JP4590666B2 - Conductive paste and ceramic electronic component using the same - Google Patents

Conductive paste and ceramic electronic component using the same Download PDF

Info

Publication number
JP4590666B2
JP4590666B2 JP35508799A JP35508799A JP4590666B2 JP 4590666 B2 JP4590666 B2 JP 4590666B2 JP 35508799 A JP35508799 A JP 35508799A JP 35508799 A JP35508799 A JP 35508799A JP 4590666 B2 JP4590666 B2 JP 4590666B2
Authority
JP
Japan
Prior art keywords
component
glass frit
conductive paste
metal oxide
ceramic electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35508799A
Other languages
Japanese (ja)
Other versions
JP2001176327A (en
Inventor
智毅 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP35508799A priority Critical patent/JP4590666B2/en
Publication of JP2001176327A publication Critical patent/JP2001176327A/en
Application granted granted Critical
Publication of JP4590666B2 publication Critical patent/JP4590666B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック電子部品の厚膜電極形成に用いられる導電性ペーストに関し、より特定的には、積層セラミック電子部品の外部電極形成に用いられる導電性ペーストに関するものである。
【0002】
【従来の技術】
従来より導電性ペーストは、例えばAg,Ag/Pd,Au等の貴金属、あるいはCu,Ni等の卑金属からなる導電性粉末と、溶剤に有機バインダを溶解させた有機ビヒクルと、ガラスフリットとから主になる。ガラスフリットは、例えばB23、SiO2、Al23、ZnO、BaO、Bi23、PbO等の金属酸化物等からなる。
【0003】
従来よりセラミック電子部品、例えば積層セラミックコンデンサは、積層体と、内部電極と、外部電極とから主になる。積層体は、例えば誘電体からなる複数のセラミック層が積層され圧着され焼成されてなる。内部電極は、上述したセラミック層の所定枚数に電極膜が印刷され、セラミック層とともに同時焼成されてなる。内部電極の一端は、積層体の一方の端面に露出し、他端は積層体の内部にとどまるように形成されている。外部電極は、積層体の端面に形成された一対の厚膜電極であり、導電性ペースト中に浸漬塗布され乾燥、焼成されてなる。また、外部電極は、積層体の端面に露出された内部電極の一端と電気的かつ機械的に接合されている。
【0004】
また、外部電極の半田濡れ性ならびに半田耐熱性を向上させる目的で、例えばNi、Snあるいは半田等からなるめっき膜が外部電極を覆うように施される。
【0005】
【発明が解決しようとする課題】
しかしながら、従来のセラミック電子部品のめっき工程において、外部電極に存在するポアを伝ってめっき液が外部電極の内部に浸入し、場合によってめっき液は積層体にまで達し、複数のセラミック層の層界面に浸入して積層体にクラックが発生する。
【0006】
また、セラミック層ならびに内部電極の薄層化とともに積層されるセラミック層の枚数が増加し、クラック発生の頻度が高くなる傾向にある。
【0007】
本発明の目的は、外部電極を覆うようにNi、Snあるいは半田等からなるめっき膜を形成しても、めっき液が外部電極の内部を伝って積層体に達することを抑え得る導電性ペースト、ならびにめっき液の浸入によるクラックの発生を抑えたセラミック電子部品を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の導電性ペーストは、導電性粉末と、ガラスフリットと、有機ビヒクルとからなり、ガラスフリットは、Cu成分とNi成分から選ばれる少なくとも1種からなる金属酸化物群Aを含有しBi成分を含有せず、金属酸化物群Aは、ガラスフリット100モル%に対し酸化物モル比で6〜8.5モル%含有することを特徴とする。
【0009】
また、ガラスフリットは金属酸化物群Aと金属酸化物群Bとからなり、金属酸化物群Bは、B成分,Si成分,Al成分,Zn成分およびBa成分を含有することが好ましい。
【0010】
また、本発明の導電性ペーストにおける導電性粉末とガラスフリットの容積比率は、導電性粉末50.0〜92.5体積%に対してガラスフリット7.5〜50.0体積%であることが好ましい。
【0011】
また、本発明のセラミック電子部品は、複数のセラミック層が積層されてなる積層体と、積層体の端面に形成された一対の外部電極と、前記外部電極を覆うようにめっき膜を備えるセラミック電子部品であって、外部電極は、本発明の導電性ペーストを焼成してなることを特徴とする。
【0012】
【発明の実施の形態】
