circular hole that penetrates with an inner diameter that is slightly larger than the inner diameter of the internal space of the container housing portion 1, and the annular recess 4 according to the shape of the peripheral end of the opening 6 of the container housing portion 1. The lower fixing portion 2a provided with the upper fixing portion 2b that sandwiches the peripheral end of the opening 6 of the container housing portion 1 together with the lower fixing portion 2a. A resin seal member 8 having airtightness and cushioning properties is disposed at a contact portion between the lower fixing portion 2a and the peripheral end of the opening 6.

蓋3の内面側には、固定部2の円形穴とほぼ同径の第1円形凹部23と、第1円形凹部23の底により小径の第2円形凹部24とが設けられている。蓋3の内部には排気通路31が設けられていて、排気通路31の一端は、第2円形凹部24の側面で開口している。排気通路31の他端は、排気手段19に接続されている。   On the inner surface side of the lid 3, a first circular recess 23 having a diameter substantially the same as that of the circular hole of the fixing portion 2 and a second circular recess 24 having a small diameter are provided by the bottom of the first circular recess 23. An exhaust passage 31 is provided inside the lid 3, and one end of the exhaust passage 31 opens at the side surface of the second circular recess 24. The other end of the exhaust passage 31 is connected to the exhaust means 19.

容器収容部1の内部空間、固定部2の円形穴が形成する空間、第1円形凹部23が形成する空間、及び、第2円形凹部24が形成する空間が、真空チャンバ5の内部空間22を形成することとなる。   The internal space of the container housing portion 1, the space formed by the circular hole of the fixed portion 2, the space formed by the first circular concave portion 23, and the space formed by the second circular concave portion 24 form the internal space 22 of the vacuum chamber 5. Will be formed.

容器収容部1は、リボン状コイル21に流れる高周波電力と電気的に絶縁とするために、絶縁体、例えば、石英ガラス、又は、アルミナ等のセラミックスで形成される。固定部2及び蓋部3は、導電性材料で形成しても良く、絶縁材料で形成しても良い。剛性を有することが好ましいので、ステンレス等の金属若しくは合金で形成することが好ましい。   The container housing portion 1 is formed of an insulator, for example, quartz glass or ceramics such as alumina, in order to be electrically insulated from the high-frequency power flowing through the ribbon-shaped coil 21. The fixing portion 2 and the lid portion 3 may be formed of a conductive material or an insulating material. Since it preferably has rigidity, it is preferably formed of a metal such as stainless steel or an alloy.

リボン状コイル21は、容器収容部1の側壁に沿って螺旋状に巻きつければ良く、容器収容部1の外壁側に巻きつけても内壁側に配置しても良い。或いは、容器収容部1の内部に配置しても良い。ここでリボン状コイル21の主面と容器収容部1の外壁面とが向き合うように巻きつけることが好ましい。リボン状コイル21の一端には、マッチングボックス12を介して高周波電源13が接続されている。リボン状コイル21の他端は、接地されている。リボン状コイル21は、銅等の良導電性の金属若しくは合金で形成することが好ましく、リボン状コイル21の断面形状は、図1で示したように矩形とする。なお、リボン状コイル21を筒状として中空としても良い。リボン状コイル21の断面形状が円形、即ち、リボン状コイル21を通常の丸状コイルに代えると、丸状コイルの中心軸に準静電界の電気力線が集中し、容器高さ方向について準静電界の均一性が失われる。したがって、リボン状コイル21の表面の法線方向に準静電界の電気力線が形成されるようにするため、リボン状コイル21は、厚さに対して幅が3倍以上の長さを有することが好ましい。3倍未満の長さであると、通常の丸状コイルのように中心軸に向かって準静電界の電気力線が集中する傾向がある。また、リボン状コイル21の巻き数は、容器収容部1の高さ、その内径によって適宜決定されるが、リボン状コイル21の巻き数が4巻き以上8巻き以下であることが好ましい。4巻き未満では、膜質の均一性を確保が難しく、8巻きを超えるとリボン状コイル21に掛かるインピダンスが上昇し、電圧が上がるので、異常放電が起きやすく、或いは放電しなくなる。さらに、リボン状コイル21の幅の長さをW、巻き数をN、真空チャンバ5の内部空間22の高さをHと表記した場合、式1で表わされる被覆率Cが10〜30%であることが好ましい。被覆率Cが10%未満であると膜質の均一性を確保が難しく、30%を超えると、リボン状コイル同志の間隙が狭くなり、リボン状コイル間の間隙の間で異常放電を引き起こす傾向がある。
(式1)C(%)=W×N/H×100
The ribbon-shaped coil 21 may be wound spirally along the side wall of the container housing portion 1, and may be wound on the outer wall side of the container housing portion 1 or disposed on the inner wall side. Or you may arrange | position inside the container accommodating part 1. FIG. Here, it is preferable that the main surface of the ribbon-shaped coil 21 and the outer wall surface of the container housing portion 1 are wound so as to face each other. A high frequency power supply 13 is connected to one end of the ribbon coil 21 via a matching box 12. The other end of the ribbon coil 21 is grounded. The ribbon-like coil 21 is preferably made of a highly conductive metal such as copper or an alloy, and the cross-sectional shape of the ribbon-like coil 21 is rectangular as shown in FIG. The ribbon-shaped coil 21 may be hollow as a cylinder. When the ribbon-like coil 21 has a circular cross-sectional shape, that is, when the ribbon-like coil 21 is replaced with a normal round coil, the electric field lines of the quasi-electrostatic field concentrate on the central axis of the round coil, and the quasi-electrostatic field lines are quasi The uniformity of the electrostatic field is lost. Therefore, the ribbon-shaped coil 21 has a length that is at least three times as wide as the thickness so that electric field lines of a quasi-electrostatic field are formed in the normal direction of the surface of the ribbon-shaped coil 21. It is preferable. When the length is less than 3 times, the electric field lines of the quasi-electrostatic field tend to concentrate toward the central axis like a normal round coil. Further, the number of turns of the ribbon-shaped coil 21 is appropriately determined depending on the height of the container housing portion 1 and the inner diameter thereof, but the number of turns of the ribbon-shaped coil 21 is preferably 4 or more and 8 or less. If it is less than 4 turns, it is difficult to ensure the uniformity of the film quality. If it exceeds 8 turns, the impedance applied to the ribbon-like coil 21 rises and the voltage rises, so that abnormal discharge is likely to occur or no discharge occurs. Furthermore, when the width of the ribbon-shaped coil 21 is W, the number of turns is N, and the height of the internal space 22 of the vacuum chamber 5 is H, the coverage C represented by Equation 1 is 10 to 30%. Preferably there is. If the coverage C is less than 10%, it is difficult to ensure the uniformity of the film quality. If the coverage C is more than 30%, the gap between the ribbon coils becomes narrow, and abnormal discharge tends to occur between the gaps between the ribbon coils. is there.
(Formula 1) C (%) = W × N / H × 100

なお、真空チャンバ5の内部空間22のうち、プラスチック容器7の外面側の隙間空間を占めるように、フッ素樹脂等の耐熱樹脂からなる絶縁体のスペーサー(不図示)を配置しても良い。当該隙間空間における放電の発生を抑制させることができる。   Note that an insulating spacer (not shown) made of a heat-resistant resin such as a fluororesin may be disposed so as to occupy the gap space on the outer surface side of the plastic container 7 in the internal space 22 of the vacuum chamber 5. Generation of discharge in the gap space can be suppressed.

