JP2003050232A - Automatic calibration device for eddy current signal - Google Patents

Automatic calibration device for eddy current signal

Info

Publication number
JP2003050232A
JP2003050232A JP2001237276A JP2001237276A JP2003050232A JP 2003050232 A JP2003050232 A JP 2003050232A JP 2001237276 A JP2001237276 A JP 2001237276A JP 2001237276 A JP2001237276 A JP 2001237276A JP 2003050232 A JP2003050232 A JP 2003050232A
Authority
JP
Japan
Prior art keywords
signal
sample
target
correlation
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001237276A
Other languages
Japanese (ja)
Other versions
JP3785065B2 (en
Inventor
Shintaro Kumano
信太郎 熊野
Kyoko Wada
恭子 和田
Terumi Takahama
てるみ 高濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001237276A priority Critical patent/JP3785065B2/en
Publication of JP2003050232A publication Critical patent/JP2003050232A/en
Application granted granted Critical
Publication of JP3785065B2 publication Critical patent/JP3785065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To automatically calibrate the phase and sensitivity of an eddy current signal even when the phase and amplitude are totally different between a sample signal 21 and an object signal 22. SOLUTION: The correlation (sample correlation) of mutual phase and amplitude of signal elements (1)-(4) of the sample signal 21, and the correlation (object correlation) of the mutual phase and amplitude of elements A-F of the object signal 22 are compared, and the corresponding signal elements of the sample signal 21 and object signal 22 are specified to match the sample signal 21 and object signal 22. Even when the phase and amplitude are totally different between the sample signal 21 and object signal 22, the sample signal 21 and object signal 22 are correctly matched to allow automatic calibration of phase and sensitivity of the eddy current signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、基準となる渦電流
信号に基づいて実際の渦電流信号の位相・感度を自動的
に校正する渦電流信号の自動校正装置及び自動校正方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current signal automatic calibration apparatus and method for automatically calibrating the phase and sensitivity of an actual eddy current signal based on a reference eddy current signal.

【0002】[0002]

【従来の技術】伝熱管等の磁性体である金属の管路の非
破壊検査には、渦電流探傷法が汎用されている。渦電流
信号を分析して非破壊検査を行うためには、センサの信
号の位相・振幅を一定に揃える校正処理が必要である。
このため、渦電流信号の位相・感度を調整することが従
来から行われている。
2. Description of the Related Art The eddy current flaw detection method is generally used for nondestructive inspection of a metal pipe which is a magnetic material such as a heat transfer tube. In order to analyze the eddy current signal and perform non-destructive inspection, it is necessary to perform a calibration process to make the phase and amplitude of the sensor signal constant.
Therefore, the phase / sensitivity of the eddy current signal has been conventionally adjusted.

【0003】渦電流信号の位相・感度を調整するため、
従来から、信号要因である傷や穴、凹み等を設けたテス
トピースに対する渦電流の信号要素の時系列を記憶させ
ておき、実際にテストピースにセンサを通して得られた
渦電流の信号要素(対象信号要素)の時系列と、予め記
憶された信号要素(見本信号要素)の時系列とを比較
し、見本信号要素と対象信号要素をマッチングさせて対
象信号要素に対して渦電流信号の位相・感度を調整する
ことが行われている。
In order to adjust the phase and sensitivity of the eddy current signal,
Conventionally, a time series of eddy current signal elements for a test piece provided with scratches, holes, dents, etc., which are signal factors, is stored, and the eddy current signal element actually obtained through a sensor in the test piece (target The time series of the signal element) and the time series of the signal elements (sample signal elements) stored in advance are compared, and the sample signal element and the target signal element are matched to match the phase of the eddy current signal with respect to the target signal element. Adjusting the sensitivity is done.

【0004】具体的には、対象信号要素の時系列(ピー
ク・ピーク)と見本信号要素の時系列(ピーク・ピー
ク)に対して、振幅や位相角、時間幅等を比較し、類似
しているものを対応させて対象信号要素の時系列と見本
信号要素の時系列とをマッチングさせている。従って、
対象信号要素の時系列と見本信号要素の時系列がマッチ
ングされて渦電流信号の位相・感度の自動校正が可能と
なっていた。
Specifically, the time series (peak / peak) of the target signal element and the time series (peak / peak) of the sample signal element are compared in terms of amplitude, phase angle, time width, and the like. The time series of the target signal element and the time series of the sample signal element are matched by correlating the existing ones. Therefore,
By matching the time series of the target signal element and the time series of the sample signal element, it was possible to automatically calibrate the phase and sensitivity of the eddy current signal.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の渦電流
信号の位相・感度の調整では、対象信号要素の時系列と
見本信号要素の時系列とを比較し、振幅や位相角、時間
幅等の類似性によりマッチングを実施していた。このた
め、見本信号に比べて対象信号の振幅や位相角、時間幅
等が大きく異なっている場合(センサを校正する前には
十分に起こり得る)、マッチングができないことが考え
られる。このため、渦電流信号の位相・感度の自動校正
が行えなくなる虞があった。
However, in the conventional adjustment of the phase / sensitivity of the eddy current signal, the time series of the target signal element and the time series of the sample signal element are compared to determine the amplitude, phase angle, time width, etc. Matching was performed based on the similarity of. For this reason, if the amplitude, phase angle, time width, etc. of the target signal are significantly different from the sample signal (which can occur sufficiently before calibrating the sensor), it is considered that matching cannot be performed. Therefore, there is a possibility that automatic calibration of the phase / sensitivity of the eddy current signal cannot be performed.

【0006】本願発明は、上記状況に鑑みてなされたも
ので、対象信号と見本信号とが全く異なる位相や振幅に
なっている場合であっても、両者を正しくマッチングさ
せて渦電流信号の位相・感度の自動校正を可能にした渦
電流信号の自動校正装置及び自動校正方法を提供するこ
と目的とする。
The present invention has been made in view of the above situation. Even when the target signal and the sample signal have completely different phases and amplitudes, the two are correctly matched and the phase of the eddy current signal is adjusted. -It is an object to provide an automatic eddy current signal automatic calibration device and an automatic calibration method that enable automatic sensitivity calibration.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明の渦電流信号の自動校正装置は、感度調整の目
標となるテストピースの見本信号の特徴を見本信号要素
の時系列として記憶する見本記憶手段と、分析対象の対
象信号を取り込んで対象信号要素の時系列として抽出す
る対象信号抽出手段と、見本記憶手段で記憶された見本
信号要素同士の見本相関を導出する見本信号要素相関導
出手段と、対象信号抽出手段で抽出された対象信号要素
同士の対象相関を導出する対象信号要素相関導出手段
と、見本信号要素相関導出手段で導出された見本相関と
対象信号要素相関導出手段で導出された対象相関とに基
づいて見本信号と対象信号を対応付けする対応付け手段
と、対応付け手段で対応付けされた見本信号及び対象信
号に基づいて信号の状況を自動校正する自動校正手段と
を備えたことを特徴とする。
An automatic eddy current signal calibrating apparatus of the present invention for achieving the above object stores a characteristic of a sample signal of a test piece, which is a target of sensitivity adjustment, as a time series of sample signal elements. Sample storage means, target signal extraction means for taking in a target signal to be analyzed and extracting it as a time series of target signal elements, and sample signal element correlation for deriving a sample correlation between the sample signal elements stored in the sample storage means The deriving means, the target signal element correlation deriving means for deriving the target correlation between the target signal elements extracted by the target signal extracting means, and the sample correlation and the target signal element correlation deriving means derived by the sample signal element correlation deriving means. An associating unit that associates the sample signal and the target signal based on the derived target correlation, and a signal based on the sample signal and the target signal that are associated by the associating unit. Characterized by comprising an automatic calibration means for automatically calibrating the situation.

【0008】そして、見本相関及び対象相関は、信号の
位相角の相関であることを特徴とする。また、見本相関
及び対象相関は、信号の振幅の相関であることを特徴と
する。また、見本相関及び対象相関は、信号の間隔の相
関であることを特徴とする。また、見本相関及び対象相
関は、信号の位相角及び振幅の相関であることを特徴と
する。また、対応付け手段には、リサージュ表示された
信号の外接長方形の縦横比を見本信号要素と対象信号要
素とで比較する機能が備えられていることを特徴とす
る。また、対応付け手段には、対象信号要素の位相差の
値と見本信号要素の位相差の値との差の絶対値を任意の
時系列で加算し、加算値が最小となった時系列を判断す
ることで見本信号と対象信号を対応付けする機能が備え
られていることを特徴とする。
The sample correlation and the object correlation are characterized in that they are correlations of the phase angles of the signals. Further, the sample correlation and the target correlation are characterized in that they are correlations of signal amplitudes. Further, the sample correlation and the target correlation are characterized in that they are correlations of signal intervals. Further, the sample correlation and the object correlation are characterized in that they are the correlation of the phase angle and the amplitude of the signal. Further, the associating means is provided with a function of comparing the aspect ratio of the circumscribed rectangle of the Lissajous-displayed signal between the sample signal element and the target signal element. Further, the associating means adds the absolute value of the difference between the value of the phase difference of the target signal element and the value of the phase difference of the sample signal element in an arbitrary time series, and displays the time series in which the added value becomes the minimum. It is characterized by having a function of associating a sample signal with a target signal by making a determination.

