JP4590023B2 - 試料ホルダ - Google Patents

試料ホルダ Download PDF

Info

Publication number
JP4590023B2
JP4590023B2 JP2010129587A JP2010129587A JP4590023B2 JP 4590023 B2 JP4590023 B2 JP 4590023B2 JP 2010129587 A JP2010129587 A JP 2010129587A JP 2010129587 A JP2010129587 A JP 2010129587A JP 4590023 B2 JP4590023 B2 JP 4590023B2
Authority
JP
Japan
Prior art keywords
sample
wafer
sample holder
fib
tem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010129587A
Other languages
English (en)
Other versions
JP2010204118A (ja
Inventor
馨 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010129587A priority Critical patent/JP4590023B2/ja
Publication of JP2010204118A publication Critical patent/JP2010204118A/ja
Application granted granted Critical
Publication of JP4590023B2 publication Critical patent/JP4590023B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、試料ホルダに係わる。
半導体素子製造では良品をよどみなく生産し続けることが求められる。生産個数が大量であるため、ある工程での不良発生が製品歩留りの低下や生産ラインの停止につながり、採算に大きく影響する。このため半導体素子の製造現場では、特定のプロセス後やデバイス完成後には入念な検査が行なわれ不良品の撲滅と原因追及に注力している。実際には製造工程で、定期的または定量数ごとにウエハやデバイスを抜き取り、不良箇所の有無を検査している。ウエハの場合、検査箇所と検査項目を予め決めておき各ウエハに対して常にその検査箇所をモニタして製造プロセスの異常を検出する方法や、完成後のウエハ全面を隈無く検査して、回路パターンの欠陥や異物など異常箇所があればそのデバイスを廃棄したり、異常原因を追及して対策する方法が行なわれる。
検査方法の一例として、ウエハ全面もしくは一部の領域の外観について異物の付着や形成された回路パターンの欠陥などを検出する検査方法があり、光や電子線を用いたウエハ外観検査装置(以下、ウエハ検査装置と略記)やウエハ検査電子顕微鏡(以下、検査SEMと略記)や、回路の断線や短絡など電気的不良を検出するプローバ装置などがある。
さらに詳細な試料外観観察には高分解能の走査型電子顕微鏡(以下、SEMと略記)が用いられるが、半導体の高集積化に伴い、対象物がSEMの分解能では観察できないほど極微細なものについても解析することが必要となっている。この場合、SEMに代って観察分解能が高い透過型電子顕微鏡(以下、TEMと略記)が有力な装置となっている。
ここでTEM用の試料作製方法について説明する。図2は従来のTEM試料の作製方法のうちの一方法を説明する図である。図2(a)はLSIを形成した半導体ウエハ(以下、略してウエハ30という)で、上層部32と基板部31とからなる。このウエハ30のうちの特定領域についてTEM試料を作製するとする。まず、観察したい領域に目印を付け、観察領域を破壊しないようにウエハ30にダイアモンドペンなどで傷付け劈開するか、ダイシングソーで例えば切断線33に沿って分断する。図2(b)のような切り出した短冊状ペレット34を2枚、作製するTEM試料の中央部が観察領域となるようにするため、観察領域同士を向かい合うように接着剤35で貼り合わせて、貼り合わせ試料36を作る(図2(c))。次に、この貼り合わせ試料36をダイヤモンドカッターでスライスし、スライス試料37を切り出す(図2(d))。このスライス試料37の大きさは、3×3×0.5mm程度である。さらに、このスライス試料37を研磨材を用いて研磨盤上で薄く研磨し、厚さ20μm程度の研磨試料38を作製し、これをTEMステージに搭載する単孔型TEMホルダ39に固定する(図2(e))。次に、この研磨試料38の両面にイオンビーム40照射(図2(f))して、イオンシニングを行い(図2(g))、中央部に穴が開いたらイオンビーム40照射を止めてTEM試料41とする(図2(h))。こうして、100nm程度以下に薄くなった薄片部42をTEM観察領域(図中円内)としていた。このような方法であるため、観察したい箇所がミクロンレベルで特定されている場合、位置出しは非常に難しい。
また、TEM試料作製に関する別の従来手法として集束イオンビーム(以下、FIBと略す)加工を利用する例がある。図3で説明する。まず、観察すべき領域の近傍を、図3(a)に示すようにウエハ30をダイシングを行って(符号33が切断線である。)短冊状ペレット34を切り出す(図3(b))。このペレットの大きさは、おおよそ3×0.05×0.5mm(ウエハの厚み)である。この短冊状ペレット34をやや半円形した薄い金属片からなるTEM試料ホルダ37に固定する(図3(c))。この短冊状ペレット34の中の観察領域を、厚さ0.1ミクロン程度の薄片部(以下、ウォール部という)43を残すようにFIB24を照射し(図3(d))、薄壁部を形成する(以下、ウォール加工と言う。図3(e))。これをTEM試料41として、TEMホルダをTEMステージに搭載し、TEM装置に導入してウォール部43を観察する。この方法によって、観察部をミクロンレベルで位置出しすることが可能になった。また、この手法に関しては、例えば、E.C.G.Kirkらが、論文集Microscopy of Semiconducting Materials 1989, Institute of Physics Series No.100., p.501-506(公知例1)において説明している。