原料ガス供給管9には、原料ガス発生源16とマスフローコントローラー15とからなる原料ガス供給手段14から原料ガスが供給される。すなわち、原料ガス供給管9の一端には、配管29の一方側が接続されており、この配管29の他方側は真空バルブ30を介してマスフローコントローラー15の一方側に接続されている。マスフローコントローラー15の他方側は配管を介して原料ガス発生源16に接続されている。この原料ガス発生源16はアセチレンなどの炭化水素ガス等を発生させるものである。一方、原料ガス供給管9の先端は、プラスチック容器7の口から挿脱自在に容器内部に配置されており、吹き出し口9aが設けられている。原料ガス発生源16で発生させた原料ガスは、原料ガス供給管9を通して、プラスチック容器7の内部に吹き出させることができる。   A source gas is supplied to the source gas supply pipe 9 from a source gas supply means 14 including a source gas generation source 16 and a mass flow controller 15. That is, one end of the pipe 29 is connected to one end of the source gas supply pipe 9, and the other side of the pipe 29 is connected to one side of the mass flow controller 15 via the vacuum valve 30. The other side of the mass flow controller 15 is connected to the source gas generation source 16 via a pipe. The source gas generation source 16 generates hydrocarbon gas such as acetylene. On the other hand, the tip of the source gas supply pipe 9 is disposed inside the container so as to be detachable from the mouth of the plastic container 7, and is provided with a blowout port 9a. The source gas generated by the source gas generation source 16 can be blown into the plastic container 7 through the source gas supply pipe 9.

本発明におけるガスバリア膜とは、DLC(ダイヤモンドライクカーボン)膜、Si含有DLC膜、SiO膜、アルミナ膜、AlN膜等の酸素透過性を抑制する薄膜をいう。原料ガス発生源16から発生させる原料ガスは、上記薄膜の構成元素を含む揮発性ガスが選択される。ガスバリア性薄膜を形成する際の原料ガスは公知公用の揮発性原料ガスが使用できる。 The gas barrier film in the present invention refers to a thin film that suppresses oxygen permeability, such as a DLC (diamond-like carbon) film, a Si-containing DLC film, a SiO x film, an alumina film, or an AlN film. As the source gas generated from the source gas generating source 16, a volatile gas containing the constituent elements of the thin film is selected. As the raw material gas for forming the gas barrier thin film, a publicly known volatile raw material gas can be used.

原料ガスとしては、例えば、DLC膜を成膜する場合、常温で気体又は液体の脂肪族炭化水素類、芳香族炭化水素類、含酸素炭化水素類、含窒素炭化水素類などが使用される。特に炭素数が6以上のベンゼン,トルエン,o−キシレン,m−キシレン,p−キシレン,シクロヘキサン等が望ましい。食品等の容器に使用する場合には、衛生上の観点から脂肪族炭化水素類、特にエチレン、プロピレン又はブチレン等のエチレン系炭化水素、又は、アセチレン、アリレン又は1−ブチン等のアセチレン系炭化水素が好ましい。これらの原料は、単独で用いても良いが、2種以上の混合ガスとして使用するようにしても良い。さらにこれらのガスをアルゴンやヘリウムの様な希ガスで希釈して用いる様にしても良い。また、ケイ素含有DLC膜を成膜する場合には、Si含有炭化水素系ガスを使用する。   As the source gas, for example, when a DLC film is formed, aliphatic hydrocarbons, aromatic hydrocarbons, oxygen-containing hydrocarbons, nitrogen-containing hydrocarbons, etc. that are gaseous or liquid at room temperature are used. In particular, benzene, toluene, o-xylene, m-xylene, p-xylene, cyclohexane and the like having 6 or more carbon atoms are desirable. When used for food containers, aliphatic hydrocarbons from the viewpoint of hygiene, especially ethylene hydrocarbons such as ethylene, propylene or butylene, or acetylene hydrocarbons such as acetylene, arylene or 1-butyne Is preferred. These raw materials may be used alone, or may be used as a mixed gas of two or more. Further, these gases may be diluted with a rare gas such as argon or helium. In addition, when a silicon-containing DLC film is formed, a Si-containing hydrocarbon gas is used.

本発明でいうDLC膜とは、iカーボン膜又は水素化アモルファスカーボン膜(a−C:H) と呼ばれる膜のことであり、硬質炭素膜も含まれる。またDLC膜はアモルファス状の炭素膜であり、SP結合も有する。このDLC膜を成膜する原料ガスとしては炭化水素系ガス、例えばアセチレンガスを用い、Si含有DLC膜を成膜する原料ガスとしてはSi含有炭化水素系ガスを用いる。このようなDLC膜をプラスチック容器の内壁面に形成することにより、炭酸飲料や発泡飲料等の容器としてワンウェイ、リターナブルに使用可能な容器を得る。 The DLC film referred to in the present invention is a film called i-carbon film or hydrogenated amorphous carbon film (aC: H), and includes a hard carbon film. The DLC film is an amorphous carbon film and also has SP 3 bonds. A hydrocarbon gas such as acetylene gas is used as a source gas for forming the DLC film, and a Si-containing hydrocarbon gas is used as a source gas for forming the Si-containing DLC film. By forming such a DLC film on the inner wall surface of a plastic container, a container that can be used one-way and returnably as a container for carbonated beverages, sparkling beverages, and the like is obtained.

また、ケイ素含有DLC膜を成膜する場合には、Si含有炭化水素系ガスを使用する。珪化炭化水素ガス又は珪化水素ガスとしては、四塩化ケイ素、シラン(SiH)、ヘキサメチルジシラン、ビニルトリメチルシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、メチルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン等の有機シラン化合物、オクタメチルシクロテトラシロキサン、1,1,3,3−テトラメチルジシロキサン、ヘキサメチルジシロキサン(HMDSO)等の有機シロキサン化合物等が使用される。また、これらの材料以外にも、アミノシラン、シラザンなども用いられる。 In addition, when a silicon-containing DLC film is formed, a Si-containing hydrocarbon gas is used. Silicified hydrocarbon gas or silicic acid gas includes silicon tetrachloride, silane (SiH 4 ), hexamethyldisilane, vinyltrimethylsilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, methyltriethoxysilane , Vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane and other organic silane compounds, octamethylcyclotetrasiloxane, 1,1,3 , 3-tetramethyldisiloxane, organic siloxane compounds such as hexamethyldisiloxane (HMDSO) are used. In addition to these materials, aminosilane, silazane and the like are also used.

SiO膜(珪素酸化物膜)を成膜する場合には、例えば、シランと酸素の混合ガス、又は、HMDSOと酸素の混合ガスを原料ガスとする。 In the case of forming a SiO x film (silicon oxide film), for example, a mixed gas of silane and oxygen or a mixed gas of HMDSO and oxygen is used as a source gas.

排気手段19は、真空ポンプ18と真空バルブ17と不図示の排気ダクトからなり、プラスチック容器7の口部から放出されたガスを、排気通路31を通して、真空チャンバ5内から排気をするものである。排気通路31の一端と接続された配管の他端は真空バルブ17を介して真空ポンプ18に接続されている。この真空ポンプ18はさらに排気ダクト(不図示)に接続されている。   The exhaust means 19 includes a vacuum pump 18, a vacuum valve 17, and an exhaust duct (not shown). The exhaust means 19 exhausts the gas discharged from the mouth of the plastic container 7 from the vacuum chamber 5 through the exhaust passage 31. . The other end of the pipe connected to one end of the exhaust passage 31 is connected to the vacuum pump 18 via the vacuum valve 17. The vacuum pump 18 is further connected to an exhaust duct (not shown).

高周波電源13は、マッチングボックス12を介してリボン状コイル21の一端側に接続されており、高周波をリボン状コイル21に供給する。高周波電源13の出力側にマッチングボックス12が接続され、高周波電源13とマッチングボックス12によって、高周波供給手段11が構成される。なお、高周波電源13は接地されている。高周波電源13は、容器収容部1の側壁に沿って螺旋状に巻かれたリボン状コイル21に高周波電力を供給し、これによって、リボン状コイル21が形成する螺旋形で囲まれた空間内に、誘導結合型プラズマ(高周波ICP)が発生する。このとき、容量結合型プラズマよりも一桁以上高い密度のプラズマが発生する。プラズマ化された原料ガスは、容器の内壁面上でCVD薄膜を形成する。高周波電源の周波数は、100kHz〜100MHzであるが、例えば、工業用周波数である13.56MHzのものを使用する。   The high frequency power supply 13 is connected to one end side of the ribbon coil 21 via the matching box 12 and supplies high frequency to the ribbon coil 21. A matching box 12 is connected to the output side of the high frequency power supply 13, and the high frequency power supply 13 and the matching box 12 constitute a high frequency supply means 11. The high frequency power supply 13 is grounded. The high-frequency power source 13 supplies high-frequency power to a ribbon-shaped coil 21 spirally wound along the side wall of the container housing portion 1, and thereby, in a space surrounded by a spiral formed by the ribbon-shaped coil 21. Inductively coupled plasma (high frequency ICP) is generated. At this time, plasma having a density one digit higher than that of capacitively coupled plasma is generated. The plasma source gas forms a CVD thin film on the inner wall surface of the container. The frequency of the high-frequency power source is 100 kHz to 100 MHz, and for example, an industrial frequency of 13.56 MHz is used.

本発明に係る容器とは、蓋若しくは栓若しくはシールして使用する容器、またはそれらを使用せず開口状態で使用する容器を含む。開口部の大きさは内容物に応じて決める。プラスチック容器は、剛性を適度に有する所定の肉厚を有するプラスチック容器と剛性を有さないシート材により形成されたプラスチック容器を含む。容器の軸に対する横断面の形状は、丸型で合っても角型であってもよい。また、胴にくびれが有っても良く、容器に取っ手がついていても良い。本発明に係るプラスチック容器の充填物は、炭酸飲料若しくは果汁飲料若しくは清涼飲料等の飲料を挙げることができる。また、リターナブル容器或いはワンウェイ容器のどちらであっても良い。   The container according to the present invention includes a container that is used with a lid, a stopper, or a seal, or a container that is used without being used. The size of the opening is determined according to the contents. The plastic container includes a plastic container having a predetermined thickness having moderate rigidity and a plastic container formed by a sheet material having no rigidity. The shape of the cross section with respect to the axis of the container may be round or square. Further, the waist may have a constriction, and the container may have a handle. Examples of the filling material of the plastic container according to the present invention include carbonated beverages, fruit juice beverages, and soft drinks. Moreover, either a returnable container or a one-way container may be used.

本発明のプラスチック容器7を成形する際に使用する樹脂は、ポリエチレンテレフタレート樹脂(PET)、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂(PP)、シクロオレフィンコポリマー樹脂(COC、環状オレフィン共重合)、アイオノマ樹脂、ポリ−4−メチルペンテン−1樹脂、ポリメタクリル酸メチル樹脂、ポリスチレン樹脂、エチレン−ビニルアルコール共重合樹脂、アクリロニトリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリスルホン樹脂、又は、4弗化エチレン樹脂、アクリロニトリル−スチレン樹脂、アクリロニトリル−ブタジエン−スチレン樹脂を例示することができる。この中で、PETが特に好ましい。   Resin used when molding the plastic container 7 of the present invention is polyethylene terephthalate resin (PET), polybutylene terephthalate resin, polyethylene naphthalate resin, polyethylene resin, polypropylene resin (PP), cycloolefin copolymer resin (COC, cyclic) Olefin copolymer), ionomer resin, poly-4-methylpentene-1 resin, polymethyl methacrylate resin, polystyrene resin, ethylene-vinyl alcohol copolymer resin, acrylonitrile resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyamide resin , Polyamideimide resin, polyacetal resin, polycarbonate resin, polysulfone resin, or tetrafluoroethylene resin, acrylonitrile-styrene resin, acrylonitrile-butadiene-styrene resin It can be exemplified. Among these, PET is particularly preferable.

本実施形態に係るCVD成膜装置では、リボン状コイルが1つの連続体である場合を示したが、これを分割して複数のリボン状コイルが、縦列関係で螺旋状に巻かれている状態とし、それぞれのリボン状コイルに高周波電力を供給することとしても良い。   In the CVD film forming apparatus according to the present embodiment, the case where the ribbon-shaped coil is one continuous body is shown, but a state in which a plurality of ribbon-shaped coils are spirally wound in a tandem relationship. The high frequency power may be supplied to each ribbon coil.

本実施形態に係るCVD成膜装置は、図2に示すごとく、複数同時成膜装置としても良い。図2は、本実施形態に係る複数同時成膜可能なCVD成膜装置の一形態を示す概略図である。なお、図2は部材を一部省略して記載した図である。CVD成膜装置200は、リボン状コイル21aを螺旋状に巻きつけた真空チャンバ5aと同等の複数の真空チャンバ5b,5c,5dを配置し、各リボン状コイル21a,21b,21c,21dの一端は、高周波供給手段11に対して並列接続されている。各リボン状コイル21a,21b,21c,21dの他端は、各可変コンデンサ28a,28b,28c,28dを介して接地されている。各可変コンデンサ28a,28b,28c,28dは、各真空チャンバ5a,5b,5c,5d内で均等な原料ガス系プラズマを発生させるために、高周波電力の分配を調整するものである。CVD成膜装置200では、各真空チャンバ5a,5b,5c,5dにおいて、同時に各プラスチック容器7a,7b,7c,7dの内壁面にガスバリア薄膜を成膜させることができる。   The CVD film forming apparatus according to this embodiment may be a plurality of simultaneous film forming apparatuses as shown in FIG. FIG. 2 is a schematic diagram showing an embodiment of a CVD film forming apparatus capable of simultaneously forming a plurality of films according to this embodiment. FIG. 2 is a diagram in which some members are omitted. The CVD film forming apparatus 200 includes a plurality of vacuum chambers 5b, 5c, 5d equivalent to the vacuum chamber 5a in which the ribbon-like coil 21a is spirally wound, and one end of each ribbon-like coil 21a, 21b, 21c, 21d. Are connected in parallel to the high-frequency supply means 11. The other end of each ribbon coil 21a, 21b, 21c, 21d is grounded via each variable capacitor 28a, 28b, 28c, 28d. Each variable capacitor 28a, 28b, 28c, 28d adjusts the distribution of high-frequency power in order to generate uniform source gas plasma in each vacuum chamber 5a, 5b, 5c, 5d. In the CVD film forming apparatus 200, a gas barrier thin film can be formed on the inner wall surfaces of the plastic containers 7a, 7b, 7c, 7d simultaneously in the vacuum chambers 5a, 5b, 5c, 5d.

次に、図1を参照しながら本実施形態に係るプラズマCVD成膜装置を用いてプラスチック容器7の内壁面にDLC膜を形成する場合の手順について説明する。プラスチック容器7は丸型500mlのPETボトルとする。容器壁の肉厚は約0.3mmとする。   Next, a procedure for forming a DLC film on the inner wall surface of the plastic container 7 using the plasma CVD film forming apparatus according to the present embodiment will be described with reference to FIG. The plastic container 7 is a round 500 ml PET bottle. The wall thickness of the container wall is about 0.3 mm.

(プラズマCVD成膜装置への容器の装着)
まず、ベント(不図示)を開いて真空チャンバ5内を大気開放する。下部固定部2aを上部固定部2bから離した後、容器収容部1にプラスチック容器7を収容して、再び、下部固定部2aを上部固定部2bに密接させる。これにより、真空チャンバ5の側壁に沿って螺旋状に巻きつけられたリボン状コイル21の巻き軸に対してプラスチック容器7の軸がほぼ平行となるように、プラスチック容器7が真空チャンバ5に収容される。このとき、プラスチック容器7の口部から原料ガス供給管9が挿入された状態となっている。
(Attaching the container to the plasma CVD deposition system)
First, a vent (not shown) is opened to open the vacuum chamber 5 to the atmosphere. After separating the lower fixing part 2a from the upper fixing part 2b, the plastic container 7 is accommodated in the container accommodating part 1, and the lower fixing part 2a is brought into close contact with the upper fixing part 2b again. Thereby, the plastic container 7 is accommodated in the vacuum chamber 5 so that the axis of the plastic container 7 is substantially parallel to the winding axis of the ribbon-like coil 21 wound spirally along the side wall of the vacuum chamber 5. Is done. At this time, the raw material gas supply pipe 9 is inserted from the opening of the plastic container 7.

(減圧操作)
次いでベントを閉じたのち、真空ポンプ18を作動させ、真空バルブ17を開とすることにより、真空チャンバ5内の空気が排気通路31を通して排気される。そして真空チャンバ5内が必要な圧力、例えば4Paに到達するまで減圧される。これは、4Paを超える真空度で良いとすると容器内に不純物が多くなり過ぎるためである。
(Decompression operation)
Next, after closing the vent, the vacuum pump 18 is operated and the vacuum valve 17 is opened, whereby the air in the vacuum chamber 5 is exhausted through the exhaust passage 31. Then, the pressure in the vacuum chamber 5 is reduced until a necessary pressure, for example, 4 Pa is reached. This is because if the degree of vacuum exceeding 4 Pa is sufficient, the container has too many impurities.

(原料ガスの導入)
その後、原料ガス発生源16からマスフローコントローラー15によって流量制御されて送られた原料ガス(例えば、アセチレンガス)が、原料ガス供給管9の先端の吹き出し口9aからプラスチック容器7の内部に導入される。この原料ガスの供給量は、20〜200sccmが好ましい。原料ガスの濃度が一定となり、制御されたガス流量と排気能力のバランスによって所定の成膜圧力、例えば7〜27Paで安定させる。
(Introduction of raw material gas)
Thereafter, the raw material gas (for example, acetylene gas) sent from the raw material gas generation source 16 with the flow rate controlled by the mass flow controller 15 is introduced into the plastic container 7 from the outlet 9 a at the tip of the raw material gas supply pipe 9. . The supply amount of the source gas is preferably 20 to 200 sccm. The concentration of the source gas becomes constant, and is stabilized at a predetermined film formation pressure, for example, 7 to 27 Pa, by controlling the balance between the gas flow rate and the exhaust capacity.

(プラズマCVD成膜)
高周波電源13を動作させることによりマッチングボックス12を介して容器収容部1の側壁に沿って螺旋状に巻かれたリボン状コイル21に高周波電力を印加し、プラスチック容器7内に原料ガス系プラズマを発生させる。このとき、マッチングボックス12により、プラズマに最大の電力が供給されるように整合を取っている。これによって、プラスチック容器7の内壁面にDLC膜が形成される。なお、高周波電源13の出力(例えば13.56MHz)は、おおよそ200〜3000Wである。
(Plasma CVD film formation)
By operating the high-frequency power source 13, high-frequency power is applied to the ribbon coil 21 spirally wound along the side wall of the container housing portion 1 through the matching box 12, and the source gas plasma is generated in the plastic container 7. generate. At this time, matching is performed by the matching box 12 so that the maximum power is supplied to the plasma. As a result, a DLC film is formed on the inner wall surface of the plastic container 7. In addition, the output (for example, 13.56 MHz) of the high frequency power supply 13 is approximately 200 to 3000 W.