【0009】また、対応付け手段には、対象信号要素の
振幅差の値と見本信号要素の振幅差の値との差の絶対値
を任意の時系列で加算し、加算値が最小となった時系列
を判断することで見本信号と対象信号を対応付けする機
能が備えられていることを特徴とする。また、対応付け
手段には、対象信号要素の位相差の値と見本信号要素の
位相差の値との差の絶対値を任意の時系列で加算し、加
算値が最小となった時系列を判断することで見本信号と
対象信号を対応付けする機能と、対象信号要素の振幅差
の値と見本信号要素の振幅差の値との差の絶対値を任意
の時系列で加算し、加算値が最小となった時系列を判断
することで見本信号と対象信号を対応付けする機能と、
位相角の判断結果及び振幅の判断結果に対して異なる重
みを加味する機能とが備えられていることを特徴とす
る。
In the associating means, the absolute value of the difference between the amplitude difference value of the target signal element and the amplitude difference value of the sample signal element is added in an arbitrary time series, and the added value becomes the minimum. It is characterized by having a function of associating a sample signal with a target signal by determining a time series. Further, the associating means adds the absolute value of the difference between the value of the phase difference of the target signal element and the value of the phase difference of the sample signal element in an arbitrary time series, and displays the time series in which the added value becomes the minimum. The function that correlates the sample signal and the target signal by making a judgment, and the absolute value of the difference between the amplitude difference value of the target signal element and the amplitude difference value of the sample signal element is added in an arbitrary time series, and the added value With the function of associating the sample signal with the target signal by determining the time series in which
It has a function of adding different weights to the phase angle determination result and the amplitude determination result.

【0010】上記目的を達成するための本発明の渦電流
信号の自動校正方法は、感度調整の目標となるテストピ
ースの見本信号の特徴を見本信号要素の時系列として記
憶し、分析対象の対象信号を取り込んで対象信号要素の
時系列として抽出し、記憶された見本信号要素同士の見
本位相・振幅相関を求めると共に抽出された対象信号要
素同士の対象位相・振幅相関を求め、見本位相・振幅相
関と対象位相・振幅相関とに基づいて見本信号と対象信
号を対応付けし、対応付けされた見本信号及び対象信号
に基づいて信号の状況を自動校正することを特徴とす
る。
The automatic eddy current signal calibration method of the present invention for achieving the above object stores the characteristics of the sample signal of the test piece, which is the target of the sensitivity adjustment, as a time series of the sample signal elements, and analyzes the object. The signal is captured and extracted as a time series of target signal elements, and the sample phase / amplitude correlation between the stored sample signal elements is calculated, and the target phase / amplitude correlation between the extracted target signal elements is calculated, and the sample phase / amplitude is calculated. The sample signal and the target signal are associated with each other based on the correlation and the target phase / amplitude correlation, and the signal condition is automatically calibrated based on the associated sample signal and target signal.

【0011】また、見本信号要素同士の見本間隔相関及
び対象信号要素同士の対象間隔相関を求め、自動校正開
始から所定時間経過後に対象間隔相関を加味して見本信
号と対象信号を対応付けすることを特徴とする。また、
リサージュ表示された信号の外接長方形の縦横比を見本
信号要素と対象信号要素とで比較し、見本信号と対象信
号を仮対応付けすることを特徴とする。
Further, the sample interval correlation between the sample signal elements and the target interval correlation between the target signal elements are obtained, and the sample interval signal and the target signal are associated with each other after adding a target interval correlation after a lapse of a predetermined time from the start of automatic calibration. Is characterized by. Also,
The aspect ratio of the circumscribed rectangle of the Lissajous-displayed signal is compared between the sample signal element and the target signal element, and the sample signal and the target signal are provisionally associated with each other.

【0012】[0012]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

【0013】図1には本発明の一実施形態例に係る渦電
流信号の自動校正装置を備えた配管検査装置により検査
を実施している状態の概念、図2には自動校正装置のブ
ロック構成、図3にはテストピースに対する見本信号と
対象信号との状況、図4には位相角と信号要素との関
係、図5、図6には自動校正方法のフローチャート、図
7には仮対応付けにおける見本信号と対象信号の格子点
概念、図8には評価値計算における見本信号と対象信号
の格子点概念を示してある。
FIG. 1 is a concept of a state where an inspection is carried out by a pipe inspection apparatus equipped with an eddy current signal automatic calibration apparatus according to an embodiment of the present invention, and FIG. 2 is a block configuration of the automatic calibration apparatus. , FIG. 3 shows the state of the sample signal and the target signal for the test piece, FIG. 4 shows the relationship between the phase angle and the signal element, FIG. 5 and FIG. 6 are flowcharts of the automatic calibration method, and FIG. 8 shows the concept of the lattice points of the sample signal and the target signal, and FIG. 8 shows the concept of the lattice points of the sample signal and the target signal in the evaluation value calculation.

【0014】図1に示すように、配管検査装置1は、渦
電流探傷プローブ2や信号電送ユニット3等がそれぞれ
フレキシブル部材4を介して直線状に連結されている。
配管検査装置1は、管板5に支持された配管6内を軸方
向に移動し、配管6の曲げ部ではフレキシブル部材4が
曲げられて配管検査装置1の全体が曲げ管に沿って挿入
されるようになっている。
As shown in FIG. 1, in the pipe inspection apparatus 1, an eddy current flaw detection probe 2, a signal transmission unit 3 and the like are linearly connected via a flexible member 4.
The pipe inspection device 1 moves axially in the pipe 6 supported by the pipe sheet 5, the flexible member 4 is bent at the bent portion of the pipe 6, and the entire pipe inspection device 1 is inserted along the bent pipe. It has become so.

【0015】管板5の配管6の入口側にはテストピース
7が配され、配管検査装置1は予め傷や穴、凹みが設け
られたテストピース7を通されて渦電流探傷プローブ2
の渦電流信号の位相・感度(状況)が自動校正される。
即ち、配管検査装置1はテストピース7を通った際に渦
電流信号(対象信号)が自動校正装置8に送られ、自動
校正装置8にはテストピース7の見本信号が記憶されて
いる。
A test piece 7 is arranged on the inlet side of the pipe 6 of the tube plate 5, and the pipe inspection apparatus 1 is passed through the test piece 7 which is preliminarily provided with scratches, holes and dents, and an eddy current flaw detection probe 2 is provided.
The eddy current signal's phase and sensitivity (condition) are automatically calibrated.
That is, the pipe inspection device 1 sends an eddy current signal (target signal) to the automatic calibration device 8 when passing through the test piece 7, and the automatic calibration device 8 stores the sample signal of the test piece 7.

【0016】そして、自動校正装置8では、見本信号の
傷や穴、凹みに対する信号要素(見本信号要素)と渦電
流探傷プローブ2の渦電流信号の信号要素(対象信号要
素)がマッチングされ、渦電流探傷プローブ2の渦電流
信号の位相・感度が調整されるようになっている。渦電
流信号が自動校正された後、配管6内の渦電流探傷プロ
ーブ2の信号が分析されて配管6内の傷等が検査され
る。
In the automatic calibrating device 8, the signal element (sample signal element) for scratches, holes, or dents in the sample signal and the signal element (target signal element) of the eddy current flaw detection probe 2 are matched, and the eddy current is detected. The phase / sensitivity of the eddy current signal of the current flaw detection probe 2 is adjusted. After the eddy current signal is automatically calibrated, the signal of the eddy current flaw detection probe 2 in the pipe 6 is analyzed to inspect the damage and the like in the pipe 6.

【0017】図2に基づいて自動校正装置8を説明す
る。
The automatic calibration device 8 will be described with reference to FIG.

【0018】図に示すように、テストピース7の見本信
号が入力され、見本信号の特徴を見本信号要素の時系列
として記憶する見本記憶手段としての見本信号管理装置
11が備えられている。また、渦電流探傷プローブ2の
渦電流信号が信号取込装置12で取り込まれ、抽出装置
13により信号部分(ピーク・ピーク)が抽出され、特
徴計算装置14により信号部分の特徴(対象信号要素の
時系列)が計算される(信号抽出手段)。
As shown in the figure, a sample signal management device 11 is provided as a sample storage means for receiving the sample signal of the test piece 7 and storing the characteristics of the sample signal as a time series of sample signal elements. In addition, the eddy current signal of the eddy current flaw detection probe 2 is captured by the signal capturing device 12, the signal portion (peak / peak) is extracted by the extracting device 13, and the feature of the signal portion (target signal element A time series) is calculated (signal extraction means).

【0019】また、仮対応付け装置15が備えられ、特
徴計算装置14で計算された対象信号と見本信号管理装
置11に記憶された見本信号とが仮対応付けされる。仮
対応付け装置15で仮対応付けされた結果は評価装置1
6で重み付けされて評価され(詳細の評価は後述す
る)、変更装置17に送られる。変更装置17では必要
に応じて対応付けの変更が行われ、校正用信号の要素が
特定装置18で特定されて正しい対応が特定される(対
応付け手段)。
A provisional associating device 15 is provided to provisionally associate the target signal calculated by the feature calculating device 14 with the sample signal stored in the sample signal managing device 11. The result of the temporary association performed by the temporary association device 15 is the evaluation device 1
It is weighted by 6 and evaluated (detailed evaluation will be described later), and sent to the changing device 17. The changing device 17 changes the correspondence as necessary, and the element of the calibration signal is specified by the specifying device 18 to specify the correct correspondence (corresponding means).

【0020】特定装置18で特定された校正用信号の要
素は信号校正装置19に送られ、信号校正装置19で渦
電流探傷プローブ2の渦電流信号の位相・感度(状況)
が自動校正される。
The elements of the calibration signal identified by the identifying device 18 are sent to the signal calibrating device 19, and the signal calibrating device 19 detects the phase / sensitivity (situation) of the eddy current signal of the eddy current flaw detection probe 2.
Is automatically calibrated.

【0021】図3(c) に示すように、テストピース7に
は傷や穴等の信号要因7〜7が形成され、図3(d)
に示すように、見本信号21には信号要因7〜7に
対応した要素〜(見本信号要素の時系列)が存在し
ている。一方、同じテストピース7を通った渦電流探傷
プローブ2からの対象信号22は、図3(b) に示すよう
に、信号要因7〜7及びノイズの要素A,B,C,
D,E,Fが存在している。
As shown in FIG. 3C, signal factors 7 to 7 such as scratches and holes are formed on the test piece 7, and FIG.
As shown in FIG. 5, the sample signal 21 includes elements (corresponding to the time series of sample signal elements) corresponding to the signal factors 7 to 7. On the other hand, the target signal 22 from the eddy current flaw detection probe 2 that has passed through the same test piece 7 is, as shown in FIG. 3B, signal factors 7 to 7 and noise factors A, B, C,
D, E, F are present.

【0022】見本信号21と対象信号22をマッチング
させて対象信号22の位相・感度を調整する。この時、
それぞれの信号の対応する要素を特定することで、対象
信号22の位相・感度(位相角度や感度の電圧)を調整
して標準化する。このため、自動校正装置8では、見本
信号21の要素〜同士の相関(見本相関)を求める
と共に、対象信号22の要素A〜F同士の相関(対象相
関)を求め、見本相関と対象相関とを比較することで見
本信号21及び対象信号22の対応する要素を特定して
見本信号21と対象信号22をマッチングさせる。
The phase and sensitivity of the target signal 22 are adjusted by matching the sample signal 21 and the target signal 22. This time,
By specifying the corresponding element of each signal, the phase / sensitivity (phase angle or voltage of sensitivity) of the target signal 22 is adjusted and standardized. Therefore, in the automatic calibration device 8, the correlation between the elements of the sample signal 21 (sample correlation) is obtained, and the correlation between the elements A to F of the target signal 22 (target correlation) is obtained, and the sample correlation and the target correlation are obtained. Are compared to identify the corresponding elements of the sample signal 21 and the target signal 22, and the sample signal 21 and the target signal 22 are matched.

【0023】図3に基づいてマッチングの一例を説明す
る。
An example of matching will be described with reference to FIG.

【0024】図3(e) に示すように、信号要因7に
対応する、見本信号21の要素において、リサージ
ュ表示された要素の波形23,23の振幅L
,Lの関係である(L/L)、及び波形23
,23の位相θ1 (見本相関)を求める。また、図
3(a) に示すように、信号要因7に対応する、対象
信号22の要素ABにおいて、リサージュ表示された要
素ABの波形24ABの振幅lA,lBの関係である
(lA/lB)及び波形24A,24Bの位相θ2 (対
象相関)を求める。
As shown in FIG. 3 (e), in the element of the sample signal 21 corresponding to the signal factor 7, the amplitude L of the waveforms 23, 23 of the element displayed in Lissajous
, L (L / L), and the waveform 23
, 23 of the phase θ1 (sample correlation) is obtained. Further, as shown in FIG. 3 (a), in the element AB of the target signal 22 corresponding to the signal factor 7, there is a relationship between the amplitudes 1A and 1B of the waveform 24AB of the element AB displayed in the Lissajous manner (lA / lB). And the phase θ2 (symmetrical correlation) of the waveforms 24A and 24B is obtained.

【0025】同じ信号要因7における見本信号21
の波形23と対象信号22の波形24AB同士であ
れば、波形23,24の大きさ等に拘らず(L/L
)と(lA/lB)との割合は略同じになり、位相θ
1、θ2も略同じになる。このように、同じ信号要因7
に対応する、見本信号21の波形23及び対象
信号22の波形24ABにおける要素の相関は略同じに
なる。このため、見本相関と対象相関とを比べることで
見本信号21と対象信号22の対応する要素を特定し、
見本信号21と対象信号22をマッチングさせるように
している。
Sample signal 21 with the same signal factor 7
Of the waveform 23 and the waveform 24AB of the target signal 22, regardless of the sizes of the waveforms 23 and 24 (L / L
) And (lA / lB) are approximately the same, and the phase θ
1 and θ2 are substantially the same. In this way, the same signal factor 7
Correspondences of the elements in the waveform 23 of the sample signal 21 and the waveform 24AB of the target signal 22 corresponding to are substantially the same. Therefore, the corresponding elements of the sample signal 21 and the target signal 22 are identified by comparing the sample correlation and the target correlation,
The sample signal 21 and the target signal 22 are matched.

【0026】図4に示すように、対象信号22の要素A
〜Fを結ぶ線分と見本信号21の要素〜を結ぶ線分
を平行移動させることで、最も重なる状態での一致度を
評価すると、例えば、位相角の相関においては、対象信
号22の要素A,B,D,Fがそれぞれ見本信号21の
要素に対応し(実線)、対象信号22のC,E
がノイズの要素(点線)であることが判断できる。振幅
の相関に関しても同様なことが言える。この場合の比較
として、実際の値に加えて学習値等を加味して一致度を
判断することも可能である。
As shown in FIG. 4, element A of the target signal 22.
When the degree of coincidence in the most overlapping state is evaluated by translating the line segment connecting the line segment that connects -F and the line segment that connects the element of the sample signal 21 to each other, for example, in the phase angle correlation, the element A of the target signal 22 is evaluated. , B, D, and F respectively correspond to elements of the sample signal 21 (solid line), and C and E of the target signal 22.
Can be determined to be an element of noise (dotted line). The same applies to the amplitude correlation. As a comparison in this case, it is also possible to judge the degree of coincidence by considering a learning value or the like in addition to the actual value.

【0027】図5、図6に基づいて自動校正方法を説明
する。
The automatic calibration method will be described with reference to FIGS.

【0028】図5に示すように、テストピース7が新規
の場合、テストピース7を登録する。ステップS1でテ
ストピース7の見本信号21を準備し、ステップS2で
見本信号21の信号部分(ピーク・ピーク)を抽出す
る。ステップS3で信号部分(要素)の特徴量である位
相角、振幅を計算し、ステップS4で特徴量を保存す
る。尚、本実施形態例では、ステップS3で信号部分の
特徴量としてリサージュ表示された要素の外接長方形の
縦横比も計算される。そして、保存された特徴量をステ
ップS5で読み込む。既存のテストピース7が存在する
場合、ステップS5では既存のテストピース7の特徴量
を読み込む。
As shown in FIG. 5, when the test piece 7 is new, the test piece 7 is registered. The sample signal 21 of the test piece 7 is prepared in step S1, and the signal portion (peak / peak) of the sample signal 21 is extracted in step S2. In step S3, the phase angle and amplitude, which are the characteristic quantities of the signal portion (element), are calculated, and the characteristic quantities are stored in step S4. In this embodiment, the aspect ratio of the circumscribed rectangle of the Lissajous-displayed element is also calculated as the feature amount of the signal portion in step S3. Then, the stored characteristic amount is read in step S5. When the existing test piece 7 exists, the feature amount of the existing test piece 7 is read in step S5.