このように、TEMは高分解能観察が期待できるが、試料作製に多大の努力を要するという面を持ち合わせている。
Microscopy of Semiconducting Materials 1989, Institute of Physics Series No.100., p.501-506
上述のように、従来の試料解析方法や試料作製方法には以下のような問題点があった。(1)座標の問題:ウエハ全面もしくは一部の検査によって発見した異物や欠陥などの不良箇所を解析する際、ウエハ検査装置や検査SEMなどの検査装置内で不良箇所の座標が明らかになっても、実際に分析装置や観察装置、計測装置(以下、略して分析装置と代表させる)に入るような寸法に分断して分析試料片に加工しなければならず、先の不良箇所の正確な位置がわからなくなり、所望の解析ができないという問題が生じる。
(2)試料作製の問題:ウエハ検査装置や検査SEMによるウエハ全面もしくは一部の検査の結果、ある位置に不良箇所を検出しても、ウエハから解析試料片を作製する時に、解析の目的とする微小異物が無くなったり変質したり、又は、別の損傷を引き起こし重畳して本来の目的とする不良箇所の原因究明ができなくなることがある。これは従来の試料作製方法が試料の切断や研磨、へき開など機械的や化学的な手法に依っていたためで、当初の不良箇所をそのまま状態で分析装置に導入して的確な解析結果を得る歩留りは高いものではなかった。また、このような的確な解析が長時間に及ぶために最終的な製品に不良品が続発して多大の損害をもたらす場合すらある。
(3)ウエハ破損の問題:製造途中のある工程での仕上がりを監視するために、ウエハの特定部のみの継続的な検査においては、定期的に定量数毎に、たった数点の検査箇所に対してウエハを分断して、検査箇所以外はすべて廃棄している。最近ではウエハ径が200mmとなり、さらに300mm、またそれ以上に大口径化する傾向にあるため、付加価値が高いデバイスが数多く搭載されたウエハを数箇所の検査のために切断や劈開で分離して、廃棄処分することは非常に不経済であった。
ここで、上記問題点(1)から(3)のいずれにも関係する例としてTEM試料を例に説明する。TEMは上述のように高分解能を有しているため、微小部分の解析には有力なツールであるが、不良領域の特定から解析結果が出るまでに非常に長い時間を要するため、観察したいときに即座に結果の見えるSEMのようには普及していない。解析結果までに長時間を要する原因の一つは、TEM観察以前の試料作製過程にある。TEM観察領域は厚さを100nm程度にまで薄片化しなければならないため、従来方法では研磨や機械加工など試料作製者の熟練を要する手作業が伴っている。しかも、観察領域がミクロンレベルで特定されると試料作製は極めて困難になる。また、事前に顕微鏡に依ってミクロンオーダで特定していた不良領域の位置を試料作製中に見失ったり、間違ってしまうことが多々ある。また、ウエハから所望の試料片を作製するには、ウエハ劈開や切断など機械的加工によっているため試料への新たな損傷が発生し、本来の不良領域との区別がつかなくなる場合がある。さらに、TEMの試料室は非常に小さく、試料片をミリオーダの大きさに細分化しなければならず、ウエハは必ず分断せざるを得ない。一旦、分析や観察を行った後に、さらに隣接した箇所別の分析や観察の必要が出た場合には、先の試料作製の分断のために後の分析領域が破壊や損傷を受けていたり、正確な位置関係が分からなくなって継続した分析や観察情報が得られないという問題発生する。
このような従来技術に対して、各種検査方法によって得られた不良箇所に対して、ウエハ形状を維持したまま、ウエハ上の所望の箇所のみを機械的や化学的な損傷を重畳することなく、各種分析装置に導入できる試料片に加工して解析できる試料解析方法ならびに試料解析装置が望まれていた。
本発明の目的は、透過型電子顕微鏡観察までに要する時間を短縮することに関する。
本発明では、試料ホルダに固定した料片に対してさらに集束イオンビーム照射による薄壁加工を施して透過型電子顕微鏡観察用の試料に仕上げることにより、透過型電子顕微鏡観察までに要する時間大幅に単縮できる。
本発明を用いることで、ウエハから人の手作業を介することなくTEM観察始めその他の分析、計測、観察のための試料を作製することでき、解析結果を得るまでの時間を短縮させることができる。
本発明による試料解析装置の一実施形態を示す構成ブロック図。 従来のTEM試料の作製手順を説明するための図。 従来のTEM試料の別の作製手順を説明するための図。 本発明による試料解析装置のうち試料作製部の一実施形態を説明するための構成ブロック図。 本発明による試料解析装置の実施形態で特に試料ホルダを説明するための図。 従来のTEMホルダを説明するための図。 本発明による試料解析装置の実施形態における試料作製部のうち、特に移送手段の一実施形態を説明するための図。 本発明による試料解析装置の別の実施形態を示す構成ブロック図。 本発明による試料解析方法における試料作製工程について説明するための図。 従来のTEM用試料ホルダーについて説明するための図である。
本発明による試料作製装置の実施形態は、ウエハを検査して異物や欠陥など所望箇所の座標情報を記憶するウエハ検査部と、上記所望箇所の座標情報を基にして試料基板に対して集束イオンビームを利用して上記所望箇所を含む試料片を摘出して、分析装置または観察装置または計測装置のうちの少なくともいずれかに適する試料ホルダに固定して、これら装置に対応する形状に加工する試料作製部とから構成され、上記ウエハ検査部と試料作製部とは上記ウエハを移動するための真空搬送路によって連結した構成とする。