すなわち、このプラスチック容器7の内壁面におけるDLC膜の形成は、プラズマCVD法によって行われる。誘導結合型プラズマにより、容量結合型プラズマよりも1桁以上高いプラズマ密度を発生させることができるため、成膜速度が速くなり、成膜時間は2秒以下と短いものとなる。また、プラズマとコイルの間にはコイル表面の電荷に起因した準静的な電界(準静電界)が発生する。丸状コイルではなく、リボン状コイル21に高周波電力を供給したことで、図3(a)に示すように、準静電界の電気力線33をプラスチック容器壁面の高さ方向にわたって平行性を保持しつつ発生させることを実現している。図3は、高周波電力供給時の準静電界の電気力線と準静電界の様子を示した概念図であり、(a)はリボン状コイルを用いたとき、(b)は丸状コイルを用いたときを示す。符号35は発生させたプラズマを表している。なお、図3は部材を一部省略して記載した図である。図3(a)に示したCVD成膜装置では、準静電界の電気力線33を水平方向に対して平行性を保持させつつ発生させると、リボン状コイル21の表面に対して法線方向に近づけて形成させることができ、リボン状コイル21の表面の電荷に起因する準静電界34を容器高さ方向に対して均一とすることができる。したがって、プラスチック容器7の内壁面に均一な膜質のDLC膜を成膜することができる。一方、図3(b)に示した、丸状コイルを用いた従来の成膜装置では、準静電界の電気力線33は丸状コイル32の中心軸に向かって形成されるため、水平方向に対して平行に発生させることができない。そして丸状コイル32の表面の電荷に起因する準静電界34は容器高さ方向に対して不均一となってしまう。したがって、プラスチック容器7の内壁面に充分均一な膜質のDLC膜を成膜することができない。   That is, the DLC film is formed on the inner wall surface of the plastic container 7 by a plasma CVD method. Since inductively coupled plasma can generate a plasma density that is one digit higher than that of capacitively coupled plasma, the deposition rate is increased and the deposition time is as short as 2 seconds or less. Further, a quasi-static electric field (quasi-electrostatic field) is generated between the plasma and the coil due to the charge on the coil surface. By supplying the high frequency power to the ribbon coil 21 instead of the round coil, the electric field lines 33 of the quasi-electrostatic field are kept parallel over the height direction of the plastic container wall as shown in FIG. However, it is realized to generate. FIG. 3 is a conceptual diagram showing the electric field lines of the quasi-electrostatic field and the state of the quasi-electrostatic field when high-frequency power is supplied. When (a) is a ribbon coil, (b) is a round coil. When used. Reference numeral 35 represents the generated plasma. FIG. 3 is a diagram in which some members are omitted. In the CVD film forming apparatus shown in FIG. 3A, when the electric force lines 33 of the quasi-electrostatic field are generated while maintaining parallelism with respect to the horizontal direction, the direction normal to the surface of the ribbon coil 21. The quasi-electrostatic field 34 caused by the charge on the surface of the ribbon coil 21 can be made uniform in the container height direction. Therefore, a DLC film having a uniform film quality can be formed on the inner wall surface of the plastic container 7. On the other hand, in the conventional film forming apparatus using a round coil shown in FIG. 3B, the electric field lines 33 of the quasi-electrostatic field are formed toward the central axis of the round coil 32. Cannot be generated parallel to And the quasi-electrostatic field 34 resulting from the electric charge of the surface of the round coil 32 will become non-uniform | heterogenous with respect to the container height direction. Therefore, a DLC film having a sufficiently uniform film quality cannot be formed on the inner wall surface of the plastic container 7.

(成膜の終了)
高周波電源13からの高周波出力を停止し、さらに原料ガスの供給を停止する。この後、真空チャンバ5内のアセチレンガスを真空ポンプ18によって排気する。その後、真空バルブ17を閉じ、真空ポンプ18を停止する。この後、ベント(不図示)を開いて真空チャンバ5内を大気開放し、前述した成膜方法を繰り返すことにより、次のプラスチック容器内にDLC膜が成膜される。DLC膜の膜厚は、胴部において10〜80nmとなるように形成する。
(Finish film formation)
The high frequency output from the high frequency power supply 13 is stopped, and the supply of the raw material gas is stopped. Thereafter, the acetylene gas in the vacuum chamber 5 is exhausted by the vacuum pump 18. Thereafter, the vacuum valve 17 is closed and the vacuum pump 18 is stopped. Thereafter, the DLC film is formed in the next plastic container by opening the vent (not shown), opening the vacuum chamber 5 to the atmosphere, and repeating the film forming method described above. The film thickness of the DLC film is formed so as to be 10 to 80 nm in the body portion.

CVD成膜装置200についても、同様の工程を経て、プラスチック容器7の内壁面に均一な膜質のDLC膜を成膜することができる。   The CVD film forming apparatus 200 can also form a uniform DLC film on the inner wall surface of the plastic container 7 through the same process.

以下、本発明について実施例を示してさらに詳細に説明するが、本発明は実施例の記載に限定して解釈されない。 EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further in detail, this invention is limited to description of an Example and is not interpreted.

実施例で使用した装置は、図1に示したCVD成膜装置100又は図2に示したCVD成膜装置200とした。表1に容量280〜1500mlの各種容器の寸法を示した。実施例では、表1記載の容器がすべて同一の容器収容部1で収容できるように、容器収容部の内部空間の内径を110mmとし、高さを400mmとした。表1において種類の表記「耐熱」は、ホット充填することが可能な耐熱ボトルであり、「耐圧」は、炭酸飲料を充填することが可能な耐圧ボトルであり、「無菌」は、無菌充填することが可能な無菌充填ボトルである。 The apparatus used in the examples was the CVD film forming apparatus 100 shown in FIG. 1 or the CVD film forming apparatus 200 shown in FIG. Table 1 shows the dimensions of various containers having a capacity of 280 to 1500 ml. In the example, the inner diameter of the inner space of the container housing portion was 110 mm and the height was 400 mm so that all the containers shown in Table 1 could be housed in the same container housing portion 1. In Table 1, the type of “heat-resistant” is a heat-resistant bottle that can be hot-filled, “pressure-resistant” is a pressure-resistant bottle that can be filled with a carbonated beverage, and “sterile” is aseptically filled. Aseptic filling bottle capable.

Figure 0004854983
Figure 0004854983

以下の実施例では、原料ガスとしてアセチレンガスを使用し、DLC薄膜をPET容器の内壁面に成膜した。また、成膜時の真空チャンバ内の圧力は、13.3Paとした。 In the following examples, acetylene gas was used as a source gas, and a DLC thin film was formed on the inner wall surface of a PET container. The pressure in the vacuum chamber during film formation was 13.3 Pa.

(実施例1)
CVD成膜装置100を用いた。使用するPET容器は、丸型280mlとした。リボン状コイルは銅製とし、巻き数を4巻き、幅を10mm、厚さを1mmとした。このとき式1で求められる被覆率Cは、10%であった。高周波13.56MHzをリボン状コイルに600W供給した。成膜時間は1秒とした。このとき、DLC薄膜の厚さは60nmであった。結果を表2に示した。
Example 1
A CVD film forming apparatus 100 was used. The PET container used was a round shape of 280 ml. The ribbon coil was made of copper, the number of turns was 4, the width was 10 mm, and the thickness was 1 mm. At this time, the coverage C obtained by Equation 1 was 10%. A high frequency of 13.56 MHz was supplied to the ribbon coil at 600 W. The film formation time was 1 second. At this time, the thickness of the DLC thin film was 60 nm. The results are shown in Table 2.

評価は次の通りで行なった。表2に評価結果をまとめた。
(酸素ガス透過度)
Modern Control社製Oxtranを用いて、22℃、60%RHの条件にて測定した。測定開始後、7日経過の安定状態となったところで酸素ガス透過度の値を読み取った。
(膜厚)
Tenchol社alpha−step500の触針式段差計で測定した。
(膜質均一性)
膜質の均一性の評価は、酸素ガス透過度の値によって判断した。酸素ガス透過度が0.005cc/日/容器以下の場合は膜質の均一性が優れるとして○、0.005cc/日/容器を超えて0.014cc/日/容器以下の場合は膜質の均一性はやや劣るとして△、0.014cc/日/容器超の場合は膜質の均一性は劣るとして×と評価した。ここで、膜質の均質性とは膜厚の均一性のことではなく、膜質の均一性である。膜質とは、組成及び密度によって決まる。
Evaluation was performed as follows. Table 2 summarizes the evaluation results.
(Oxygen gas permeability)
The measurement was performed under the conditions of 22 ° C. and 60% RH using an Oxtran manufactured by Modern Control. After the start of measurement, the value of oxygen gas permeability was read when it became stable after 7 days.
(Film thickness)
It measured with the stylus type level difference meter of tenchol alpha-step500.
(Film quality uniformity)
Evaluation of the uniformity of the film quality was judged by the value of oxygen gas permeability. When the oxygen gas permeability is 0.005 cc / day / container or less, the film quality uniformity is excellent, and when it exceeds 0.005 cc / day / container and 0.014 cc / day / container or less, the film quality uniformity In the case of slightly inferior, Δ, and in the case of 0.014 cc / day / container over, the uniformity of the film quality was inferior, and was evaluated as x. Here, the film quality homogeneity is not the film thickness uniformity but the film quality uniformity. Film quality depends on composition and density.

Figure 0004854983
Figure 0004854983

(実施例2〜実施例11) 実施例2〜実施例11については、表2に示した条件にてそれぞれ成膜を行った。結果を表2に示した。 (Examples 2 to 11) In Examples 2 to 11, films were formed under the conditions shown in Table 2, respectively. The results are shown in Table 2.

(実施例21、実施例22) 実施例21と実施例22については、図2のCVD成膜装置200を用いて表2に示した条件にてそれぞれ成膜を行った。結果を表2に示した。 (Example 21, Example 22) In Example 21 and Example 22, films were formed under the conditions shown in Table 2 using the CVD film forming apparatus 200 of FIG. The results are shown in Table 2.

(実施例31、実施例32) 実施例31と実施例32については、図1のCVD成膜装置200を用い、さらに高周波数周波数を400kMHzに変更して、表2に示した条件にてそれぞれ成膜を行った。結果を表2に示した。 (Example 31, Example 32) For Example 31 and Example 32, the CVD film forming apparatus 200 of FIG. 1 was used, the high frequency frequency was changed to 400 kHz, and the conditions shown in Table 2 were used. Film formation was performed. The results are shown in Table 2.

(比較例1〜比較例4) 容量280ml、350ml、500ml、1000mlの各PET容器について、成膜を行なわずに、コントロールとして酸素ガス透過度を測定した。結果を表2に示した。 Comparative Examples 1 to 4 For each PET container having a capacity of 280 ml, 350 ml, 500 ml, and 1000 ml, the oxygen gas permeability was measured as a control without performing film formation. The results are shown in Table 2.

(比較例5〜比較例10) 比較例5〜比較例10については、図3(b)のCVD成膜装置300を用いて表2に示した条件にてそれぞれ成膜を行った。高周波供給手段(不図示)は丸状コイル32に接続されている。結果を表2に示した。 (Comparative Example 5 to Comparative Example 10) In Comparative Examples 5 to 10, films were formed under the conditions shown in Table 2 using the CVD film forming apparatus 300 in FIG. High frequency supply means (not shown) is connected to the round coil 32. The results are shown in Table 2.

実施例1〜実施例11によれば、1種類の真空チャンバを用いて、成膜装置の部品を容器種類ごとに交換することなく、ボトル容量280ml〜1000mlの容器について、その内壁面にDLC薄膜を60nmの厚さで成膜することができた。そして、酸素ガス透過度は0.002〜0.004cc/日/容器であった。よって容器内壁面全体に膜質が均一のDLC薄膜を成膜できた。比較例1〜4のコントロールと比較すると、酸素ガス透過度は約8分の1〜15分の1に低下したことがわかる。 According to Examples 1 to 11, a DLC thin film is formed on the inner wall surface of a container having a bottle capacity of 280 ml to 1000 ml without replacing the components of the film forming apparatus for each container type using one kind of vacuum chamber. Can be formed with a thickness of 60 nm. The oxygen gas permeability was 0.002 to 0.004 cc / day / container. Therefore, a DLC thin film having a uniform film quality could be formed on the entire inner wall surface of the container. When compared with the controls of Comparative Examples 1 to 4, it can be seen that the oxygen gas permeability was reduced to about 1/8 to 1/15.

実施例21と実施例22によれば、4本のPET容器の内壁面に同時にほぼ同じ膜厚のDLC薄膜を成膜することができた。そして、酸素ガス透過度は0.002〜0.004cc/日/容器であった。よっていずれの容器にも内壁面全体に膜質が均一のDLC薄膜を成膜できた。比較例3のコントロールと比較すると、酸素ガス透過度は10分の1に低下したことがわかる。 According to Example 21 and Example 22, DLC thin films having substantially the same film thickness could be simultaneously formed on the inner wall surfaces of the four PET containers. The oxygen gas permeability was 0.002 to 0.004 cc / day / container. Therefore, a DLC thin film having a uniform film quality could be formed on the entire inner wall surface in any container. Compared with the control of Comparative Example 3, it can be seen that the oxygen gas permeability was reduced to 1/10.

実施例31と実施例32によれば、高周波の周波数を400kHzとしても同様に容器の内壁面にDLC薄膜を成膜することができた。成膜時間は1.5秒としたとき、膜厚は30nmであり、成膜速度は実施例1〜11及び実施例21と実施例22と比較すると小さかった。そして、酸素ガス透過度は0.004cc/日/容器(実施例31)と0.003cc/日/容器(実施例32)であった。よって容器内壁面全体に膜質が均一のDLC薄膜を成膜できた。酸素ガス透過度はコントロール(比較例3)と比較すると15分の2〜10分の1に低下したことがわかる。 According to Example 31 and Example 32, the DLC thin film could be similarly formed on the inner wall surface of the container even when the frequency of the high frequency was 400 kHz. When the film formation time was 1.5 seconds, the film thickness was 30 nm, and the film formation rate was small compared to Examples 1 to 11 and Examples 21 and 22. The oxygen gas permeability was 0.004 cc / day / container (Example 31) and 0.003 cc / day / container (Example 32). Therefore, a DLC thin film having a uniform film quality could be formed on the entire inner wall surface of the container. It can be seen that the oxygen gas permeability decreased to 2/10 to 1/10 compared to the control (Comparative Example 3).

比較例5は、酸素ガス透過度は0.018cc/日/容器であった。これは丸状コイルを用いたため、被覆率も3.6%と小さく、容器高さ方向に対して均一な膜質の成膜をすることができなかったためと考えられる。比較例8、比較例9、比較例10も、比較例5と同様に、被覆率がそれぞれ8%、6%、6%と小さく、酸素ガス透過度はそれぞれ0.010cc/日/容器、0.008cc/日/容器、0.014cc/日/容器であった。比較例5と同様に、容器高さ方向に対して均一な膜質の成膜をすることができなかったためと考えられる。   In Comparative Example 5, the oxygen gas permeability was 0.018 cc / day / container. This is probably because the round coil was used, and the coverage was as small as 3.6%, and it was not possible to form a film with a uniform film quality in the container height direction. In Comparative Example 8, Comparative Example 9, and Comparative Example 10, as in Comparative Example 5, the coverages were as small as 8%, 6%, and 6%, respectively, and the oxygen gas permeability was 0.010 cc / day / container, 0 0.008 cc / day / container and 0.014 cc / day / container. It is considered that, as in Comparative Example 5, it was impossible to form a film with a uniform film quality in the container height direction.