本発明の導電性ペーストに用いるガラスフリットとしては、Cu成分とNi成分から選ばれる少なくとも1種からなる金属酸化物群Aと、例えばB成分、Si成分、Al成分、Zn成分、Ba成分を含有する金属酸化物群Bとからなるものが挙げられ、金属酸化物群Aの含有量は、ガラスフリット100モル%に対して、それぞれCuO,NiO,B23,SiO2,Al23,ZnO,BaO換算の酸化物モル比で2〜15モル%の範囲内であることを要する。金属酸化物群Aの含有量が2モル%未満であると、金属酸化物群Aの添加効果が十分に発揮されない。他方、金属酸化物群Aの含有量が15モル%を超えると、ガラスフリット全体の組成が大きく変化し、外部電極を覆うようにめっき膜を形成した場合にめっき液が外部電極内部に浸入し、本発明の効果が得られない。
【0013】
また、本発明の導電性ペーストのガラスフリットは、Bi成分を含有しないことを要する。ガラスフリット中にBi成分を含有すると、外部電極を覆うようにめっき膜を形成した場合に、めっき液が外部電極内部に浸入して本発明の効果が得られにくい。
【0014】
また、導電性粉末とガラスフリットの容積比率は、導電性粉末50.0〜92.5%に対してガラスフリット7.5〜50.0体積%であることが好ましい。ガラスフリットの容積比率が7.5体積%未満になると、Cu成分あるいはNi成分がクラックの発生を抑制する効果が低下する。他方、ガラスフリットの容積比率が50体積%を超えると、めっき付着性が低下する。
【0015】
次に、本発明のセラミック電子部品の一つの実施形態として積層セラミックコンデンサを挙げ、これを図1に示して詳細に説明する。積層セラミックコンデンサ1は、積層体2と、内部電極3と、外部電極4,4と、Niめっき膜5,5と、Snめっき膜6,6を備える。
【0016】
積層体2は、例えば誘電体からなる複数のセラミック層2aが積層され圧着され焼成されてなる。内部電極3は、上述したセラミック層2aの所定枚数に電極膜が印刷され、セラミック層2aとともに同時焼成されてなる。内部電極3,3の一端は、積層体2の一方の端面に露出し、他端は積層体2の内部にとどまるように形成されている。外部電極4,4は、積層体2の端面に形成された一対の厚膜電極であり、導電性ペースト中に浸漬塗布され乾燥、焼成されてなり、積層体2の端面に露出された内部電極3の一端と電気的かつ機械的に接合されている。Niめっき膜5,5は、外部電極4,4を覆うように形成されている。Snめっき膜6,6は、Niめっき膜5,5を覆うように形成されている。
【0017】
なお、上述した本発明のセラミック電子部品の一つの実施形態において、セラミック電子部品として例えば積層セラミックコンデンサを挙げたが、本発明は特にこれに限定されることなく、NTCサーミスタ、PTCサーミスタ、バリスタ等であっても構わない。
【0018】
また、上述した本発明のセラミック電子部品の一つの実施形態において、積層体の内部に内部電極を備えるものを挙げたが、本発明の内部電極の形状ならびに枚数は特にこれに限定されることはなく、内部電極の一端が外部電極と電気的かつ機械的に接合されていなくても構わない。また、積層体の内部に内部電極が積層されていなくても構わない。
【0019】
また、上述した本発明のセラミック電子部品の一つの実施形態において、めっき膜としてNiめっき膜とSnめっき膜を形成したが、本発明のめっき膜の材質ならびに層数は特にこれに限定されることはない。
【0020】
【実施例】
まず、表1に示すようなガラスフリットの組成比率となるように、以下の方法によりガラスフリットを作製した。すなわち、出発原料としてH3BO3、SiO2、Al(OH)3、ZnO、BaCO3、およびCu(OH)2、Ni(OH)2を準備し、それぞれ所定量調合した。次に、アルミナ坩堝中で1200℃で溶融し、水中に投下して急冷してガラス化させ、得られたガラスのカレットをめのう乳鉢で粗粉砕し、ジルコニア球をメディアに用いたボールミルを用いて微粉砕を行い、試料1〜25のガラスフリットを得た。
【0021】
次に、試料1〜25のガラスフリットを用いて導電性ペーストを作製した。すなわち、Cu粉末が80%、試料1〜25のガラスフリットが20%の容積比率となるようにこれらを混合し、さらに有機ビヒクルを適量加えて三本ロールで混練し分散して、試料1〜25の導電性ペーストを作製した。なお、有機ビヒクルは、テルピネオールにアクリル樹脂を10重量%溶解して作製した。
【0022】
次に、上述した図1に示す積層セラミックコンデンサを作製した。すなわち、BaTiO3を主成分として、Niを導電成分とする複数の内部電極3,3を備える積層体2を準備した。次に、この積層体2の両端面を試料1〜25の導電性ペーストに浸漬塗布し、120℃で10分間乾燥させた後、850℃で10分間保持して焼成して外部電極4,4を形成した。なお、焼成はCu粉末が酸化しないよう中性雰囲気中で行った。次に、外部電極を覆うようにNiめっき膜5,5およびSnめっき膜6,6を施して、試料1〜25の積層セラミックコンデンサを各々1000個ずつ得た。
【0023】
そこで、試料1〜25の積層セラミックコンデンサについて、積層体内部の欠陥検査を行い、積層体にクラックが発生しているものを計数してこれを表1にまとめた。また、試料1〜21については、ガラスフリット中の金属酸化物群Aの含有量とクラック発生数の関係を図2のグラフにまとめた。
【0024】
【表1】

Figure 0004590666
【0025】
表1から明らかであるように、ガラスフリット100モル%に対して酸化物モル比で2〜15モル%のNi成分あるいはCu成分を含有する試料3〜8,11〜16,18〜20は、各々1000個中のクラック発生数が0〜25であり、何れも3%を下回る優れた結果が得られた。
【0026】
これに対して、Ni成分およびCu成分を含有しない、あるいはNi成分とCu成分の合計含有量が、NiO,CuO換算で2.0%を下回る試料1,2,10は、93〜221個のクラックが発生して本発明の範囲外となった。
【0027】
また、Ni成分とCu成分の合計含有量が、NiO,CuO換算で15.0%を超える試料9,17,21は、105〜189個のクラックが発生して本発明の範囲外となった。
【0028】