以下に、その具体的実施形態例を示す。
<実施形態例1>
図1は、本発明による試料解析方法を実現するための試料解析装置の一実施例を示す概略構成図である。
試料解析装置100は、ウエハ検査部101と試料作製部102が機械的に連結されている。ウエハ検査部101はウエハ外観検査装置や検査SEM、プローバ装置に該当する。ウエハ検査によって不良箇所を検出して解析の必要がある場合、ウエハ検査部101と試料作製部102の間に設置したバルブ106を開いて、ウエハ12を試料作製部102へ搬送できる。試料作製部102で加工作製された試料片は別にあるTEM, SEMなど観察装置や分析装置や計測装置などに搬入して不良箇所を解析する。逆に、ウエハ検査の結果、異常がない場合にはウエハ12は試料作製部102に送る必要はなく、次の製造工程の装置に搬送する。
ウエハ検査部101の例として、ここでは検査SEMの場合を示しており、電子ビーム照射光学系103、二次電子検出器104、試料室107内でウエハ12を載置して移動可能な試料ステージ105などから構成している。二次電子検出器104に流入する二次電子信号と電子ビーム照射光学系103のビーム偏向を同期させてウエハ表面形状を表示手段13’に表示でき、ウエハ検査部101全体の制御を計算処理装置17’によって行なう。ウエハ検査にはウエハ上に形成された複数個のデバイスを比較する方法や、デバイスの中のセル同士を比較する方法などがあるが、ここでは限定しない。このようなウエハ検査部100で検出された所望箇所の座標情報を一旦、計算処理装置17’に記憶し、情報伝達手段110によって試料作製部102の計算処理部17に伝達できる。また検査中のウエハ外観や座標情報は表示手段13’に表示できる。
試料作製部102は、試料基板12や摘出試料の加工や観察をするFIB照射光学系2、このFIB照射によって試料から放出する二次電子や二次イオンを検出する二次粒子検出器3、FIB照射領域にデポジション膜を形成するための元材料ガスを供給するデポガス源4、半導体ウエハや半導体チップなどの試料基板12を載置する試料ステージ5、摘出試料を試料ホルダに移し変える移送手段8、試料基板12を観察するための光学顕微鏡9、この光学顕微鏡による像や二次粒子検出器3による像を映す表示手段13、試料作製部102全体を制御する計算処理装置17、試料ステージ5を設置する試料室18などを少なくとも備えた構成である。さらに詳細を図4を用いて説明する。
図4は、図1で示した構成部品に加えて、試料基板12の一部を摘出した微小な摘出試料を固定する試料ホルダ6、試料ホルダを保持する保持手段7(以下、ホルダカセットともいう)、試料ステージ5の位置を制御するためのステージ制御装置10、移送手段8を試料ステージ5と独立に駆動するための移送手段制御装置11、試料ホルダ6や試料基板12や移送手段8などをイオンビーム照射によって発生する2次電子または2次イオンによって映像化する画像表示手段13、FIB照射光学系2のFIB制御装置14など構成され、この他、デポガス源制御装置15、二次粒子検出制御装置16、画像表示手段13、移送手段制御装置11などは計算処理装置17により制御される。
FIB照射光学系2は、液体金属イオン源20から放出したイオンをビーム制限アパチャ21、集束レンズ22、対物レンズ23を通すことで10nm径程度から1ミクロン径程度のFIB24を形成する。FIB24を偏向器25を用いて試料基板12上を走査することで、走査形状に試料基板12にミクロンからサブミクロンレベルの加工ができる。ここでの加工とは、スパッタリングによる凹部や、FIBアシストデポジションによる凸部、もしくは、これらを組み合わせて試料基板の形状を変える操作を指す。FIB照射によって形成するデポジション膜は、移送手段8の先端にある接触部と試料基板12を接続したり、摘出試料を試料ホルダに固定するために使用する。また、FIB照射時に発生する二次電子や二次イオンを二次粒子検出器3で検出して画像化することで加工領域などを観察することができる。
試料ステージ5は試料室18に設置され、FIB照射光学系2なども真空容器内に配置されている。試料ステージ5は、試料ホルダ6を搭載した保持手段(試料ホルダカセット)7が着脱でき、ステ−ジ制御装置10によって、3次元(X,Y,Z)方向の移動及び傾斜、回転が制御される。試料基板12は必要に応じて試料基板搬送路19を用いて出入りする。
試料ホルダ6は図5に示すような凸型断面をした短冊状シリコン片27である。この短冊状シリコン片27は、シリコンウエハからへき開やダイシングソーを利用して形成した。本実施例で用いた試料ホルダの大きさは長さ2.5mm、上部幅50ミクロン、下部幅200ミクロン、高さ0.5mm(シリコンウエハ厚)で、摘出試料の固定面をシリコンウエハ面または劈開面とすることで、摘出試料70を固定面に固着してTEM観察しても固定面の凹凸が電子線照射を阻害することはない。また、試料ホルダ形状はここに示した寸法に限ることはないが、固定面をウエハ面もしくはへき開面にすることと幅をできる限り薄くすることが、TEM観察しやすくするために必要である。図5は摘出試料70を一個の試料ホルダ6に3個搭載した例である。一方、従来のTEM用の試料ホルダは図6(a)の単孔型や(b)のメッシュ型であり、単孔型は中央に直径1mm程度の単孔75が設けられた直径3mm程度の薄厚金属円板76であるが、本発明による試料作製方法で得られる摘出試料70のように10〜20ミクロンと小さいと、摘出試料70を単孔75の側壁に正確に取付けることが非常に難しい。また、メッシュ型では薄肉金属円板76にはメッシュ77が貼られていて試料の大きさに合わせた間隔のメッシュ77を用いれば取付け位置はある程度任意に選ぶことができるが、観察したい領域が電子線経路がメッシュ77の陰になりTEM観察できなくなる危険性が非常に高かった。
ホルダカセット(保持手段)7は試料ホルダ6を支える治具であり、試料ステージ5に搭載する。試料ステージ5は、ウエハも載置できる汎用の大型ステージや、デバイスチップが搭載できる程度の小型ステージを指す。1個のホルダカセット7に搭載する試料ホルダ6の数は1個でも複数個でも良い。また、試料ステージ5に設置できるホルダカセット7の数は1個でも複数個でも良い。
光学顕微鏡9には従来の光学式顕微鏡より高分解能が期待できるレーザ走査顕微鏡を用いた。レーザ走査顕微鏡は発振器28を出たレーザ光を対物レンズによって集束して試料に照射して、微小レーザスポットで励起された焦点からの蛍光は、ダイクロイックミラーを通過して、試料の焦点と共焦点の位置に設置したアパチャを通ってCCD29に届いて試料の焦点からの蛍光のみによって像が形成される。視野を一様に励起する方法に比較して迷光は極めて少なく、焦点以外からの蛍光が仮に発生しても、上記アパチャに妨げられてCCD29には到達せずクリヤな像が得られる。試料基板12とダイクロイックミラーの間に2枚のミラーを設置して、X,Y方向に走査することで、試料表面像を得ることができ表示手段13に表示する。この光学顕微鏡9は、試料基板12に予め設置していたマーク(図示せず)座標と、検査部101で得られた座標情報とを利用する。
なお、集束イオンビーム装置にレーザー顕微鏡を備えた装置については、特開平9-134699号公報『集束イオンビーム装置』(公知例3)に示されているが、試料基板12の特定領域部分を摘出する移送手段8の存在については一切記載されていない。
移送手段8は試料基板が大口径のウエハであっても、その任意の箇所から素早くサンプリングすることを実現するために、移動速度が早くストロークが大きい粗動部60と、粗動部の移動分解能と同等のストロークを有して高い移動分解能の微動部61とで構成し、移送手段全体を試料ステージと独立して設置して、サンプリング位置の大きな移動は試料ステージ移動に分担させた。粗動部のXYZ方向の駆動はモータやギヤ、圧電素子などで構成して、数mm程度のストロークで、数ミクロンの移動分解能を有している。微動部はできるだけコンパクトであることや、精密移動することが要求されるためバイモルフ圧電素子を用いてサブミクロンの移動分解能得ている。図7は移送手段8の粗動部60と微動部61の構成例である。粗動部60は狭窄部62を支点として支柱63が3個のエンコーダ64X、64Z、64Y(図示せず)によってXYZ軸方向に移動できる。粗動部60の駆動系は試料室壁66の横ポートを介して大気側にあり、真空はベローズ65によって遮断されている。バイモルフ圧電素子67の先端には直径50ミクロン程度の細く先鋭化したタングステン製のプローブ68を連結し、粗動部60とは延長棒69によって連結した。バイモルフ圧電素子67に電圧を与えることで、プローブ68先端は微動する。このように移送手段8には、構成、サイズ、設置位置を充分に考慮しなければならず、本発明による試料作製装置ではこれらすべてを解決している。
この移送手段8に類似した従来技術として特開平5-52721号公報『試料の分離方法及びこの分離方法で得た分離試料の分析方法』(公知例2)がある。
この従来技術によれば、分離試料を搬送する搬送手段はバイモルフ圧電素子3個をXYZ軸に対応して構成しているが、その搬送手段の設置位置は不明で、唯一上記公報の図3からステージ上に設置されていると読み取れる。このように、搬送手段が試料ステージに設置されていると、対象試料が例えば直径300mmのウエハの中心部にある場合では、搬送手段先端の移動ストロークが、搬送手段位置から試料の所望箇所までの距離に比べて遥かに小さいため、試料ステージに設置された搬送手段では届かないという致命的問題点を有することになる。さらに、この3軸がバイモルフ圧電素子の構成では、バイモルフ圧電素子は一端を支点にして他端がたわむ動きをするため、他端は印加電圧に従って円弧を描く。つまり、XY平面内の移動では1個のバイモルフ圧電素子の動作のみでは搬送手段先端のプローブが1軸方向に直線的に動作しない。従って、3個のバイモルフ圧電素子で微動部を構成してプローブ先端を所望の位置に移動させるためには3個のバイモルフ圧電素子を非常に複雑に制御しなければならないという特性を有している。
<実施形態例2>
上記実施形態例1では、ウエハ検査部101と試料作製部102を機械的に結合させ、試料基板12であるウエハを両装置間で搬走させる例を説明した。本実施形態例2は図8のようにウエハ検査部101と試料作製部102が機械的に独立していて、不良箇所の座標情報が両者の計算処理装置17、17’を往来する例である。試料基板であるウエハ12は小型で真空状態にできる搬送用容器107に封入して運搬する。ウエハ検査部101での座標情報などは計算処理装置17’から情報伝達手段110を通じて試料作製部102の計算処理装置17に伝達できる。このような構成により、ウエハ検査部101で検出したウエハ12の不良箇所は試料作製部102において、各種解析装置で解析し易い形状に加工作製する。
<実施形態例3>
次に、本発明による試料解析方法の一実施形態を説明する。ここでは、試料の例としてTEM観察すべき試料片の作製方法を取り上げ、ウエハ観察から試料片加工、TEM観察までの試料解析方法の具体的説明を行なう。また、手順を明確にするために以下にいくつかの工程に分割して、図を用いて説明する。
(1)外観検査工程:
まず、検査すべきウエハの全面もしくはその一部について異常の有無を検査する。検査内容は、光(レーザ)によるウエハ検査装置や電子ビームによる検査SEMなどの外観検査や、プローブ装置による電気回路検査などである。この検査によって異物や欠陥、配線異常など不良箇所の位置を知ることができる。この時、ウエハに予め設置した目印(ウエハマーク)を基準にして上記不良箇所の該当デバイス座標と、その該当デバイスに予め設置したマークを基準にした座標情報として計算処理装置に記憶する。
(2)試料作製工程
(a)マーキング工程:
上記ウエハを試料作製部に導入して、まず、先の該当デバイスの目印(デバイスマーク)を探し出す。ここで、デバイスマークは試料作製部に設置したレーザ顕微鏡で探す。さらに詳しい探索によって上記不良箇所を探し出すが、このとき、FIB照射による二次電子像によって探索すると、試料表面はFIBによってスパッタされるため表面損傷を受け、最悪の場合、所望の解析すべき不良物が無くなってしまうことが生じる。従って、ウエハ検査時のウエハマークとデバイスマークと不良箇所の座標および、試料作製部内でのウエハマークとデバイスマークの座標をもとに、試料作製装置内での不良箇所の座標を計算により導出した後、不良箇所が確認できるように複数ヵ所にFIBによってマークをつける。
本例では図9aのように、観察領域を挟んで10ミクロン間隔で+マーク80を2個施した。上記2個のマークを結ぶ直線は試料ステージの傾斜軸と平行になるように事前に、試料ステージを回転調整しておく。
(b)大矩形穴加工工程:
上記2個のマーク80を結ぶ直線上で、2個のマークの両側にFIB81によって2個の矩形穴82を設けた。開口寸法は例えば10×7ミクロン、深さ15ミクロン程度で、両矩形穴の間隔を30ミクロンとした。いずれも、短時間に完了させるために直径0.15ミクロン程度で電流約10nAの大電流FIBで加工した。加工時間はおよそ5分であった。
(c)垂直溝加工工程:
次に、図9bのように上記マーク80を結ぶ直線より約2ミクロン隔てて、かつ、一方の矩形穴82と交わるように、他方の矩形穴には交わらないように幅約2ミクロン、長さ約30ミクロン、深さ約10ミクロンの細長垂直溝83を形成する。ビームの走査方向は、FIBが試料を照射した時に発生するスパッタ粒子が形成した垂直溝や大矩形穴を埋めることがないようにする。一方の矩形穴82と交わらない小さな領域は、後に摘出すべき試料を支える支持部84になる。
(d)傾斜溝加工工程:
上記(b)(c)工程の後、試料面を小さく傾斜(本実施例では20°)させる。ここで、上記2個のマーク80を結ぶ直線は試料ステージの傾斜軸に平行に設定している。そこで、図9cのように上記マーク80を結ぶ直線より約2ミクロン隔てて、かつ、上記細長垂直溝83とは反対側に、上記両矩形穴82を結ぶように、幅約2ミクロン、長さ約32ミクロン、深さ約15ミクロンの溝を形成する。FIB照射によるスパッタ粒子が形成した矩形穴82を埋めることがないようにする。試料基板面に対して斜めから入射したFIB81によって細長傾斜溝85が形成され、先に形成した細長垂直溝83と交わる。(b)から(d)の工程によって、支持部84を残してマーク80を含み、頂角が70°の直角三角形断面のクサビ型摘出試料が片持ち梁の状態で保持されている状態になる。
(e)プローブ固定用デポ工程:
次に、図9dのように試料ステージを水平に戻し、摘出すべき試料86の支持部84とは反対の端部に移送手段先端のプローブ87を接触させる。接触は試料とプローブとの導通や両者間の容量変化によって感知することができる。また、不注意なプローブ87の押し付けによって、摘出すべき試料86やプローブ87の破損を避けるために、プローブが試料に接触した時点で+Z方向駆動を停止させる機能を有している。次に、摘出すべき試料86にプローブ87を固定するために、プローブ先端を含む約2ミクロン平方の領域に、デポジション用ガスを流出させつつFIBを走査させる。このようにしてFIB照射領域にデポ膜88が形成され、プローブ87と摘出すべき試料86とは接続される。
(f)摘出試料摘出工程:
摘出試料を試料基板から摘出するために、支持部84にFIB照射してスパッタ加工することで、支持状態から開放される。支持部84は試料面上から見て2ミクロン平方、深さ約10ミクロンであるため2〜3分のFIB走査で除去できる。(図9e, f)
(g)摘出試料搬送(試料ステージ移動)工程:
プローブ87の先端に接続されて摘出した摘出試料89は試料ホルダに移動させるが、実際には試料ステージを移動させ、FIB走査領域内に試料ホルダ90を移動させる。このとき、不意の事故を避けるために、プローブを+Z方向に退避させておくとよい。(図9g)
(h)摘出試料固定工程:
FIB走査領域内に試料ホルダ90が入ってくると試料ステージ移動を停止し、プローブをーZ方向に移動させ、試料ホルダ90に接近させる。摘出試料89が試料ホルダ90に接触した時、デポガスを導入しつつ摘出試料89と試料ホルダ90と接触部にFIBを照射する。この操作によって摘出試料は試料ホルダに接続できる。本実施例では摘出試料89の長手方向の端面にデポ膜92を形成した。
FIB照射領域は3ミクロン平方程度で、デポ膜92の一部は試料ホルダ90に、一部は摘出試料側面に付着し、両者が接続される。(図9h)
(i)プローブ切断工程:
次に、デポ用のガス導入を停止した後、プローブ87と摘出試料89を接続しているデポ膜にFIB81を照射してスパッタ除去することで、プローブ87を摘出試料89から分離でき、摘出試料89は試料ホルダ90に自立する。(図9i)
(j)試料片加工工程(ウオール加工):
最後に、FIB照射して、最終的に観察領域を厚さが100nm以下程度のウォール93になるように薄く仕上げ加工を施してTEM試料とする。このとき、摘出試料の長手方向の側面の一方が垂直面であるため、ウォール加工のためにFIB照射領域を決定する際、この垂直面を基準にすることで試料基板89表面にほぼ垂直なウォール93を形成することができる。また、FIB照射に先立ち、ウォール面をより平面的に加工するために、ウォール形成領域を含む上面にFIBデポ膜を形成しておくとよい。この方法は既によく知られている。上述の加工の結果、横幅約15ミクロン、深さ約10ミクロンのウォールが形成でき、TEM観察領域ができあがる。以上、マーキングからウォール加工完成まで、約1時間30分で、従来のTEM試料作製方法に比べて数分の1に時間短縮できた。(図j)