比較例6は、放電しなかったため、DLC膜コーティングPET容器が得られなかった。巻き数を10巻きとすることで被覆率10%を確保したが、丸状コイルに掛かるインピダンスが上昇し、放電しなかったと考えられる。   Since Comparative Example 6 did not discharge, a DLC film-coated PET container could not be obtained. Although the covering rate was 10% by setting the number of turns to 10, it is considered that the impedance applied to the round coil increased and no discharge occurred.

比較例7では、巻き数を10巻きとすることで被覆率10%を確保し、高周波電力を1200Wとして半強制的に放電を行なった。しかし、酸素ガス透過度は0.009cc/日/容器で、均一な膜質の成膜をすることができなかった。異常放電が生じたためと考えられる。   In Comparative Example 7, the coverage was 10% by setting the number of turns to 10 and discharging was performed semi-forcedly with a high frequency power of 1200 W. However, the oxygen gas permeability was 0.009 cc / day / container and a uniform film quality could not be formed. This is probably because abnormal discharge occurred.

本実施形態に係るプラズマCVD成膜装置の一形態を示す概略構成図である。It is a schematic block diagram which shows one form of the plasma CVD film-forming apparatus which concerns on this embodiment. 本実施形態に係る複数同時成膜可能なCVD成膜装置の一形態を示す概略図である。It is the schematic which shows one form of the CVD film-forming apparatus which can form into multiple films simultaneously concerning this embodiment. 高周波電力供給時の準静電界の電気力線と準静電界の様子を示した概念図であり、(a)はリボン状コイルを用いたとき、(b)は丸状コイルを用いたときを示す。It is the conceptual diagram which showed the mode of the electric force line of the quasi-electrostatic field at the time of high frequency electric power supply, and the state of a quasi-electrostatic field, (a) when a ribbon coil is used, (b) when a round coil is used. Show.

符号の説明Explanation of symbols

1,容器収容部
2,固定部
2a,下部固定部
2b,上部固定部
3,蓋
4,凹部
5,5a,5b,5c,5d,真空チャンバ
6,容器収容部の開口部
7,7a,7b,7c,7d,プラスチック容器
8,樹脂製シール部材
9,原料ガス供給管
9a,吹き出し口
11,高周波供給手段
12,マッチングボックス
13,高周波電源
14,原料ガス供給手段
15,マスフローコントローラー
16,原料ガス発生源
17,30,真空バルブ
18,真空ポンプ
19,排気手段
21,21a,21b,21c,21d,リボン状コイル
22,真空チャンバの内部空間
23,第1円形凹部
24,第2円形凹部
28a,28b,28c,28d,可変コンデンサ
29,配管
31,排気通路
32,丸状コイル
33,準静電界の電気力線
34,準静電界
35,プラズマ
100,200,プラズマCVD成膜装置
300,プラズマCVD成膜装置(比較例)
1, container housing part 2, fixing part 2a, lower fixing part 2b, upper fixing part 3, lid 4, recesses 5, 5a, 5b, 5c, 5d, vacuum chamber 6, openings 7, 7a, 7b of container housing part 7c, 7d, plastic container 8, resin sealing member 9, raw material gas supply pipe 9a, outlet 11, high frequency supply means 12, matching box 13, high frequency power supply 14, raw material gas supply means 15, mass flow controller 16, raw material gas Sources 17 and 30, vacuum valve 18, vacuum pump 19, exhaust means 21, 21 a, 21 b, 21 c and 21 d, ribbon-like coil 22, vacuum chamber inner space 23, first circular recess 24, second circular recess 28 a, 28b, 28c, 28d, variable capacitor 29, piping 31, exhaust passage 32, round coil 33, quasi-electrostatic electric field lines 34, quasi-electrostatic field 35, plus 100,200, plasma CVD film-forming apparatus 300, a plasma CVD film forming apparatus (Comparative Example)

Claims (8)

プラスチック容器を収容する真空チャンバと、
該真空チャンバの側壁に沿って螺旋状に巻きつけられた、断面形状が矩形のリボン状コイルと、
前記プラスチック容器の内部に挿脱可能に配置され、該プラスチック容器へ原料ガスを供給する原料ガス供給管と、
前記真空チャンバの内部ガスを排気する排気手段と、
前記リボン状コイルに高周波電力を印加する高周波供給手段と、
を有し、かつ、前記リボン状コイルの幅方向の面と前記真空チャンバの側壁面とが向き合っていることを特徴とするプラズマCVD成膜装置。
A vacuum chamber containing a plastic container;
A ribbon-shaped coil having a rectangular cross-sectional shape wound spirally along the side wall of the vacuum chamber;
A source gas supply pipe that is detachably disposed in the plastic container and supplies a source gas to the plastic container;
Exhaust means for exhausting the internal gas of the vacuum chamber;
High-frequency supply means for applying high-frequency power to the ribbon-shaped coil;
Have a, and a plasma CVD film forming apparatus, wherein the width direction of the surface of the ribbon-like coil and the side wall surface of the vacuum chamber is facing.
前記リボン状コイルは、厚さに対して幅が3倍以上の長さを有することを特徴とする請求項1記載のプラズマCVD成膜装置。   The plasma CVD film forming apparatus according to claim 1, wherein the ribbon-like coil has a length that is at least three times as wide as the thickness. 前記リボン状コイルの幅の長さをW、巻き数をN、前記真空チャンバの内部空間の高さをHと表記した場合、式1で表わされる被覆率Cが10〜30%であることを特徴とする請求項1又は2記載のプラズマCVD成膜装置。
(式1)C(%)=W×N/H×100
When the width of the ribbon-shaped coil is W, the number of turns is N, and the height of the internal space of the vacuum chamber is H, the coverage C represented by Equation 1 is 10 to 30%. The plasma CVD film-forming apparatus according to claim 1 or 2, characterized in that:
(Formula 1) C (%) = W × N / H × 100
前記リボン状コイルの巻き数が4巻き以上8巻き以下であることを特徴とする請求項1、2又は3記載のプラズマCVD成膜装置。   4. The plasma CVD film forming apparatus according to claim 1, wherein the number of windings of the ribbon-shaped coil is 4 or more and 8 or less. 前記リボン状コイルを螺旋状に巻きつけた前記真空チャンバを複数配置し、前記各リボン状コイルは、前記高周波供給手段に対して並列接続されていることを特徴とする請求項1、2、3又は4記載のプラズマCVD成膜装置。   A plurality of the vacuum chambers in which the ribbon-like coils are spirally wound are arranged, and each ribbon-like coil is connected in parallel to the high-frequency supply means. Or the plasma CVD film-forming apparatus of 4. 真空チャンバの側壁に沿って、断面形状が矩形のリボン状コイルが、該リボン状コイルの幅方向の面と前記真空チャンバの側壁面とが向い合わせの状態で、螺旋状に巻きつけられ、該リボン状コイルの巻き軸に対してプラスチック容器の軸がほぼ平行となるように、前記プラスチック容器を前記真空チャンバの内部に収容する工程と、
前記真空チャンバの内部ガスを排気する工程と、
前記プラスチック容器の内部に原料ガスを供給する工程と、
前記リボン状コイルに高周波電力を供給して、前記原料ガスをプラズマ化させて、前記プラスチック容器の内壁面にガスバリア薄膜を成膜させる工程と、
を有することを特徴とするガスバリア性を有するプラスチック容器の製造方法。
A ribbon-shaped coil having a rectangular cross-sectional shape is spirally wound along the side wall of the vacuum chamber in a state where the surface in the width direction of the ribbon-shaped coil faces the side wall surface of the vacuum chamber , Storing the plastic container in the vacuum chamber such that the axis of the plastic container is substantially parallel to the winding axis of the ribbon-shaped coil;
Exhausting the internal gas of the vacuum chamber;
Supplying a raw material gas into the plastic container;
Supplying high-frequency power to the ribbon-shaped coil, converting the source gas into plasma, and forming a gas barrier thin film on the inner wall surface of the plastic container;
A method for producing a plastic container having gas barrier properties, comprising:
前記リボン状コイルに高周波電力を供給した時に、準静電界の電気力線を、前記プラスチック容器の軸の横断面方向に対して平行に発生させることを特徴とする請求項6記載のガスバリア性を有するプラスチック容器の製造方法。 The gas barrier property according to claim 6 , wherein when high-frequency power is supplied to the ribbon-like coil, electric lines of force of a quasi-electrostatic field are generated in parallel to the transverse cross-sectional direction of the axis of the plastic container. A method for producing a plastic container. 前記ガスバリア薄膜として、炭素膜、珪素含有炭素膜又はSiO膜を成膜することを特徴とする請求項6又は7に記載のガスバリア性を有するプラスチック容器の製造方法。 The method for producing a plastic container having gas barrier properties according to claim 6 or 7, wherein a carbon film, a silicon-containing carbon film, or a SiO x film is formed as the gas barrier thin film.
JP2005121585A 2005-04-19 2005-04-19 Plasma CVD film forming apparatus and method for manufacturing plastic container having gas barrier property Active JP4854983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005121585A JP4854983B2 (en) 2005-04-19 2005-04-19 Plasma CVD film forming apparatus and method for manufacturing plastic container having gas barrier property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005121585A JP4854983B2 (en) 2005-04-19 2005-04-19 Plasma CVD film forming apparatus and method for manufacturing plastic container having gas barrier property