図2の実線から明らかであるように、ガラスフリット中のCu成分の含有量がCuO換算で2モル%を超える付近からクラック発生数が急激に減少する。クラック発生数は、Cu成分の含有量がCuO換算のモル比6〜8.5モル%の付近で最少となり15モル%を超えるとクラック発生数は再び増加した。
【0029】
また、図2の点線から明らかであるように、ガラスフリット中のNi成分の含有量がNiO換算で2モル%を超える付近からクラック発生数が急激に減少する。クラック発生数は、Ni成分の含有量がNiO換算のモル比6〜8.5モル%の付近で最少となり15モル%を超えるとクラック発生数は再び増加した。
【0030】
また、図2の二点鎖線から明らかであるように、ガラスフリット中のNi成分とCu成分の合計含有量が、NiO,CuO換算のモル比で2モル%を超える付近からクラック発生数が急激に減少した。クラック発生数は、Ni成分とCu成分の合計含有量が、NiO,CuO換算のモル比6〜8.5モル%の付近で最少となり、15モル%を超えるとクラック発生数は再び増加した。
【0031】
また、Cu成分およびNi成分の何れも含有しないガラスフリットを用いた試料1と、試料1とほぼ同じガラスフリット組成に加えてBi成分をBi23換算のモル比で1%含有する試料25を比較すると、クラック発生数はそれぞれ221、370個であり、Bi成分を含有することでクラック発生数が増加していることが分かる。この結果を踏まえて、Cu成分をCuO換算のモル比で8.5%、Bi成分をBi23換算のモル比で0.5〜2.0%含有する試料22〜24と、Cu成分をCuO換算のモル比で8.5%含有してBi成分を含有しない試料6を比較すると、試料6のクラック発生数は0個であるのに対して、試料22〜24のクラック発生数はそれぞれ271,386,483個であり、Bi成分のBi23換算のモル比が大きくなるほどクラック発生数が増加することが分かる。
【0032】
【発明の効果】
以上のように本発明の導電性ペーストは、導電性粉末と、ガラスフリットと、有機ビヒクルとからなり、ガラスフリットは、Cu成分とNi成分から選ばれる少なくとも1種からなる金属酸化物群Aを含有しBi成分を含有せず、金属酸化物群Aは、ガラスフリット100モル%に対し酸化物モル比で6〜8.5モル%含有することを特徴とすることで、このような導電性ペーストを用いて形成されるセラミック電子部品の外部電極を覆うようにNi、Snあるいは半田めっき膜等を形成しても、めっき液が外部電極の内部を伝って積層体に達することを抑制することができるため、クラックの発生を抑えたセラミック電子部品を得ることができる。
【0033】
また、本発明の導電性ペーストにおけるガラスフリットが、金属酸化物群Aと金属酸化物群Bとからなり、金属酸化物群Bは、B成分,Si成分,Al成分,Zn成分およびBa成分を含有することを特徴とすることで、セラミック電子部品の外部電極形成に好適な、いわゆるB−Si−Al−Zn−O系ガラスフリットを含む導電性ペーストとなり、このような導電性ペーストを用いて形成されるセラミック電子部品の外部電極を覆うようにNi、Snあるいは半田めっき膜等を形成しても、めっき液が外部電極の内部を伝って積層体に達することを抑制することができるため、クラックの発生を抑えたセラミック電子部品を得ることができる。
【0034】
また、本発明の導電性ペーストは、導電性粉末とガラスフリットの容積比率は、導電性粉末50.0〜92.5体積%に対してガラスフリット7.5〜50.0体積%であるとき、Cu成分あるいはNi成分がクラックの発生を抑制する効果が顕著となり好ましい。
【図面の簡単な説明】
【図1】本発明に係る一つの実施形態のセラミック電子部品の断面図である。
【図2】本発明に係る一つの実施形態のセラミック電子部品における、ガラスフリット中の金属酸化物群Aの含有量とクラック発生数の関係を示すグラフである。
【符号の説明】
1 セラミック電子部品
2 積層体
3 外部電極
4,5 めっき膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive paste used for forming a thick film electrode of a ceramic electronic component, and more particularly to a conductive paste used for forming an external electrode of a multilayer ceramic electronic component.
[0002]
[Prior art]
Conventionally, a conductive paste is mainly composed of a conductive powder made of a noble metal such as Ag, Ag / Pd, or Au, or a base metal such as Cu or Ni, an organic vehicle in which an organic binder is dissolved in a solvent, and a glass frit. become. Glass frit, for example, a B 2 O 3, SiO 2, Al 2 O 3, ZnO, BaO, Bi 2 O 3, PbO metal oxides such like.
[0003]