【0029】ステップS1乃至ステップS5が見本信号
管理装置11の処理となっている。
The steps S1 to S5 are processes of the sample signal management device 11.

【0030】ステップS6で分析対象の信号である対象
信号22が読み込まれ(信号取込装置12)、ステップ
S7で対象信号22の信号部分(ピーク・ピーク)を抽
出する(抽出装置13)。ステップS8で信号部分(要
素)の特徴量である位相角、振幅及びリサージュ表示さ
れた要素の外接長方形の縦横比を計算する(特徴計算装
置14)。ステップS3で計算されたテストピース7
(見本信号21)の位相角、振幅及びリサージュ表示さ
れた要素の外接長方形の縦横比及びステップS8で計算
された対象信号22の位相角、振幅及びリサージュ表示
された要素の外接長方形の縦横比はステップS9に送ら
れる。
In step S6, the target signal 22 which is the signal to be analyzed is read (signal capturing device 12), and in step S7 the signal portion (peak / peak) of the target signal 22 is extracted (extracting device 13). In step S8, the phase angle, the amplitude, and the aspect ratio of the circumscribed rectangle of the Lissajous-displayed element, which are the characteristic quantities of the signal portion (element), are calculated (feature calculation device 14). Test piece 7 calculated in step S3
The phase angle, the amplitude of the (sample signal 21) and the aspect ratio of the circumscribed rectangle of the Lissajous-displayed element and the phase angle of the target signal 22 calculated in step S8 and the aspect ratio of the circumscribed rectangle of the Lissajous-displayed element are It is sent to step S9.

【0031】ステップS9では、見本信号21と対象信
号22の要素が仮対応付けされ、対応付けの候補の絞り
込みが行われる。例えば、見本信号21と対象信号22
の要素の縦横比を比較し、縦横比の差が基準以上ある場
合には対応付けの候補から除外する。つまり、図7に示
すように、縦軸を対象信号22の要素A〜F(図3参
照)、横軸を見本信号21の要素(図3参照)
とした場合、各交点(各組み合わせ)での縦横比の差を
評価し、基準を外れる組み合わせ、即ち、図示例では、
要素と要素D、要素と要素A,E、要素と要素
C、要素と要素Bの組み合わせは縦横比の差が基準よ
り大きいため対応付けの候補から除外するようにする。
これにより、無駄な比較処理をなくすことが可能にな
る。
In step S9, the elements of the sample signal 21 and the target signal 22 are provisionally associated with each other, and the candidates for association are narrowed down. For example, the sample signal 21 and the target signal 22
The aspect ratios of the elements are compared, and if the difference in the aspect ratio is greater than or equal to the reference, the elements are excluded from the association candidates. That is, as shown in FIG. 7, the vertical axis represents elements A to F of the target signal 22 (see FIG. 3) and the horizontal axis represents elements of the sample signal 21 (see FIG. 3).
In the case of, the difference in the aspect ratio at each intersection (each combination) is evaluated, and the combination deviates from the standard, that is, in the illustrated example,
The combinations of the elements and the elements D, the elements and the elements A and E, the elements and the elements C, and the elements and the elements B have a difference in the aspect ratio larger than the reference, and therefore are excluded from the association candidates.
This makes it possible to eliminate unnecessary comparison processing.

【0032】図6に示すように、ステップS10では、
見本信号21と対象信号22の要素が位相角及び振幅に
基づいて仮対応付けされる。つまり、図4に示したよう
に、対象信号22の要素A〜Fを結ぶ線分と見本信号2
1の要素〜を結ぶ線分を平行移動させ、最も重なる
状態での一致度を評価する。尚、ステップS9の処理を
省略して、ステップS3で計算されたテストピース7
(見本信号21)の位相角、振幅及びステップS8で計
算された対象信号22の位相角、振幅をステップS10
に送ることも可能である。
As shown in FIG. 6, in step S10,
The elements of the sample signal 21 and the target signal 22 are provisionally associated with each other based on the phase angle and the amplitude. That is, as shown in FIG. 4, the line segment connecting the elements A to F of the target signal 22 and the sample signal 2
The line segment connecting the elements 1 to 1 is translated, and the degree of coincidence in the most overlapping state is evaluated. The process of step S9 is omitted and the test piece 7 calculated in step S3 is
The phase angle and amplitude of the (sample signal 21) and the phase angle and amplitude of the target signal 22 calculated in step S8 are calculated in step S10.
It is also possible to send to.

【0033】ステップS9及びステップS10が仮対応
付け装置15の処理となっている。
Steps S9 and S10 are processing of the temporary associating device 15.

【0034】次に、ステップS11で見本信号21の要
素〜同士の位相角の差θk1と、対象信号22の要素
A〜F同士の位相角の差θk2とを求め、(θk1−θk2)
の絶対値の総和Σθを評価値1とする。
Next, in step S11, the difference .theta.k1 between the phase angles of the elements of the sample signal 21 and the difference .theta.k2 between the phase angles of the elements A to F of the target signal 22 are obtained, and (.theta.k1-.theta.k2).
The sum Σθ of the absolute values of is set as the evaluation value 1.

【0035】例えば、見本信号21の要素と対象信号2
2の要素の組み合わせは、図8に示すように、多数存在
する。この中で、見本信号21の要素と要素の位相
角の差θk1a と、対象信号22の要素Aと要素Bの位相
角の差θk2a を考えると、(θk1−θk2)は、(θk1a
−θk2a )となり、見本信号21の要素と要素の位
相角の差θk1b と、対象信号22の要素Bと要素Cの位
相角の差θk2b を考えると、(θk1−θk2)は、(θk1
b −θk2b )となる。このように、考え得る各組み合わ
せにおける(θk1−θk2)を求め、(θk1−θk2)の絶
対値の総和Σθを評価値1とする。
For example, the elements of the sample signal 21 and the target signal 2
There are many combinations of the two elements, as shown in FIG. Considering here the difference θk1a between the phase angles of the elements of the sample signal 21 and the phase angle θk2a between the elements A and B of the target signal 22, (θk1−θk2) becomes (θk1a
−θk2a), and considering the difference θk1b between the phase angle between the elements of the sample signal 21 and the phase angle θb2b between the elements B and C of the target signal 22, (θk1−θk2) becomes (θk1
b − θk2b). In this way, (θk1−θk2) in each possible combination is obtained, and the sum Σθ of absolute values of (θk1−θk2) is set as the evaluation value 1.

【0036】更に、ステップS12で見本信号21の要
素〜同士の振幅比rk1 と、対象信号22の要素A〜
F同士の振幅比rk2 を求め、(rk1 −rk2 )の絶対値の
総和Σr を評価値2とする。この時、ステップS11で
求めた総和Σθの要素とステップS12で求める総和Σ
r の要素は等しいものとする。
Further, in step S12, the amplitude ratio rk1 between the elements of the sample signal 21 and the elements A of the target signal 22.
The amplitude ratio rk2 between F is calculated, and the sum Σr of the absolute values of (rk1 −rk2) is set as the evaluation value 2. At this time, the elements of the sum Σθ obtained in step S11 and the sum Σ obtained in step S12
The elements of r are equal.

【0037】例えば、見本信号21の要素と対象信号2
2の要素の組み合わせは、図8に示すように、多数存在
する。この中で、見本信号21の要素と要素の振幅
比rk1aと、対象信号22の要素Aと要素Bの振幅比rk2a
を考えると、(rk1 −rk2 )は、(rk1a−rk2a)とな
り、見本信号21の要素と要素の振幅比rk1bと、対
象信号22の要素Bと要素Cの振幅比rk2bを考えると、
(rk1 −rk2 )は、(rk1b−rk2b)となる。このよう
に、考え得る各組み合わせにおける(rk1 −rk2 )を求
め、(rk1 −rk2 )の絶対値のΣr を評価値2とする。
For example, the elements of the sample signal 21 and the target signal 2
There are many combinations of the two elements, as shown in FIG. Among these, the amplitude ratio rk1a between the elements of the sample signal 21 and the amplitude ratio rk2a between the elements A and B of the target signal 22.
(Rk1−rk2) becomes (rk1a−rk2a), and considering the amplitude ratio rk1b between the elements of the sample signal 21 and the amplitude ratio rk2b between the elements B and C of the target signal 22,
(Rk1-rk2) becomes (rk1b-rk2b). In this way, (rk1-rk2) in each possible combination is obtained, and the absolute value Σr of (rk1-rk2) is set as the evaluation value 2.

【0038】ステップS11で評価値1を求め、ステッ
プS12で評価値2を求めた後、ステップS13で評価
関数を計算する。評価関数は、評価値1に重みαを乗じ
たものと、評価値2に重みβを乗じたものを加算して計
算される。重みα,βは、評価を行う際に位相と振幅の
どちらをより重視するかにより設定される。重みα,β
は、固定値であってもよいし、テストピース7の劣化や
渦電流探傷プローブ2の使用状況によって可変値にする
ようにしてもよい。
After the evaluation value 1 is obtained in step S11 and the evaluation value 2 is obtained in step S12, the evaluation function is calculated in step S13. The evaluation function is calculated by adding the one obtained by multiplying the evaluation value 1 by the weight α and the one obtained by multiplying the evaluation value 2 by the weight β. The weights α and β are set depending on which of the phase and the amplitude is more important when the evaluation is performed. Weight α, β
May be a fixed value, or may be a variable value depending on the deterioration of the test piece 7 and the usage of the eddy current flaw detection probe 2.

【0039】ステップS11、ステップS12及びステ
ップS13が評価装置16の処理となっている。
The steps of S11, S12 and S13 are the processes of the evaluation device 16.

【0040】ステップS14に移行して、次の対応付け
の組み合わせが有るか否かが判断され、次の対応付けが
ある場合にはステップS10に移行して次の対応付けが
なくなるまで上述した処理を繰り返す。ステップS14
が変更装置17の処理となっている。
In step S14, it is determined whether or not there is a next combination of associations. If there is a next association, the operation proceeds to step S10 and the above-described processing is performed until there is no next association. repeat. Step S14
Is the processing of the changing device 17.

【0041】ステップS14で次の対応付けがないと判
断された場合、ステップS15で評価関数が最小となる
対応付けを選択する。選択された対応付けの評価関数と
基準値とをステップS16で比較し、評価関数が基準値
以上であると判断された場合、見本信号21と対象信号
22とは対応できない相関の状況であるのでステップS
17でテストピース7の見本信号21が不備であると判
断される。ステップS16で評価関数が基準値よりも小
さいと判断された場合、ステップS18で見本信号の要
素〜毎に対応付けられた対象信号22の要素の位相
及び振幅を計算する。
If it is determined in step S14 that there is no next correlation, the correlation having the smallest evaluation function is selected in step S15. When the evaluation function of the selected association and the reference value are compared in step S16 and it is determined that the evaluation function is greater than or equal to the reference value, it means that the sample signal 21 and the target signal 22 are in a state of correlation that cannot correspond to each other. Step S
At 17, it is determined that the sample signal 21 of the test piece 7 is defective. When it is determined in step S16 that the evaluation function is smaller than the reference value, the phases and amplitudes of the elements of the target signal 22 associated with the elements of the sample signal are calculated in step S18.

【0042】ステップS14、ステップS15、ステッ
プS16、ステップS17及びステップS18が特定装
置16の処理となっている。
Steps S14, S15, S16, S17 and S18 are processes of the identifying device 16.

【0043】ステップS18で対象信号22の要素の位
相及び振幅を計算した後、ステップS19で校正用のパ
ラメータが計算され、即ち、位相の変更角度や感度の電
圧が計算され、ステップS20で対象信号22を校正用
のパラメータに基づいて校正する。
After the phases and amplitudes of the elements of the target signal 22 are calculated in step S18, the calibration parameters are calculated in step S19, that is, the phase change angle and the sensitivity voltage are calculated, and the target signal is calculated in step S20. 22 is calibrated based on the calibration parameters.

【0044】ステップS19及びステップS20が信号
校正装置19の処理となっている。
Steps S19 and S20 are the processes of the signal calibrating device 19.

【0045】上述したように、見本信号21の信号要素
〜同士の相関(見本相関)と、対象信号22の要素
A〜F同士の相関(対象相関)とを比較することで、見
本信号21及び対象信号22の対応する要素を特定して
見本信号21と対象信号22をマッチングさせるように
している。このため、見本信号21と対象信号22で位
相や振幅が全く異なっていても見本信号21と対象信号
22を正しくマッチングさせることができ、渦電流信号
の位相・感度の自動校正が可能になる。
As described above, the sample signal 21 and the correlation between the signal elements of the sample signal 21 (sample correlation) and the correlation between the elements A to F of the target signal 22 (target correlation) are compared to each other. The corresponding element of the target signal 22 is specified and the sample signal 21 and the target signal 22 are matched. Therefore, even if the phase and amplitude of the sample signal 21 and the target signal 22 are completely different, the sample signal 21 and the target signal 22 can be correctly matched, and the phase / sensitivity of the eddy current signal can be automatically calibrated.

【0046】そして、位相差や振幅比の基準となる信号
要因を、テストピース7で最初に存在する要因とし、そ
の信号との位相差、振幅比により他の信号要因の特徴を
表している。最初の要因信号を仮定した場合、他の信号
要因の類維持度(見本信号との)に基づくマッチングを
行っている。マッチングが基準値よりも悪い場合には最
初の信号要因の仮定が誤っていると判断することによ
り、最初の信号要因の対応を変えるようにしている。こ
れにより、テストピース7部分が信号全長でどの部分か
不明確な場合にテストピース7部分の自動きり出しをお
こなう。
Then, the signal factor serving as a reference for the phase difference and the amplitude ratio is set as the factor that first exists in the test piece 7, and the characteristics of other signal factors are represented by the phase difference and the amplitude ratio with the signal. If the first factor signal is assumed, matching is performed based on the degree of similar maintenance of other signal factors (with the sample signal). When the matching is worse than the reference value, the correspondence of the first signal factor is changed by determining that the assumption of the first signal factor is wrong. As a result, when it is unclear which part of the test piece 7 is the entire signal length, the test piece 7 part is automatically cut out.

【0047】従って、見本信号21と対象信号22とが
全く異なる位相や振幅になっている場合に、精度良く分
析対象のテストピース7部分を自動認識することができ
る。また、位相差や振幅比が類似で、複数の信号要因の
どれかが明確に判断できない場合に、信号要因の並びや
配置(信号波形だけでなく信号の位置関係を考慮する)
を利用して分析対象のテストピース7部分を自動認識す
ることができる。
Therefore, when the sample signal 21 and the target signal 22 have completely different phases and amplitudes, the test piece 7 part to be analyzed can be automatically recognized with high accuracy. In addition, when the phase difference and amplitude ratio are similar and one of the multiple signal factors cannot be clearly determined, the signal factors are arranged and arranged (consider not only the signal waveform but also the signal positional relationship).
Can be used to automatically recognize the test piece 7 portion to be analyzed.

【0048】上述した実施形態例では、位相と振幅を信
号要素として説明したが、位相と振幅の両者を用いた場
合、渦電流探傷プローブ2の移動速度に拘らず見本信号
21と対象信号22の対応が行え、渦電流探傷プローブ
2の駆動手段等の劣化が生じても影響を抑制することが
できる。位相と振幅のどちらか一方だけを用いることも
可能であり、どちらか一方を用いた場合、簡単な制御で
見本信号21と対象信号22の対応が行える。
In the above-described embodiment, the phase and the amplitude are explained as the signal elements. However, when both the phase and the amplitude are used, the sample signal 21 and the target signal 22 are irrespective of the moving speed of the eddy current flaw detection probe 2. Therefore, it is possible to deal with the problem, and it is possible to suppress the influence even if the driving unit of the eddy current flaw detection probe 2 is deteriorated. It is also possible to use only one of the phase and the amplitude. When either one is used, the sample signal 21 and the target signal 22 can be associated with each other by simple control.

【0049】また、信号要素の相関としては、要素間隔
を適用することも可能である。要素間隔を適用すること
により、渦電流探傷プローブ2の劣化やテストピース7
の劣化に拘らず見本信号21と対象信号22の対応が行
える。要素間隔を適用する場合、自動校正開始から所定
時間経過した後に要素間隔相関を加味するようにする等
の運用が可能である。
Further, the element interval can be applied as the correlation of the signal elements. By applying the element spacing, deterioration of the eddy current flaw detection probe 2 and the test piece 7
The sample signal 21 and the target signal 22 can be associated with each other regardless of the deterioration of When the element interval is applied, operation such as adding the element interval correlation after a lapse of a predetermined time from the start of automatic calibration can be performed.

【0050】上述した自動校正装置を用いることで、検
査現場と分析場所とをネットワークで結合して監視する
ことで、完全自動校正処理だけではなく半自動の処理も
可能である。
By using the above-mentioned automatic calibration device to connect the inspection site and the analysis place through a network and monitor them, not only a fully automatic calibration process but also a semi-automatic process is possible.

【0051】[0051]

【発明の効果】本発明の渦電流信号の自動校正装置は、
感度調整の目標となるテストピースの見本信号の特徴を
見本信号要素の時系列として記憶する見本記憶手段と、
分析対象の対象信号を取り込んで対象信号要素の時系列
として抽出する対象信号抽出手段と、見本記憶手段で記
憶された見本信号要素同士の見本相関を導出する見本信
号要素相関導出手段と、対象信号抽出手段で抽出された
対象信号要素同士の対象相関を導出する対象信号要素相
関導出手段と、見本信号要素相関導出手段で導出された
見本相関と対象信号要素相関導出手段で導出された対象
相関とに基づいて見本信号と対象信号を対応付けする対
応付け手段と、対応付け手段で対応付けされた見本信号
及び対象信号に基づいて信号の状況を自動校正する自動
校正手段とを備えたので、見本信号の見本相関と、対象
信号の対象相関とを比較することで、見本信号及び対象
信号の対応する信号要素を特定して見本信号と対象信号
をマッチングさせることができる。この結果、見本信号
と対象信号で位相や振幅等の要素が全く異なっていても
見本信号と対象信号を正しくマッチングさせることがで
き、渦電流信号の位相・感度の自動校正が可能になる。
The automatic eddy current signal calibration apparatus of the present invention comprises:
Sample storage means for storing the characteristics of the sample signal of the test piece, which is the target of sensitivity adjustment, as a time series of sample signal elements,
Target signal extraction means for taking in the target signal to be analyzed and extracting it as a time series of target signal elements, sample signal element correlation deriving means for deriving the sample correlation between the sample signal elements stored in the sample storage means, and the target signal A target signal element correlation deriving means for deriving a target correlation between the target signal elements extracted by the extracting means, and a sample correlation derived by the sample signal element correlation deriving means and a target correlation derived by the target signal element correlation deriving means The sample signal is associated with the target signal based on the associating means, and the automatic calibration means for automatically calibrating the signal status based on the sample signal and the target signal associated by the associating means. By comparing the sample correlation of the signal and the target correlation of the target signal, the corresponding signal elements of the sample signal and the target signal are identified and the sample signal and the target signal are matched. It is possible. As a result, even if the sample signal and the target signal have completely different elements such as phase and amplitude, the sample signal and the target signal can be correctly matched, and the phase / sensitivity of the eddy current signal can be automatically calibrated.

【0052】そして、見本相関及び対象相関は、信号の
位相角の相関であるので、簡単な制御により見本信号と
対象信号を正しくマッチングさせることができる。
Since the sample correlation and the target correlation are the correlations of the phase angles of the signals, the sample signal and the target signal can be correctly matched by simple control.

【0053】また、見本相関及び対象相関は、信号の振
幅の相関であるので、簡単な制御により見本信号と対象
信号を正しくマッチングさせることができる。
Further, since the sample correlation and the target correlation are the correlations of the amplitudes of the signals, the sample signal and the target signal can be correctly matched by simple control.

【0054】また、見本相関及び対象相関は、信号の間
隔の相関であるので、センサやテストピースの劣化に拘
らず見本信号と対象信号の対応が行える。
Further, since the sample correlation and the target correlation are correlations of signal intervals, the sample signal and the target signal can be associated with each other regardless of the deterioration of the sensor or the test piece.

【0055】また、見本相関及び対象相関は、信号の位
相角及び振幅の相関であるので、センサの移動速度に拘
らず見本信号と対象信号の対応が行え、センサの駆動手
段等の劣化が生じても影響を抑制することができる。
Further, since the sample correlation and the target correlation are the correlation of the phase angle and the amplitude of the signal, the sample signal and the target signal can be associated with each other regardless of the moving speed of the sensor, and the driving means of the sensor is deteriorated. However, the influence can be suppressed.

【0056】また、対応付け手段には、リサージュ表示
された信号の外接長方形の縦横比を見本信号要素と対象
信号要素とで比較する機能が備えられているので、仮対
応付けが容易に行え、無駄な比較処理をなくすことがで
きる。
Since the associating means is provided with a function of comparing the aspect ratio of the circumscribed rectangle of the Lissajous-displayed signal between the sample signal element and the target signal element, provisional association can be easily performed. Useless comparison processing can be eliminated.

【0057】また、対応付け手段には、対象信号要素の
位相差の値と見本信号要素の位相差の値との差の絶対値
を任意の時系列で加算し、加算値が最小となった時系列
を判断することで見本信号と対象信号を対応付けする機
能が備えられているので、簡単な制御で精度良く分析対
象のテストピースを自動認識することができる。
In the associating means, the absolute value of the difference between the phase difference value of the target signal element and the phase difference value of the sample signal element is added in an arbitrary time series, and the added value becomes the minimum. Since the function of associating the sample signal with the target signal is provided by determining the time series, the test piece to be analyzed can be automatically recognized with high accuracy by simple control.

【0058】また、対応付け手段には、対象信号要素の
振幅差の値と見本信号要素の振幅差の値との差の絶対値
を任意の時系列で加算し、加算値が最小となった時系列
を判断することで見本信号と対象信号を対応付けする機
能が備えられているので、簡単な制御で精度良く分析対
象のテストピースを自動認識することができる。
In the associating means, the absolute value of the difference between the amplitude difference value of the target signal element and the amplitude difference value of the sample signal element is added in an arbitrary time series, and the added value becomes the minimum. Since the function of associating the sample signal with the target signal is provided by determining the time series, the test piece to be analyzed can be automatically recognized with high accuracy by simple control.

【0059】また、対応付け手段には、対象信号要素の
位相差の値と見本信号要素の位相差の値との差の絶対値
を任意の時系列で加算し、加算値が最小となった時系列
を判断することで見本信号と対象信号を対応付けする機
能と、対象信号要素の振幅差の値と見本信号要素の振幅
差の値との差の絶対値を任意の時系列で加算し、加算値
が最小となった時系列を判断することで見本信号と対象
信号を対応付けする機能と、位相角の判断結果及び振幅
の判断結果に対して異なる重みを加味する機能とが備え
られているので、高い精度で必要な要素を重視して分析
対象のテストピースを自動認識することができる。
In the associating means, the absolute value of the difference between the phase difference value of the target signal element and the phase difference value of the sample signal element is added in an arbitrary time series, and the added value becomes the minimum. A function that correlates the sample signal with the target signal by determining the time series, and adds the absolute value of the difference between the amplitude difference value of the target signal element and the amplitude difference value of the sample signal element in any time series. , A function of associating the sample signal with the target signal by determining the time series in which the added value is the minimum, and a function of adding different weights to the determination result of the phase angle and the determination result of the amplitude are provided. Therefore, the test piece to be analyzed can be automatically recognized with high accuracy by emphasizing necessary elements.

【0060】本発明の自動校正方法は、感度調整の目標
となるテストピースの見本信号の特徴を見本信号要素の
時系列として記憶し、分析対象の対象信号を取り込んで
対象信号要素の時系列として抽出し、記憶された見本信
号要素同士の見本位相・振幅相関を求めると共に抽出さ
れた対象信号要素同士の対象位相・振幅相関を求め、見
本位相・振幅相関と対象位相・振幅相関とに基づいて見
本信号と対象信号を対応付けし、対応付けされた見本信
号及び対象信号に基づいて信号の状況を自動校正するよ
うにしたので、見本信号の見本相関と、対象信号の対象
相関とを比較することで、見本信号及び対象信号の対応
する信号要素を特定して見本信号と対象信号をマッチン
グさせることができる。この結果、見本信号と対象信号
で位相や振幅等の要素が全く異なっていても見本信号と
対象信号を正しくマッチングさせることができ、渦電流
信号の位相・感度の自動校正が可能になる。
In the automatic calibration method of the present invention, the characteristics of the sample signal of the test piece, which is the target of the sensitivity adjustment, are stored as a time series of sample signal elements, and the target signal to be analyzed is taken in to obtain the time series of the target signal elements. Based on the sample phase / amplitude correlation and the target phase / amplitude correlation, the target phase / amplitude correlation between the extracted target signal elements is found, as well as the sample phase / amplitude correlation between the extracted and stored sample signal elements is found. Since the sample signal and the target signal are associated with each other and the signal status is automatically calibrated based on the associated sample signal and target signal, the sample correlation of the sample signal is compared with the target correlation of the target signal. As a result, the corresponding signal elements of the sample signal and the target signal can be specified to match the sample signal and the target signal. As a result, even if the sample signal and the target signal have completely different elements such as phase and amplitude, the sample signal and the target signal can be correctly matched, and the phase / sensitivity of the eddy current signal can be automatically calibrated.

【0061】そして、見本信号要素同士の見本間隔相関
及び対象信号要素同士の対象間隔相関を求め、自動校正
開始から所定時間経過後に対象間隔相関を加味して見本
信号と対象信号を対応付けするようにしたので、センサ
やテストピースの劣化に拘らず見本信号と対象信号の対
応が行える。
Then, the sample interval correlation between the sample signal elements and the object interval correlation between the target signal elements are obtained, and the sample interval and the target signal are associated with each other after the lapse of a predetermined time from the start of automatic calibration. Therefore, the sample signal and the target signal can be associated with each other regardless of the deterioration of the sensor or the test piece.

【0062】また、リサージュ表示された信号の外接長
方形の縦横比を見本信号要素と対象信号要素とで比較
し、見本信号と対象信号を仮対応付けするようにしたの
で、仮対応付けが容易に行え、無駄な比較処理をなくす
ことができる。
Further, the aspect ratio of the circumscribed rectangle of the Lissajous-displayed signal is compared between the sample signal element and the target signal element, and the sample signal and the target signal are provisionally associated with each other. It is possible to eliminate unnecessary comparison processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態例に係る渦電流信号の自動
校正装置を備えた配管検査装置により検査を実施してい
る状態の概念図。
FIG. 1 is a conceptual diagram of a state in which an inspection is performed by a pipe inspection device including an automatic eddy current signal calibrating device according to an embodiment of the present invention.

【図2】自動校正装置のブロック構成図。FIG. 2 is a block configuration diagram of an automatic calibration device.

【図3】テストピースに対する見本信号と対象信号との
状況説明図。
FIG. 3 is an explanatory view of a situation of a sample signal and a target signal for a test piece.

【図4】位相角と信号要素との関係を表すグラフ。FIG. 4 is a graph showing a relationship between a phase angle and a signal element.

【図5】自動校正方法のフローチャート。FIG. 5 is a flowchart of an automatic calibration method.

【図6】自動校正方法のフローチャート。FIG. 6 is a flowchart of an automatic calibration method.

【図7】仮対応付けにおける見本信号と対象信号の格子
点概念図。
FIG. 7 is a conceptual diagram of lattice points of a sample signal and a target signal in temporary association.

【図8】評価値計算における見本信号と対象信号の格子
点概念図。
FIG. 8 is a conceptual diagram of lattice points of a sample signal and a target signal in evaluation value calculation.

【符号の説明】[Explanation of symbols]

1 配管検査装置 2 渦電流探傷プローブ 3 信号電送ユニット 4 フレキシブル部材 5 管板 6 配管 7 テストピース 8 自動校正装置 11 見本信号管理装置 12 信号取込装置 13 抽出装置 14 特徴計算装置 15 仮対応付け装置 16 評価装置 17 変更装置 18 信号校正装置 1 Piping inspection device 2 Eddy current flaw detection probe 3 Signal transmission unit 4 Flexible member 5 tube sheet 6 piping 7 test pieces 8 Automatic calibration device 11 Sample signal management device 12 Signal capture device 13 Extractor 14 Feature calculation device 15 Temporary association device 16 Evaluation device 17 Change device 18 Signal calibration device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高濱 てるみ 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 Fターム(参考) 2G053 AA11 AB21 CB26 CC01 CC02 CC07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Terumi Takahama             1-1 1-1 Wadasaki-cho, Hyogo-ku, Kobe-shi, Hyogo             No. Mitsubishi Heavy Industries, Ltd.Kobe Shipyard F term (reference) 2G053 AA11 AB21 CB26 CC01 CC02                       CC07

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 感度調整の目標となるテストピースの見
本信号の特徴を見本信号要素の時系列として記憶する見
本記憶手段と、分析対象の対象信号を取り込んで対象信
号要素の時系列として抽出する対象信号抽出手段と、見
本記憶手段で記憶された見本信号要素同士の見本相関を
導出する見本信号要素相関導出手段と、対象信号抽出手
段で抽出された対象信号要素同士の対象相関を導出する
対象信号要素相関導出手段と、見本信号要素相関導出手
段で導出された見本相関と対象信号要素相関導出手段で
導出された対象相関とに基づいて見本信号と対象信号を
対応付けする対応付け手段と、対応付け手段で対応付け
された見本信号及び対象信号に基づいて信号の状況を自
動校正する自動校正手段とを備えたことを特徴とする渦
電流信号の自動校正装置。
1. A sample storage means for storing characteristics of a sample signal of a test piece, which is a target of sensitivity adjustment, as a time series of sample signal elements, and a target signal to be analyzed is taken in and extracted as a time series of target signal elements. Target signal extracting means, sample signal element correlation deriving means for deriving the sample correlation between the sample signal elements stored in the sample storage means, and target for deriving the target correlation between the target signal elements extracted by the target signal extracting means Signal element correlation deriving means, associating means for associating the sample signal and the target signal based on the sample correlation derived by the sample signal element correlation deriving means and the target correlation derived by the target signal element correlation deriving means, An automatic calibration of an eddy current signal, comprising: an automatic calibration means for automatically calibrating a signal condition based on a sample signal and a target signal associated by the associating means. apparatus.
【請求項2】 請求項1において、見本相関及び対象相
関は、信号の位相角の相関であることを特徴とする渦電
流信号の自動校正装置。
2. The automatic eddy current signal calibrating apparatus according to claim 1, wherein the sample correlation and the target correlation are correlations of phase angles of signals.
【請求項3】 請求項1において、見本相関及び対象相
関は、信号の振幅の相関であることを特徴とする渦電流
信号の自動校正装置。
3. The eddy current signal automatic calibration device according to claim 1, wherein the sample correlation and the target correlation are correlations of signal amplitudes.
【請求項4】 請求項1において、見本相関及び対象相
関は、信号の間隔の相関であることを特徴とする渦電流
信号の自動校正装置。
4. The eddy current signal automatic calibration device according to claim 1, wherein the sample correlation and the target correlation are correlations of signal intervals.
【請求項5】 請求項1において、見本相関及び対象相
関は、信号の位相角及び振幅の相関であることを特徴と
する渦電流信号の自動校正装置。
5. The automatic eddy current signal calibrating apparatus according to claim 1, wherein the sample correlation and the target correlation are correlations of a phase angle and an amplitude of the signal.
【請求項6】 請求項1乃至請求項5のいずれか一項に
おいて、対応付け手段には、リサージュ表示された信号
の外接長方形の縦横比を見本信号要素と対象信号要素と
で比較する機能が備えられていることを特徴とする渦電
流信号の自動校正装置。
6. The associating means according to claim 1, wherein the associating means has a function of comparing an aspect ratio of a circumscribed rectangle of a Lissajous-displayed signal between a sample signal element and a target signal element. An automatic eddy current signal calibration device, which is provided.
【請求項7】 請求項2において、対応付け手段には、
対象信号要素の位相差の値と見本信号要素の位相差の値
との差の絶対値を任意の時系列で加算し、加算値が最小
となった時系列を判断することで見本信号と対象信号を
対応付けする機能が備えられていることを特徴とする渦
電流信号の自動校正装置。
7. The associating means according to claim 2,
By adding the absolute value of the difference between the phase difference value of the target signal element and the phase difference value of the sample signal element in an arbitrary time series, and determining the time series when the added value is the minimum, the sample signal and target An automatic eddy current signal calibration device having a function of correlating signals.
【請求項8】 請求項3において、対応付け手段には、
対象信号要素の振幅差の値と見本信号要素の振幅差の値
との差の絶対値を任意の時系列で加算し、加算値が最小
となった時系列を判断することで見本信号と対象信号を
対応付けする機能が備えられていることを特徴とする渦
電流信号の自動校正装置。
8. The associating means according to claim 3,
By adding the absolute value of the difference between the amplitude difference value of the target signal element and the amplitude difference value of the sample signal element in an arbitrary time series, and determining the time series in which the added value is the minimum, the sample signal and target An automatic eddy current signal calibration device having a function of correlating signals.
【請求項9】 請求項5において、対応付け手段には、
対象信号要素の位相差の値と見本信号要素の位相差の値
との差の絶対値を任意の時系列で加算し、加算値が最小
となった時系列を判断することで見本信号と対象信号を
対応付けする機能と、対象信号要素の振幅差の値と見本
信号要素の振幅差の値との差の絶対値を任意の時系列で
加算し、加算値が最小となった時系列を判断することで
見本信号と対象信号を対応付けする機能と、位相角の判
断結果及び振幅の判断結果に対して異なる重みを加味す
る機能とが備えられていることを特徴とする渦電流信号
の自動校正装置。
9. The associating means according to claim 5,
By adding the absolute value of the difference between the phase difference value of the target signal element and the phase difference value of the sample signal element in an arbitrary time series, and determining the time series when the added value is the minimum, the sample signal and target The function of associating signals and the absolute value of the difference between the amplitude difference value of the target signal element and the amplitude difference value of the sample signal element are added in an arbitrary time series, and the time series with the smallest added value is calculated. The function of associating the sample signal with the target signal by making a judgment, and the function of adding different weights to the judgment result of the phase angle and the judgment result of the amplitude are provided. Automatic calibration device.
【請求項10】 感度調整の目標となるテストピースの
見本信号の特徴を見本信号要素の時系列として記憶し、
分析対象の対象信号を取り込んで対象信号要素の時系列
として抽出し、記憶された見本信号要素同士の見本位相
・振幅相関を求めると共に抽出された対象信号要素同士
の対象位相・振幅相関を求め、見本位相・振幅相関と対
象位相・振幅相関とに基づいて見本信号と対象信号を対
応付けし、対応付けされた見本信号及び対象信号に基づ
いて信号の状況を自動校正することを特徴とする渦電流
信号の自動校正方法。
10. A characteristic of a sample signal of a test piece, which is a target of sensitivity adjustment, is stored as a time series of sample signal elements,
The target signal to be analyzed is taken in and extracted as a time series of target signal elements, and the sample phase / amplitude correlation between the stored sample signal elements and the target phase / amplitude correlation between the extracted target signal elements are obtained, A vortex characterized by associating a sample signal with a target signal based on the sample phase / amplitude correlation and the target phase / amplitude correlation, and automatically calibrating the signal status based on the associated sample signal and target signal. Automatic calibration method for current signals.
【請求項11】 請求項10において、見本信号要素同
士の見本間隔相関及び対象信号要素同士の対象間隔相関
を求め、自動校正開始から所定時間経過後に対象間隔相
関を加味して見本信号と対象信号を対応付けすることを
特徴とする渦電流信号の自動校正方法。
11. The sample signal and target signal according to claim 10, wherein a sample interval correlation between sample signal elements and a target interval correlation between target signal elements are obtained, and the target interval correlation is added after a predetermined time has elapsed from the start of automatic calibration. A method for automatically calibrating eddy current signals, characterized in that
【請求項12】 請求項10もしくは請求項11におい
て、リサージュ表示された信号の外接長方形の縦横比を
見本信号要素と対象信号要素とで比較し、見本信号と対
象信号を仮対応付けすることを特徴とする渦電流信号の
自動校正方法。
12. The aspect ratio of a circumscribed rectangle of a Lissajous-displayed signal according to claim 10 or 11, is compared between a sample signal element and a target signal element, and the sample signal and the target signal are provisionally associated with each other. Characteristic eddy current signal automatic calibration method.
JP2001237276A 2001-08-06 2001-08-06 Automatic calibration device for eddy current signals Expired - Lifetime JP3785065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001237276A JP3785065B2 (en) 2001-08-06 2001-08-06 Automatic calibration device for eddy current signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001237276A JP3785065B2 (en) 2001-08-06 2001-08-06 Automatic calibration device for eddy current signals

Publications (2)

Publication Number Publication Date
JP2003050232A true JP2003050232A (en) 2003-02-21
JP3785065B2 JP3785065B2 (en) 2006-06-14

Family

ID=19068384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001237276A Expired - Lifetime JP3785065B2 (en) 2001-08-06 2001-08-06 Automatic calibration device for eddy current signals

Country Status (1)

Country Link
JP (1) JP3785065B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220526A (en) * 2005-02-10 2006-08-24 Jfe Steel Kk Surface layer part property measuring method, surface layer defect determination method using the same, and metallic band manufacturing method
JP2008275614A (en) * 2007-04-27 2008-11-13 Snecma Method and installation for using eddy current for non-destructive inspection with automatic calibration
CN107703208A (en) * 2017-09-26 2018-02-16 中车青岛四方机车车辆股份有限公司 The determination method and device of EDDY CURRENT sensitivity
KR102052849B1 (en) * 2019-03-14 2019-12-04 에디웍스(주) APPARATUS FOR DETECTING RAIL DEFECT BY USING MULTI-CHANNEL EDDY CURRENT SENSOR AND Sensor calibrating METHOD THEREOF AND RAIL DEFECT DETECTING METHOD
CN113358015A (en) * 2021-04-16 2021-09-07 上海兰宝传感科技股份有限公司 Eddy current displacement sensor and method for expanding linear range thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220526A (en) * 2005-02-10 2006-08-24 Jfe Steel Kk Surface layer part property measuring method, surface layer defect determination method using the same, and metallic band manufacturing method
JP4586556B2 (en) * 2005-02-10 2010-11-24 Jfeスチール株式会社 Surface layer property measurement method, surface layer defect determination method using the same, and metal strip manufacturing method
JP2008275614A (en) * 2007-04-27 2008-11-13 Snecma Method and installation for using eddy current for non-destructive inspection with automatic calibration
CN107703208A (en) * 2017-09-26 2018-02-16 中车青岛四方机车车辆股份有限公司 The determination method and device of EDDY CURRENT sensitivity
KR102052849B1 (en) * 2019-03-14 2019-12-04 에디웍스(주) APPARATUS FOR DETECTING RAIL DEFECT BY USING MULTI-CHANNEL EDDY CURRENT SENSOR AND Sensor calibrating METHOD THEREOF AND RAIL DEFECT DETECTING METHOD
CN113358015A (en) * 2021-04-16 2021-09-07 上海兰宝传感科技股份有限公司 Eddy current displacement sensor and method for expanding linear range thereof

Also Published As

Publication number Publication date
JP3785065B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
CN109239360B (en) Reaction curve abnormity detection method and device
AU2018371375B2 (en) Inspection assistance system, learning device, and assessment device
CN105466927B (en) Method for identifying, correcting and alarming abnormal reaction curve of turbidimetry
DK2108120T3 (en) Method and device for non-destructive testing using eddy currents
US6424151B2 (en) Method and apparatus for evaluation of eddy current testing signal
KR20190106305A (en) Contrast test specimens for measuring defects in tube expansion using eddy current test and method for measuring defects using the same
JP2003050232A (en) Automatic calibration device for eddy current signal
Ulapane et al. Pulsed eddy current sensing for condition assessment of reinforced concrete
JPH08292174A (en) Automatic feature detection and identification in signal aligned in sequence of measuring points in digital format
KR20170022712A (en) Automatic water quality analysis in aquaculture farming using color image processing techniques for manual test kit and remote monitoring system thereof
JP4715034B2 (en) Eddy current flaw detector
Iwata et al. AI-aided Hammering Test System to Automatically Generate Anomaly Maps.
CN109100359A (en) A kind of product defects recognition methods based on machine vision
CN107703208B (en) Method and device for determining eddy current detection sensitivity
KR101518849B1 (en) Inspection system of connection condition for cable connector and inspection method using the same
JP3082571B2 (en) Signal processing device
KR20170003211A (en) Method for detecting position of tube support signals in eddy currents raw data and method for detecting position of detect in eddy current testing
EP4174486A1 (en) System and method for automated acquisition and analysis of electromagnetic testing data
JPH07117495B2 (en) Steel pipe weld detection method
JPH0815230A (en) Eddy current flaw detecting signal processor
JP2002005897A (en) Method and apparatus for eddy current flaw detection
JP2007225322A (en) Evaluation device of ultrasonic flaw detection data and evaluation method of ultrasonic flaw detection data
US20140012521A1 (en) Methods for Eddy Current Data Matching
JPH06242039A (en) Gas identifying system
CN105678789A (en) Method for intelligently analyzing assembly quality of cabinet standard component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060316

R151 Written notification of patent or utility model registration

Ref document number: 3785065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

EXPY Cancellation because of completion of term