Publications (2)

Publication Number Publication Date
JP2006299331A JP2006299331A (en) 2006-11-02
JP4854983B2 true JP4854983B2 (en) 2012-01-18

Family

ID=37467982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121585A Active JP4854983B2 (en) 2005-04-19 2005-04-19 Plasma CVD film forming apparatus and method for manufacturing plastic container having gas barrier property

Country Status (1)

Country Link
JP (1) JP4854983B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9659758B2 (en) 2005-03-22 2017-05-23 Honeywell International Inc. Coils utilized in vapor deposition applications and methods of production
JP2007016300A (en) * 2005-07-11 2007-01-25 Mitsubishi Heavy Ind Ltd Plasma processing apparatus, and its operating method
JP5610345B2 (en) * 2010-12-01 2014-10-22 麒麟麦酒株式会社 Manufacturing method of plastic container having gas barrier property, adapter for small container and thin film deposition apparatus
JP6848578B2 (en) * 2017-03-23 2021-03-24 三菱ケミカル株式会社 How to make a plastic bottle
US11183373B2 (en) 2017-10-11 2021-11-23 Honeywell International Inc. Multi-patterned sputter traps and methods of making
US20230253757A1 (en) * 2020-08-19 2023-08-10 Mitsubishi Electric Corporation Semiconductor laser module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3413661B2 (en) * 1991-08-20 2003-06-03 株式会社ブリヂストン Surface treatment method and apparatus
JPH08213195A (en) * 1995-02-02 1996-08-20 Mitsubishi Heavy Ind Ltd Sheet plasma generator
JPH0982495A (en) * 1995-09-18 1997-03-28 Toshiba Corp Plasma producing device and method
JP2002121667A (en) * 2000-10-12 2002-04-26 Mitsubishi Shoji Plast Kk Method and apparatus for continuously forming dlc film in plastic container
JP2004124165A (en) * 2002-10-02 2004-04-22 Toppan Printing Co Ltd Plasma treatment apparatus

Also Published As

Publication number Publication date
JP2006299331A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4515280B2 (en) Apparatus and method for manufacturing a plastic container having a gas barrier thin film formed thereon
JP4854983B2 (en) Plasma CVD film forming apparatus and method for manufacturing plastic container having gas barrier property
JP4566719B2 (en) Carbon film coated plastic container manufacturing method, plasma CVD film forming apparatus and plastic container
WO2003085165A1 (en) Plasma cvd film forming apparatus and method for manufacturing cvd film coating plastic container
JP2008088472A (en) Gas barrier property plastic vessel production device and method for producing the same
KR101357325B1 (en) Method for manufacturing gas barrier thin film-coated plastic container
JP6862926B2 (en) Gas barrier film forming apparatus and film forming method and manufacturing method of plastic container with gas barrier film
JP4664658B2 (en) Plasma CVD film forming apparatus and method for manufacturing plastic container having gas barrier property
JP4132982B2 (en) DLC film coated plastic container manufacturing equipment
JP4722667B2 (en) Method for suppressing plasma generation outside reaction chamber, method for manufacturing gas barrier plastic container, and apparatus for manufacturing the same
JP4722674B2 (en) Plasma CVD film forming apparatus and gas barrier plastic container manufacturing method
JP2005105294A (en) Cvd film-forming apparatus, and method for manufacturing plastic container coated with cvd film
JPWO2003000559A1 (en) DLC film-coated plastic container manufacturing apparatus, DLC film-coated plastic container and method for manufacturing the same
JP4593357B2 (en) Method for producing gas-barrier plastic container with reduced mouth coloring and the container
JP5032080B2 (en) Gas barrier plastic container manufacturing apparatus and manufacturing method thereof
JP4458916B2 (en) Atmospheric pressure plasma type bottle film forming apparatus and gas barrier thin film coating plastic bottle manufacturing method
JP5610345B2 (en) Manufacturing method of plastic container having gas barrier property, adapter for small container and thin film deposition apparatus
JP2006299332A (en) Plasma cvd film deposition apparatus, and method of manufacturing plastic container having barrier property
JP2005113202A (en) Plasma cvd film deposition system
JP4279127B2 (en) Gas barrier thin film coated plastic container manufacturing apparatus and manufacturing method thereof
JP6657766B2 (en) Plastic container and manufacturing method thereof
JP2006335379A (en) Synthetic-resin-made container with coat, method and apparatus for forming coat on synthetic-resin-made container
JP4945398B2 (en) Manufacturing method of ultra-thin carbon film coated plastic container
JP4595487B2 (en) Deposition method of gas barrier silicon oxide thin film by CVD method
JPWO2003000558A1 (en) Moisture / gas barrier plastic container with partition plate, device for manufacturing the same, and method for manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070918

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080508

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4854983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250