Conventionally, a ceramic electronic component such as a multilayer ceramic capacitor is mainly composed of a multilayer body, an internal electrode, and an external electrode. The laminated body is formed by, for example, laminating a plurality of ceramic layers made of a dielectric material, pressing them, and firing them. The internal electrode is formed by printing an electrode film on a predetermined number of the above-described ceramic layers and co-firing with the ceramic layers. One end of the internal electrode is exposed on one end face of the laminate, and the other end is formed so as to remain inside the laminate. The external electrodes are a pair of thick film electrodes formed on the end face of the laminate, and are dip-coated, dried and fired in a conductive paste. The external electrode is electrically and mechanically joined to one end of the internal electrode exposed on the end face of the laminate.
[0004]
For the purpose of improving the solder wettability and solder heat resistance of the external electrode, a plating film made of, for example, Ni, Sn, or solder is applied so as to cover the external electrode.
[0005]
[Problems to be solved by the invention]
However, in the conventional ceramic electronic component plating process, the plating solution penetrates into the external electrode through the pores existing in the external electrode, and in some cases, the plating solution reaches the laminated body, and the layer interface of a plurality of ceramic layers. And cracks occur in the laminate.
[0006]
Further, the number of ceramic layers to be laminated increases as the ceramic layers and internal electrodes become thinner, and the frequency of occurrence of cracks tends to increase.
[0007]
An object of the present invention is to provide a conductive paste capable of suppressing the plating solution from reaching the laminate through the inside of the external electrode even when a plating film made of Ni, Sn, solder, or the like is formed so as to cover the external electrode, Another object of the present invention is to provide a ceramic electronic component that suppresses the generation of cracks due to the penetration of a plating solution.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the conductive paste of the present invention comprises a conductive powder, a glass frit, and an organic vehicle. The glass frit is a metal oxide comprising at least one selected from a Cu component and a Ni component. The product group A is contained , the Bi component is not contained, and the metal oxide group A is characterized by containing 6 to 8.5 mol% in terms of an oxide molar ratio with respect to 100 mol% of the glass frit.
[0009]
The glass frit is composed of a metal oxide group A and a metal oxide group B, and the metal oxide group B preferably contains a B component, a Si component, an Al component, a Zn component, and a Ba component.
[0010]
The volume ratio of the conductive powder and the glass frit in the conductive paste of the present invention is 7.5 to 50.0% by volume of the glass frit with respect to 50.0 to 92.5% by volume of the conductive powder. preferable.
[0011]
The ceramic electronic component of the present invention is a ceramic electronic device comprising a laminate in which a plurality of ceramic layers are laminated, a pair of external electrodes formed on the end face of the laminate, and a plating film so as to cover the external electrodes. It is a component, and the external electrode is formed by firing the conductive paste of the present invention.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The glass frit used in the conductive paste of the present invention contains a metal oxide group A consisting of at least one selected from a Cu component and a Ni component, for example, a B component, a Si component, an Al component, a Zn component, and a Ba component. The content of the metal oxide group A is CuO, NiO, B 2 O 3 , SiO 2 , Al 2 O 3 with respect to 100 mol% of the glass frit, respectively. , ZnO, BaO oxide molar ratio in the range of 2 to 15 mol% is required. When the content of the metal oxide group A is less than 2 mol%, the effect of adding the metal oxide group A is not sufficiently exhibited. On the other hand, if the content of the metal oxide group A exceeds 15 mol%, the composition of the entire glass frit changes greatly, and when a plating film is formed so as to cover the external electrode, the plating solution penetrates into the external electrode. The effect of the present invention cannot be obtained.
[0013]
Further, the glass frit of the conductive paste of the present invention needs to contain no Bi component. If the Bi component is contained in the glass frit, when the plating film is formed so as to cover the external electrode, the plating solution penetrates into the external electrode and it is difficult to obtain the effects of the present invention.
[0014]
Moreover, it is preferable that the volume ratio of electroconductive powder and glass frit is 7.5-50.0 volume% of glass frit with respect to 50.0-92.5% of electroconductive powder. When the volume ratio of the glass frit is less than 7.5% by volume, the effect of suppressing the occurrence of cracks by the Cu component or Ni component is reduced. On the other hand, when the volume ratio of the glass frit exceeds 50% by volume, the plating adhesion is lowered.
[0015]
Next, a multilayer ceramic capacitor is cited as one embodiment of the ceramic electronic component of the present invention, which will be described in detail with reference to FIG. The multilayer ceramic capacitor 1 includes a multilayer body 2, internal electrodes 3, external electrodes 4 and 4, Ni plating films 5 and 5, and Sn plating films 6 and 6.
[0016]
The multilayer body 2 is formed by laminating a plurality of ceramic layers 2a made of, for example, a dielectric, press-bonding and firing. The internal electrode 3 is formed by printing an electrode film on a predetermined number of the ceramic layers 2a described above and simultaneously firing the ceramic layers 2a. One end of each of the internal electrodes 3 and 3 is exposed on one end face of the multilayer body 2, and the other end is formed so as to remain inside the multilayer body 2. The external electrodes 4, 4 are a pair of thick film electrodes formed on the end face of the laminate 2, which are dip-coated, dried and fired in a conductive paste, and are exposed to the end face of the laminate 2. 3 is electrically and mechanically joined to one end. The Ni plating films 5 and 5 are formed so as to cover the external electrodes 4 and 4. The Sn plating films 6 and 6 are formed so as to cover the Ni plating films 5 and 5.
[0017]
In the above-described embodiment of the ceramic electronic component of the present invention, a multilayer ceramic capacitor is exemplified as the ceramic electronic component. However, the present invention is not particularly limited to this, and an NTC thermistor, a PTC thermistor, a varistor, etc. It does not matter.
[0018]
Moreover, in one embodiment of the ceramic electronic component of the present invention described above, the multilayer body is provided with an internal electrode, but the shape and number of internal electrodes of the present invention are not particularly limited to this. Alternatively, one end of the internal electrode may not be electrically and mechanically joined to the external electrode. Moreover, the internal electrode does not need to be laminated | stacked inside the laminated body.
[0019]
Moreover, in one embodiment of the ceramic electronic component of the present invention described above, the Ni plating film and the Sn plating film are formed as the plating film, but the material and the number of layers of the plating film of the present invention are particularly limited to this. There is no.
