JP4586556B2 - Surface layer property measurement method, surface layer defect determination method using the same, and metal strip manufacturing method - Google Patents

Surface layer property measurement method, surface layer defect determination method using the same, and metal strip manufacturing method Download PDF

Info

Publication number
JP4586556B2
JP4586556B2 JP2005033988A JP2005033988A JP4586556B2 JP 4586556 B2 JP4586556 B2 JP 4586556B2 JP 2005033988 A JP2005033988 A JP 2005033988A JP 2005033988 A JP2005033988 A JP 2005033988A JP 4586556 B2 JP4586556 B2 JP 4586556B2
Authority
JP
Japan
Prior art keywords
surface layer
defect
phase
signal
abnormal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005033988A
Other languages
Japanese (ja)
Other versions
JP2006220526A (en
Inventor
敬弘 腰原
宏晴 加藤
章生 長棟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005033988A priority Critical patent/JP4586556B2/en
Publication of JP2006220526A publication Critical patent/JP2006220526A/en
Application granted granted Critical
Publication of JP4586556B2 publication Critical patent/JP4586556B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、金属被検体の表層に存在する非金属介在物等の欠陥を含む異常部を検出する表層部性状測定方法及びそれを用いた表層欠陥判定方法、並びに金属帯の製造方法に関するものである。   The present invention relates to a surface layer property measuring method for detecting an abnormal part including defects such as non-metallic inclusions existing on the surface layer of a metal specimen, a surface layer defect determining method using the same, and a method for producing a metal strip. is there.

近年の金属製品に求められる品質レベルの高度化により、表面欠陥などの有害欠陥が少ない金属帯、中でも鋼帯に対する要望はますます強まっている。このような鋼帯としては、例えば、自動車用、製缶用の冷延鋼板、めっき鋼板などがある。自動車用に用いられる冷延鋼板では、製鋼段階などで鋼中に混入する非金属介在物などにより表面欠陥が生じることがあり、この表面欠陥の中には塗装をしても肉眼にて確認できるものもあり、これらは外観上大きな問題となっている。   Due to the sophistication of the quality level required for metal products in recent years, there is an increasing demand for metal strips, particularly steel strips, which have few harmful defects such as surface defects. Examples of such steel strips include cold-rolled steel plates and plated steel plates for automobiles and cans. In cold-rolled steel sheets used for automobiles, surface defects may occur due to non-metallic inclusions mixed in the steel at the steel making stage, etc., and even if this surface defect is painted, it can be confirmed with the naked eye Some of them are serious problems in appearance.

例えば、上記自動車用めっき鋼板は、製鋼工程、熱延工程、酸洗工程、冷延工程、めっき工程などを経て製造され、さらにプレス工程、塗装工程を経て、自動車用部材となる。これらの製造工程を経て得られる自動車用めっき鋼板における重大欠陥の一つとして、ヘゲ、スリバー、スリキズと一般に呼ばれる表面欠陥があり、最終製品である自動車において、この表面欠陥部はその他の健全部と明らかに異なって見えるため、外観を損ねるという問題を引き起こしてしまう。さらに、表面欠陥の程度が非常にひどいものになると、プレス成型時にプレス機を損傷する場合もある。   For example, the plated steel sheet for automobiles is manufactured through a steelmaking process, a hot rolling process, a pickling process, a cold rolling process, a plating process, and the like, and further becomes a member for an automobile through a pressing process and a painting process. As one of the serious defects in plated steel sheets for automobiles obtained through these manufacturing processes, there are surface defects generally called hege, sliver, and scratches. In automobiles that are final products, these surface defects are other healthy parts. And apparently differ from each other, which causes the problem of deteriorating the appearance. Furthermore, if the degree of surface defects becomes extremely severe, the press machine may be damaged during press molding.

上記、ヘゲ等も含めた表面欠陥は、製鋼工程において生じる非磁性金属介在物に発生原因がある場合、あるいは製鋼工程および熱延工程入り側(熱延前)における、酸化物の鋼材内部への混入に発生原因がある場合など、全製造工程のなかで、上工程側に起源があるとされている。そして、この表面欠陥は、熱間圧延、冷間圧延、鍍金処理と工程を経ることで顕在化する。   The above-mentioned surface defects including heges and the like are generated in the non-magnetic metal inclusions generated in the steel making process, or enter the steel material of the oxide on the entering side of the steel making process and the hot rolling process (before hot rolling). It is said that the origin is on the upper process side in the whole manufacturing process, such as when there is a cause of contamination. And this surface defect becomes obvious by passing through hot rolling, cold rolling, a plating process, and a process.

上記に対し、表面欠陥を少なくし高品質の製品を製造するためには、表面欠陥となる部分を全工程の中のできるだけ早い段階で検出し、その結果に応じ最適な対応を行う事が必要である。   In contrast to the above, in order to reduce surface defects and produce high-quality products, it is necessary to detect the surface defects at the earliest possible stage of the entire process, and to take the optimum measures according to the results. It is.

このような技術として、特許文献1には、交流励磁を行い交流磁束の変化を検出することで欠陥候補を検出する欠陥検出工程、欠陥候補を除去対象として決定する除去対象決定工程、そして欠陥除去工程からなる冷延または鍍金鋼帯製造用鋼帯の製造方法及び鍍金鋼帯の製造方法が記載されている。具体的には、欠陥検出工程においては、磁化電源から信号に同期した基準信号を準備し、この基準信号で検出信号を同期検波することで、欠陥信号の出力を得、除去対象決定工程においては、この欠陥信号の出力が閾値以上のものを欠陥として判定する。
特開2003-236613号公報
As such a technique, Patent Document 1 discloses a defect detection step for detecting a defect candidate by performing AC excitation and detecting a change in AC magnetic flux, a removal target determination step for determining a defect candidate as a removal target, and defect removal. A method of manufacturing a cold-rolled or plated steel strip for manufacturing and a method of manufacturing a plated steel strip are described. Specifically, in the defect detection step, a reference signal synchronized with the signal from the magnetization power supply is prepared, and the detection signal is synchronously detected with this reference signal, thereby obtaining the output of the defect signal, and in the removal target determination step If the output of the defect signal is greater than or equal to the threshold value, it is determined as a defect.
JP 2003-236613 A