(3)解析工程(TEM観察):
ウォール加工後、試料ホルダを、TEMの試料室に導入する。このとき、電子線経路と、ウォール面が垂直に交わるようにTEMステージを回転させて挿入する。その後のTEM観察技術についてはよく知られているので、ここでは省略する。
なお、上記試料解析方法のうち試料作製工程に類似した従来技術として公知例2がある。本試料作製工程が従来方法と全く異なることを示すために従来方法を図10で説明する。まず、試料50の表面に対しFIB24が直角に照射するように試料50の姿勢を保ち、試料上でFIB24を矩形に走査させ、試料表面に所要の深さの角穴51を形成する(図10(a))。次に、試料表面に対するFIBの軸が約70°傾斜するように試料を傾斜させ、底穴52を形成する。試料の傾斜角の変更は、試料ステージ(図示せず)によって行われる(図10(b))。試料の姿勢を変更し、試料の表面がFIBに対して再び垂直になるように試料を設置し、切り欠き溝53を形成する(図10(c))。マニピュレータ(図示せず)を駆動し、マニピュレータ先端のプローブ54の先端を、試料50を分離する部分に接触させる(図10(d))。ガスノズル55から堆積性ガス56を供給し、 FIBをプローブの先端部を含む領域に局所的に照射し、イオンビームアシストデポジション膜(以下、デポ膜57と略す)を形成する。接触状態にある試料の分離部分とプローブ54の先端はデポ膜57で接続される(図10(e))。FIB24で残りの部分を切り欠き加工し(図10(f))、試料50から分離試料58を切り出す。切り出された分離試料58は、接続されたプローブ54で支持された状態になる(図10(g))。この分離試料58を、上記第2の従来手法と同様にFIBで加工し、観察しようとする領域をウォール加工するとTEM試料(図示せず)となる。
試料基板から微小試料を摘出するためには、微小試料を基板から分離することが必須で、摘出試料の底面となる面と基板との分離工程(以下、底浚いと呼ぶ)が伴う。公知例2に示されたFIBによる底浚い法では、基板表面に対し斜方向からFIBを入射させて加工するため、摘出した試料片の底面には、底浚い時のイオンビーム入射角と加工アスペクト比からなる傾斜が付く。また、図10bに示した斜めからのFIB照射を実現するための角穴51が非常に大きくなければならない。これは角穴51の形成時に多大の時間を要することを示している。また、この公知例では斜めFIB照射するために試料を約70°も大きく傾斜させている。FIBの集束性から要求される対物レンズと試料との間隔を考慮すると、このような大傾斜はFIB性能を悪化させてしまい、満足な加工が出来ないと予想される。通常用いられているFIB装置性能を維持するには60°程度が限度である。また、直径300mmなど大口径ウエハ用試料ステージを70°も大きく傾斜させることは、機械的に非常に困難である。たとえ70°の大傾斜が可能としても摘出試料の底面は70°の傾斜を持ち、水平面の試料ホルダに設置すると、本来の試料表面は試料ホルダ面に対して20°も傾斜しており、表面に対してほぼ垂直な断面やウォ−ルを形成することが困難となる。試料基板の表面に対しほぼ垂直な断面やウォールを形成するためには、底面の傾斜を小さくして底面を表面に平行に近くすることが必須で、そのためには試料傾斜をさらに大きくしなければならず、これは上述の装置上の制約からさらに困難になる。従って、本発明が目指すような摘出した試料を別の部材(試料ホルダ)に設置して、他の観察装置や分析装置に導入するためには、垂直断面が形成できる別の底浚い方法を検討しなければならない。(但し、公知例2では分離した試料は試料ホルダの類に設置することなく、搬送手段のプロ−ブに付けたまま観察する方法であるため、底面の形状は影響しない。)
このように、本発明による試料作製工程と公知例2による試料分離方法と大きく異なる点は、(1)試料の摘出(分離)に際してのビーム照射方法が全く異なり、摘出試料をなるべく薄くするためと、底面の分離を簡便に、また、試料ステージの傾斜をなるべく小さくするために長手方向(TEM観察面に平行方向)の側面を傾斜加工したこと、(2)摘出した試料は移送手段とは別の部材である試料ホルダに固定することにあり、ウエハからも試料片が摘出できる試料作製装置と試料作製方法を提供している。
<実施形態例4>
上記実施形態例の試料解析工程はTEM解析に限らず、他の観察手法、分析手法や観察手法に用いることも可能である。
例えば、解析装置がインレンズ型の高分解能SEMである場合にも適用できる。
インレンズ型SEMは観察試料を対物レンズ内に入れる方式で、分解能がアウトレンズに比べて非常に良いため表面観察の強力なツールであるが、試料をレンズ内に入れる都合上、数ミリ程度に小さくしなければならない。従って、ウエハ検査装置などで不良箇所を発見し、その部分をさらに詳しく観察しようとしてもウエハのままではインレンズ型の走査電子顕微鏡内に導入することはできず、ウエハを分断して細分化せざるを得なかった。本発明による試料解析方法によると、ウエハから所望の領域の試料片を摘出することができるため、インレンズ型SEMで高分解能観察をすることができる。観察領域はウエハ表面ばかりでなく、摘出する際に形成できる断面も観察できるため、試料片摘出時のFIB照射方向を適切に行なえば、不良箇所の断面も観察することができる。このような方法によって、座標の問題、試料作製の問題、ウエハ分割の問題を解決して試料解析を行なうことができる。また、その他、オージェ電子分光分析や二次イオン質量分析など元素分析を行なう試料解析についても同様に行なえる。
2…FIB照射光学系、3…二次粒子検出器、4…デポガス源、5…試料ステージ、6…試料ホルダ、7…保持手段(ホルダカセット)、8…移送手段、9…光学顕微鏡、100…試料解析装置、101…ウエハ検査部、102…試料作製部、103…電子ビーム照射系、104…二次電子検出器、105…試料ステージ、107…搬送用容器、110…情報伝達手段。

Claims (5)

  1. 集束イオンビーム装置および透過電子顕微鏡に搭載できる試料ホルダであって、
    集束イオンビーム加工により摘出された試料片をデポジション膜により固定する固定面を備え、当該固定面の幅が50ミクロン以下の薄さであり、当該固定面にデポジション膜により固定された試料片に対して集束イオンビーム照射によるウォール加工を施して透過電子線顕微鏡観察用の試料片が作製でき、当該固定面に固定された試料片のウォール面に垂直に電子線照射して透過電子顕微鏡観察しても当該固定面の凹凸が電子線照射を阻害しない形状である試料ホルダ。
  2. 請求項1に記載の試料ホルダにおいて、前記固定面がウェハ面であることを特徴とする試料ホルダ。
  3. 請求項1に記載の試料ホルダにおいて、前記固定面がへき開面であることを特徴とする試料ホルダ。
  4. 請求項1〜3のいずれかに記載の試料ホルダにおいて、前記試料ホルダの断面が凸型であることを特徴とする試料ホルダ。
  5. 請求項1〜4のいずれかに記載の試料ホルダにおいて、前記試料ホルダが短冊状シリコン片であることを特徴とする試料ホルダ。
JP2010129587A 2010-06-07 2010-06-07 試料ホルダ Expired - Lifetime JP4590023B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010129587A JP4590023B2 (ja) 2010-06-07 2010-06-07 試料ホルダ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010129587A JP4590023B2 (ja) 2010-06-07 2010-06-07 試料ホルダ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008208445A Division JP4589993B2 (ja) 2008-08-13 2008-08-13 集束イオンビーム装置

Publications (2)

Publication Number Publication Date
JP2010204118A JP2010204118A (ja) 2010-09-16
JP4590023B2 true JP4590023B2 (ja) 2010-12-01

Family

ID=42965711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010129587A Expired - Lifetime JP4590023B2 (ja) 2010-06-07 2010-06-07 試料ホルダ

Country Status (1)

Country Link
JP (1) JP4590023B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2708547B2 (ja) * 1989-05-10 1998-02-04 株式会社日立製作所 デバイス移植方法
WO1999005506A1 (en) * 1997-07-22 1999-02-04 Hitachi, Ltd. Method and apparatus for preparing samples

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2774884B2 (ja) * 1991-08-22 1998-07-09 株式会社日立製作所 試料の分離方法及びこの分離方法で得た分離試料の分析方法
JP3221797B2 (ja) * 1994-06-14 2001-10-22 株式会社日立製作所 試料作成方法及びその装置
JPH08304243A (ja) * 1995-05-11 1996-11-22 Nippon Steel Corp 断面薄膜試料及びその作製方法及び断面薄膜試料用ホルダ
JP3485707B2 (ja) * 1996-01-09 2004-01-13 沖電気工業株式会社 透過型電子顕微鏡用の平面サンプルの作製方法及びその透過型電子顕微鏡による欠陥測定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2708547B2 (ja) * 1989-05-10 1998-02-04 株式会社日立製作所 デバイス移植方法
WO1999005506A1 (en) * 1997-07-22 1999-02-04 Hitachi, Ltd. Method and apparatus for preparing samples

Also Published As

Publication number Publication date
JP2010204118A (ja) 2010-09-16

Similar Documents

Publication Publication Date Title
JP4185962B2 (ja) 試料作製装置
JP3677968B2 (ja) 試料解析方法および装置
JP3547143B2 (ja) 試料作製方法
JP3843637B2 (ja) 試料作製方法および試料作製システム
JP4293201B2 (ja) 試料作製方法および装置
JP2008153239A5 (ja)
JP4185604B2 (ja) 試料解析方法、試料作成方法およびそのための装置
JP2000214056A (ja) 平面試料の作製方法及び作製装置
JP4589993B2 (ja) 集束イオンビーム装置
JP4185963B2 (ja) 試料解析方法、及び試料作製方法
JP4353962B2 (ja) 試料解析方法及び試料作製方法
JP4185961B2 (ja) 集束イオンビーム装置
JP3695181B2 (ja) 基板抽出方法及びそれを用いた電子部品製造方法
JP4354002B2 (ja) 試料作製装置及び集束イオンビーム装置
JP2006294632A5 (ja)
JP3709886B2 (ja) 試料解析方法および装置
JP4590007B2 (ja) 集束イオンビーム装置、それを用いた試料片作製方法及び試料ホルダ
JP4177860B2 (ja) 試料作製方法
JP2004343131A (ja) 試料解析方法および装置
JP4612746B2 (ja) 試料作製装置
JP4096916B2 (ja) 試料解析方法および装置
JP2009014734A5 (ja)
JP4367433B2 (ja) 試料作製方法および装置
JP4590023B2 (ja) 試料ホルダ
JP2006276031A5 (ja)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100729

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

EXPY Cancellation because of completion of term