[0020]
【Example】
First, a glass frit was prepared by the following method so that the composition ratio of the glass frit shown in Table 1 was obtained. That is, H 3 BO 3 , SiO 2 , Al (OH) 3 , ZnO, BaCO 3 , Cu (OH) 2 , and Ni (OH) 2 were prepared as starting materials, and predetermined amounts were prepared. Next, it is melted at 1200 ° C. in an alumina crucible, dropped into water and rapidly cooled to be vitrified. The resulting glass cullet is coarsely ground in an agate mortar, and a ball mill using zirconia spheres as media is used. Fine grinding was performed to obtain glass frit of Samples 1 to 25.
[0021]
Next, the conductive paste was produced using the glass frit of samples 1-25. That is, these were mixed so that the volume ratio of the Cu powder was 80% and the glass frit of Samples 1 to 25 was 20%, and an appropriate amount of an organic vehicle was added, and kneaded with three rolls and dispersed. 25 conductive pastes were produced. The organic vehicle was prepared by dissolving 10% by weight of acrylic resin in terpineol.
[0022]
Next, the above-described multilayer ceramic capacitor shown in FIG. 1 was produced. That is, a laminate 2 including a plurality of internal electrodes 3 and 3 containing BaTiO 3 as a main component and Ni as a conductive component was prepared. Next, both end surfaces of the laminate 2 are dip-coated on the conductive pastes of Samples 1 to 25, dried at 120 ° C. for 10 minutes, held at 850 ° C. for 10 minutes and fired to be external electrodes 4, 4. Formed. The firing was performed in a neutral atmosphere so that the Cu powder was not oxidized. Next, Ni plating films 5 and 5 and Sn plating films 6 and 6 were applied so as to cover the external electrodes, and 1000 multilayer ceramic capacitors of Samples 1 to 25 were obtained.
[0023]
Therefore, the multilayer ceramic capacitors of Samples 1 to 25 were subjected to a defect inspection inside the multilayer body, and those having cracks in the multilayer body were counted and summarized in Table 1. Moreover, about the samples 1-21, the relationship between content of the metal oxide group A in a glass frit and the number of crack generation was put together in the graph of FIG.
[0024]
[Table 1]
Figure 0004590666
[0025]
As is apparent from Table 1, Samples 3 to 8, 11 to 16, and 18 to 20 containing 2 to 15 mol% of Ni component or Cu component in an oxide molar ratio with respect to 100 mol% of glass frit are as follows: The number of occurrences of cracks in each 1,000 pieces was 0 to 25, and excellent results of less than 3% were obtained.
[0026]
On the other hand, Samples 1, 2, and 10 that do not contain Ni component and Cu component, or the total content of Ni component and Cu component is less than 2.0% in terms of NiO and CuO are 93 to 221 samples. Cracks occurred and were outside the scope of the present invention.
[0027]
Further, Samples 9, 17, and 21 in which the total content of Ni component and Cu component exceeds 15.0% in terms of NiO and CuO are out of the scope of the present invention due to 105 to 189 cracks. .
[0028]
As is clear from the solid line in FIG. 2, the number of cracks sharply decreases from the vicinity where the content of the Cu component in the glass frit exceeds 2 mol% in terms of CuO. The number of cracks was minimized when the Cu component content was in the vicinity of a molar ratio of 6 to 8.5 mol% in terms of CuO, and when it exceeded 15 mol%, the number of cracks increased again.
[0029]
Further, as is apparent from the dotted line in FIG. 2, the number of cracks rapidly decreases when the content of the Ni component in the glass frit exceeds 2 mol% in terms of NiO. The number of cracks was minimized when the Ni component content was around 6 to 8.5 mol% in terms of NiO, and the number of cracks increased again when it exceeded 15 mol%.
[0030]
In addition, as is apparent from the two-dot chain line in FIG. 2, the number of cracks suddenly increases when the total content of the Ni component and the Cu component in the glass frit exceeds 2 mol% in terms of a molar ratio in terms of NiO and CuO. Decreased. The number of occurrences of cracks was minimized when the total content of the Ni component and the Cu component was in the vicinity of a molar ratio of 6 to 8.5 mol% in terms of NiO and CuO.
[0031]
Further, Sample 1 using glass frit containing neither Cu component nor Ni component, and Sample 25 containing 1% Bi component in a molar ratio in terms of Bi 2 O 3 in addition to almost the same glass frit composition as Sample 1. The number of cracks generated is 221 and 370, respectively, and it can be seen that the number of cracks generated is increased by containing the Bi component. Based on this result, Samples 22 to 24 containing Cu component in a molar ratio of CuO in terms of 8.5% and Bi component in a molar ratio of Bi 2 O 3 in terms of 0.5 to 2.0%, and Cu component When the sample 6 containing 8.5% in terms of CuO equivalent and containing no Bi component is compared, the number of cracks in the sample 6 is 0, whereas the number of cracks in the samples 22-24 is It is found that the number is 271,386,483, respectively, and the number of cracks increases as the molar ratio of Bi component in terms of Bi 2 O 3 increases.
[0032]
【The invention's effect】
As described above, the conductive paste of the present invention comprises a conductive powder, a glass frit, and an organic vehicle. The glass frit comprises a metal oxide group A composed of at least one selected from a Cu component and a Ni component. contains contains no Bi component, a metal oxide group a, by characterized in that the glass frit 100 mol% relative containing from 6 to 8.5 mol% in oxide molar ratio, such conductive Even if Ni, Sn, a solder plating film, or the like is formed so as to cover the external electrode of the ceramic electronic component formed using the conductive paste, the plating solution is prevented from reaching the laminated body through the external electrode. Therefore, it is possible to obtain a ceramic electronic component in which generation of cracks is suppressed.
[0033]
Further, the glass frit in the conductive paste of the present invention comprises a metal oxide group A and a metal oxide group B, and the metal oxide group B contains a B component, a Si component, an Al component, a Zn component, and a Ba component. By containing, it becomes a conductive paste containing so-called B-Si-Al-Zn-O-based glass frit suitable for external electrode formation of ceramic electronic components, and using such a conductive paste Even if Ni, Sn, or a solder plating film is formed so as to cover the external electrode of the ceramic electronic component to be formed, it is possible to suppress the plating solution from reaching the laminate through the external electrode, A ceramic electronic component in which generation of cracks is suppressed can be obtained.
[0034]
In the conductive paste of the present invention, the volume ratio of the conductive powder and the glass frit is 7.5 to 50.0% by volume of the glass frit with respect to 50.0 to 92.5% by volume of the conductive powder. The Cu component or Ni component is preferable because the effect of suppressing the occurrence of cracks is remarkable.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a ceramic electronic component of one embodiment according to the present invention.
FIG. 2 is a graph showing the relationship between the content of metal oxide group A in the glass frit and the number of cracks generated in the ceramic electronic component of one embodiment according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ceramic electronic component 2 Laminated body 3 External electrode 4, 5 Plating film

Claims (4)

導電性粉末と、ガラスフリットと、有機ビヒクルと、からなる導電性ペーストであって、
前記ガラスフリットは、Cu成分とNi成分から選ばれる少なくとも1種からなる金属酸化物群Aを含有しBi成分を含有せず、
前記金属酸化物群Aは、前記ガラスフリット100モル%に対し酸化物モル比で6〜8.5モル%含有することを特徴とする導電性ペースト。
A conductive paste comprising conductive powder, glass frit, and an organic vehicle,
The glass frit contains a metal oxide group A composed of at least one selected from a Cu component and a Ni component, does not contain a Bi component,
The metal oxide group A is contained in an oxide molar ratio of 6 to 8.5 mol% with respect to 100 mol% of the glass frit.
前記ガラスフリットは金属酸化物群Aと金属酸化物群Bとからなり、前記金属酸化物群Bは、B成分,Si成分,Al成分,Zn成分およびBa成分を含有することを特徴とする、請求項1に記載の導電性ペースト。  The glass frit comprises a metal oxide group A and a metal oxide group B, and the metal oxide group B contains a B component, a Si component, an Al component, a Zn component, and a Ba component, The conductive paste according to claim 1. 前記導電性粉末と前記ガラスフリットの容積比率は、前記導電性粉末50.0〜92.5体積%に対して前記ガラスフリット7.5〜50.0体積%であることを特徴とする、請求項1または2に記載の導電性ペースト。  The volume ratio of the conductive powder and the glass frit is 7.5 to 50.0% by volume of the glass frit with respect to 50.0 to 92.5% by volume of the conductive powder. Item 3. The conductive paste according to Item 1 or 2. 複数のセラミック層が積層されてなる積層体と、前記積層体の端面に形成された一対の外部電極と、前記外部電極を覆うようにめっき膜を備えるセラミック電子部品であって、
前記外部電極は、請求項1ないし3の何れかに記載の導電性ペーストを焼成してなることを特徴とするセラミック電子部品。
A laminated body in which a plurality of ceramic layers are laminated, a pair of external electrodes formed on an end face of the laminated body, and a ceramic electronic component including a plating film so as to cover the external electrodes,
A ceramic electronic component, wherein the external electrode is formed by firing the conductive paste according to any one of claims 1 to 3.
JP35508799A 1999-12-14 1999-12-14 Conductive paste and ceramic electronic component using the same Expired - Lifetime JP4590666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35508799A JP4590666B2 (en) 1999-12-14 1999-12-14 Conductive paste and ceramic electronic component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35508799A JP4590666B2 (en) 1999-12-14 1999-12-14 Conductive paste and ceramic electronic component using the same

Publications (2)

Publication Number Publication Date
JP2001176327A JP2001176327A (en) 2001-06-29
JP4590666B2 true JP4590666B2 (en) 2010-12-01

Family

ID=18441869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35508799A Expired - Lifetime JP4590666B2 (en) 1999-12-14 1999-12-14 Conductive paste and ceramic electronic component using the same

Country Status (1)

Country Link
JP (1) JP4590666B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4103672B2 (en) 2003-04-28 2008-06-18 株式会社村田製作所 Conductive paste and glass circuit structure
JP4760836B2 (en) * 2008-01-16 2011-08-31 株式会社村田製作所 Conductive paste and glass circuit structure
JP2017022232A (en) * 2015-07-09 2017-01-26 株式会社村田製作所 Electronic component and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239410A (en) * 1988-07-28 1990-02-08 Shoei Chem Ind Co Conductive composed material for ceramic capacitor terminal electrode
JPH1074419A (en) * 1996-06-25 1998-03-17 Du Pont Kk Conductive paste composition for terminal electrode of chip resistor
JPH10294017A (en) * 1997-04-21 1998-11-04 Murata Mfg Co Ltd Conductive paste
JPH11260146A (en) * 1998-03-12 1999-09-24 Murata Mfg Co Ltd Conductive paste and electronic component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239410A (en) * 1988-07-28 1990-02-08 Shoei Chem Ind Co Conductive composed material for ceramic capacitor terminal electrode
JPH1074419A (en) * 1996-06-25 1998-03-17 Du Pont Kk Conductive paste composition for terminal electrode of chip resistor
JPH10294017A (en) * 1997-04-21 1998-11-04 Murata Mfg Co Ltd Conductive paste
JPH11260146A (en) * 1998-03-12 1999-09-24 Murata Mfg Co Ltd Conductive paste and electronic component

Also Published As

Publication number Publication date
JP2001176327A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
JP5003683B2 (en) Glass ceramic composition, glass ceramic sintered body, and multilayer ceramic electronic component
JPH113834A (en) Multilayer ceramic capacitor and its manufacture
EP3357878B1 (en) Conductive paste and terminal electrode forming method for laminated ceramic part
JP5796568B2 (en) Ceramic electronic components
KR102107032B1 (en) Glass composition, paste for external electrode including the same and multi-layer ceramic electronic part
JP2666388B2 (en) Multilayer ceramic capacitors
JP2001345231A (en) Conductive paste and ceramic electronic part
US6797661B2 (en) Dielectric composition, method of manufacturing a ceramic multilayer element, and electronic device
JP3523280B2 (en) Manufacturing method of multilayer ceramic parts
JP5668429B2 (en) Multilayer ceramic electronic components
JP3494115B2 (en) Conductive paste and multilayer ceramic electronic component using the same
JP5498973B2 (en) Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JPH10335115A (en) Ceramics composite laminated component
JP4590666B2 (en) Conductive paste and ceramic electronic component using the same
EP0987721B1 (en) Chip-type multilayer electronic part
JP2002270457A (en) Conductive paste and ceramic electronic component
JP2004111698A (en) Laminated ceramic electronic component
JP4576660B2 (en) Conductive paste for multilayer ceramic capacitor and multilayer ceramic capacitor using the same
JPH08330173A (en) Multilayer ceramic capacitor and its manufacture
KR20130027784A (en) Conductive paste for external electrode, multi-layered ceramic electronic parts fabricated by using the same and fabricating method thereof
JPH11102835A (en) Laminated ceramic electronic component and manufacture thereof
JP2005019185A (en) Copper conductive paste and laminated ceramic electronic part
JP3554957B2 (en) Multilayer ceramic electronic component and method of manufacturing the same
JP2021015925A (en) Multilayer ceramic capacitor
JP2003323817A (en) Conductive paste and laminated ceramic electronic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4590666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term