しかしながら、特許文献1に記載の方法は、検出される信号の強度が閾値以上のものを欠陥として判定している。これは、検出信号の強度が異常部の体積(大きさ)と相関があるとの知見を利用し、所定の検出信号以上となる部位、すなわち異常部が所定の体積以上となる部位が、その検査時点で有害な欠陥である判定する、または、その検査以降の工程から最終工程を経て製品となるまでに有害な欠陥として顕在化すると判定するものである。しかし、実際には例えば、表面に近く、浅い欠陥は検査以降の冷間圧延などの圧延過程において無害な部位となったり、逆に深すぎる位置にある異常部は例え冷間圧延されても最終工程まで表面までに顕在化しない等の理由で有害にならない場合もある。このように、検査以降の工程での処理を考慮すると、異常部の体積のみでなく、異常部の深さの影響も受けるため、特許文献1に開示される異常部の体積に対応した信号強度に基いて判定した欠陥と、検査後の工程で有害になる欠陥とは厳密には一致しなかった。そして、このように検出された異常部が以降の工程において有害な欠陥となるかの判断指標が不完全であるために、検査以降の工程で有害な欠陥になる部位の見逃しとなり、その早期対応が必要となる欠陥を対応しなかったり、逆に過検出として対応する必要がない欠陥を対応したりと歩留まりの低下を起こす問題もある。   However, the method described in Patent Document 1 determines that the detected signal strength is equal to or higher than a threshold value as a defect. This is based on the knowledge that the intensity of the detection signal correlates with the volume (size) of the abnormal part, and the part where the abnormal part exceeds the predetermined volume, that is, the part where the abnormal part exceeds the predetermined volume It is determined that the defect is a harmful defect at the time of inspection, or is determined to be manifest as a harmful defect from the process after the inspection through the final process until it becomes a product. However, in practice, for example, shallow defects close to the surface become harmless parts in the rolling process such as cold rolling after the inspection, and on the contrary, abnormal parts that are too deep, even if cold rolled, are the final In some cases, it does not become harmful because it does not manifest to the surface until the process. As described above, in consideration of processing in the processes after the inspection, not only the volume of the abnormal part but also the influence of the depth of the abnormal part is affected. Therefore, the signal intensity corresponding to the volume of the abnormal part disclosed in Patent Document 1 The defects determined based on the above and the defects that become harmful in the post-inspection process did not exactly match. And since the judgment index of whether the abnormal part detected in this way becomes a harmful defect in the subsequent process is incomplete, the part that becomes a harmful defect in the process after the inspection is overlooked, and its early response However, there is a problem in that the yield is reduced when a defect that requires a defect is not dealt with, or when a defect that does not need to be dealt with as an overdetection is dealt with.

本発明はこのような事情に鑑みてなされたもので、検査以降の工程後(例えば、冷延、鍍金工程後)に有害となる欠陥を正確に検出・弁別することで、対応すべき欠陥に対して的確に対応することが可能となり、歩留まりの低下を防止するとともに、高品質の製品を製造することができる表層部性状測定方法及びそれを用いた表層欠陥判定方法、並びに金属帯の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and by accurately detecting and discriminating defects that are harmful after the processes after inspection (for example, after cold rolling and plating processes), the defects to be dealt with. A surface layer property measuring method, a surface layer defect determining method using the same, and a metal strip manufacturing method capable of accurately responding to the above and preventing a decrease in yield and producing a high quality product The purpose is to provide.

本発明者らは、上記の課題を解決すべく、表層部に存在する異常部の深さ位置を測定し、その情報に基づいて異常部が測定以降の工程において有害となるかどうかを正確に判定するために、以下の知見を得た。   In order to solve the above-mentioned problems, the present inventors measure the depth position of the abnormal part existing in the surface layer part, and based on the information, accurately determine whether the abnormal part is harmful in the process after the measurement. In order to determine, the following knowledge was obtained.

金属被検体の表面の各位置を交流磁化し、その金属被検体の各位置からの交流磁束を測定し、その交流磁束から正常部とは異なる信号を示す領域を異常部として抽出する。このとき、信号強度に加えて、異常部の存在する深さ情報を有する信号の位相情報も測定し、信号強度と位相情報とを用いて欠陥判定をすればよい。しかし、その正常部と異なる信号を示す領域は、正常部と異なる性状である異常部位の大きさ(例えば、表面から見た時の領域)にほぼ対応して検出されるが、その領域内では信号状態は均一でなく、その領域内の場所でも信号は変化している。よって、測定以降の工程において有害な欠陥となるかを判定するに際し、同じ領域内であっても、判定に使用する代表値となる信号の場所が違うと、判定結果が異なる可能性がある。   Each position on the surface of the metal object is AC magnetized, the AC magnetic flux from each position of the metal object is measured, and a region showing a signal different from the normal part is extracted from the AC magnetic flux as an abnormal part. At this time, in addition to the signal intensity, phase information of a signal having depth information where an abnormal portion exists is also measured, and defect determination may be performed using the signal intensity and the phase information. However, the region showing a signal different from the normal part is detected almost corresponding to the size of the abnormal part having a different property from the normal part (for example, the region when viewed from the surface). The signal state is not uniform, and the signal changes at a location within the region. Therefore, when determining whether or not the defect is a harmful defect in the process after the measurement, the determination result may be different if the location of the signal serving as the representative value used for the determination is different even in the same region.

そのため、測定以降の工程で異常部が有害な欠陥となるかを予測し、判定するに当たっては、異常となる信号を示す領域内の信号強度と位相情報の分布から、異常部の大きさとその深さ位置の分布を予測して、それが有害な欠陥になるかを判断することが重要であり、特に異常部領域内での位相の分布を表す指標(代表値)を選ぶ必要がある。   Therefore, in predicting and judging whether the abnormal part becomes a harmful defect in the process after the measurement, the size and depth of the abnormal part are determined from the signal intensity and the distribution of the phase information in the region indicating the abnormal signal. It is important to predict the position distribution and determine whether it becomes a harmful defect. In particular, it is necessary to select an index (representative value) representing the phase distribution in the abnormal region.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

[1]金属被検体を交流磁化し、前記被検体からの交流磁束変化を、前記被検体の複数の位置で検出することにより得られる信号強度および位相を基に、金属被検体の正常部とは異なる異常部を検出する表層部性状測定方法において、
前記複数位置で得られた位相を、該位相と同じ位置で得られた前記信号強度で重み付け平均を行った値を用いて前記異常部を検出することを特徴とする表層部性状測定方法。
[1] AC normal magnetization of a metal object, and based on signal intensity and phase obtained by detecting an alternating magnetic flux change from the object at a plurality of positions of the object, In the surface layer property measurement method for detecting different abnormal parts ,
A method for measuring a surface layer property, comprising: detecting the abnormal portion using a value obtained by performing weighted averaging of the phases obtained at the plurality of positions with the signal intensity obtained at the same position as the phase .

]前記[1]に記載の表層部性状測定方法により検出された金属被検体の異常部のうち、前記表層部性状の測定以降において有害となる部位を判定することを特徴とする表層欠陥判定方法。 [2] [1] of the abnormality of the detected metal object with a surface layer portion texture measuring method according to, surface defects and judging the portion to be detrimental in the subsequent measurement of the superficial layer properties Judgment method.

]金属帯の表層部の性状を測定する表層部性状測定工程と、
前記表層部性状測定工程で検出された金属帯の異常部のうち、前記表層部性状測定工程以降の工程において有害となる部位を判定する表層欠陥判定工程と、を含み、
前記表層性状測定工程において、前記[1]に記載の表層部性状測定方法を用いることを特徴とする金属帯の製造方法。
[ 3 ] A surface layer property measuring step for measuring the property of the surface layer of the metal strip,
Of the abnormal portion of the metal strip detected in the surface layer property measurement step, including a surface layer defect determination step for determining a harmful part in the step after the surface layer property measurement step,
In the surface layer property measuring step, the surface layer property measuring method described in [1] is used.

なお、本発明における表層欠陥とは、金属帯内部に存在し、後工程において、例えばプレス時に割れる等欠陥として顕在化するものであり、表面欠陥をも含むものである。   In addition, the surface layer defect in this invention exists in a metal belt | band | zone, and in the post process, for example, it becomes manifest as an equivalent defect cracked at the time of a press, and includes a surface defect.

本発明によれば、早期の工程段階で、測定以降の各工程(冷延、鍍金工程)やその加工において、有害な欠陥となる部位を正確に弁別することが可能となる。そして、早期に欠陥原因となる部位を発見することで、欠陥原因の早期解決、欠陥部の早期除去等が可能となり、製品の歩留まり向上に大きく寄与する。また、欠陥の少ない高品質の金属帯を製造することも可能となる。   According to the present invention, it is possible to accurately discriminate a site that becomes a harmful defect in each process (cold rolling and plating process) after the measurement and its processing at an early process stage. And by discovering the part that causes the defect at an early stage, it becomes possible to resolve the cause of the defect early, remove the defective part at an early stage, and the like, which greatly contributes to the improvement of the product yield. It is also possible to produce a high-quality metal strip with few defects.

本発明を、鋼板の製造工程における表層部性状測定およびその欠陥判定に適用した例として以下に詳細に説明する。図1は、本発明の第一の実施の形態である表層部性状測定装置の構成を示す概要図である。図1において、鋼板1には、その幅方向に微小で長さ方向(紙面に垂直な方向)に長い異常部2が存在している。また、磁化器4と磁気センサ9は、鋼板1を挟んで対向して配置されている。そして、磁化電源3により、磁化器4のコイルに交流電流を供給し、鋼板1の表面付近を集中的に磁化する。図1では磁束が鋼板1の幅方向に向かって形成されるような磁化を行っているが、欠陥となりうる異常部は長さ方向(圧延方向)に長く伸び、そのような形状の異常部の検出を容易とするために、なるべくこのような磁化を行うことが好ましい。   The present invention will be described in detail below as an example applied to surface layer property measurement and its defect determination in a steel sheet manufacturing process. FIG. 1 is a schematic diagram showing the configuration of the surface layer property measuring apparatus according to the first embodiment of the present invention. In FIG. 1, the steel plate 1 has an abnormal portion 2 that is minute in the width direction and long in the length direction (direction perpendicular to the paper surface). The magnetizer 4 and the magnetic sensor 9 are arranged to face each other with the steel plate 1 interposed therebetween. Then, an alternating current is supplied to the coil of the magnetizer 4 by the magnetization power source 3 so that the vicinity of the surface of the steel plate 1 is intensively magnetized. In FIG. 1, magnetization is performed such that the magnetic flux is formed in the width direction of the steel sheet 1, but the abnormal portion that can be a defect extends long in the length direction (rolling direction), and the abnormal portion having such a shape In order to facilitate detection, it is preferable to perform such magnetization as much as possible.

そして、磁化器4により両磁極間に発生された磁束は、鋼板1の表面近傍を通る。この場合、異常部2が鋼板1に存在するので、この異常部2により磁束が妨げられ、多くの磁束が鋼板1の外部に漏洩し、その変化を磁気センサ9により検出する。   The magnetic flux generated between the two magnetic poles by the magnetizer 4 passes near the surface of the steel plate 1. In this case, since the abnormal portion 2 exists in the steel plate 1, the magnetic flux is blocked by the abnormal portion 2, and a large amount of magnetic flux leaks to the outside of the steel plate 1, and the change is detected by the magnetic sensor 9.

その出力を、同期検波器7a に導き、磁化電源3の波形を移相器5により位相を適当な値にずらした信号を基準信号として同期検波すると、異常部2 の大きさに応じた信号が得られる。この出力は信号レベル判別器8に導かれ、予め定められている閾値と比較されることにより、異常部2のレベルが判別される。   When the output is guided to the synchronous detector 7a and the waveform of the magnetizing power source 3 is synchronously detected with a signal whose phase is shifted to an appropriate value by the phase shifter 5 as a reference signal, a signal corresponding to the size of the abnormal portion 2 is obtained. can get. This output is guided to the signal level discriminator 8 and compared with a predetermined threshold value, so that the level of the abnormal portion 2 is discriminated.

次いで、信号レベル判別器8により得られた結果は位相分布計算機10に導かれる。一方で、別系統の信号処理として、上記により同期検波の際に基準にした信号を90度移相器12により90度位相ずらした信号と同期検波器7bで同期検波を行う。位相分布計算機10では、上記信号レベル判別器8の出力信号と同期検波器7bの出力を基に位相が計算される。   Next, the result obtained by the signal level discriminator 8 is guided to the phase distribution calculator 10. On the other hand, as signal processing of another system, synchronous detection is performed by the synchronous detector 7b and a signal that is 90 degrees phase shifted by the 90-degree phase shifter 12 with respect to the signal based on the above-described synchronous detection. In the phase distribution calculator 10, the phase is calculated based on the output signal of the signal level discriminator 8 and the output of the synchronous detector 7b.

位相分布計算機10により得られた結果は欠陥顕在化判定装置11に送られ、ここでは、信号の位相分布と欠陥信号強度レベルを組み合わせることにより、測定以降の工程、または、最終的に顕在化する欠陥となるかどうかの判定を行う。   The result obtained by the phase distribution calculator 10 is sent to the defect manifestation determination device 11, and here, by combining the phase distribution of the signal and the defect signal intensity level, the process after the measurement or finally manifests It is determined whether or not it becomes a defect.

なお、図1は磁気センサを1つ設置した例であるが、幅方向に複数のセンサを設け、各センサ毎に設けられた位相検波器、信号レベル判別器により処理された結果を位相分布計算機10に送ることも可能である。このように、各センサ毎に計算された位相を並べることで鋼板1の幅方向の位相分布情報を得ることができる。また、鋼板は紙面と垂直方向に動いているため、位相分布計算機10で位相を時間に対して並べることで、鋼板1の長さ方向の位相分布を得ることができる。   Although FIG. 1 shows an example in which one magnetic sensor is installed, a plurality of sensors are provided in the width direction, and a result obtained by processing by a phase detector and a signal level discriminator provided for each sensor is a phase distribution calculator. It is also possible to send to 10. In this way, phase distribution information in the width direction of the steel sheet 1 can be obtained by arranging the phases calculated for each sensor. In addition, since the steel plate moves in the direction perpendicular to the paper surface, the phase distribution in the length direction of the steel plate 1 can be obtained by arranging the phases with respect to time by the phase distribution calculator 10.

なお、本発明において、磁性金属被検体(例えば鋼板)の幅方向というのは、特に断らない限り当該磁性金属被検体の圧延方向と直角な方向を意味するものである。   In the present invention, the width direction of a magnetic metal specimen (for example, a steel plate) means a direction perpendicular to the rolling direction of the magnetic metal specimen unless otherwise specified.

図2 は、本発明の第二の実施の形態である表層部性状測定装置の構成を示す概要図である。図2において、前出の図1に示された構成要素と同じ構成要素には、同じ符号を付してその説明を省略することがある。鋼板1には、その幅方向に微小で長さ方向(紙面に垂直な方向)に長い異常部2 が存在している。また表層部性状測定装置として、磁化器及び磁気センサとしてE形の形状のコアを用いたコイル(以下、E形コイルと称する)13 が用いられている。E形コイル13のヨークは3つの脚部13a、13b、13cを有し、それぞれが鋼板1の表面に略垂直に、かつそれぞれが鋼板1の幅方向に並ぶように、鋼板1に対面して設けられている。   FIG. 2 is a schematic diagram showing the configuration of the surface layer property measuring apparatus according to the second embodiment of the present invention. In FIG. 2, the same components as those shown in FIG. 1 described above may be denoted by the same reference numerals and the description thereof may be omitted. The steel plate 1 has an abnormal portion 2 that is minute in the width direction and long in the length direction (direction perpendicular to the paper surface). As the surface layer property measuring device, a magnet (hereinafter referred to as an E-shaped coil) 13 using an E-shaped core as a magnetizer and a magnetic sensor is used. The yoke of the E-shaped coil 13 has three leg portions 13a, 13b, 13c, facing the steel plate 1 so that each is substantially perpendicular to the surface of the steel plate 1 and aligned in the width direction of the steel plate 1. Is provided.

そして、中心の脚部13a に巻回されたコイルには、磁化電源3 からの交流電流が供給されて磁化されている。両側の脚部13b、13cにもコイルが巻回され、磁気センサとして使用される。脚部13aのコイルで発生した磁束は、鋼板1の表面近傍を通り、両側の脚部13b、13cを通って脚部13aに戻る。   The coil wound around the central leg 13a is supplied with an alternating current from the magnetizing power source 3 and magnetized. A coil is also wound around the leg portions 13b and 13c on both sides, and used as a magnetic sensor. The magnetic flux generated by the coil of the leg portion 13a passes through the vicinity of the surface of the steel plate 1, returns to the leg portion 13a through the leg portions 13b and 13c on both sides.

そのとき、異常部2が図2のような位置に存在すると、脚部13a、13bを通る磁束に対する磁気抵抗が、脚部13a、13cを通る磁束に対する磁気抵抗より大きくなり、これにより、脚部13bを通る磁束の磁束密度は、脚部13cを通る磁束の磁束密度より小さくなる。よって、脚部13bに巻回されたコイルに誘起される電圧は脚部13cに巻回されたコイルに誘起される電圧より小さくなり、両者を差動増幅器6に入力すると、両者の差に対応する電圧が出力される。   At that time, if the abnormal part 2 is present at the position as shown in FIG. The magnetic flux density of the magnetic flux passing through 13b is smaller than the magnetic flux density of the magnetic flux passing through the leg portion 13c. Therefore, the voltage induced in the coil wound around the leg portion 13b is smaller than the voltage induced in the coil wound around the leg portion 13c, and if both are input to the differential amplifier 6, the difference between the two is handled. Is output.

その出力を、同期検波器7a に導き、磁化電源3 の波形を移相器5により位相を適当な値にずらした信号を基準信号として同期検波すると、異常部2の大きさに応じた信号が得られる。この出力は信号レベル判別器8に導かれ、予め定められている閾値と比較されることにより、異常部2のレベルが判別される。   When the output is guided to the synchronous detector 7a and the waveform of the magnetizing power source 3 is synchronously detected by using the signal whose phase is shifted to an appropriate value by the phase shifter 5 as a reference signal, a signal corresponding to the size of the abnormal portion 2 is obtained. can get. This output is guided to the signal level discriminator 8 and compared with a predetermined threshold value, so that the level of the abnormal portion 2 is discriminated.

次いで、信号レベル判別器8により得られた結果は位相分布計算機10に導かれる。一方で、別系統の信号処理として、上記により同期検波の際に基準にした信号を90度移相器12により90度位相ずらした信号と同期検波器7bで同期検波を行う。位相分布計算機10では、上記信号レベル判別器8の出力信号と同期検波器7bの出力を基に位相が計算される。   Next, the result obtained by the signal level discriminator 8 is guided to the phase distribution calculator 10. On the other hand, as signal processing of another system, synchronous detection is performed by the synchronous detector 7b and a signal that is 90 degrees phase shifted by the 90-degree phase shifter 12 with respect to the signal based on the above-described synchronous detection. In the phase distribution calculator 10, the phase is calculated based on the output signal of the signal level discriminator 8 and the output of the synchronous detector 7b.

位相分布計算機10により得られた結果は欠陥顕在化判定装置11に送られ、ここでは、信号の位相分布と欠陥信号強度レベルを組み合わせることにより、最終的に顕在化する表面欠陥かどうかの判定を行う。   The result obtained by the phase distribution calculator 10 is sent to the defect manifestation determination device 11, where it is determined whether or not the surface defect is finally manifested by combining the signal phase distribution and the defect signal intensity level. Do.

なお、図2では磁気センサとしてE型コイル1つを設置しているが、信号の位相の鋼板長さ方向と幅方向に対する2次元分布を得るために、上記した鋼板1の幅方向、長さ方向にこのセンサをトラバースしても良いし、鋼板1の幅方向に複数のセンサを並べ、鋼板1の長さ方向にトラバースしても良いし、鋼板1の長さ方向に複数のセンサを並べ、鋼板1の幅方向にトラバースしても良いし、鋼板1の幅方向及び長さ方向に複数のセンサを並べて信号の鋼板長さ方向と幅方向に対する2次元分布を得てもかまわない。また、上記のいずれの場合もセンサをトラバースする代わりに、鋼板を移動させてもかまない。   In FIG. 2, one E-type coil is installed as a magnetic sensor. In order to obtain a two-dimensional distribution of the signal phase in the length direction and width direction of the steel plate, the width direction and length of the steel plate 1 described above are used. The sensor may be traversed in the direction, a plurality of sensors may be arranged in the width direction of the steel plate 1, and the sensor may be traversed in the length direction of the steel plate 1, or a plurality of sensors may be arranged in the length direction of the steel plate 1. The traverse may be performed in the width direction of the steel plate 1, or a plurality of sensors may be arranged in the width direction and the length direction of the steel plate 1 to obtain a two-dimensional distribution of signals in the length direction and the width direction of the steel plate. In either case, the steel plate may be moved instead of traversing the sensor.

また、上記で複数のセンサを使用する場合は、各センサ毎に差動増幅器、位相検波器、信号レベル判別器を持ち、各センサごとの信号レベル判別器の出力結果をまとめて位相分布計算機に送り位相の分布を計算させる方法が考えられるが、電気的ないしは機械的な切り替えにより、差動増幅器、位相検波器、信号レベル判別器のいずれの間で複数のセンサの出力をまとめてもかまわない。   In addition, when using a plurality of sensors as described above, each sensor has a differential amplifier, a phase detector, and a signal level discriminator, and the output results of the signal level discriminators for each sensor are collected into a phase distribution calculator. A method of calculating the distribution of the feed phase can be considered, but the output of multiple sensors may be combined between any of the differential amplifier, phase detector, and signal level discriminator by electrical or mechanical switching. .

また、本実施例では、E形のセンサを用いているが、コの字型コイルとホール素子を用いた検出センサを組み合わせるなど、他の磁気的な検出方法でもかまわない。   In this embodiment, an E-type sensor is used, but other magnetic detection methods such as a combination of a U-shaped coil and a detection sensor using a Hall element may be used.

以上のように、本発明では、発生された磁束が鋼板の表面近傍を通ることにより、単にその時点での表面欠陥について測定するのみならず、表面欠陥としては顕在化していない表層部の性状(以下、潜在的欠陥部)についても測定することになる。すなわち、本発明では、鋼帯表面のみならず、この表層部の異常部も測定の対象とする。   As described above, in the present invention, the generated magnetic flux passes through the vicinity of the surface of the steel sheet, so that not only the surface defects at that time are measured, but also the surface layer properties that are not manifested as surface defects ( Hereinafter, the potential defect portion) is also measured. That is, in the present invention, not only the surface of the steel strip but also the abnormal portion of the surface layer portion is the object of measurement.

従って、本発明では、測定時点では表面欠陥、あるいは表層部欠陥として顕在化していない異常部(潜在的欠陥)についても、その後の工程で、すなわち最終的に顕在化する可能性を予測することができる。この場合、過去のデータを蓄積しておくことにより、予測の精度を向上させることができる。   Therefore, in the present invention, it is possible to predict the possibility that an abnormal portion (potential defect) that has not been manifested as a surface defect or a surface layer defect at the time of measurement will be manifested in a subsequent process, that is, finally. it can. In this case, the accuracy of prediction can be improved by accumulating past data.

なお、本発明において最終的に顕在化する欠陥とは、測定時点で正常部と異なる信号を示した部位のうちで、測定以降の工程で出荷までの製造工程で顕在化(有害化)すると予想される表層部性状の他に、最終消費における処理工程、即ち出荷後の需要家におけるプレス加工等の際に顕在化(有害化)すると予想される表層部性状についても含むものである。   In addition, in the present invention, the defect finally manifested is expected to be manifested (detrimental) in the manufacturing process up to the shipment in the process after the measurement among the parts that showed signals different from the normal part at the time of measurement. In addition to the surface layer properties, the surface layer properties that are expected to be manifested (detrimental) during processing steps in final consumption, that is, press working in the consumer after shipment, are included.

図3は、図2で示した表層部性状測定装置により検出した酸洗鋼板の異常部の信号強度及び信号の位相と鋼板製造時の圧延方向との関係を示す図である。なお、この実験に際して実験条件は、励磁周波数750kHZ、リフトオフ1mmとした。一方で、圧延方向に5mmより短い長さの異常部を含む複数枚の酸洗鋼板に冷間圧延を施し、冷延鋼板とし、得られた冷延鋼板に対して表面欠陥計を用いて実際に表面に顕在化した欠陥を調べ、そのデータを収集した。その結果、最終的に冷間圧延後顕在化した欠陥に対応する表層部性状測定装置で測定された異常部の位相範囲は40度〜80度であるというデータを得た。   FIG. 3 is a diagram showing the relationship between the signal intensity and signal phase of the abnormal portion of the pickled steel sheet detected by the surface layer property measuring apparatus shown in FIG. 2, and the rolling direction at the time of manufacturing the steel sheet. In this experiment, the experimental conditions were an excitation frequency of 750 kHz and a lift-off of 1 mm. On the other hand, cold rolling is performed on a plurality of pickled steel sheets including abnormal parts with a length shorter than 5 mm in the rolling direction to form cold-rolled steel sheets, and the actual cold-rolled steel sheets are actually measured using a surface defect meter. The surface defects were investigated and the data was collected. As a result, data was obtained that the phase range of the abnormal portion measured by the surface layer property measuring device corresponding to the defects that finally became apparent after cold rolling was 40 to 80 degrees.

以上を基に、図3(図3は長さ方向の一次元分布を示した図)より、従来から行われている信号強度の最大の地点での位相を異常部の位相の代表値として用いた場合、位相の代表値は33度となる。最終的に顕在化される欠陥の上記位相範囲40度〜80度の範囲外であり、これは最終的に欠陥にならないと判断される。   Based on the above, from FIG. 3 (FIG. 3 is a diagram showing a one-dimensional distribution in the length direction), the phase at the point where the signal intensity has been maximum conventionally used is used as a representative value of the phase of the abnormal portion. In this case, the typical value of the phase is 33 degrees. The phase range of 40 degrees to 80 degrees of the defect that is finally manifested is outside the range of 40 degrees to 80 degrees.

一方で、図3において検出された異常部全体としては、最終的に欠陥として顕在化するとされる上記位相範囲40度〜80度にほぼ含まれており、かつ、その部分の信号強度も強くなっていることがわかる。この鋼板を冷間圧延したところ、この異常部は表面欠陥として顕在化した。例えば、後述する式1に基づき位相に対して、信号強度を元に重みをつけた重み付け平均をとったところ、61度となり、上記の実験における冷間圧延後に顕在化した欠陥の酸洗段階での5mmより短い異常部の位相(40度〜80度)の範囲に入る。このように異常部の長さが5mm以上と長い場合には、重み付け平均により異常部全体の位相を代表する数値とするのが好ましく、適正な結果が得られる。また、異常部が5mm以下と短い場合でも異常部が短いため重み付け平均を取ってもピークの位相とほとんど値は変わらないが、重み付け平均をとる方式は同様に有効であるので、長さで区別せず、全ての異常部にこの重み付け平均の処理をしてもかまわない。ただし、ここで、重み付け平均Wは信号強度をAi、位相をθiとしたとき式1で表される。なお、添字iは信号の検出位置(図3の例では長さ方向の一次元座標であるが、長さ方向および幅方向に測定した場合は2次元位置の座標となる。)   On the other hand, the entire abnormal portion detected in FIG. 3 is almost included in the phase range of 40 degrees to 80 degrees, which is supposed to be finally manifested as a defect, and the signal intensity of the portion is also increased. You can see that When this steel plate was cold-rolled, this abnormal portion became apparent as a surface defect. For example, when taking a weighted average based on the signal intensity based on Equation 1 described below and taking a weighted average, it becomes 61 degrees, and in the pickling stage of defects that became apparent after cold rolling in the above experiment. It falls within the range of the abnormal part phase (40 degrees to 80 degrees) shorter than 5 mm. As described above, when the length of the abnormal portion is as long as 5 mm or more, it is preferable to set a numerical value representative of the phase of the entire abnormal portion by weighted averaging, and an appropriate result can be obtained. In addition, even if the abnormal part is as short as 5 mm or less, the abnormal part is short, so even if the weighted average is taken, the phase of the peak is almost the same, but the method of taking the weighted average is also effective, so distinguish by length The weighted average processing may be performed on all abnormal parts. Here, the weighted average W is expressed by Equation 1 when the signal intensity is Ai and the phase is θi. The subscript i is a signal detection position (in the example of FIG. 3, it is a one-dimensional coordinate in the length direction, but it is a coordinate in a two-dimensional position when measured in the length direction and width direction).

また、異常部領域のうちで、信号強度が最大となる位置を基準として、設計的事項もしくは経験的な事項から任意の領域を定め、その領域に含まれる点における位相の平均をとるようにしてもよい。また、式1は位置を離散的サンプリングして測定した場合の式であるが、連続的に測定した結果の場合でも上記と同様の結果が得られる。この場合の重み付け平均Wは、信号強度をA(x)、位相をθ(x)としたとき式2で表される。なお、xは異常部信号の位置を表す。(図3の例では長さ方向の一次元座標であるが、長さ方向および幅方向に測定した場合は2次元位置の座標となる。)   In addition, an arbitrary region is determined from design matters or empirical matters with reference to the position where the signal intensity is maximum in the abnormal portion region, and an average of phases at points included in the region is taken. Also good. Moreover, although Formula 1 is a formula when the position is measured by discrete sampling, a result similar to the above can be obtained even in the case of a continuous measurement result. The weighted average W in this case is expressed by Equation 2 when the signal intensity is A (x) and the phase is θ (x). Note that x represents the position of the abnormal part signal. (In the example of FIG. 3, it is a one-dimensional coordinate in the length direction, but when measured in the length direction and the width direction, it is a coordinate of a two-dimensional position.)

さらに、例えば、信号強度の2乗を用いたり、信号強度がある閾値以上の場合のみ重みを1としそれ以外の場合に0とするなど信号強度を元に、異常部全体の位相を代表する数値を決定することも可能である。   Furthermore, for example, a numerical value representing the phase of the entire abnormal part based on the signal strength, such as using the square of the signal strength, or setting the weight to 1 only when the signal strength is greater than or equal to a certain threshold, and 0 otherwise. It is also possible to determine.

さらに、信号強度を元に、信号強度の強い順に3点までの点で重みを1とし、それ以外の点での重みを0とする、すなわち、信号強度の強い順に3点までの位相の平均値を求めることもできる。この場合、図3の異常部に当てはめると58度となり、やはり、異常部全体の位相を代表する数値として適当な数値となっていることがわかる。   Furthermore, based on the signal strength, the weight is set to 1 at points up to 3 points in the order of strong signal strength, and the weight at other points is set to 0. That is, the average of the phases up to 3 points in the order of strong signal strength. A value can also be obtained. In this case, when applied to the abnormal part of FIG. 3, it is 58 degrees, and it can be seen that the numerical value representing the phase of the whole abnormal part is an appropriate numerical value.

以上のように、本発明では、金属被検体を交流磁化し、欠陥に起因して発生する交流磁束の変化を検出することにより得られる位相および信号強度を基に、金属被検体の表層異常部を検出し、さらに、これらの位相分布と欠陥信号強度レベルを組み合わせることにより、検出された異常部が最終的に顕在化する欠陥かどうかを判定する。   As described above, in the present invention, the surface layer abnormal portion of the metal specimen is obtained based on the phase and the signal intensity obtained by AC magnetizing the metal specimen and detecting the change of the AC magnetic flux generated due to the defect. Further, by combining these phase distribution and defect signal intensity level, it is determined whether or not the detected abnormal part is a defect that finally becomes apparent.

すなわち、本発明では、まず、第1の基準信号に対する出力Yが閾値を越えたものを一次的に異常部と判定する。次に、あらかじめ、第1の基準信号から90度ずらした第2の基準信号を用意しておき、同期検波を行い、上記異常部に対して第1の基準信号に対する出力Yと第2の基準信号に対する出力Xを用いて、θ=tan-1(Y/X)として位相θを決定する。この位相θと基準信号の出力Yとの組み合わせにより、欠陥顕在化を判定することを特徴とする。 That is, in the present invention, first, an output whose output Y with respect to the first reference signal exceeds a threshold value is temporarily determined as an abnormal part. Next, prepare a second reference signal that is shifted 90 degrees from the first reference signal in advance, perform synchronous detection, output Y for the first reference signal and the second reference for the abnormal part Using the output X for the signal, the phase θ is determined as θ = tan −1 (Y / X). Defect manifestation is determined by a combination of the phase θ and the reference signal output Y.

以上、上述した表層部性状測定方法及び表層欠陥の判定方法は、鋼板を製造する際に用いることができる。   As described above, the above-described surface layer property measuring method and surface layer defect determining method can be used when manufacturing a steel sheet.

具体的には、例えば、熱間圧延後、冷間圧延前である酸洗ラインに図2の表層部性状測定装置を設置し、熱間圧延を施された鋼板に対して表層部性状測定を行い、検出された異常部が冷延工程後または亜鉛鍍金工程後に欠陥として顕在化するかどうかを弁別判定する。次いで、最終的に顕在化すると判定された異常部は、例えば、酸洗段階で除去され、異常部が除去された鋼板は、冷間圧延を経て、あるいはさらにめっきを施し、冷延鋼板または鍍金鋼板となる。この冷延鋼板または鍍金鋼板は、欠陥となる部分が除去されている結果、表面欠陥の非常に少ない良質の鋼板となる。このように本発明の方法では表層部の性状を測定し、以降の工程で顕在化する欠陥を予測、判定して、有害部を決定することで、性状測定時には表面に顕在化していない欠陥をも検知できる。そして、早期に欠陥原因を発見することで、欠陥原因の早期解決、欠陥部の早期除去が可能となり、高い歩留まりで冷延または鍍金鋼板を製造することが可能となる。   Specifically, for example, after hot rolling, the surface layer property measuring device of FIG. 2 is installed in the pickling line before cold rolling, and surface layer property measurement is performed on the hot-rolled steel sheet. It is discriminated whether or not the detected abnormal part becomes apparent as a defect after the cold rolling process or the zinc plating process. Next, the abnormal part finally determined to be manifested is removed, for example, in the pickling stage, and the steel sheet from which the abnormal part has been removed is subjected to cold rolling or further plating, and is subjected to cold rolling steel sheet or plating. It becomes a steel plate. This cold-rolled steel sheet or plated steel sheet is a high-quality steel sheet with very few surface defects as a result of the removal of defective portions. As described above, the method of the present invention measures the properties of the surface layer portion, predicts and determines the defects that will be manifested in the subsequent steps, and determines the harmful portions, so that defects that are not manifested on the surface at the time of property measurement are determined. Can also be detected. And by discovering the cause of the defect at an early stage, it becomes possible to resolve the cause of the defect early and to remove the defective part at an early stage, and it is possible to manufacture a cold-rolled or plated steel sheet with a high yield.

なお、上記では、表層部性状測定装置を酸洗ラインに設置し、熱間圧延後冷間圧延前に表層部の性状測定を行って、欠陥顕在化の予測判定を行ったが、性状測定および予測判定を行うタイミングは特に限定しない。しかし、1)除去により逆に欠陥を発生させることの無いよう、部分的に除去された鋼帯の形状、性状を、圧延により均一に整える必要から異常部の除去はできるだけ上流にて、少なくとも冷間圧延前に行う方がよい。一方で、2)検出の容易性(板形状が良く、かつ、板厚が減少しそれに伴い異常部が表面からできるだけ近くに存在する方が検出は容易)、検出の正確性(圧延により異常部も変形していく中で、最終製品にできるだけ近い段階で検出することで、重大度の評価もより正確)の点からは下流側、少なくとも熱延工程以降が望ましい。以上の理由により熱間圧延後冷間圧延前に行うのが好ましい。   In the above, the surface layer property measuring device was installed in the pickling line, and after the hot rolling and before the cold rolling, the surface layer portion was measured to make the prediction of the defect manifestation. The timing for performing the prediction determination is not particularly limited. However, 1) It is necessary to uniform the shape and properties of the partially removed steel strip by rolling so as not to cause defects on the contrary. It is better to do it before hot rolling. On the other hand, 2) Ease of detection (it is easier to detect when the plate shape is good and the plate thickness is reduced and the abnormal part is as close as possible to the surface), and the accuracy of detection (the abnormal part due to rolling) In the process of deformation, detection is performed at a stage as close to the final product as possible so that the severity can be evaluated more accurately. For the above reasons, it is preferable to carry out after hot rolling and before cold rolling.

また、本発明では、磁性金属被検体を交流磁束によって磁化している。よって、直流磁化を用いる場合に比して表皮効果の影響により磁束の浸透深さが制限され、磁性金属被検体の表層部近くに集中することになる。よって、表面又は表層部に存在する欠陥のみを効率よく検出することができる。   In the present invention, the magnetic metal object is magnetized by the alternating magnetic flux. Therefore, the penetration depth of the magnetic flux is limited by the influence of the skin effect as compared with the case where DC magnetization is used, and it concentrates near the surface layer portion of the magnetic metal object. Therefore, it is possible to efficiently detect only the defects existing on the surface or the surface layer portion.

また、実施形態での説明に、鋼板の製造ラインを取り上げたが、アルミ板や銅板などの金属帯で、鋼板と同様の工程を有する金属帯の製造ラインにおいても適用出来ることは言うまでもない。
Moreover, although the steel plate production line was taken up in the description of the embodiment, it goes without saying that the present invention can also be applied to a metal strip production line having the same process as the steel plate using a metal strip such as an aluminum plate or a copper plate.

図2の表層部性状測定装置を酸洗ラインに設置し、上述する方法にて、酸洗鋼板に対して表層部の性状を測定した。引き続き、上記鋼板に冷延、亜鉛めっきを施し、得られた鍍金鋼板に対して欠陥の有無を調査し、酸洗工程にて検出した異常部が最終的に有害欠陥として顕在化するかどうかを調べた。得られた結果を図4に示す。図4は、3点平均位相と信号強度との関係を示す図である。なお、図4において、3点平均位相は、信号強度の強い順に3点までの位相の平均値である。   The surface layer part property measuring apparatus of FIG. 2 was installed in the pickling line, and the property of the surface layer part was measured with respect to the pickled steel sheet by the method described above. Subsequently, the steel sheet is cold-rolled and galvanized, the obtained plated steel sheet is examined for defects, and whether or not the abnormal part detected in the pickling process is finally manifested as a harmful defect is determined. Examined. The obtained results are shown in FIG. FIG. 4 is a diagram showing the relationship between the three-point average phase and the signal intensity. In FIG. 4, the three-point average phase is the average value of the phases up to three points in descending order of signal intensity.

図4より、顕在化の有無はある境界線を境に分かれており、この境界線は信号強度と位相から式で表すことができ、得られた式を用いることで、欠陥の最終的な顕在化の有無が精度よく分布されることがわかる。すなわち、最終的に顕在化するかどうかは信号強度のみでは判定できず、信号強度と位相を組み合わせて初めて欠陥顕在化の予測、判定が可能となることがわかる。これは、位相の小さいものは酸洗段階で浅い位置に存在し、大きいものは深い位置に存在することに対応するが、浅くて体積の小さい異常部は圧延過程において無害化され、深くて体積の小さい異常部は深すぎて最終工程まで顕在化せず、有害とならないものであることと対応すると考えられる。また、浅くても信号強度が大きい体積の大きい異常部、深くても信号強度が大きい体積の大きい異常部、信号強度が小さく体積が小さくても適当な深さ(位相60度前後)にあればそれらは表面欠陥として顕在化すると考えられる。   From FIG. 4, the presence or absence of manifestation is divided at a certain boundary line, and this boundary line can be expressed by an equation from the signal intensity and the phase, and by using the obtained equation, the final manifestation of the defect It can be seen that the presence or absence of conversion is distributed with high accuracy. That is, it can be seen that whether or not it finally becomes apparent cannot be determined only by the signal intensity, but it becomes possible to predict and determine the defect manifestation only by combining the signal intensity and the phase. This corresponds to the fact that a small phase is present at a shallow position in the pickling stage, and a large phase is present at a deep position, but the shallow and small volume abnormal part is rendered harmless in the rolling process and is deep and volume. It is considered that the abnormal part having a small diameter is too deep and does not become apparent until the final process, and does not become harmful. In addition, even if it is shallow, if there is an abnormal part with a large volume with a large signal intensity, an abnormal part with a large volume even if it is deep and a large volume with a large signal intensity, even if the signal intensity is small and the volume is small, the depth is around 60 degrees. They are thought to manifest as surface defects.

表面欠陥などの有害欠陥が少なく、優れた品質レベルが求められる金属製品に対して、本発明表層欠陥の検出方法及びそれを用いた表層欠陥判定方法は有用である。   The method for detecting surface layer defects and the method for determining surface layer defects using the present invention are useful for metal products that have few harmful defects such as surface defects and require an excellent quality level.

本発明の第一の実施の形態である表層部性状測定装置の構成を示す概要図である。It is a schematic diagram which shows the structure of the surface layer property measuring apparatus which is 1st embodiment of this invention. 本発明の第二の実施の形態である表層部性状測定装置の構成を示す概要図である。It is a schematic diagram which shows the structure of the surface layer property measuring apparatus which is 2nd embodiment of this invention. 酸洗鋼板の異常部の信号強度及び信号の位相と鋼板製造時の圧延方向との関係を示す図である。It is a figure which shows the relationship between the signal strength of the abnormal part of a pickled steel plate, the phase of a signal, and the rolling direction at the time of steel plate manufacture. 3点平均位相と信号強度との関係を示す図である。It is a figure which shows the relationship between a 3 point average phase and signal strength.

符号の説明Explanation of symbols

1 鋼板
2 異常部
3 磁化電源
4 磁化器
5 移相器
6 差動増幅器
7a、7b 同期検波器
8 信号レベル判別器
9 磁気センサ
10 位相分布計算機
11 欠陥顕在化判定装置
12 90度移相器
13 E型コイル
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Abnormal part 3 Magnetization power supply 4 Magnetizer 5 Phase shifter 6 Differential amplifier 7a, 7b Synchronous detector 8 Signal level discriminator 9 Magnetic sensor 10 Phase distribution calculator 11 Defect manifestation determination apparatus 12 90 degree phase shifter 13 E type coil

Claims (3)

金属被検体を交流磁化し、前記被検体からの交流磁束変化を、前記被検体の複数の位置で検出することにより得られる信号強度および位相を基に、金属被検体の正常部とは異なる異常部を検出する表層部性状測定方法において、
前記複数位置で得られた位相を、該位相と同じ位置で得られた前記信号強度で重み付け平均を行った値を用いて前記異常部を検出することを特徴とする表層部性状測定方法。
Abnormality different from the normal part of the metal object based on the signal intensity and phase obtained by AC magnetizing the metal object and detecting the AC magnetic flux change from the object at a plurality of positions of the object In the surface layer property measuring method for detecting the part ,
A method for measuring a surface layer property, comprising: detecting the abnormal portion using a value obtained by performing weighted averaging of the phases obtained at the plurality of positions with the signal intensity obtained at the same position as the phase .
請求項1に記載の表層部性状測定方法により検出された金属被検体の異常部のうち、前記表層部性状の測定以降において有害となる部位を判定することを特徴とする表層欠陥判定方法。 Among the abnormal portion of the metal object detected by the surface layer portion texture measuring method according to claim 1, the surface layer defect determination method characterized by determining the portion to be detrimental in the subsequent measurement of the superficial layer properties. 金属帯の表層部の性状を測定する表層部性状測定工程と、
前記表層部性状測定工程で検出された金属帯の異常部のうち、前記表層部性状測定工程以降の工程において有害となる部位を判定する表層欠陥判定工程と、を含み、
前記表層性状測定工程において、請求項1に記載の表層部性状測定方法を用いることを特徴とする金属帯の製造方法。
A surface layer property measuring step for measuring the property of the surface part of the metal strip,
Of the abnormal portion of the metal strip detected in the surface layer property measurement step, including a surface layer defect determination step for determining a harmful part in the step after the surface layer property measurement step,
In the said surface layer property measuring process, the surface layer part property measuring method of Claim 1 is used, The manufacturing method of the metal strip characterized by the above-mentioned .
JP2005033988A 2005-02-10 2005-02-10 Surface layer property measurement method, surface layer defect determination method using the same, and metal strip manufacturing method Expired - Fee Related JP4586556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005033988A JP4586556B2 (en) 2005-02-10 2005-02-10 Surface layer property measurement method, surface layer defect determination method using the same, and metal strip manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033988A JP4586556B2 (en) 2005-02-10 2005-02-10 Surface layer property measurement method, surface layer defect determination method using the same, and metal strip manufacturing method

Publications (2)

Publication Number Publication Date
JP2006220526A JP2006220526A (en) 2006-08-24
JP4586556B2 true JP4586556B2 (en) 2010-11-24

Family

ID=36982950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033988A Expired - Fee Related JP4586556B2 (en) 2005-02-10 2005-02-10 Surface layer property measurement method, surface layer defect determination method using the same, and metal strip manufacturing method

Country Status (1)

Country Link
JP (1) JP4586556B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4487082B1 (en) * 2009-07-01 2010-06-23 国立大学法人 岡山大学 Magnetic flux leakage flaw detection method and apparatus
JP6506122B2 (en) * 2015-07-09 2019-04-24 株式会社日立ハイテクノロジーズ Rail inspection apparatus and rail inspection system
JP6681069B2 (en) * 2016-10-24 2020-04-15 国立大学法人 岡山大学 Magnetic nondestructive inspection method and magnetic nondestructive inspection apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221239A (en) * 1987-03-10 1988-09-14 Sumitomo Metal Ind Ltd Leak magnetic flux flaw detecting method
JPH01119757A (en) * 1987-11-04 1989-05-11 Nkk Corp Magnetic method of flaw detection
JPH03276050A (en) * 1990-03-26 1991-12-06 Sumitomo Metal Ind Ltd Magneto-optical flaw detecting device
JPH05232088A (en) * 1992-02-24 1993-09-07 Sumitomo Metal Ind Ltd Leak magnetic flux probing method
JP2003050232A (en) * 2001-08-06 2003-02-21 Mitsubishi Heavy Ind Ltd Automatic calibration device for eddy current signal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221239A (en) * 1987-03-10 1988-09-14 Sumitomo Metal Ind Ltd Leak magnetic flux flaw detecting method
JPH01119757A (en) * 1987-11-04 1989-05-11 Nkk Corp Magnetic method of flaw detection
JPH03276050A (en) * 1990-03-26 1991-12-06 Sumitomo Metal Ind Ltd Magneto-optical flaw detecting device
JPH05232088A (en) * 1992-02-24 1993-09-07 Sumitomo Metal Ind Ltd Leak magnetic flux probing method
JP2003050232A (en) * 2001-08-06 2003-02-21 Mitsubishi Heavy Ind Ltd Automatic calibration device for eddy current signal

Also Published As

Publication number Publication date
JP2006220526A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP4809039B2 (en) Electromagnetic induction type inspection apparatus and electromagnetic induction type inspection method
EP2320224B1 (en) Magnetic measuring method and device
JP4661252B2 (en) Marked metal strip
JP2003240761A (en) Method and apparatus for detecting surface layer defect or surface defect in magnetic metal specimen
WO2005016566A1 (en) Method of manufacturing steel strip or surface-treated steel strip
JP4552680B2 (en) Metal strip manufacturing method and marking metal strip
JP4586556B2 (en) Surface layer property measurement method, surface layer defect determination method using the same, and metal strip manufacturing method
JP3709930B2 (en) Method for detecting surface layer or surface defect, apparatus for detecting surface layer or surface defect, and method for manufacturing steel strip for manufacturing steel strip for cold rolling or plating
JP6562055B2 (en) Processing state evaluation method, processing state evaluation device, and manufacturing method of grain-oriented electrical steel sheet
KR20230010709A (en) Mechanical property measurement device, mechanical property measurement method, material manufacturing facility, material management method, and material manufacturing method
JP3266128B2 (en) Leakage magnetic flux inspection method and magnetic flux leakage inspection equipment
JP4428249B2 (en) Metal strip manufacturing method
JP3743191B2 (en) Eddy current testing
CN1115214C (en) Method and equipment for inspecting surficial crack and crackclose to surface for conticast billets
JP4289074B2 (en) Steel strip manufacturing method
JP2004354240A (en) Leakage flux flaw detection method and leakage flux flaw detection device
KR100675061B1 (en) Method of manufacturing steel strip or surface-treated steel strip
JP2012083247A (en) Dissimilar material detection system
EP3961203B1 (en) Leakage magnetic flux flaw inspection device
JP2000227422A (en) Eddy current examination
JP6565849B2 (en) Magnetic flux leakage inspection device
JPH09274017A (en) Method and apparatus for detecting flaw of metal element
JP2004037218A (en) Magnetic flaw detecting apparatus
TWI397445B (en) Monitoring method of cleanliness of flat steel embryo
WO2021256444A1 (en) Mechanical property measurement device, mechanical property measurement method, material production equipment, material management method, and material production method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Ref document number: 4586556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees