JP4583669B2 - Thermosetting resin composition - Google Patents

Thermosetting resin composition Download PDF

Info

Publication number
JP4583669B2
JP4583669B2 JP2001200982A JP2001200982A JP4583669B2 JP 4583669 B2 JP4583669 B2 JP 4583669B2 JP 2001200982 A JP2001200982 A JP 2001200982A JP 2001200982 A JP2001200982 A JP 2001200982A JP 4583669 B2 JP4583669 B2 JP 4583669B2
Authority
JP
Japan
Prior art keywords
compound
resin composition
resin
dihydronaphthoxazine
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001200982A
Other languages
Japanese (ja)
Other versions
JP2003012770A (en
Inventor
信之 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2001200982A priority Critical patent/JP4583669B2/en
Publication of JP2003012770A publication Critical patent/JP2003012770A/en
Application granted granted Critical
Publication of JP4583669B2 publication Critical patent/JP4583669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、硬化特性に優れた熱硬化性樹脂組成物に関するものであり、詳しくは硬化後の耐熱性に優れた硬化物を与える熱硬化性樹脂組成物に関するものである。
【0002】
【従来の技術】
エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、メラミン樹脂、ポリイミド樹脂等、様々な熱硬化性樹脂が開発され、それぞれの樹脂特性に合った分野へ応用されている。最近、プリント配線板用銅張積層板、多層配線板用接着剤、半導体用封止材料、半導体実装用接着剤、半導体搭載用モジュール、あるいは、自動車用、航空機用、建築部材等に用いられる部品等に用いられる硬化性樹脂において、高温・高湿下での安定性や信頼性に優れた樹脂材料が求められている。また、環境低負荷化の観点から、ハロゲンフリー難燃性を有する樹脂材料が強く望まれている。
【0003】
近年、ジヒドロベンゾキサジン樹脂が、従来のフェノール樹脂に比較して、硬化物の耐熱性、耐湿性が良好な樹脂であることが報告されている(H. Ishida, et al., J. Polym. Sci., Vol. 32, p921 (1994), H. Ishida, et al., J.Appl. Polym. Sci., Vol. 61, 1595 (1996))。また、これらの樹脂は、開環重合反応性を有しているため、低硬化収縮性を示し、開環反応後の硬化物は、低熱膨張性を有しているなど様々な特徴を有することも示されている(H. Ishida, et al., J. Polym. Sci., Vol.34, 1019 (1994),)。更に、これらは、エポキシ樹脂とも反応性を示し、硬化剤として有効であることも示されている(特開平4-227922号公報)。しかしながら、従来のこれらの樹脂及び樹脂組成物は、ガラス転移温度が160℃程度で、耐熱性や難燃性において特性が充分とはいえず、良好な特性を得るには、高い硬化温度と長い硬化時間を必要とするという欠点を有していた。また、これらはエポキシ樹脂と併用した樹脂組成物においては、充分な耐熱性や機械的特性が得られなかった。また、β-ナフトールがオキサジン環を有する化合物の合成に使用し得ることは、特開平2-69567号公報に一価のフェノール類の一つとして例示されている。
【0004】
【発明が解決しようとする課題】
本発明は、耐熱性、難燃性において優れた硬化物を与える熱硬化性樹脂及びその硬化物を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者は、前記目的を達成するために鋭意研究を重ねた結果、ジヒドロナフトキサジン構造を有する熱硬化性樹脂とエポキシ樹脂を配合することにより、エポキシ樹脂の持つ耐熱性、機械的特性を大幅に向上させることが可能であり、また、種々の骨格を有するエポキシ樹脂を使用することができるため、樹脂の改質による特性の改善が容易であることを見出し、本発明を完成した。
【0006】
本発明は、下記一般式(1)
【化2】

Figure 0004583669
(式中、R1〜R4は独立に、水素又は炭素数1〜6のアルキル基を示し、R5、R6は独立に、炭素数1〜6のアルキル基、シクロヘキシル基、フェニル基、置換フェニル基、ナフチル基又は置換ナフチル基を示す)で表されるジヒドロナフトキサジン化合物とエポキシ樹脂を必須成分とし、ジヒドロナフトキサジン化合物とエポキシ樹脂の合計量に対し、ジヒドロナフトキサジン化合物の含有率が樹脂組成物中の樹脂成分の5〜95重量%であり、エポキシ樹脂の含有率が95〜5重量%であることを特徴とする熱硬化性樹脂組成物である。
【0007】
また、本発明は、一般式(1)で表される示されるジヒドロナフトキサジン化合物の酸素原子のナフタレン環に対する置換位置の少なくとも一つがα位である前記の熱硬化性樹脂組成物である。本発明は、更に、ジヒドロベンゾキサジン化合物を含有する前記の熱硬化性樹脂組成物である。また、本発明は、前記のいずれかに記載の熱硬化性樹脂組成物を硬化させてなる樹脂硬化物である。
【0008】
【発明の実施の形態】
本発明の熱硬化性樹脂組成物は、ジヒドロナフトキサジン化合物とエポキシ樹脂を必須成分として含む。ジヒドロナフトキサジン化合物とエポキシ樹脂の含有割合は、両者の合計に対し、ジヒドロナフトキサジン化合物5〜95重量%、好ましくは20〜80重量%の範囲である。ジヒドロナフトキサジン化合物の含有割合が少ないと硬化物特性の耐熱性、難燃性、密着性等において十分な効果が得られず、逆にこの範囲より多いと、エポキシ樹脂の持つ可とう性がそこなわれ、硬化物の脆さが顕在化し、材料としての優位性が失われる。エポキシ樹脂の含有割合は、5〜95重量%、好ましくは20〜80重量%の範囲である。
【0009】
ジヒドロナフトキサジン環を有する化合物は、下記反応式に示されるように、ナフタレン環のα位又はβ位のナフトール性水酸基をナフトール化合物、一級アミン及びホルムアルデヒドから合成することができる。
【化3】
Figure 0004583669
(式中のRは、炭素数1〜6のアルキル基、シクロヘキシル基、フェニル基又は置換フェニル基を示す)
【0010】
本発明に用いられるジヒドロナフトキサジン化合物は、ナフトール性水酸基を各環に1つ有する2価ナフトール化合物、一級アミン及びアルデヒドから合成されるものであり、反応条件により副生物を含むが、これを含む状態で使用することができる。このジヒドロナフトキサジン化合物は、加熱により開環重合反応を起こし、揮発分を発生させることなくナフトール性水酸基を生成しながら優れた特性を有する架橋構造を形成する。この硬化物は低吸湿性、高いガラス転移温度、高強度・高弾性率更には低硬化収縮率を示し、難燃性にも優れている。
この化学物を合成するには、OH基に対しo-位に水素が結合している2価のナフトール化合物と、2価のナフトール化合物1モルに対し一級アミンを約1〜2モル及びアルデヒドを1級アミン1モル当たり約2モル以上の割合で用いて反応させることが望ましい。好ましくは、2価のナフトール化合物1モルに対し一級アミンを約2モル及びアルデヒドを1級アミン1モル当たり約2〜2.5モルである。なお、約とは10%前後の幅を有しうる意味である。
【0011】
2価のナフトール化合物としては、1,5−ナフタレンジオール、1,6−ナフタレンジオール、1,7−ナフタレンジオール、1,4−ナフタレンジオール等のジヒドロキシ化合物が好ましく挙げられる。これらの中で、β位の少なくとも一方に水素が結合しているナフトール化合物は、α位に水素が結合しているナフトール性水酸基を有する化合物に比較して、ジヒドロベンゾキサジンの硬化温度が低く、硬化物形成が容易なため、より好ましい。
【0012】
上記合成反応の際、2価のナフトール化合物と共にナフトール性水酸基を有する化合物として1−ナフトールのような1価のナフトール化合物も本発明の効果を損なわない範囲であれば、少量使用することもできるが、1官能のジヒドロナフトキサジンは、熱硬化反応後においても、三次元架橋構造が形成されにくいため、硬化物が靭性に乏しいという欠点を有しているため、多量に使用することは不利である。
更には、3価以上のナフトール化合物類や、下記一般式(2)
【化4】
Figure 0004583669
(式中、Rは、炭素数1〜6のアルキレン基、キシリレン基又は置換キシリレン基を示し、nは1〜10を示す)で表される多価ナフトール化合物も少量であれば使用可能である。その他、OH基以外の置換基を有するナフトール化合物も使用可能であるが、これらは20wt%以下にとどめることがよい。
また、ナフトール化合物は、1種類だけでも2種類以上組み合わせて用いることもできる。
【0013】
1級アミンとしては、メチルアミン、ブチルアミン、シクロヘキシルアミン等の脂肪族アミン、アニリン、トルイジン、アニシジン等の芳香族アミンを用いることができるが、硬化物の熱分解温度が高くなるため、アニリン等の芳香族アミンを用いることがより好ましい。これらは、1種あるいは複数のアミンを組み合わせて用いることもできる。また、原料として用いられるアルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド等があげられ、ホルムアルデヒドはホルマリン水溶液として、またパラホルムアルデヒドとして、いずれの形態でも用いることができる。アミン及びアルデヒドについても、一般式(1)の化合物を生じない原料を少量であれば、併用することができるが、20モル%以下にとどめることが望ましい。
【0014】
ジヒドロナフトキサジン化合物の製造方法の一例を示すと、上記1級アミンをホルムアルデヒドへ徐々に加えて反応させたのち、2価のナフトール化合物を加え、20分〜24時間、70〜120℃に保つ。このとき、必要に応じて有機溶剤を用いることもできる。反応後、生成物を抽出等の合成化学的手法で単離・精製し縮合水等の揮発成分を乾燥除去することにより目的とするジヒドロナフトキサジン化合物が得られる。
【0015】
本発明に用いられるジヒドロナフトキサジン化合物としては、一般式(1)で表される化合物であり、ジヒドロナフトキサジン環の開環重合反応により硬化する樹脂であれば特に限定されるものではない。本発明の樹脂組成物に使用するジヒドロナフトキサジン化合物の好ましい例を次に示す。
【0016】
【化5】
Figure 0004583669
【0017】
【化6】
Figure 0004583669
【0018】
【化7】
Figure 0004583669
【0019】
【化8】
Figure 0004583669
【0020】
また、本発明において用いられるエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、あるいは、水素化ビスフェノールA型エポキシ樹脂、各種の脂環式エポキシ樹脂、更には、ナフタレン構造を有する各種エポキシ樹脂、臭素化エポキシ樹脂等が挙げられるが、これらに限定することなく用いることができる。更に、これらは、1種あるいは2種以上を組み合わせて用いることができる。硬化物において良好な機械的特性を得る上において、二官能以上のエポキシ樹脂を主成分として用いることが好ましい。
【0021】
更に、本発明の熱硬化性樹脂組成物は、他のジヒドロベンゾキサジン環を有する樹脂を組み合わせて用いることもできる。上記ジヒドロベンゾキサジン環を有する樹脂は、オルソ位の少なくとも一方に水素が結合しているフェノール類と1級アミン及びホルムアルデヒドとから、合成可能である。これらは、場合によっては、上記のように一般式(1)の化合物を製造する際、副生物として同時に合成し、存在させることも可能であるし、別途合成し、その後混合することも可能である。
【0022】
フェノール類としては、多官能フェノール類、ビスフェノール類、1,1,1−トリス(4−ヒドロキシフェニル)エタンなどのトリスフェノール類、フェノール類等が挙げられるが、熱硬化物特性の観点から1分子中にオルソ位の少なくとも一方に水素が結合しているフェノール性水酸基を2以上有する化合物であることが望ましい。具体的には、多官能フェノール類としてカテコール、レゾルシノール、ヒドロキノン、ビスフェノール類としてビスフェノールA、ビスフェノールS、ビスフェノールF、ヘキサフルオロビスフェノールA等が挙げられる。また、フェノール樹脂としては、フェノールノボラック樹脂、レゾール樹脂、フェノール変性キシレン樹脂、アルキルフェノール樹脂、メラミンフェノール樹脂、ポリブタジエン変性フェノール樹脂等が挙げられる。これらは、1種類あるいは2種類以上の樹脂を組み合わせて用いることもできる。
また、1級アミンとしては、メチルアミン、ブチルアミン、シクロヘキシルアミン等の脂肪族アミン、アニリン、トルイジン、アニシジン等の芳香族アミンを用いることができ、これらは、1種あるいは、複数のアミンを組み合わせて用いることもできる。
ホルムアルデヒドはホルマリン水溶液として、またパラホルムアルデヒドとして、いずれの形態でも用いることができる。
【0023】
本発明の熱硬化性樹脂組成物に配合し得る他のジヒドロベンゾキサジン環を有する樹脂として具体的には、次に示す化合物が好ましく挙げられる。しかし、これらに限定されることなく1種又は2種以上を組み合わせて用いることができる。
【0024】
【化9】
Figure 0004583669
【0025】
【化10】
Figure 0004583669
【0026】
【化11】
Figure 0004583669
【0027】
本発明の熱硬化性樹脂組成物は、以上に記した成分以外に必要に応じ、各種フェノール樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂等を含有することができる。また、充填材、補強材、離型剤、カップリング剤、可塑剤、難燃剤、硬化助剤、着色剤、カップリング剤、あるいはカーボンブラック等を含有することができる。
【0028】
更に、必要に応じて、ジヒドロナフトキサジン環を開環する効果のあるフェノール性水酸基を有する化合物、例えば、ビスフェノールA、ノボラック樹脂、レゾ−ル樹脂、アミノ基を有する化合物を用いることもできる。また、エポキシ樹脂とフェノール性水酸基の反応に効果的な触媒として、例えば、イミダゾール系化合物、ジシアンジアミド系化合物、リン系化合物を使用することができる。また、樹脂の難燃性を更に向上させる目的で、トリフェニルホスフィン等のホスフィン類、リン酸エステル、亜ホスフィン酸エステル、亜リン酸エステル、ホスフィンオキサイド等の各種有機リン系化合物を使用することもできる。
【0029】
本発明の熱硬化性樹脂組成物は、ジヒドロナフトキサジン化合物とエポキシ樹脂を必須とする樹脂組成物と、ジヒドロナフトキサジン化合物、エポキシ樹脂と上記他のジヒドロベンゾキサジン環を有する樹脂を必須とする樹脂組成物とがある。前者の樹脂組成物は、ジヒドロナフトキサジン化合物とエポキシ樹脂の割合(重量比)は、5〜95:95〜5、好ましくは20〜80:80〜20であることがよい。後者の樹脂組成物は、ジヒドロナフトキサジン化合物とエポキシ樹脂と他のジヒドロベンゾキサジン環を有する樹脂の割合(重量比)は、5〜90:95〜5:5〜70、好ましくは10〜70:90〜20:10〜50であることがよい。いずれに場合も、より好ましくは、エポキシ基とジヒドロキサジン環が等モル、好ましくはエポキシ基1モルに対し、ジヒドロキサジン環0.8〜1.2モルである。各種フェノール樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂等を含有させる場合は、樹脂組成物中の樹脂成分の30重量%以下、好ましくは20重量%以下とすることがよい。
なお、樹脂組成物中の樹脂成分とは、樹脂組成物から充填材等の非樹脂成分を除いた成分をいう。エポキシ樹脂の使用量がナフトキサジンの使用量より少ない場合は、エポキシ樹脂硬化剤や硬化促進剤を加えることが好ましい。
【0030】
【実施例】
以下、合成例及び実施例により、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0031】
[ジヒドロナフトキサジンの合成例]
アニリン0.4モル(37.25g)をジオキサン200ml中に溶解し、ホルムアルデヒド液(36〜38%水溶液)67gを滴下し、室温下で5時間反応させた。その後、1,5−ナフタレンジオール0.2モル(32.03g)を加え、撹拌下、100℃〜120℃で、5時間反応させた。反応終了後、析出した固体をろ取してジヒドロナフトキサジン化合物(C)65gを得た。
【0032】
実施例1
上記のジヒドロナフトキサジン化合物(C)10gをビスフェノールA型エポキシ樹脂(油化シェルエポキシ社製エピコート828)10gと混合した後、180℃に維持したホットプレート上で1時間硬化させた後、物性の測定を行った。その結果、ガラス転移温度は、150℃、熱膨張係数は、60ppm/℃、熱分解開始温度は、300℃、曲げ強度は、140MPa, 曲げ弾性率は、3.6Gpaであった。
【0033】
なお、ガラス転移温度は、動的粘弾性測定装置(DMA)、熱膨張係数は、熱機械分析装置(TMA)を、熱分解開始温度(5%重量減少温度)は、熱重量分析装置(TGA)を用い,曲げ強度及び曲げ弾性率はJIS K 6911に準じて測定を行った。
また、吸水率は、3mm厚の硬化物を作成した後、硬化物をPCT(121℃、2atm)処理時間20時間の条件で処理した後、PCT処理前後の重量変化を測定し、吸水率を求めた。更に、難燃性は、UL規格の方法に従って、1.6mm厚の硬化物の難燃性を評価した。
【0034】
実施例2〜6
樹脂の配合組成以外は、実施例1の記載と同様の方法により評価を行った。
【0035】
比較例1〜3
樹脂の配合組成において、ジヒドロナフトキサジン環を有する化合物を含まないこと以外は、実施例1の記載と同様の方法により評価を行った。樹脂組成物の配合組成を第1表に、得られた硬化物の物性を第2表にまとめて示す。なお、各化合物の符合は、本文中に記載した化学式に付した記号に対応する。
【0036】
【表1】
Figure 0004583669
【0037】
【表2】
Figure 0004583669
【0038】
【発明の効果】
本発明の熱硬化性樹脂組成物は、ジヒドロナフトキサジン化合物とエポキシ樹脂からなり、硬化物中にナフタレン骨格を有するため耐熱性に優れ、難燃性を向上させることができる硬化物を与える。したがって、電気特性や機械的特性も良好なため、プリント配線板用積層板、プリント配線板、半導体封止材、半導体搭載用モジュール、その他各種電子部品周辺部材として有用である。また、自動車、航空機部材、建築部材等、更には、炭素繊維や炭素電極、各種複合材料等のバインダーやマトリックス樹脂として用いることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermosetting resin composition having excellent curing characteristics, and more particularly to a thermosetting resin composition that gives a cured product having excellent heat resistance after curing.
[0002]
[Prior art]
Various thermosetting resins such as epoxy resins, phenol resins, polyimide resins, melamine resins, polyimide resins and the like have been developed and applied to fields suitable for the respective resin characteristics. Recently, copper-clad laminates for printed wiring boards, adhesives for multilayer wiring boards, sealing materials for semiconductors, adhesives for mounting semiconductors, modules for mounting semiconductors, or parts used for automobiles, aircraft, building materials, etc. In the curable resin used for the above, a resin material having excellent stability and reliability under high temperature and high humidity is required. In addition, from the viewpoint of reducing the environmental load, a resin material having halogen-free flame retardancy is strongly desired.
[0003]
In recent years, it has been reported that dihydrobenzoxazine resin is a resin having better heat resistance and moisture resistance of cured products than conventional phenol resins (H. Ishida, et al., J. Polym Sci., Vol. 32, p921 (1994), H. Ishida, et al., J. Appl. Polym. Sci., Vol. 61, 1595 (1996)). In addition, since these resins have ring-opening polymerization reactivity, they exhibit low curing shrinkage, and the cured product after the ring-opening reaction has various characteristics such as low thermal expansion. (H. Ishida, et al., J. Polym. Sci., Vol. 34, 1019 (1994),). Furthermore, they are also reactive with epoxy resins and are shown to be effective as curing agents (JP-A-4-27922). However, these conventional resins and resin compositions have a glass transition temperature of about 160 ° C. and cannot be said to have sufficient properties in heat resistance and flame retardancy. It had the disadvantage of requiring a curing time. In addition, in the resin composition used in combination with the epoxy resin, sufficient heat resistance and mechanical properties were not obtained. Further, the fact that β-naphthol can be used for the synthesis of a compound having an oxazine ring is exemplified as one of monovalent phenols in JP-A-2-69567.
[0004]
[Problems to be solved by the invention]
An object of this invention is to provide the thermosetting resin which gives the hardened | cured material excellent in heat resistance and a flame retardance, and its hardened | cured material.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventor has combined the thermosetting resin having a dihydronaphthoxazine structure with the epoxy resin, thereby improving the heat resistance and mechanical properties of the epoxy resin. The present invention has been completed by finding that it is possible to greatly improve and that epoxy resins having various skeletons can be used, so that it is easy to improve the properties by modifying the resin.
[0006]
The present invention relates to the following general formula (1)
[Chemical 2]
Figure 0004583669
(In the formula, R 1 to R 4 independently represent hydrogen or an alkyl group having 1 to 6 carbon atoms, and R 5 and R 6 independently represent an alkyl group having 1 to 6 carbon atoms, a cyclohexyl group, a phenyl group, A diphenylnaphthoxazine compound and an epoxy resin as essential components, and with respect to the total amount of the dihydronaphthoxazine compound and the epoxy resin, the dihydronaphthoxazine compound The thermosetting resin composition is characterized in that the content is 5 to 95% by weight of the resin component in the resin composition, and the content of the epoxy resin is 95 to 5% by weight.
[0007]
Moreover, this invention is the said thermosetting resin composition whose at least one substitution position with respect to the naphthalene ring of the oxygen atom of the dihydronaphthoxazine compound represented by General formula (1) is (alpha) position. The present invention is the above thermosetting resin composition further comprising a dihydrobenzoxazine compound. Moreover, this invention is a resin cured material formed by hardening | curing the thermosetting resin composition in any one of the above.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The thermosetting resin composition of the present invention contains a dihydronaphthoxazine compound and an epoxy resin as essential components. The content ratio of the dihydronaphthoxazine compound and the epoxy resin is in the range of 5 to 95% by weight, preferably 20 to 80% by weight, based on the total of both. If the content ratio of the dihydronaphthoxazine compound is small, sufficient effects cannot be obtained in the heat resistance, flame retardancy, adhesion, etc. of the cured product. Conversely, if it exceeds this range, the flexibility of the epoxy resin will be Therefore, the brittleness of the cured product becomes obvious, and the superiority as a material is lost. The content of the epoxy resin is 5 to 95% by weight, preferably 20 to 80% by weight.
[0009]
As shown in the following reaction formula, a compound having a dihydronaphthoxazine ring can be synthesized from a naphtholic hydroxyl group at the α-position or β-position of a naphthalene ring from a naphthol compound, a primary amine and formaldehyde.
[Chemical 3]
Figure 0004583669
(R in the formula represents an alkyl group having 1 to 6 carbon atoms, a cyclohexyl group, a phenyl group or a substituted phenyl group)
[0010]
The dihydronaphthoxazine compound used in the present invention is synthesized from a divalent naphthol compound having one naphtholic hydroxyl group in each ring, a primary amine and an aldehyde, and contains by-products depending on the reaction conditions. It can be used in a containing state. This dihydronaphthoxazine compound undergoes a ring-opening polymerization reaction by heating, and forms a crosslinked structure having excellent characteristics while generating a naphtholic hydroxyl group without generating a volatile component. This cured product exhibits low hygroscopicity, high glass transition temperature, high strength and high elastic modulus, and low cure shrinkage, and is excellent in flame retardancy.
To synthesize this chemical, a divalent naphthol compound in which hydrogen is bonded at the o-position to the OH group, about 1 to 2 moles of primary amine and aldehyde per mole of the divalent naphthol compound. It is desirable to carry out the reaction using a ratio of about 2 moles or more per mole of primary amine. Preferably, about 2 moles of primary amine and about 2 to 2.5 moles of aldehyde per mole of primary amine per mole of divalent naphthol compound. In addition, about means that it may have a width of around 10%.
[0011]
Preferred examples of the divalent naphthol compound include dihydroxy compounds such as 1,5-naphthalenediol, 1,6-naphthalenediol, 1,7-naphthalenediol, and 1,4-naphthalenediol. Among these, naphthol compounds in which hydrogen is bonded to at least one of β-positions have a lower curing temperature of dihydrobenzoxazine than compounds having a naphtholic hydroxyl group in which hydrogen is bonded to α-position. Further, it is more preferable because the cured product is easily formed.
[0012]
In the above synthesis reaction, a monovalent naphthol compound such as 1-naphthol as a compound having a naphtholic hydroxyl group together with a divalent naphthol compound can be used in a small amount as long as the effects of the present invention are not impaired. Since monofunctional dihydronaphthoxazine is difficult to form a three-dimensional crosslinked structure even after thermosetting reaction, it has a disadvantage that the cured product has poor toughness. is there.
Furthermore, trivalent or higher naphthol compounds and the following general formula (2)
[Formula 4]
Figure 0004583669
(In the formula, R represents an alkylene group having 1 to 6 carbon atoms, a xylylene group or a substituted xylylene group, and n represents 1 to 10). The polyvalent naphthol compound represented by . In addition, naphthol compounds having substituents other than OH groups can also be used, but these should be limited to 20 wt% or less.
Further, the naphthol compounds can be used alone or in combination of two or more.
[0013]
As the primary amine, aliphatic amines such as methylamine, butylamine, and cyclohexylamine, and aromatic amines such as aniline, toluidine, and anisidine can be used. However, since the thermal decomposition temperature of the cured product is increased, aniline or the like can be used. More preferably, an aromatic amine is used. These may be used alone or in combination of a plurality of amines. Examples of the aldehyde used as a raw material include formaldehyde, acetaldehyde, propyl aldehyde and the like, and formaldehyde can be used in any form as a formalin aqueous solution or as paraformaldehyde. Amine and aldehyde can also be used in combination with a small amount of raw material that does not produce the compound of general formula (1), but it is desirable to keep it at 20 mol% or less.
[0014]
An example of a method for producing a dihydronaphthoxazine compound is as follows. After the primary amine is gradually added to formaldehyde and reacted, a divalent naphthol compound is added and maintained at 70 to 120 ° C. for 20 minutes to 24 hours. . At this time, an organic solvent can also be used as needed. After the reaction, the product is isolated and purified by a synthetic chemical technique such as extraction, and volatile components such as condensed water are removed by drying to obtain the desired dihydronaphthoxazine compound.
[0015]
The dihydronaphthoxazine compound used in the present invention is not particularly limited as long as it is a compound represented by the general formula (1) and is a resin that is cured by a ring-opening polymerization reaction of a dihydronaphthoxazine ring. . Preferred examples of the dihydronaphthoxazine compound used in the resin composition of the present invention are shown below.
[0016]
[Chemical formula 5]
Figure 0004583669
[0017]
[Chemical 6]
Figure 0004583669
[0018]
[Chemical 7]
Figure 0004583669
[0019]
[Chemical 8]
Figure 0004583669
[0020]
Examples of the epoxy resin used in the present invention include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, hydrogenated bisphenol A type epoxy resin, various alicyclic rings. Examples of the epoxy resin include various epoxy resins having a naphthalene structure, brominated epoxy resins, and the like, but they can be used without being limited thereto. Furthermore, these can be used alone or in combination of two or more. In order to obtain good mechanical properties in the cured product, it is preferable to use a bifunctional or higher functional epoxy resin as a main component.
[0021]
Furthermore, the thermosetting resin composition of the present invention can be used in combination with other resins having a dihydrobenzoxazine ring. The resin having a dihydrobenzoxazine ring can be synthesized from a phenol having hydrogen bonded to at least one of the ortho positions, a primary amine, and formaldehyde. In some cases, these may be synthesized and present simultaneously as by-products when producing the compound of the general formula (1) as described above, or may be synthesized separately and then mixed. is there.
[0022]
Examples of phenols include polyfunctional phenols, bisphenols, trisphenols such as 1,1,1-tris (4-hydroxyphenyl) ethane, phenols, etc., but one molecule from the viewpoint of thermosetting properties. A compound having two or more phenolic hydroxyl groups in which hydrogen is bonded to at least one of the ortho positions is desirable. Specific examples of polyfunctional phenols include catechol, resorcinol, hydroquinone, and bisphenols include bisphenol A, bisphenol S, bisphenol F, and hexafluorobisphenol A. Examples of the phenol resin include phenol novolac resin, resol resin, phenol-modified xylene resin, alkylphenol resin, melamine phenol resin, polybutadiene-modified phenol resin, and the like. These may be used alone or in combination of two or more resins.
As the primary amine, aliphatic amines such as methylamine, butylamine, and cyclohexylamine, and aromatic amines such as aniline, toluidine, and anisidine can be used, and these can be used alone or in combination of a plurality of amines. It can also be used.
Formaldehyde can be used in any form as a formalin aqueous solution or as paraformaldehyde.
[0023]
Specific examples of the resin having another dihydrobenzoxazine ring that can be blended in the thermosetting resin composition of the present invention include the following compounds. However, it is not limited to these, It can use 1 type or in combination of 2 or more types.
[0024]
[Chemical 9]
Figure 0004583669
[0025]
[Chemical Formula 10]
Figure 0004583669
[0026]
Embedded image
Figure 0004583669
[0027]
The thermosetting resin composition of the present invention can contain various phenol resins, melamine resins, polyamide resins, polyimide resins and the like as necessary in addition to the components described above. Moreover, a filler, a reinforcing material, a mold release agent, a coupling agent, a plasticizer, a flame retardant, a curing aid, a colorant, a coupling agent, carbon black, or the like can be contained.
[0028]
Furthermore, if necessary, a compound having a phenolic hydroxyl group having an effect of opening a dihydronaphthoxazine ring, for example, bisphenol A, a novolac resin, a resole resin, or a compound having an amino group may be used. Moreover, as an effective catalyst for reaction of an epoxy resin and a phenolic hydroxyl group, for example, an imidazole compound, a dicyandiamide compound, or a phosphorus compound can be used. In addition, for the purpose of further improving the flame retardancy of the resin, various organic phosphorus compounds such as phosphines such as triphenylphosphine, phosphoric acid esters, phosphinic acid esters, phosphorous acid esters, and phosphine oxides may be used. it can.
[0029]
The thermosetting resin composition of the present invention requires a resin composition essentially comprising a dihydronaphthoxazine compound and an epoxy resin, and a dihydronaphthoxazine compound, an epoxy resin and a resin having the other dihydrobenzoxazine ring. And a resin composition. In the former resin composition, the ratio (weight ratio) of the dihydronaphthoxazine compound and the epoxy resin is 5 to 95:95 to 5, preferably 20 to 80:80 to 20. In the latter resin composition, the ratio (weight ratio) of the dihydronaphthoxazine compound, the epoxy resin, and the other resin having a dihydrobenzoxazine ring is 5 to 90:95 to 5: 5 to 70, preferably 10 to It is good that it is 70: 90-20: 10-50. In any case, the epoxy group and the dihydroxazine ring are more preferably equimolar, preferably 0.8 to 1.2 mol of the dihydroxazine ring with respect to 1 mol of the epoxy group. When various phenol resins, melamine resins, polyamide resins, polyimide resins and the like are contained, the content is preferably 30% by weight or less, preferably 20% by weight or less, based on the resin component in the resin composition.
In addition, the resin component in a resin composition means the component remove | excluding non-resin components, such as a filler, from a resin composition. When the amount of epoxy resin used is less than the amount of naphthoxazine used, it is preferable to add an epoxy resin curing agent or curing accelerator.
[0030]
【Example】
EXAMPLES Hereinafter, although a synthesis example and an Example demonstrate this invention concretely, this invention is not limited to these Examples.
[0031]
[Synthesis example of dihydronaphthoxazine]
0.4 mol (37.25 g) of aniline was dissolved in 200 ml of dioxane, 67 g of formaldehyde solution (36-38% aqueous solution) was added dropwise, and the mixture was reacted at room temperature for 5 hours. Thereafter, 0.2 mol (32.03 g) of 1,5-naphthalenediol was added, and the mixture was reacted at 100 ° C. to 120 ° C. for 5 hours with stirring. After completion of the reaction, to give dihydro-naphtho Kisajin compound (C) 65 g of the precipitated solid was collected by filtration.
[0032]
Example 1
After mixing with the above-dihydro-naphtho Kisajin compound (C) 10 g of bisphenol A type epoxy resin (Yuka Shell Epoxy Co., Ltd. Epikote 828) 10 g, after curing for 1 hour on a hot plate maintained at 180 ° C., the physical properties Measurements were made. As a result, the glass transition temperature was 150 ° C., the thermal expansion coefficient was 60 ppm / ° C., the thermal decomposition starting temperature was 300 ° C., the bending strength was 140 MPa, and the flexural modulus was 3.6 GPa.
[0033]
The glass transition temperature is the dynamic viscoelasticity measuring device (DMA), the thermal expansion coefficient is the thermomechanical analyzer (TMA), and the thermal decomposition starting temperature (5% weight loss temperature) is the thermogravimetric analyzer (TGA). ) And bending strength and flexural modulus were measured according to JIS K 6911.
In addition, the water absorption rate was determined by measuring the weight change before and after the PCT treatment after preparing a cured product with a thickness of 3 mm and then treating the cured product under conditions of a PCT (121 ° C, 2 atm) treatment time of 20 hours. Asked. Furthermore, the flame retardance evaluated the flame retardance of the 1.6mm thickness hardened | cured material according to the method of UL specification.
[0034]
Examples 2-6
The evaluation was performed in the same manner as described in Example 1 except for the resin composition.
[0035]
Comparative Examples 1-3
The resin composition was evaluated by the same method as described in Example 1 except that the compound having a dihydronaphthoxazine ring was not included. The compounding composition of the resin composition is summarized in Table 1, and the physical properties of the obtained cured product are summarized in Table 2. The sign of each compound corresponds to the symbol attached to the chemical formula described in the text.
[0036]
[Table 1]
Figure 0004583669
[0037]
[Table 2]
Figure 0004583669
[0038]
【The invention's effect】
The thermosetting resin composition of the present invention comprises a dihydronaphthoxazine compound and an epoxy resin, and has a naphthalene skeleton in the cured product, thereby giving a cured product that is excellent in heat resistance and can improve flame retardancy. Therefore, since electrical characteristics and mechanical characteristics are also good, it is useful as a laminate for printed wiring boards, printed wiring boards, semiconductor encapsulants, semiconductor mounting modules, and other various electronic component peripheral members. In addition, it can be used as a binder or matrix resin for automobiles, aircraft members, building members, etc., carbon fibers, carbon electrodes, various composite materials and the like.

Claims (4)

下記一般式(1)
Figure 0004583669
(式中、R1〜R4は独立に、水素又は炭素数1〜6のアルキル基を示し、R5、R6は独立に、炭素数1〜6のアルキル基、シクロヘキシル基、フェニル基、置換フェニル基、ナフチル基又は置換ナフチル基を示す)で表されるジヒドロナフトキサジン化合物とエポキシ樹脂を必須成分とし、ジヒドロナフトキサジン化合物とエポキシ樹脂の合計量に対し、ジヒドロナフトキサジン化合物の含有率が樹脂組成物中の樹脂成分の5〜95重量%であり、エポキシ樹脂の含有率が95〜5重量%であることを特徴とする熱硬化性樹脂組成物。
The following general formula (1)
Figure 0004583669
(In the formula, R 1 to R 4 independently represent hydrogen or an alkyl group having 1 to 6 carbon atoms, and R 5 and R 6 independently represent an alkyl group having 1 to 6 carbon atoms, a cyclohexyl group, a phenyl group, A diphenylnaphthoxazine compound and an epoxy resin as essential components, and with respect to the total amount of the dihydronaphthoxazine compound and the epoxy resin, the dihydronaphthoxazine compound A thermosetting resin composition, wherein the content is 5 to 95% by weight of the resin component in the resin composition, and the content of the epoxy resin is 95 to 5% by weight.
一般式(1)で表されるジヒドロナフトキサジン化合物の酸素原子のナフタレン環に対する置換位置の少なくとも一つがα位である請求項1記載の熱硬化性樹脂組成物。The thermosetting resin composition according to claim 1, wherein at least one of the substitution positions of the oxygen atom of the dihydronaphthoxazine compound represented by the general formula (1) with respect to the naphthalene ring is α-position. 更に、ジヒドロベンゾキサジン化合物を含有する請求項1記載の熱硬化性樹脂組成物。The thermosetting resin composition according to claim 1, further comprising a dihydrobenzoxazine compound. 請求項1〜2のいずれかに記載の熱硬化性樹脂組成物を硬化させてなる樹脂硬化物。A cured resin obtained by curing the thermosetting resin composition according to claim 1.
JP2001200982A 2001-07-02 2001-07-02 Thermosetting resin composition Expired - Fee Related JP4583669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001200982A JP4583669B2 (en) 2001-07-02 2001-07-02 Thermosetting resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001200982A JP4583669B2 (en) 2001-07-02 2001-07-02 Thermosetting resin composition

Publications (2)

Publication Number Publication Date
JP2003012770A JP2003012770A (en) 2003-01-15
JP4583669B2 true JP4583669B2 (en) 2010-11-17

Family

ID=19038016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001200982A Expired - Fee Related JP4583669B2 (en) 2001-07-02 2001-07-02 Thermosetting resin composition

Country Status (1)

Country Link
JP (1) JP4583669B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068769A (en) * 2005-09-07 2007-03-22 Osada Res Inst Ltd Dental treatment chair
WO2014013702A1 (en) 2012-07-20 2014-01-23 株式会社Jvcケンウッド Image display apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178824A (en) * 1984-09-14 1986-04-22 グーリト‐エセツクス・アクテイエンゲゼルシヤフト Chemically curable resin comprising compound having 1-oxa-3-aza-tetralin group and alicyclic epoxide resin, manufacture, curable process and use of said resin
JPH0269567A (en) * 1988-07-18 1990-03-08 Gurit Essex Ag Resin capable of forming flame-retardant, high-temperature-resistant polymeric resin by curing, and manufacture thereof
JP2001106869A (en) * 1999-10-01 2001-04-17 Hitachi Chem Co Ltd Epoxy resin composition and insulation resin sheet for printed wiring board
JP2001106813A (en) * 1999-10-13 2001-04-17 Sumitomo Bakelite Co Ltd Non-halogen flame-retardant laminate and prepreg therefor
JP2001131393A (en) * 1999-10-29 2001-05-15 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2003012747A (en) * 2001-06-28 2003-01-15 Nippon Steel Chem Co Ltd Acetynyl group-containing curable resin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178824A (en) * 1984-09-14 1986-04-22 グーリト‐エセツクス・アクテイエンゲゼルシヤフト Chemically curable resin comprising compound having 1-oxa-3-aza-tetralin group and alicyclic epoxide resin, manufacture, curable process and use of said resin
JPH0269567A (en) * 1988-07-18 1990-03-08 Gurit Essex Ag Resin capable of forming flame-retardant, high-temperature-resistant polymeric resin by curing, and manufacture thereof
JP2001106869A (en) * 1999-10-01 2001-04-17 Hitachi Chem Co Ltd Epoxy resin composition and insulation resin sheet for printed wiring board
JP2001106813A (en) * 1999-10-13 2001-04-17 Sumitomo Bakelite Co Ltd Non-halogen flame-retardant laminate and prepreg therefor
JP2001131393A (en) * 1999-10-29 2001-05-15 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2003012747A (en) * 2001-06-28 2003-01-15 Nippon Steel Chem Co Ltd Acetynyl group-containing curable resin

Also Published As

Publication number Publication date
JP2003012770A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
JP3092009B2 (en) Flame retardant and thermosetting flame-retardant resin composition containing the flame retardant
WO2008010429A1 (en) Phosphorus-containing benzoxazine compound, process for production thereof, curable resin composition, cured article, and laminate plate
US9215803B2 (en) Epoxy resin composition and pre-preg, support-provided resin film, metallic foil clad laminate plate and multilayer printed circuit board utilizing said composition
JP2003286320A (en) Allyl group-containing thermosetting resin and cured matter
TWI581677B (en) Curable resin composition, cured object thereof, resin composition for printed wiring board and printed wiring board
JP2003064180A (en) Curable resin having dihydrobenzoxazine ring structure and heat-resistant cured resin
JP2015007232A (en) Phosphorus-containing phenol resin and flame-retardant epoxy resin cured product including the same
KR20140046007A (en) Novel cyanic acid ester compound, method for producing same, curable resin composition containing novel cyanic acid ester compound, and cured product of curable resin composition
JPWO2004009708A1 (en) Curable resin composition
JP2003012924A (en) Curable resin composition
JP2003012747A (en) Acetynyl group-containing curable resin
TWI798311B (en) Epoxy resin composition and cured product thereof
JP2000336248A (en) Epoxy resin composition and electrical laminate sheet
JP2004010839A (en) Thermosetting resin having benzoxazine structure, resin composition and cured material
CN112898738A (en) Epoxy resin composition, prepreg, laminate, printed wiring board, and cured product using same
JP4036011B2 (en) Flame-retardant thermosetting resin composition, prepreg using the same, and laminate for electric wiring board
JP7211744B2 (en) Epoxy resin composition and cured product thereof
JP4583669B2 (en) Thermosetting resin composition
JP4972247B2 (en) Flame retardant thermosetting resin composition, prepreg using the same, and laminate for electric wiring board
JP4749625B2 (en) Thermosetting resin composition
JP3484403B2 (en) Phosphorus-containing flame-retardant epoxy resin and method for producing the same
JP3944627B2 (en) Phenolic resin composition
JP4163433B2 (en) Heat resistant adhesive
JP2003041001A (en) Thermosetting resin having dihydrobenzoxazine ring structure, resin composition and cured product
JP5099801B2 (en) Epoxy resin composition and electrical laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160910

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees