JP7211744B2 - Epoxy resin composition and cured product thereof - Google Patents

Epoxy resin composition and cured product thereof Download PDF

Info

Publication number
JP7211744B2
JP7211744B2 JP2018174770A JP2018174770A JP7211744B2 JP 7211744 B2 JP7211744 B2 JP 7211744B2 JP 2018174770 A JP2018174770 A JP 2018174770A JP 2018174770 A JP2018174770 A JP 2018174770A JP 7211744 B2 JP7211744 B2 JP 7211744B2
Authority
JP
Japan
Prior art keywords
epoxy resin
phosphorus
resin composition
biphenyl
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018174770A
Other languages
Japanese (ja)
Other versions
JP2020045421A (en
Inventor
正浩 宗
健 廣田
一男 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2018174770A priority Critical patent/JP7211744B2/en
Priority to CN201910856761.XA priority patent/CN110922717A/en
Priority to TW108133160A priority patent/TWI799644B/en
Priority to KR1020190114996A priority patent/KR20200033205A/en
Publication of JP2020045421A publication Critical patent/JP2020045421A/en
Application granted granted Critical
Publication of JP7211744B2 publication Critical patent/JP7211744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/304Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、高耐熱性、難燃性に優れるプリント配線基板または多層プリント配線基板の製造に用いられるエポキシ樹脂組成物、およびこのエポキシ樹脂組成物から得られるプリプレグ、積層板、またはプリント配線基板に関する。 TECHNICAL FIELD The present invention relates to an epoxy resin composition used for manufacturing a printed wiring board or multilayer printed wiring board having high heat resistance and excellent flame retardancy, and a prepreg, laminate, or printed wiring board obtained from the epoxy resin composition. .

エポキシ樹脂組成物は接着性、可撓性、耐熱性、耐薬品性、絶縁性、硬化反応性に優れることから、塗料、土木接着、注型、電気電子材料、フィルム材料等多岐にわたって使用されている。特に、電気電子材料の一つであるプリント配線基板用途ではエポキシ樹脂組成物に難燃性を付与することが広く行われている。 Epoxy resin compositions are excellent in adhesiveness, flexibility, heat resistance, chemical resistance, insulation, and curing reactivity, so they are used in a wide range of applications such as paints, civil engineering adhesion, cast molding, electrical and electronic materials, and film materials. there is In particular, it is widely practiced to impart flame retardancy to epoxy resin compositions for use in printed wiring boards, which is one of electrical and electronic materials.

近年の電子機器の難燃化においては、環境へ与える影響に配慮してその燃焼時に発生する有毒ガスの抑制を目的とした対応が図られている。従来の臭素化エポキシ樹脂に代表されるようなハロゲン含有化合物による難燃化から、有機リン化合物による難燃化を図った即ちハロゲンフリー難燃化である。これら対応は電子回路基板に限らず一般的にもリン難燃性として広く使用され認識されており、回路基板に関するエポキシ樹脂分野においても同様である。 In recent years, electronic devices have been made flame-retardant, and in consideration of the impact on the environment, efforts have been made to suppress toxic gases generated during combustion. It is a halogen-free flame retardant that aims at flame retardancy with an organic phosphorus compound instead of flame retardancy with a halogen-containing compound as typified by a conventional brominated epoxy resin. These countermeasures are widely used and recognized as phosphorus flame retardancy not only for electronic circuit boards but also in the general field of epoxy resins for circuit boards.

このような難燃性を付与したエポキシ樹脂の具体的な代表例としては、特許文献1~4で開示されているような有機リン化合物を応用する提案がなされている。特許文献1には9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドとエポキシ樹脂類とを所定のモル比で反応させて得られる熱硬化性樹脂が開示されている。 As specific typical examples of such flame-retardant epoxy resins, proposals have been made to apply organophosphorus compounds as disclosed in Patent Documents 1 to 4. Patent Document 1 discloses a thermosetting resin obtained by reacting 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide with epoxy resins at a predetermined molar ratio.

特許文献1,2では難燃性を発現するリン化合物と多官能エポキシ樹脂とを反応させているため、硬化剤を使用した硬化後の耐熱性はFR-4基板相当のガラス転移温度(Tg)を得ることができるが、近年の基板の高密度実装化や自動車キャビンからボンネット駆動部周辺への搭載化が進む中で、さらなる高温対応としてFR-5相当の耐熱性であるTgが要求されているのが実態である。 In Patent Documents 1 and 2, a phosphorus compound that exhibits flame retardancy and a polyfunctional epoxy resin are reacted, so the heat resistance after curing using a curing agent is the glass transition temperature (Tg) equivalent to that of an FR-4 substrate. However, in recent years, as substrates have become more densely mounted and mounting from automobile cabins to around the hood drive part has progressed, Tg, which is equivalent to FR-5 heat resistance, is required to cope with even higher temperatures. The reality is that there are

特許文献3には従来のノボラック型エポキシ樹脂よりもさらに高Tgが得られる3官能エポキシ樹脂を併用したリン含有エポキシ樹脂を合成し、その硬化物が約180℃のTgとなる具体例が記されている。また、特許文献4にはリン化合物とヒドロキシベンズアルデヒドを反応させたリン含有オリゴマーを、多官能エポキシ樹脂と反応させて得られた高耐熱性のリン含有エポキシ樹脂として、硬化物のTgが185℃となる具体例が開示されている。これらのようなFR-5相当の耐熱基準を持つ基板として、数多くの技術が公開されており汎用化されつつある。 Patent Document 3 describes a specific example of synthesizing a phosphorous-containing epoxy resin in combination with a trifunctional epoxy resin that provides a higher Tg than conventional novolak type epoxy resins, and giving a cured product with a Tg of about 180°C. ing. Further, Patent Document 4 describes a highly heat-resistant phosphorus-containing epoxy resin obtained by reacting a phosphorus-containing oligomer obtained by reacting a phosphorus compound and hydroxybenzaldehyde with a polyfunctional epoxy resin. Specific examples are disclosed. A large number of techniques have been published and are becoming generalized as substrates having a heat resistance standard equivalent to FR-5 such as these.

これらいずれの文献においても、難燃性を確保するために高いリン含有率が必要となっており、低いリン含有率でも高い難燃性が発現する手法の確立が求められていた。 In any of these documents, a high phosphorus content is required to ensure flame retardancy, and there has been a demand for the establishment of a method for exhibiting high flame retardancy even with a low phosphorus content.

特開平11-166035号公報JP-A-11-166035 特開平11-279258号公報JP-A-11-279258 特開2002-206019号公報Japanese Patent Application Laid-Open No. 2002-206019 特開2013-35921号公報JP 2013-35921 A

本発明が解決しようとする課題は、低いリン含有率であっても、硬化物において優れた耐熱性および難燃性を発現し、特にプリント配線基板用途で優れた硬化物特性を与えるエポキシ樹脂組成物を提供することにある。 The problem to be solved by the present invention is an epoxy resin composition that exhibits excellent heat resistance and flame retardancy in a cured product even with a low phosphorus content, and that provides excellent cured product properties particularly for use in printed wiring boards. It is about providing things.

上記の課題を解決するために、本発明者はエポキシ樹脂について鋭意検討した結果、ビフェノール化合物とビフェニル系縮合剤から得られる構造を有するエポキシ樹脂をリン含有エポキシ樹脂に配合したときに、得られた硬化物の耐熱性および難燃性が、リン含有率の低い場合でも優れることを見出し、本発明を完成した。 In order to solve the above-mentioned problems, the present inventors have made intensive studies on epoxy resins. The inventors have found that the heat resistance and flame retardancy of the cured product are excellent even when the phosphorus content is low, and have completed the present invention.

すなわち、本発明はエポキシ樹脂と硬化剤を必須成分とするエポキシ樹脂組成物であって、エポキシ樹脂が下記一般式(1)で表されるビフェニルアラルキル型エポキシ樹脂と、リン含有エポキシ樹脂を含むことを特徴とするエポキシ樹脂組成物である。

Figure 0007211744000001

ここで、nは繰り返し数であって0以上の数を示し、その平均値は1.3~20の数であり、R、RおよびRはそれぞれ独立に水素原子または炭素数1~8の炭化水素基を表す。 That is, the present invention is an epoxy resin composition comprising an epoxy resin and a curing agent as essential components, wherein the epoxy resin comprises a biphenyl aralkyl type epoxy resin represented by the following general formula (1) and a phosphorus-containing epoxy resin. An epoxy resin composition characterized by
Figure 0007211744000001

Here, n is the number of repetitions and represents a number of 0 or more, its average value is a number of 1.3 to 20, R 1 , R 2 and R 3 are each independently a hydrogen atom or a represents the hydrocarbon group of 8.

上記リン含有エポキシ樹脂のエポキシ当量は200~1000g/eq.が好ましく、リン含有率は1.0~6.0質量%が好ましい。 The epoxy equivalent of the phosphorus-containing epoxy resin is 200 to 1000 g/eq. is preferable, and the phosphorus content is preferably 1.0 to 6.0% by mass.

また、本発明は、上記エポキシ樹脂組成物を使用したことを特徴とするプリプレグ、積層板、またはプリント配線基板である。 The present invention also provides a prepreg, laminate, or printed wiring board using the epoxy resin composition.

本発明のエポキシ樹脂組成物は、その硬化物において優れた耐熱性および難燃性を低いリン含有率でも発現するため、プリント配線基板用途に有用であり、特に高信頼性の要求の高い車載用基板に有用である。 INDUSTRIAL APPLICABILITY The epoxy resin composition of the present invention exhibits excellent heat resistance and flame retardancy in its cured product even with a low phosphorus content, and is therefore useful for printed wiring board applications, particularly for automotive applications where high reliability is required. Useful for substrates.

以下、本発明の実施の形態について、詳細に説明する。
本発明のエポキシ樹脂組成物はエポキシ樹脂(A)と硬化剤(B)を必須成分とし、エポキシ樹脂(A)が上記一般式(1)で表されるビフェニルアラルキル型エポキシ樹脂(a1)と、リン含有エポキシ樹脂(a2)を必須成分として含むことを特徴とするエポキシ樹脂組成物である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail.
The epoxy resin composition of the present invention comprises an epoxy resin (A) and a curing agent (B) as essential components, wherein the epoxy resin (A) is a biphenyl aralkyl epoxy resin (a1) represented by the above general formula (1); An epoxy resin composition characterized by containing a phosphorus-containing epoxy resin (a2) as an essential component.

上記エポキシ樹脂(A)は、ビフェニルアラルキル型エポキシ樹脂(a1)とリン含有エポキシ樹脂(a2)を必須成分とし、それ以外の各種エポキシ樹脂(a3)を含んでもよい。耐熱性と低リン含有率での難燃性を発現するために、ビフェニルアラルキル型エポキシ樹脂(a1)は全エポキシ樹脂(A)中の5質量%以上30質量%以下が好ましく、7質量%以上25質量%以下がより好ましい。 The epoxy resin (A) contains the biphenyl aralkyl type epoxy resin (a1) and the phosphorus-containing epoxy resin (a2) as essential components, and may contain other various epoxy resins (a3). In order to develop heat resistance and flame retardancy at a low phosphorus content, the biphenyl aralkyl type epoxy resin (a1) is preferably 5% by mass or more and 30% by mass or less, preferably 7% by mass or more, of the total epoxy resin (A). 25% by mass or less is more preferable.

上記一般式(1)において、R、RおよびRはそれぞれ独立に水素原子または炭素数1~8の炭化水素基を表す。炭素数1~8の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、ヘキシル基等の炭素数1~8のアルキル基や、シクロヘキシル基等の炭素数5~8のシクロアルキル基や、フェニル基、トリル基、キシリル基等の炭素数6~8のアリール基や、ベンジル基、フェネチル基、1-フェニルエチル基等の炭素数7~8のアラルキル基が挙げられるが、これらに限定されず、それぞれ同一でも異なっていてもよい。好ましいR、R、およびRとしては、入手の容易性および硬化物としたときの耐熱性等の物性の観点から、水素原子、1-フェニルエチル基、またはメチル基である。 In general formula (1) above, R 1 , R 2 and R 3 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms. Examples of hydrocarbon groups having 1 to 8 carbon atoms include alkyl groups having 1 to 8 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group and hexyl group, Cycloalkyl groups having 5 to 8 carbon atoms such as cyclohexyl groups; aryl groups having 6 to 8 carbon atoms such as phenyl groups, tolyl groups and xylyl groups; and carbon numbers such as benzyl groups, phenethyl groups and 1-phenylethyl groups. Examples include, but are not limited to, 7 to 8 aralkyl groups, each of which may be the same or different. Preferred R 1 , R 2 , and R 3 are a hydrogen atom, a 1-phenylethyl group, or a methyl group from the viewpoint of availability and physical properties such as heat resistance when cured.

nは繰り返し数であって0以上の数を示し、その平均値(数平均)は1.3~20であり、1.5~15が好ましく、1.7~10がより好ましく、2~6がさらに好ましい。 n is the number of repetitions and represents a number of 0 or more, the average value (number average) is 1.3 to 20, preferably 1.5 to 15, more preferably 1.7 to 10, 2 to 6 is more preferred.

また、ビフェニルアラルキル型エポキシ樹脂(a1)のゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量(Mw)は、1000~8000が好ましく、2000~7000がより好ましく、3000~6000がさらに好ましい。 Further, the weight average molecular weight (Mw) of the biphenyl aralkyl epoxy resin (a1) measured by gel permeation chromatography (GPC) is preferably 1000 to 8000, more preferably 2000 to 7000, even more preferably 3000 to 6000.

上記nが0であるn=0成分の含有量は、溶剤溶解性の観点からGPC測定による面積%として、15%未満が好ましく、10%以下がより好ましく、6%以下がさらに好ましい。特に、積層板用途等で有機溶媒に溶解して使用する場合は、2~5%が好ましい。また、n=5成分以上の含有量は、耐熱性向上の観点から20%以上が好ましく、25%以上がより好ましく、27%以上がさらに好ましい。なお、GPCの測定条件は実施例に記載の方法による。 The content of the n=0 component, where n is 0, is preferably less than 15%, more preferably 10% or less, and even more preferably 6% or less as area % by GPC measurement from the viewpoint of solvent solubility. In particular, in the case of dissolving in an organic solvent for use in laminates or the like, the content is preferably 2 to 5%. In addition, the content of n=5 or more components is preferably 20% or more, more preferably 25% or more, and even more preferably 27% or more, from the viewpoint of improving heat resistance. GPC measurement conditions are according to the method described in Examples.

上記ビフェニルアラルキル型エポキシ樹脂(a1)のエポキシ当量(g/eq.)は、200~240が好ましく、205~235がより好ましく、210~230がさらに好ましい。また、軟化点は、70~130℃が好ましく、80~120℃がより好ましく、90~110℃がさらに好ましい。 The epoxy equivalent (g/eq.) of the biphenylaralkyl-type epoxy resin (a1) is preferably 200-240, more preferably 205-235, and even more preferably 210-230. The softening point is preferably 70 to 130°C, more preferably 80 to 120°C, even more preferably 90 to 110°C.

上記ビフェニルアラルキル型エポキシ樹脂(a1)は、WO2011/074517号等に開示された方法により製造することができる。具体的には、ビフェノール化合物とビフェニル系縮合剤とをビフェノール化合物1モルに対して、ビフェニル系縮合剤を1モル未満で反応させ、得られたビフェニルアラルキル型フェノール樹脂をエポキシ化する方法である。 The biphenyl aralkyl type epoxy resin (a1) can be produced by the method disclosed in WO2011/074517 and the like. Specifically, it is a method of reacting a biphenol compound and a biphenyl-based condensing agent with less than 1 mol of the biphenyl-based condensing agent per 1 mol of the biphenol compound, and epoxidizing the resulting biphenylaralkyl-type phenolic resin.

上記ビフェノール化合物としては、4,4’-ビフェノール、2,4’-ビフェノール、または2,2’-ビフェノール等が挙げられ、反応性の観点からは、4,4’-ビフェノールが好ましい。また、これらのビフェノール化合物はそれぞれの芳香環上に置換基として炭素数1~8の炭化水素基を1個有してもよい。 Examples of the biphenol compound include 4,4'-biphenol, 2,4'-biphenol, and 2,2'-biphenol, with 4,4'-biphenol being preferred from the viewpoint of reactivity. Further, these biphenol compounds may have one hydrocarbon group having 1 to 8 carbon atoms as a substituent on each aromatic ring.

上記ビフェニル系縮合剤としては、ビフェニル-4,4’-ジメタノール、4,4’-ビス(クロロメチル)ビフェニル、4,4’-ビス(ブロモメチル)ビフェニル、4,4’-ビス(メトキシメチル)ビフェニル、4,4’-ビス(エトキシメチル)ビフェニル、ビフェニル-2,4’-ジメタノール、2,4’-ビス(クロロメチル)ビフェニル、2,4’-ビス(ブロモメチル)ビフェニル、2,4’-ビス(メトキシメチル)ビフェニル、2,4’-ビス(エトキシメチル)ビフェニル、ビフェニル-2,2’-ジメタノール、2,2’-ビス(クロロメチル)ビフェニル、2,2’-ビス(ブロモメチル)ビフェニル、2,2’-ビス(メトキシメチル)ビフェニル、2,2’-ビス(エトキシメチル)ビフェニル等が挙げられる。反応性の観点からは、ビフェニル-4,4’-ジメタノール、4,4’-ビス(クロロメチル)ビフェニルが好ましく、イオン性不純分低減の観点からは、ビフェニル-4,4’-ジメタノール、4,4’-ビス(メトキシメチル)ビフェニルが好ましい。また、これらのビフェニル系縮合剤はそれぞれの芳香環上に置換基として炭素数1~8の炭化水素基を1個または2個有してもよい。 Examples of the biphenyl-based condensing agent include biphenyl-4,4′-dimethanol, 4,4′-bis(chloromethyl)biphenyl, 4,4′-bis(bromomethyl)biphenyl, 4,4′-bis(methoxymethyl) ) biphenyl, 4,4′-bis(ethoxymethyl)biphenyl, biphenyl-2,4′-dimethanol, 2,4′-bis(chloromethyl)biphenyl, 2,4′-bis(bromomethyl)biphenyl, 2, 4'-bis(methoxymethyl)biphenyl, 2,4'-bis(ethoxymethyl)biphenyl, biphenyl-2,2'-dimethanol, 2,2'-bis(chloromethyl)biphenyl, 2,2'-bis (bromomethyl)biphenyl, 2,2'-bis(methoxymethyl)biphenyl, 2,2'-bis(ethoxymethyl)biphenyl and the like. From the viewpoint of reactivity, biphenyl-4,4'-dimethanol and 4,4'-bis(chloromethyl)biphenyl are preferred, and from the viewpoint of reducing ionic impurities, biphenyl-4,4'-dimethanol , 4,4′-bis(methoxymethyl)biphenyl are preferred. Further, these biphenyl-based condensing agents may have one or two hydrocarbon groups having 1 to 8 carbon atoms as substituents on each aromatic ring.

ビフェノール化合物とビフェニル系縮合剤との反応には、ビフェニル系縮合剤に対して過剰量のビフェノール化合物を使用する。ビフェニル系縮合剤の使用量は、ビフェノール化合物1モルに対し、0.1~0.55モルが好ましく、0.3~0.5モルがより好ましい。ビフェニル系縮合剤の使用量が多すぎると未反応の原料ビフェノール化合物は少なくなるが分子量自体が高くなり、樹脂の軟化点や溶融粘度が高くなり、成形性や作業性に支障をきたす恐れがある。一方、少なすぎると反応終了後、未反応の原料ビフェノール化合物を除く量が多くなり、工業的に好ましくない。 For the reaction between the biphenol compound and the biphenyl-based condensing agent, an excess amount of the biphenol compound is used relative to the biphenyl-based condensing agent. The amount of the biphenyl condensing agent used is preferably 0.1 to 0.55 mol, more preferably 0.3 to 0.5 mol, per 1 mol of the biphenol compound. If the amount of biphenyl-based condensing agent used is too large, the amount of unreacted raw material biphenol compound decreases, but the molecular weight itself increases, and the softening point and melt viscosity of the resin increase, which may interfere with moldability and workability. . On the other hand, if it is too small, the amount of unreacted raw material biphenol compound removed after the reaction is finished becomes large, which is not industrially preferable.

通常、この反応は、公知の無機酸、有機酸等の酸触媒の存在下に行う。このような酸触媒としては、例えば、塩酸、硫酸、燐酸等の鉱酸や、ギ酸、シュウ酸、トリフルオロ酢酸、p-トルエンスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸や、活性白土、シリカ-アルミナ、ゼオライト等の固体酸等が挙げられる。 This reaction is usually carried out in the presence of an acid catalyst such as a known inorganic acid or organic acid. Examples of such acid catalysts include mineral acids such as hydrochloric acid, sulfuric acid and phosphoric acid; organic acids such as formic acid, oxalic acid, trifluoroacetic acid and p-toluenesulfonic acid; zinc chloride, aluminum chloride, iron chloride; Examples include Lewis acids such as boron trifluoride, solid acids such as activated clay, silica-alumina, and zeolite.

通常、この反応は10~250℃で1~20時間行う。さらに、反応の際に溶剤として、例えば、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、メチルセロソルブ、エチルセロソルブ等のアルコール類や、ジエチレングリコールジメチルエーテル、トリグライム等のエーテル類や、クロロベンゼン、ジクロロベンゼン等のハロゲン化芳香族化合物等を使用することが好ましく、これらの中でエチルセロソルブ、ジエチレングリコールジメチルエーテル、トリグライム等が特に好ましい。 The reaction is usually carried out at 10-250° C. for 1-20 hours. Furthermore, as solvents for the reaction, for example, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, methyl cellosolve, and ethyl cellosolve; ethers such as diethylene glycol dimethyl ether and triglyme; and halogens such as chlorobenzene and dichlorobenzene. It is preferable to use an aromatic compound or the like, and among these, ethyl cellosolve, diethylene glycol dimethyl ether, triglyme and the like are particularly preferable.

上記方法で得られるビフェニルアラルキル型フェノール樹脂は、未反応の原料ビフェノール化合物を多く含むことがあるため、反応終了後に必要に応じて未反応の原料ビフェノール化合物を除去する工程を加えることが好ましい。未反応の原料ビフェノール化合物の含有率は溶剤溶解性の観点から、15%(GPC測定による面積%)未満が好ましく、10%以下がより好ましく、6%以下がさらに好ましく、3~5%が特に好ましい。 Since the biphenyl aralkyl-type phenolic resin obtained by the above method may contain a large amount of unreacted starting biphenol compound, it is preferable to add a step of removing the unreacted starting biphenol compound as necessary after the completion of the reaction. From the viewpoint of solvent solubility, the content of the unreacted starting biphenol compound is preferably less than 15% (area % by GPC measurement), more preferably 10% or less, even more preferably 6% or less, and particularly 3 to 5%. preferable.

ビフェニルアラルキル型フェノール樹脂の未反応の原料ビフェノール化合物を除去する工程では、例えば、原料ビフェノール化合物を溶解せず、生成した高分子量成分を溶解させるために、貧溶剤と良溶剤を混合した溶剤を使用し、濾過等の方法により未反応の原料ビフェノール化合物を除去することが好ましい。貧溶剤としては、原料ビフェノール化合物をほとんど溶解しないものであれば特に限定されないが、例えばベンゼン、トルエン、キシレン等の芳香族溶媒が挙げられる。良溶剤としては、上記アルコール類やエーテル類やハロゲン化芳香族化合物や、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類が挙げられる。 In the process of removing unreacted raw biphenol compounds of biphenylaralkyl-type phenolic resins, for example, a mixed solvent of a poor solvent and a good solvent is used in order to dissolve the high-molecular-weight components produced without dissolving the raw biphenol compounds. Then, it is preferable to remove the unreacted starting biphenol compound by a method such as filtration. The poor solvent is not particularly limited as long as it hardly dissolves the starting biphenol compound, and examples thereof include aromatic solvents such as benzene, toluene and xylene. Good solvents include alcohols, ethers, halogenated aromatic compounds, and ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.

ビフェニルアラルキル型フェノール樹脂の軟化点は、ビフェノール化合物とビフェニル系縮合剤のモル比を変えることにより容易に調整可能であるが、高分子量体成分を少なくするようにビフェノール化合物とビフェニル系縮合剤のモル比を変更すると、除去が必要な未反応の原料ビフェノール化合物の含有量が増加し、作業性が悪化するとともに収率が大きく低下するために限度がある。 The softening point of the biphenylaralkyl-type phenolic resin can be easily adjusted by changing the molar ratio of the biphenol compound and the biphenyl condensing agent. If the ratio is changed, the content of the unreacted starting biphenol compound that needs to be removed increases, the workability deteriorates, and the yield greatly decreases, so there is a limit.

本発明で使用するビフェニルアラルキル型エポキシ樹脂(a1)は、上記ビフェニルアラルキル型フェノール樹脂とエピクロルヒドリンとを反応させることにより製造することができる。この反応は、通常のエポキシ化反応と同様に行うことができる。例えば、ビフェニルアラルキル型フェノール樹脂を過剰のエピクロルヒドリンに溶解した後、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の存在下に50~150℃、好ましくは60~120℃で1~10時間反応させる方法が挙げられる。この際、アルカリ金属水酸化物の使用量は、ビフェニルアラルキル型フェノール樹脂中の水酸基1モルに対し、0.8~1.2モル、好ましくは0.9~1.0モルである。また、エピクロルヒドリンはビフェニルアラルキル型フェノール樹脂中の水酸基に対して過剰に用いられるが、通常ビフェニルアラルキル型フェノール樹脂中の水酸基1モルに対し、1.5~15モル、好ましくは2~8モルである。反応終了後、過剰のエピクロルヒドリンを留去し、残留物をトルエン、メチルイソブチルケトン等の溶剤に溶解し、濾過し、水洗して無機塩を除去し、次いで溶剤を留去することにより、ビフェニルアラルキル型エポキシ樹脂を得ることができる。なお、エポキシ化する際に、生成したエポキシ化合物のエポキシ基が開環、縮合してオリゴマー化したエポキシ化合物が少量副生する場合があるが、かかるエポキシ化合物が存在しても差し支えない。 The biphenylaralkyl type epoxy resin (a1) used in the present invention can be produced by reacting the above biphenylaralkyl type phenolic resin with epichlorohydrin. This reaction can be carried out in the same manner as a normal epoxidation reaction. For example, after dissolving a biphenylaralkyl-type phenolic resin in an excess of epichlorohydrin, the solution is dissolved in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide at 50 to 150°C, preferably at 60 to 120°C for 1 to 10 hours. A method of reacting can be mentioned. At this time, the amount of alkali metal hydroxide used is 0.8 to 1.2 mol, preferably 0.9 to 1.0 mol, per 1 mol of hydroxyl group in the biphenylaralkyl-type phenolic resin. Epichlorohydrin is used in an excess amount relative to the hydroxyl groups in the biphenylaralkyl-type phenolic resin, and is usually 1.5 to 15 mol, preferably 2 to 8 mol, per 1 mol of the hydroxyl groups in the biphenylaralkyl-type phenolic resin. . After completion of the reaction, excess epichlorohydrin is distilled off, the residue is dissolved in a solvent such as toluene or methyl isobutyl ketone, filtered and washed with water to remove inorganic salts, and then the solvent is distilled off to obtain biphenyl aralkyl. type epoxy resin can be obtained. During epoxidation, the epoxy groups of the resulting epoxy compound may be ring-opened and condensed to form a small amount of an oligomerized epoxy compound as a by-product.

本発明で使用するリン含有エポキシ樹脂(a2)は、単独または2種類以上使用することが好ましい。また、リン非含有エポキシ樹脂(a3)を併用してもよい。リン含有エポキシ樹脂(a2)としては、特開平04-11662号公報、特開平05-214070号公報、特開2000-309624号公報、および特開2002-265562号公報等で開示されているように、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシドやジフェニルホスフィンオキシド等の反応性リン化合物と、必要に応じて、1,4-ベンゾキノンや1,4-ナフトキノン等のキノン化合物とを反応させた後、エポキシ樹脂と反応させることで得られるものが特に好ましい。 The phosphorus-containing epoxy resin (a2) used in the present invention is preferably used alone or in combination of two or more. A phosphorus-free epoxy resin (a3) may also be used in combination. As the phosphorus-containing epoxy resin (a2), as disclosed in JP-A-04-11662, JP-A-05-214070, JP-A-2000-309624, JP-A-2002-265562, etc. , Reactive phosphorus compounds such as 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and diphenylphosphine oxide, and optionally 1,4-benzoquinone and 1,4-naphthoquinone. Particularly preferred is one obtained by reacting with an epoxy resin after reacting with a quinone compound.

これらのリン含有エポキシ樹脂(a2)のエポキシ当量(g/eq.)は、200~1000が好ましく、250~800がより好ましく、270~700がさらに好ましい。リン含有率は、1.0~6.0質量%が好ましく、1.5~5.5質量%がより好ましく、1.7~5.0質量%がさらに好ましい。 The epoxy equivalent (g/eq.) of these phosphorus-containing epoxy resins (a2) is preferably 200-1000, more preferably 250-800, and even more preferably 270-700. The phosphorus content is preferably 1.0 to 6.0% by mass, more preferably 1.5 to 5.5% by mass, even more preferably 1.7 to 5.0% by mass.

リン非含有エポキシ樹脂(a3)を併用する場合は、リン含有エポキシ樹脂(a2)とリン非含有エポキシ樹脂(a3)とを混合したリン含有エポキシ樹脂(a23)のリン含有率が、リン含有エポキシ樹脂(a2)の好ましいリン含有率の範囲内になるように、リン含有エポキシ樹脂(a2)のリン含有率やリン含有エポキシ樹脂(a2)とリン非含有エポキシ樹脂(a3)の混合量を調整する。 When the phosphorus-free epoxy resin (a3) is used together, the phosphorus content of the phosphorus-containing epoxy resin (a23) obtained by mixing the phosphorus-containing epoxy resin (a2) and the phosphorus-free epoxy resin (a3) is The phosphorus content of the phosphorus-containing epoxy resin (a2) and the mixing amount of the phosphorus-containing epoxy resin (a2) and the phosphorus-free epoxy resin (a3) are adjusted so that the phosphorus content of the resin (a2) falls within the preferred range. do.

難燃性試験UL-94のV-0を達成するためのエポキシ樹脂組成物中のリン含有率は、1.0~5.0質量%が好ましく、1.3~4.5質量%がより好ましい。1.5~2.3質量%が特に好ましい。エポキシ樹脂組成物中のリン含有率が少ない場合は難燃性が不十分になる恐れがあり、多い場合は耐熱性や接着性が損なわれる恐れがある。 The phosphorus content in the epoxy resin composition to achieve V-0 in the flame retardancy test UL-94 is preferably 1.0 to 5.0% by mass, more preferably 1.3 to 4.5% by mass. preferable. 1.5 to 2.3% by weight is particularly preferred. If the phosphorus content in the epoxy resin composition is low, the flame retardance may be insufficient, and if it is high, the heat resistance and adhesion may be impaired.

リン含有エポキシ樹脂(a2)の具体例としては、例えば、エポトートFX-305、エポトートFX-289B、エポトートFX-1225、YDFR-1320、TX-1328(以上、新日鉄住金化学株式会社製)等が挙げられるが、これらに限定されるものではない。 Specific examples of the phosphorus-containing epoxy resin (a2) include Epotoot FX-305, Epotoot FX-289B, Epotoot FX-1225, YDFR-1320, and TX-1328 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.). but not limited to these.

併用できるリン非含有エポキシ樹脂(a3)としては、特に制限はなく、分子中にエポキシ基を2個以上有する通常のエポキシ樹脂が使用でき、3官能以上のエポキシ樹脂が好ましい。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂、ヒドロキノン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスチオエーテル型エポキシ樹脂、レゾルシノール型エポキシ樹脂、上記一般式(1)で表される構造以外のビフェニルアラルキル型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、芳香族変性フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、アルキルノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、β-ナフトールアラルキル型エポキシ樹脂、ジナフトールアラルキル型エポキシ樹脂、α-ナフトールアラルキル型エポキシ樹脂、トリスフェニルメタン型エポキシ樹脂、アルキレングリコール型エポキシ樹脂、脂肪族環状エポキシ樹脂、ジアミノジフェニルメタンテトラグリシジルアミン、アミノフェノール型エポキシ樹脂、ウレタン変性エポキシ樹脂、オキサゾリドン環含有エポキシ樹脂等が挙げられるが、これらに限定されるものではない。入手容易さの観点から、ナフタレンジオール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、芳香族変性フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、α-ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、オキサゾリドン環含有エポキシ樹脂等が好ましい。 The phosphorus-free epoxy resin (a3) that can be used in combination is not particularly limited, and ordinary epoxy resins having two or more epoxy groups in the molecule can be used, and trifunctional or higher epoxy resins are preferred. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethylbisphenol F type epoxy resin, hydroquinone type epoxy resin, biphenyl type epoxy resin, bisphenol fluorene type epoxy resin, bisphenol S type epoxy resin, bisthioether type epoxy resin, Resorcinol-type epoxy resins, biphenylaralkyl-type epoxy resins other than those represented by the general formula (1) above, naphthalenediol-type epoxy resins, phenol novolac-type epoxy resins, aromatic modified phenol novolak-type epoxy resins, cresol novolac-type epoxy resins , alkyl novolak type epoxy resin, bisphenol novolac type epoxy resin, naphthol novolak type epoxy resin, β-naphthol aralkyl type epoxy resin, dinaphthol aralkyl type epoxy resin, α-naphthol aralkyl type epoxy resin, trisphenylmethane type epoxy resin, alkylene Glycol-type epoxy resins, aliphatic cyclic epoxy resins, diaminodiphenylmethane tetraglycidylamine, aminophenol-type epoxy resins, urethane-modified epoxy resins, oxazolidone ring-containing epoxy resins and the like may be mentioned, but are not limited to these. From the viewpoint of availability, naphthalenediol type epoxy resin, phenol novolac type epoxy resin, aromatic modified phenol novolac type epoxy resin, cresol novolak type epoxy resin, α-naphthol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, oxazolidone Ring-containing epoxy resins and the like are preferred.

本発明のエポキシ樹脂組成物における硬化剤(B)としては、特に制限はなく、従来公知の硬化剤が使用できる。例えば、フェノール樹脂系硬化剤、酸無水物系硬化剤、アミン系硬化剤、またはその他の硬化剤等の通常使用されるものが挙げられるが、これらの硬化剤は単独で使用してもよいし、2種類以上を併用してもよい。 The curing agent (B) in the epoxy resin composition of the present invention is not particularly limited, and conventionally known curing agents can be used. For example, commonly used curing agents such as phenolic resin curing agents, acid anhydride curing agents, amine curing agents, and other curing agents can be used. , may be used in combination of two or more.

本発明のエポキシ樹脂組成物において、硬化剤(B)の使用量は、全エポキシ樹脂(A)のエポキシ基1モルに対して、硬化剤(B)の活性水素基を0.2モル以上1.5モル以下の範囲である。エポキシ基1モルに対して活性水素基が、0.2モル未満または1.5モルを超える場合は、硬化が不完全になり良好な硬化物性が得られない恐れがある。好ましい範囲は0.3モル以上1.5モル以下であり、より好ましい範囲は0.5モル以上1.5モル以下であり、さらに好ましい範囲は0.8モル以上1.2モル以下である。例えば、フェノール樹脂系硬化剤やアミン系硬化剤を用いた場合はエポキシ基に対して活性水素基をほぼ等モル配合し、酸無水物系硬化剤を用いた場合はエポキシ基1モルに対して酸無水物基を0.5~1.2モル、好ましくは、0.6~1.0モル配合するとよい。 In the epoxy resin composition of the present invention, the amount of the curing agent (B) used is 0.2 mol or more of the active hydrogen group of the curing agent (B) per 1 mol of the epoxy groups of the entire epoxy resin (A). 0.5 mol or less. If the active hydrogen group is less than 0.2 mol or more than 1.5 mol per 1 mol of epoxy group, curing may be incomplete and good cured physical properties may not be obtained. A preferable range is 0.3 mol or more and 1.5 mol or less, a more preferable range is 0.5 mol or more and 1.5 mol or less, and a further preferable range is 0.8 mol or more and 1.2 mol or less. For example, when using a phenol resin-based curing agent or an amine-based curing agent, an active hydrogen group is blended in an almost equimolar amount with respect to the epoxy group, and when an acid anhydride-based curing agent is used, per 1 mol of the epoxy group 0.5 to 1.2 mol, preferably 0.6 to 1.0 mol, of the acid anhydride group is blended.

本発明でいう活性水素基とはエポキシ基と反応性の活性水素を有する官能基(加水分解等により活性水素を生ずる潜在性活性水素を有する官能基や、同等な硬化作用を示す官能基を含む。)のことであり、具体的には、酸無水物基やカルボキシル基やアミノ基やフェノール性水酸基等が挙げられる。なお、活性水素基に関して、1モルのカルボキシル基やフェノール性水酸基は1モルと、アミノ基(NH)は2モルと計算される。また、活性水素基が明確ではない場合は、測定によって活性水素当量を求めることができる。例えば、エポキシ当量が既知のフェニルグリシジルエーテル等のモノエポキシ樹脂と活性水素当量が未知の硬化剤を反応させて、消費したモノエポキシ樹脂の量を測定することによって、使用した硬化剤の活性水素当量を求めることができる。 The term "active hydrogen group" as used in the present invention means a functional group having an active hydrogen reactive with an epoxy group (including a functional group having a latent active hydrogen that generates an active hydrogen by hydrolysis, etc., and a functional group that exhibits an equivalent curing effect). ), and specific examples include an acid anhydride group, a carboxyl group, an amino group, a phenolic hydroxyl group, and the like. Regarding active hydrogen groups, 1 mol of carboxyl group and phenolic hydroxyl group is calculated as 1 mol, and amino group (NH 2 ) is calculated as 2 mol. Moreover, when the active hydrogen group is not clear, the active hydrogen equivalent can be determined by measurement. For example, by reacting a monoepoxy resin such as phenyl glycidyl ether with a known epoxy equivalent with a curing agent with an unknown active hydrogen equivalent and measuring the amount of monoepoxy resin consumed, the active hydrogen equivalent of the curing agent used can be asked for.

フェノール樹脂系硬化剤としては、具体例には、ビスフェノールA、ビスフェノールF、ビスフェノールC、ビスフェノールK、ビスフェノールZ、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールS、テトラメチルビスフェノールZ、ジヒドロキシジフェニルスルフィド、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)等のビスフェノール類や、上記ビフェノール化合物や、カテコール、レゾルシン、メチルレゾルシン、ハイドロキノン、モノメチルハイドロキノン、ジメチルハイドロキノン、トリメチルハイドロキノン、モノ-t-ブチルハイドロキノン、ジ-t-ブチルハイドロキノン等ジヒドロキシベンゼン類や、ジヒドロキシナフタレン、ジヒドロキシメチルナフタレン、トリヒドロキシナフタレン等のヒドロキシナフタレン類や、LC-950PM60(Shin-AT&C社製)等のリン含有フェノール硬化剤や、ショウノールBRG-555(アイカ工業株式会社製)等のフェノールノボラック樹脂、DC-5(新日鉄住金化学株式会社製)等のクレゾールノボラック樹脂、芳香族変性フェノールノボラック樹脂、ビスフェノールAノボラック樹脂、レヂトップTPM-100(群栄化学工業株式会社製)等のトリスヒドロキシフェニルメタン型ノボラック樹脂、ナフトールノボラック樹脂等のフェノール類、ナフトール類および/またはビスフェノール類とアルデヒド類との縮合物、SN-160、SN-395、SN-485(新日鉄住金化学株式会社製)等のフェノール類、ナフトール類および/またはビスフェノール類とキシリレングリコールとの縮合物、フェノール類および/またはナフトール類とイソプロペニルアセトフェノンとの縮合物、フェノール類、ナフトール類および/またはビスフェノール類とジシクロペンタジエンとの反応物、フェノール類、ナフトール類および/またはビスフェノール類とビフェニル系架橋剤との縮合物等のいわゆる「ノボラック型フェノール樹脂」と言われるフェノール化合物等が挙げられる。入手容易さの観点から、フェノールノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、トリスヒドロキシフェニルメタン型ノボラック樹脂、芳香族変性フェノールノボラック樹脂等が好ましい。 Specific examples of phenolic resin curing agents include bisphenol A, bisphenol F, bisphenol C, bisphenol K, bisphenol Z, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol S, and tetramethylbisphenol Z. , dihydroxydiphenyl sulfide, bisphenols such as 4,4'-thiobis(3-methyl-6-t-butylphenol), the above biphenol compounds, catechol, resorcinol, methylresorcinol, hydroquinone, monomethylhydroquinone, dimethylhydroquinone, trimethylhydroquinone , mono-t-butylhydroquinone, di-t-butylhydroquinone and other dihydroxybenzenes, dihydroxynaphthalene, dihydroxymethylnaphthalene, trihydroxynaphthalene and other hydroxynaphthalenes, and phosphorus such as LC-950PM60 (manufactured by Shin-AT&C). Containing phenol curing agent, phenol novolak resin such as Shaunol BRG-555 (manufactured by Aica Kogyo Co., Ltd.), cresol novolak resin such as DC-5 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), aromatic modified phenol novolac resin, bisphenol A Novolac resins, trishydroxyphenylmethane type novolac resins such as Resitop TPM-100 (manufactured by Gun Ei Chemical Industry Co., Ltd.), phenols such as naphthol novolac resins, naphthols and/or condensates of bisphenols and aldehydes, SN -160, SN-395, SN-485 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and other phenols, naphthols and/or condensates of bisphenols and xylylene glycol, phenols and/or naphthols and isopropenylacetophenone condensates, reaction products of phenols, naphthols and/or bisphenols with dicyclopentadiene, condensates of phenols, naphthols and/or bisphenols and biphenyl-based cross-linking agents, so-called "novolac-type phenol phenolic compounds called "resin". Phenol novolak resins, dicyclopentadiene type phenol resins, trishydroxyphenylmethane type novolak resins, aromatic modified phenol novolak resins, and the like are preferable from the viewpoint of availability.

ノボラック型フェノール樹脂の場合、フェノール類としては、フェノール、クレゾール、キシレノール、ブチルフェノール、アミルフェノール、ノニルフェノール、ブチルメチルフェノール、トリメチルフェノール、フェニルフェノール等が挙げられ、ナフトール類としては、1-ナフトール、2-ナフトール等が挙げられ、その他、上記ビフェノール化合物やビスフェノール類が挙げられる。アルデヒド類としては、ホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、バレルアルデヒド、カプロンアルデヒド、ベンズアルデヒド、クロルアルデヒド、ブロムアルデヒド、グリオキザール、マロンアルデヒド、スクシンアルデヒド、グルタルアルデヒド、アジピンアルデヒド、ピメリンアルデヒド、セバシンアルデヒド、アクロレイン、クロトンアルデヒド、サリチルアルデヒド、フタルアルデヒド、ヒドロキシベンズアルデヒド等が例示される。ビフェニル系架橋剤としてビス(メチロール)ビフェニル、ビス(メトキシメチル)ビフェニル、ビス(エトキシメチル)ビフェニル、ビス(クロロメチル)ビフェニル等が挙げられる。 In the case of novolak-type phenolic resins, phenols include phenol, cresol, xylenol, butylphenol, amylphenol, nonylphenol, butylmethylphenol, trimethylphenol, phenylphenol, etc. Naphthols include 1-naphthol, 2- Examples include naphthol, and other examples include the above-mentioned biphenol compounds and bisphenols. Aldehydes include formaldehyde, acetaldehyde, propylaldehyde, butyraldehyde, valeraldehyde, capronaldehyde, benzaldehyde, chloraldehyde, bromaldehyde, glyoxal, malonaldehyde, succinaldehyde, glutaraldehyde, adipaldehyde, pimelinaldehyde, and sebacaldehyde. , acrolein, crotonaldehyde, salicylaldehyde, phthalaldehyde, hydroxybenzaldehyde and the like. Biphenyl-based cross-linking agents include bis(methylol)biphenyl, bis(methoxymethyl)biphenyl, bis(ethoxymethyl)biphenyl, bis(chloromethyl)biphenyl and the like.

酸無水物系硬化剤としては、具体的には、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水ピロメリット酸、無水フタル酸、無水トリメリット酸、メチルナジック酸等が挙げられる。 Specific examples of acid anhydride curing agents include methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, pyromellitic anhydride, phthalic anhydride, trimellitic anhydride, and methylnadic acid.

アミン系硬化剤としては、具体的には、ジエチレントリアミン、トリエチレンテトラミン、メタキシレンジアミン、イソホロンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、ジアミノジフェニルエーテル、ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、ジシアンジアミド、ダイマー酸等の酸類とポリアミン類との縮合物であるポリアミドアミン等のアミン系化合物等が挙げられる。 Specific examples of amine curing agents include diethylenetriamine, triethylenetetramine, metaxylenediamine, isophoronediamine, diaminodiphenylmethane, diaminodiphenylsulfone, diaminodiphenyl ether, benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl ) Amine compounds such as polyamidoamine, which are condensates of acids such as phenol, dicyandiamide, dimer acid, and polyamines.

その他の硬化剤として、具体的には、トリフェニルホスフィン等のホスフィン化合物、テトラフェニルホスホニウムブロミド等のホスホニウム塩、2-メチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、1-シアノエチル-2-メチルイミダゾール等のイミダゾール類、イミダゾール類とトリメリット酸、イソシアヌル酸またはホウ酸等との塩であるイミダゾール塩類、トリメチルアンモニウムクロリド等の4級アンモニウム塩類、ジアザビシクロ化合物、ジアザビシクロ化合物とフェノール類やフェノールノボラック樹脂類等との塩類、3フッ化ホウ素とアミン類やエーテル化合物等との錯化合物、芳香族ホスホニウム塩、またはヨードニウム塩等が挙げられる。 Specific examples of other curing agents include phosphine compounds such as triphenylphosphine, phosphonium salts such as tetraphenylphosphonium bromide, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-un imidazoles such as decylimidazole and 1-cyanoethyl-2-methylimidazole; imidazole salts which are salts of imidazoles with trimellitic acid, isocyanuric acid or boric acid; quaternary ammonium salts such as trimethylammonium chloride; diazabicyclo compounds; Salts of diazabicyclo compounds and phenols or phenolic novolak resins, complex compounds of boron trifluoride and amines or ether compounds, aromatic phosphonium salts, or iodonium salts can be mentioned.

エポキシ樹脂組成物には必要に応じて硬化促進剤を使用することができる。使用できる硬化促進剤の例としては2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール類、2-(ジメチルアミノメチル)フェノール、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7等の第3級アミン類、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィントリフェニルボラン等のホスフィン類、オクチル酸スズ等の金属化合物が挙げられる。硬化促進剤は本発明のエポキシ樹脂組成物中のエポキシ樹脂成分100質量部に対して0.02~5質量部が必要に応じて用いられる。硬化促進剤を用いることにより、硬化温度を下げたり、硬化時間を短縮したりすることができる。 A curing accelerator can be used in the epoxy resin composition as needed. Examples of curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-(dimethylaminomethyl)phenol, 1,8-diaza-bicyclo(5 ,4,0) tertiary amines such as undecene-7, phosphines such as triphenylphosphine, tricyclohexylphosphine, triphenylphosphine and triphenylborane, and metal compounds such as tin octylate. 0.02 to 5 parts by mass of the curing accelerator is used as necessary with respect to 100 parts by mass of the epoxy resin component in the epoxy resin composition of the present invention. By using a curing accelerator, the curing temperature can be lowered and the curing time can be shortened.

エポキシ樹脂組成物には、粘度調整用として有機溶媒または反応性希釈剤を使用することができる。 An organic solvent or reactive diluent can be used in the epoxy resin composition for viscosity adjustment.

有機溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類や、エチレングリコールモノメチルエーテル、ジメトキシジエチレングリコール、エチレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル等のエーテル類や、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類や、メタノール、エタノール、1-メトキシ-2-プロパノール、2-エチル-1-ヘキサノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、ブチルジグリコール、パインオイル等のアルコール類や、酢酸ブチル、酢酸メトキシブチル、メチルセロソルブアセテート、セロソルブアセテート、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート、ベンジルアルコールアセテート等の酢酸エステル類や、安息香酸メチル、安息香酸エチル等の安息香酸エステル類や、メチルセロソルブ、セロソルブ、ブチルセロソルブ等のセロソルブ類や、メチルカルビトール、カルビトール、ブチルカルビトール等のカルビトール類や、ベンゼン、トルエン、キシレン等の芳香族炭化水素類や、ジメチルスルホキシド、アセトニトリル、N-メチルピロリドン等が挙げられるが、これらに限定されるものではない。 Examples of organic solvents include amides such as N,N-dimethylformamide and N,N-dimethylacetamide, and ethers such as ethylene glycol monomethyl ether, dimethoxydiethylene glycol, ethylene glycol diethyl ether, diethylene glycol diethyl ether, and triethylene glycol dimethyl ether. and ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methanol, ethanol, 1-methoxy-2-propanol, 2-ethyl-1-hexanol, benzyl alcohol, ethylene glycol, propylene glycol, butyl diglycol , alcohols such as pine oil, acetic acid esters such as butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, cellosolve acetate, ethyl diglycol acetate, propylene glycol monomethyl ether acetate, carbitol acetate, benzyl alcohol acetate, and benzoic acid Benzoic acid esters such as methyl and ethyl benzoate, cellosolves such as methyl cellosolve, cellosolve, and butyl cellosolve, carbitols such as methyl carbitol, carbitol, and butyl carbitol, and fragrances such as benzene, toluene, and xylene Group hydrocarbons, dimethylsulfoxide, acetonitrile, N-methylpyrrolidone, etc., but are not limited to these.

反応性希釈剤としては、例えば、アリルグリシジルエーテル、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、トリルグリシジルエーテル等の単官能グリシジルエーテル類や、レゾルシノールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル等の二官能グリシジルエーテル類や、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、トリメチロールエタンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル等の多官能グリシジルエーテル類や、ネオデカン酸グリシジルエステル等のグリシジルエステル類や、フェニルジグリシジルアミン、トリルジグリシジルアミン等のグリシジルアミン類が挙げられるが、これらに限定されるものではない。 Examples of reactive diluents include monofunctional glycidyl ethers such as allyl glycidyl ether, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, tolyl glycidyl ether, resorcinol diglycidyl ether, and neopentyl glycol diglycidyl ether. , 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, cyclohexanedimethanol diglycidyl ether, propylene glycol diglycidyl ether and other bifunctional glycidyl ethers, glycerol polyglycidyl ether, trimethylolpropane Polyfunctional glycidyl ethers such as polyglycidyl ether, trimethylolethane polyglycidyl ether, and pentaerythritol polyglycidyl ether; glycidyl esters such as neodecanoic acid glycidyl ester; and glycidylamines such as phenyldiglycidylamine and tolyldiglycidylamine. include, but are not limited to.

これらの有機溶媒または反応性希釈剤は、単独または複数種類を混合したものを、不揮発分として90質量%以下で使用することが好ましく、その適正な種類や使用量は用途によって適宜選択される。例えば、プリント配線基板用途では、メチルエチルケトン、アセトン、1-メトキシ-2-プロパノール等の沸点が160℃以下の極性溶媒であることが好ましく、その使用量は不揮発分で40~80質量%が好ましい。また、接着フィルム用途では、例えば、ケトン類、酢酸エステル類、カルビトール類、芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を使用することが好ましく、その使用量は不揮発分で30~60質量%が好ましい。 These organic solvents or reactive diluents are preferably used singly or as a mixture of a plurality of them at a non-volatile content of 90% by mass or less, and the appropriate type and amount to be used are appropriately selected depending on the application. For example, for printed wiring board applications, a polar solvent having a boiling point of 160° C. or less, such as methyl ethyl ketone, acetone, or 1-methoxy-2-propanol, is preferred, and the amount used is preferably 40 to 80% by mass in terms of non-volatile matter. In addition, for adhesive film applications, for example, it is preferable to use ketones, acetic esters, carbitols, aromatic hydrocarbons, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc., and the amount used is nonvolatile is preferably 30 to 60% by mass.

エポキシ樹脂組成物は、特性を損ねない範囲で他の熱硬化性樹脂、熱可塑性樹脂を配合してもよい。例えば、フェノール樹脂、アクリル樹脂、石油樹脂、インデン樹脂、クマロンインデン樹脂、フェノキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンスルフィド樹脂、ポリビニルホルマール樹脂等が挙げられるがこれらに限定されるものではない。 The epoxy resin composition may contain other thermosetting resins and thermoplastic resins as long as the properties are not impaired. For example, phenol resin, acrylic resin, petroleum resin, indene resin, coumarone-indene resin, phenoxy resin, polyurethane resin, polyester resin, polyamide resin, polyimide resin, polyamideimide resin, polyetherimide resin, polyphenylene ether resin, modified polyphenylene ether Resins, polyether sulfone resins, polysulfone resins, polyether ether ketone resins, polyphenylene sulfide resins, polyvinyl formal resins, etc., but not limited to these.

エポキシ樹脂組成物には、得られる硬化物の難燃性の向上を目的に、公知の各種難燃剤を併用することができる。併用できる難燃剤としては、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤等が挙げられ、特にリン系難燃剤が好ましい。これらの難燃剤は単独でも、2種類以上でも併用してよい。 Various known flame retardants can be used in combination with the epoxy resin composition for the purpose of improving the flame retardancy of the resulting cured product. Flame retardants that can be used in combination include, for example, phosphorus-based flame retardants, nitrogen-based flame retardants, silicone-based flame retardants, and inorganic flame retardants. Phosphorus-based flame retardants are particularly preferred. These flame retardants may be used alone or in combination of two or more.

リン系難燃剤は、無機リン系化合物、有機リン系化合物のいずれも使用できる。無機リン系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。有機リン系化合物としては、例えば、脂肪族リン酸エステル、リン酸エステル化合物、例えば、PX-200(大八化学工業株式会社製)等の縮合リン酸エステル類、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、例えばPPQ(北興化学工業株式会社製)、ホスホラン化合物、フォスファゼン等の有機系含窒素リン化合物等の汎用有機リン系化合物や、ホスフィン酸の金属塩の他、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド(DOPO)、10-(2,5-ジヒドロオキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド等の環状有機リン化合物や、それらをフェノール樹脂等の化合物と反応させた誘導体であるリン含有硬化剤等が挙げられる。 Both inorganic phosphorus compounds and organic phosphorus compounds can be used as phosphorus flame retardants. Examples of inorganic phosphorus compounds include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphates such as ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as amide phosphoric acid. be done. Examples of organic phosphorus compounds include aliphatic phosphates, phosphate ester compounds, condensed phosphates such as PX-200 (manufactured by Daihachi Chemical Industry Co., Ltd.), phosphonic acid compounds, phosphinic acid compounds, Phosphine oxide compounds such as PPQ (manufactured by Hokko Chemical Industry Co., Ltd.), phosphorane compounds, general-purpose organic phosphorus compounds such as organic nitrogen-containing phosphorus compounds such as phosphazene, metal salts of phosphinic acid, 9,10-dihydro- 9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), 10-(2,5-dihydroxyphenyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10-(2, Cyclic organic phosphorus compounds such as 7-dihydroxynaphthyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide, phosphorus-containing curing agents which are derivatives obtained by reacting them with compounds such as phenol resins, etc. mentioned.

難燃剤の配合量としては、リン系難燃剤の種類、エポキシ樹脂組成物の成分、所望の難燃性の程度によって適宜選択される。リン系難燃剤を配合する場合においても、例えば、エポキシ樹脂組成物中の有機成分(有機溶媒を除く)中のリン含有率は、全リン化合物(リン含有エポキシ樹脂とリン系難燃剤)の合計量として、好ましくは0.2質量%以上4質量%以下であり、より好ましくは0.4質量%以上3.5質量%以下であり、さらに好ましくは0.6質量%以上3質量%以下である。リン含有率が少ないと難燃性の確保が難しくなる恐れがあり、多すぎると耐熱性に悪影響を与える恐れがあり、本発明の課題も達成できない。また、水酸化マグネシウム等の難燃助剤を併用してもよい。 The blending amount of the flame retardant is appropriately selected according to the type of phosphorus-based flame retardant, the components of the epoxy resin composition, and the desired degree of flame retardancy. Even when a phosphorus-based flame retardant is blended, for example, the phosphorus content in the organic components (excluding the organic solvent) in the epoxy resin composition is the total of all phosphorus compounds (phosphorus-containing epoxy resin and phosphorus-based flame retardant) The amount is preferably 0.2% by mass or more and 4% by mass or less, more preferably 0.4% by mass or more and 3.5% by mass or less, and still more preferably 0.6% by mass or more and 3% by mass or less. be. If the phosphorus content is too low, it may become difficult to ensure flame retardancy, and if it is too high, heat resistance may be adversely affected, and the object of the present invention cannot be achieved. Moreover, you may use flame-retardant auxiliary agents, such as magnesium hydroxide, together.

エポキシ樹脂組成物には必要に応じて充填材を用いることができる。具体的には、溶融シリカ、結晶シリカ、アルミナ、窒化ケイ素、水酸化アルミニウム、ベーマイト、水酸化マグネシウム、タルク、マイカ、炭酸カルシウム、ケイ酸カルシウム、水酸化カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸バリウム、窒化ホウ素、炭素、炭素繊維、ガラス繊維、アルミナ繊維、シリカアルミナ繊維、炭化ケイ素繊維、ポリエステル繊維、セルロース繊維、アラミド繊維、セラミック繊維、微粒子ゴム、熱可塑性エラストマー、顔料等が挙げられる。一般的に充填材を用いる理由としては耐衝撃性の向上効果が挙げられる。また、水酸化アルミニウム、ベーマイト、水酸化マグネシウム等の金属水酸化物を用いた場合は、難燃助剤として作用し難燃性が向上する効果がある。これら充填材の配合量はエポキシ樹脂組成物100質量部に対し、1~150質量部が好ましく、10~70質量部がより好ましい。配合量が多いと積層板用途として必要な接着性が低下する恐れがあり、さらに硬化物が脆く、十分な機械物性を得られなくなる恐れがある。また配合量が少ないと、硬化物の耐衝撃性の向上等、充填剤の配合効果がでない恐れがある。 A filler can be used in the epoxy resin composition as needed. Specifically, fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide, boehmite, magnesium hydroxide, talc, mica, calcium carbonate, calcium silicate, calcium hydroxide, magnesium carbonate, barium carbonate, barium sulfate, Boron nitride, carbon, carbon fiber, glass fiber, alumina fiber, silica alumina fiber, silicon carbide fiber, polyester fiber, cellulose fiber, aramid fiber, ceramic fiber, fine particle rubber, thermoplastic elastomer, pigment and the like. The reason for using a filler in general is the effect of improving the impact resistance. Moreover, when metal hydroxides such as aluminum hydroxide, boehmite, and magnesium hydroxide are used, they act as flame retardant aids and have the effect of improving flame retardancy. The blending amount of these fillers is preferably 1 to 150 parts by mass, more preferably 10 to 70 parts by mass, per 100 parts by mass of the epoxy resin composition. If the compounding amount is too large, there is a risk that the adhesiveness required for use as a laminated plate will be lowered, and furthermore, the cured product will be brittle, and there is a risk that sufficient mechanical properties will not be obtained. On the other hand, if the blending amount is too small, there is a fear that the blending effect of the filler, such as improving the impact resistance of the cured product, may not be achieved.

エポキシ樹脂組成物を板状基板等とする場合、その寸法安定性、曲げ強度等の点で繊維状のものが好ましい充填材として挙げられる。より好ましくはガラス繊維を網目状に編み上げたガラス繊維基板が挙げられる。 When the epoxy resin composition is used as a plate-like substrate or the like, fibrous fillers are preferred in terms of dimensional stability, bending strength, and the like. A more preferred substrate is a glass fiber substrate in which glass fibers are woven into a mesh.

エポキシ樹脂組成物は、さらに必要に応じてシランカップリング剤、酸化防止剤、離型剤、消泡剤、乳化剤、揺変性付与剤、平滑剤、難燃剤、顔料等の核種添加剤を配合することができる。これらの添加剤はエポキシ樹脂組成物100質量部に対し、0.01~20質量部の範囲が好ましい。 The epoxy resin composition further contains nuclide additives such as silane coupling agents, antioxidants, release agents, antifoaming agents, emulsifiers, thixotropic agents, smoothing agents, flame retardants, pigments, etc. be able to. These additives are preferably in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the epoxy resin composition.

エポキシ樹脂組成物は繊維状基材に含浸させることによりプリント配線基板等で用いられるプリプレグを作成することができる。繊維状基材としてはガラス等の無機繊維や、ポリエステル樹脂等、ポリアミン樹脂、ポリアクリル樹脂、ポリイミド樹脂、芳香族ポリアミド樹脂等の有機質繊維の織布または不織布を用いることができるがこれに限定されるものではない。エポキシ樹脂組成物からプリプレグを製造する方法としては、特に限定するものではなく、例えば、エポキシ樹脂組成物を溶剤で粘度調整して作成した樹脂ワニスに繊維状基材を浸漬して含浸した後、加熱乾燥して樹脂成分を半硬化(Bステージ化)して得られるものであり、例えば、100~200℃で1~40分間加熱乾燥することができる。ここで、プリプレグ中の樹脂量は、30~80質量%とすることが好ましい。 By impregnating a fibrous base material with the epoxy resin composition, a prepreg for use in printed wiring boards and the like can be produced. As the fibrous base material, inorganic fibers such as glass, and woven or non-woven fabrics of organic fibers such as polyester resin, polyamine resin, polyacrylic resin, polyimide resin, aromatic polyamide resin, etc. can be used, but not limited thereto. not something. The method for producing a prepreg from an epoxy resin composition is not particularly limited. It is obtained by heat-drying to semi-harden (to B-stage) the resin component. For example, it can be heat-dried at 100 to 200° C. for 1 to 40 minutes. Here, the amount of resin in the prepreg is preferably 30 to 80% by mass.

プリプレグを硬化するには、一般にプリント配線基板を製造するときに用いられる積層板の硬化方法を用いることができるが、これに限定されるものではない。例えば、プリプレグを用いて積層板を形成する場合、プリプレグを一枚または複数枚積層し、片側または両側に金属箔を配置して積層物を構成し、この積層物を加熱・加圧して積層一体化する。ここで金属箔としては、銅、アルミニウム、真鍮、ニッケル等の単独、合金、複合の金属箔を用いることができる。そして、作成した積層物を加圧加熱することでプリプレグを硬化させ、積層板を得ることができる。その時、加熱温度を160~220℃、加圧圧力を50~500N/cm、加熱加圧時間を40~240分間とすることが好ましく、目的とする硬化物を得ることができる。加熱温度が低いと硬化反応が十分に進行せず、高いとエポキシ樹脂組成物の分解が始まる恐れがある。また、加圧圧力が低いと得られる積層板の内部に気泡が残留し、電気的特性が低下する場合があり、高いと硬化する前に樹脂が流れてしまい、所望厚みの硬化物が得られない恐れがある。さらに、加熱加圧時間が短いと十分に硬化反応が進行しない恐れがあり、長いとプリプレグ中のエポキシ樹脂組成物の熱分解が起こる恐れがあり、好ましくない。また、上記積層板にアディティブ法やサブトラクティブ法等にて回路形成を施して、プリント配線基板を得ることができる。 In order to cure the prepreg, a laminate curing method generally used in the manufacture of printed wiring boards can be used, but the method is not limited to this. For example, when forming a laminate using prepreg, one or more prepregs are laminated, a metal foil is arranged on one side or both sides to form a laminate, and this laminate is heated and pressed to form an integrated laminate. become Here, as the metal foil, copper, aluminum, brass, nickel, or the like can be used alone, as an alloy, or as a composite metal foil. Then, the prepared laminate is pressurized and heated to cure the prepreg and obtain a laminate. At that time, it is preferable to set the heating temperature to 160 to 220° C., the pressure to 50 to 500 N/cm 2 , and the time to heat and press for 40 to 240 minutes to obtain the desired cured product. If the heating temperature is too low, the curing reaction will not proceed sufficiently, and if the heating temperature is too high, the epoxy resin composition may begin to decompose. Also, if the applied pressure is too low, air bubbles may remain inside the resulting laminate, resulting in deterioration of the electrical properties. there is a risk that it will not. Furthermore, if the heating and pressurizing time is short, the curing reaction may not proceed sufficiently, and if it is long, the epoxy resin composition in the prepreg may be thermally decomposed, which is not preferable. Moreover, a printed wiring board can be obtained by forming a circuit on the laminate by an additive method, a subtractive method, or the like.

また、上記積層板を内層材として、多層積層板を得ることもできる。例えば、まず積層板にアディティブ法やサブトラクティブ法等にて回路形成を行い、その回路表面を酸溶液で黒化処理することで内層材が得られる。得られた内層材の、片側または両側の回路形成面に、上記プリプレグを一枚または複数枚と、その外側に金属箔を配置して積層体を形成する。その積層体を加熱加圧して一体成型することにより多層積層板となる。絶縁層の形成には、プリプレグのかわりに絶縁接着シート、樹脂付き金属箔等も使用できる。なお、金属箔は積層板に用いたものと同様のものが用いられる。また加熱加圧成形は、上記条件と同様にして行うことができる。得られた多層積層板の表面に、アディティブ法やサブトラクティブ法にてバイアホール形成や回路形成を行い、多層プリント配線基板が得られる。また、この多層プリント配線基板を内層材として上記工法を繰り返すことにより、さらなる多層プリント配線基板を得ることができる。 A multilayer laminate can also be obtained by using the above laminate as an inner layer material. For example, first, a circuit is formed on a laminate by an additive method, a subtractive method, or the like, and the inner layer material is obtained by blackening the surface of the circuit with an acid solution. A laminate is formed by placing one or more sheets of the prepreg on one or both sides of the circuit forming surface of the obtained inner layer material and placing a metal foil on the outside thereof. A multi-layer laminate is obtained by integrally molding the laminate under heat and pressure. For forming the insulating layer, an insulating adhesive sheet, a resin-coated metal foil, or the like can be used instead of the prepreg. The same metal foil as that used for the laminate is used as the metal foil. Further, the heat and pressure molding can be performed under the same conditions as those described above. A multilayer printed wiring board is obtained by forming via holes and circuits on the surface of the obtained multilayer laminate by an additive method or a subtractive method. Further, by repeating the above method using this multilayer printed wiring board as an inner layer material, a further multilayer printed wiring board can be obtained.

エポキシ樹脂組成物は、公知のエポキシ樹脂組成物と同様な方法で硬化することによってエポキシ樹脂硬化物を得ることができる。硬化物を得るための方法としては、公知のエポキシ樹脂組成物と同様の方法をとることができ、注型、注入、ポッティング、ディッピング、ドリップコーティング、トランスファ一成形、圧縮成形等や樹脂シート、樹脂付き銅箔、プリプレグ等の形態とし積層して加熱加圧硬化することで積層板とする等の方法が好適に用いられる。その際の硬化温度は通常、100~300℃の範囲であり、硬化時間は通常、1時間~5時間程度である。 The epoxy resin composition can be cured in the same manner as for known epoxy resin compositions to obtain a cured epoxy resin. As a method for obtaining a cured product, the same methods as those for known epoxy resin compositions can be used, such as casting, injection, potting, dipping, drip coating, transfer molding, compression molding, resin sheets, resins, etc. A method of forming a laminated plate by laminating a laminated copper foil, prepreg, or the like and curing under heat and pressure is preferably used. The curing temperature at that time is usually in the range of 100 to 300° C., and the curing time is usually about 1 to 5 hours.

エポキシ樹脂組成物を作製し、これを積層体とし、加熱硬化して積層板としたときのエポキシ樹脂硬化物は優れた耐熱性と難燃性を発現させることができる。 When an epoxy resin composition is prepared, a laminate is formed, and the laminate is heat-cured to form a laminate, the epoxy resin cured product can exhibit excellent heat resistance and flame retardancy.

実施例および比較例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。特に断りがない限り「部」は質量部を表し、「%」は質量%を表す。また、測定方法はそれぞれ以下の方法により測定した。 EXAMPLES The present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these. Unless otherwise specified, "parts" represent parts by mass, and "%" represents mass %. Moreover, the measurement method was each measured by the following methods.

エポキシ当量:JIS K 7236規格に準拠して測定を行い、単位は「g/eq.」で表した。具体的には自動電位差滴定装置(平沼産業株式会社製、COM-1600ST)を用いて、溶媒としてクロロホルムを使用し、臭素化テトラエチルアンモニウム酢酸溶液を加え、0.1mol/L過塩素酸-酢酸溶液で滴定した。 Epoxy equivalent: Measured in accordance with JIS K 7236, and expressed in units of "g/eq." Specifically, using an automatic potentiometric titrator (manufactured by Hiranuma Sangyo Co., Ltd., COM-1600ST), using chloroform as a solvent, adding tetraethylammonium bromide acetic acid solution, 0.1 mol / L perchloric acid - acetic acid solution was titrated with

軟化点:JIS K 7234規格、環球法に準拠して測定した。具体的には、自動軟化点装置(株式会社メイテック製、ASP-MG4)を使用した。 Softening point: Measured according to JIS K 7234 standard, ring and ball method. Specifically, an automatic softening point apparatus (ASP-MG4 manufactured by Meitec Co., Ltd.) was used.

GPC測定:本体(東ソー株式会社製、HLC-8220GPCにカラム(東ソー株式会社製、TSKgelG4000HXL、TSKgelG3000HXL、TSKgelG2000HXL)を直列に備えたものを使用し、カラム温度は40℃にした。また、溶離液にはテトラヒドロフラン(THF)を使用し、1mL/分の流速とし、検出器は示差屈折率検出器を使用した。測定試料はサンプル0.1gを10mLのTHFに溶解し、マイクロフィルターで濾過したものを50μL使用した。データ処理は、東ソー株式会社製GPC-8020モデルIIバージョン6.00を使用した。得られたクロマトグラムによりn=0成分量、n=5以上の成分量を算出し、標準の単分散ポリスチレン(東ソー株式会社製、A-500、A-1000、A-2500、A-5000、F-1、F-2、F-4、F-10、F-20、F-40、F-80、F-128)で求めた検量線により数平均分子量(Mn)、重量平均分子量(Mw)、分散度(Mw/Mn)を測定した。 GPC measurement: A body (manufactured by Tosoh Corporation, HLC-8220GPC) equipped with columns (manufactured by Tosoh Corporation, TSKgelG4000H XL , TSKgelG3000H XL , TSKgelG2000H XL ) in series was used, and the column temperature was set to 40 ° C. Tetrahydrofuran (THF) was used as the eluent, the flow rate was 1 mL/min, and the detector was a differential refractive index detector.The measurement sample was dissolved in 10 mL of THF in 0.1 g of the sample, and filtered through a microfilter. Data was processed using GPC-8020 model II version 6.00 manufactured by Tosoh Corp. From the obtained chromatogram, the amounts of n = 0 component and n = 5 or more components were calculated. , Standard monodisperse polystyrene (manufactured by Tosoh Corporation, A-500, A-1000, A-2500, A-5000, F-1, F-2, F-4, F-10, F-20, F- 40, F-80, F-128), the number average molecular weight (Mn), weight average molecular weight (Mw), and dispersity (Mw/Mn) were measured.

ガラス転移温度:IPC-TM-650 2.4.25.cに準じて示差走査熱量測定装置(株式会社日立ハイテクサイエンス製、EXSTAR6000 DSC6200)にて20℃/分の昇温条件で測定を行った時のDSC・Tgm(ガラス状態とゴム状態の接線に対して変異曲線の中間温度)の温度で表した。 Glass transition temperature: IPC-TM-650 2.4.25. DSC Tgm (for the tangential line of the glass state and the rubber state was expressed as the temperature at the middle temperature of the mutation curve).

難燃性:UL94に準じ、垂直法により評価した。評価はV-0、V-1、V-2で記した。 Flame retardancy: Evaluated by vertical method according to UL94. The evaluation was described as V-0, V-1 and V-2.

銅箔剥離強さおよび層間接着力:JIS C 6481規格に準じて測定し、層間接着力は7層目と8層目の間で引き剥がし測定した。 Copper foil peel strength and interlayer adhesive strength: Measured according to JIS C 6481 standards, and the interlayer adhesive strength was measured by peeling off between the 7th and 8th layers.

[エポキシ樹脂]
A1:合成例2で得られたビフェノールアラルキル型エポキシ樹脂
A2:トリフェノールメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-501H、エポキシ当量166)
A3:リン含有エポキシ樹脂(新日鉄住金化学株式会社製、FX-1225、エポキシ当量318、リン含有率2.5%)
A4:リン含有エポキシ樹脂(新日鉄住金化学株式会社製、YDFR-1320、エポキシ当量763、リン含有率5.0%)
[Epoxy resin]
A1: Biphenol aralkyl type epoxy resin obtained in Synthesis Example 2 A2: Triphenolmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EPPN-501H, epoxy equivalent 166)
A3: Phosphorus-containing epoxy resin (Nippon Steel & Sumikin Chemical Co., Ltd., FX-1225, epoxy equivalent 318, phosphorus content 2.5%)
A4: Phosphorus-containing epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., YDFR-1320, epoxy equivalent 763, phosphorus content 5.0%)

[硬化剤]
B1:フェノールノボラック樹脂(アイカ工業株式会社製、ショウノールBRG-557、フェノール性水酸基当量105、軟化点80℃)
B2:ジシアンジアミド(日本カーバイド工業株式会社製、DICY、活性水素当量21)
B3:フェノール樹脂(群栄化学工業株式会社製、レヂトップTPM-100、フェノール水酸基当量98、軟化点108℃)
[Curing agent]
B1: Phenol novolac resin (manufactured by Aica Kogyo Co., Ltd., Shaunol BRG-557, phenolic hydroxyl group equivalent 105, softening point 80 ° C.)
B2: Dicyandiamide (manufactured by Nippon Carbide Industry Co., Ltd., DICY, active hydrogen equivalent 21)
B3: Phenolic resin (manufactured by Gun Ei Chemical Industry Co., Ltd., Resitop TPM-100, phenol hydroxyl equivalent 98, softening point 108 ° C.)

[硬化促進剤]
C1:2-エチル-4-メチルイミダゾール(四国化成工業株式会社製、キュアゾール2E4MZ)
[Curing accelerator]
C1: 2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., Curesol 2E4MZ)

合成例1
撹拌機、温度計、窒素導入管、および冷却管を備えた反応装置に、4,4’-ビフェノール246部、ジエチレングリコールジメチルエーテル380部、4,4’-ビスクロロメチルビフェニル133部を仕込み、窒素気流下、撹拌しながら170℃まで昇温して2時間反応させた。反応後、減圧下にてジエチレングリコールジメチルエーテルを全量留去し、トルエン311部、メチルイソブチルケトン104部を仕込み撹拌混合し、室温まで冷却した後、析出した未反応の原料4,4’-ビフェノールを濾別して除いた後、トルエンおよびメチルイソブチルケトンを留去し、ビフェニルアラルキル型フェノール樹脂187部を得た。フェノール性水酸基当量は155であり、軟化点は130℃であった。
Synthesis example 1
246 parts of 4,4'-biphenol, 380 parts of diethylene glycol dimethyl ether, and 133 parts of 4,4'-bischloromethylbiphenyl were charged into a reactor equipped with a stirrer, thermometer, nitrogen inlet tube, and cooling tube, and a nitrogen stream was introduced. While stirring, the temperature was raised to 170° C. and the mixture was reacted for 2 hours. After the reaction, all diethylene glycol dimethyl ether was distilled off under reduced pressure, 311 parts of toluene and 104 parts of methyl isobutyl ketone were added, stirred and mixed, cooled to room temperature, and unreacted raw material 4,4'-biphenol precipitated was filtered off. After removing it separately, toluene and methyl isobutyl ketone were distilled off to obtain 187 parts of a biphenylaralkyl type phenol resin. The phenolic hydroxyl equivalent was 155 and the softening point was 130°C.

合成例2
撹拌機、温度計、窒素導入管、および冷却管を備えた反応装置に、合成例1で得られたビフェニルアラルキル型フェノール樹脂127部を入れ、エポクロルヒドリン448部、ジエチレングリコールジメチルエーテル67部を加えて60℃に加温した。110mmHgの減圧下、58~62℃の温度に保ちながら、49%水酸化ナトリウム水溶液64部を4時間で滴下した。この間、エピクロルヒドリンは水と共沸させて、留出してくる水は順次系外へと除去した。反応終了後、5mmHg、180℃でエピクロルヒドリンを回収し、トルエン560部を加えて生成物を溶解した。180部の水を加えて副生した食塩を溶解し、静置して下層の食塩水を分離除去した。リン酸水溶液にて中和した後、水洗液が中性になるまで樹脂溶液を水洗し、濾過した。5mmHgの減圧下、180℃に加温して、トルエンを留去し、ビフェニルアラルキル型エポキシ樹脂(A1)95部を得た。エポキシ当量は218、軟化点は97℃、n=0成分は4.3面積%、n=5成分以上は30.5面積%、Mnは1440、Mwは3200、Mw/Mnは2.22であった。
Synthesis example 2
127 parts of the biphenylaralkyl-type phenolic resin obtained in Synthesis Example 1 was put into a reaction apparatus equipped with a stirrer, a thermometer, a nitrogen inlet tube, and a cooling tube, and 448 parts of epichlorohydrin and 67 parts of diethylene glycol dimethyl ether were added. and warmed to 60°C. Under a reduced pressure of 110 mmHg, 64 parts of a 49% sodium hydroxide aqueous solution was added dropwise over 4 hours while maintaining the temperature at 58-62°C. During this time, epichlorohydrin was azeotropically distilled with water, and the distilled water was sequentially removed out of the system. After completion of the reaction, epichlorohydrin was recovered at 5 mmHg and 180° C., and 560 parts of toluene was added to dissolve the product. 180 parts of water was added to dissolve the by-produced salt, and the solution was allowed to stand to separate and remove the lower salt solution. After neutralization with an aqueous solution of phosphoric acid, the resin solution was washed with water until the washings became neutral and filtered. The mixture was heated to 180° C. under a reduced pressure of 5 mmHg to distill off toluene to obtain 95 parts of a biphenyl aralkyl type epoxy resin (A1). The epoxy equivalent is 218, the softening point is 97° C., the n=0 component is 4.3 area %, the n=5 or more component is 30.5 area %, the Mn is 1440, the Mw is 3200, and the Mw/Mn is 2.22. there were.

実施例1
A1を10部、A3を90部、B1を35部、C1を0.05部で配合し、MEK、プロピレングリコールモノメチルエーテル、N,N-ジメチルホルムアミドで調整した混合溶剤に溶解してエポキシ樹脂組成物ワニスを得た。得られたエポキシ樹脂組成物ワニスをガラスクロス(日東紡績株式会社製、WEA 7628 XS13、0.18mm厚)に含浸した。含浸したガラスクロスを150℃の熱風循環オーブン中で9分間乾燥してプリプレグを得た。得られたプリプレグ8枚と、上下に銅箔(三井金属鉱業株式会社製、3EC-III、厚み35μm)を重ね、130℃×15分+190℃×80分の温度条件で2MPaの真空プレスを行い、1.6mm厚の積層板を得た。積層板のガラス転移温度、銅箔剥離強さ、層間接着力、および難燃性の結果を表1に示す。
Example 1
10 parts of A1, 90 parts of A3, 35 parts of B1, and 0.05 parts of C1 are blended, and dissolved in a mixed solvent prepared with MEK, propylene glycol monomethyl ether, and N,N-dimethylformamide to form an epoxy resin composition. got a varnish. A glass cloth (WEA 7628 XS13, manufactured by Nitto Boseki Co., Ltd., 0.18 mm thick) was impregnated with the obtained epoxy resin composition varnish. The impregnated glass cloth was dried in a hot air circulating oven at 150° C. for 9 minutes to obtain a prepreg. The obtained 8 sheets of prepreg and copper foil (manufactured by Mitsui Kinzoku Mining Co., Ltd., 3EC-III, thickness 35 μm) are stacked on top and bottom, and vacuum pressed at 2 MPa under temperature conditions of 130 ° C. x 15 minutes + 190 ° C. x 80 minutes. , a laminate having a thickness of 1.6 mm was obtained. Table 1 shows the glass transition temperature, copper foil peel strength, interlayer adhesion and flame retardancy of the laminate.

実施例2~7
エポキシ樹脂としてA1~A4を、硬化剤としてB1~B3を、硬化促進剤としてC1を、表1の配合量(部)で配合し、実施例1と同様の操作を行い、積層板および試験片を得た。この際、硬化促進剤の使用量はワニスゲルタイムを300秒程度に調整できる量とした。実施例1と同様の試験を行い、その結果を表1に示す。なお、表中のリン含有率はエポキシ樹脂組成物としての値である。
Examples 2-7
A1 to A4 as an epoxy resin, B1 to B3 as a curing agent, and C1 as a curing accelerator are blended in the amounts (parts) shown in Table 1, and the same operation as in Example 1 is performed to obtain a laminate and a test piece. got At this time, the amount of the curing accelerator used was such that the varnish gel time could be adjusted to about 300 seconds. The same test as in Example 1 was conducted, and the results are shown in Table 1. The phosphorus content in the table is the value for the epoxy resin composition.

Figure 0007211744000002
Figure 0007211744000002

比較例1~8
エポキシ樹脂としてA2~A4を、硬化剤としてB1~B3を、硬化促進剤としてC1を、表2の配合量(部)で配合し、実施例1と同様の操作を行い、積層板および試験片を得た。実施例1と同様の試験を行い、その結果を表2に示す。
Comparative Examples 1-8
A2 to A4 as an epoxy resin, B1 to B3 as a curing agent, and C1 as a curing accelerator are blended in the amounts (parts) shown in Table 2, and the same operation as in Example 1 is performed to obtain a laminate and a test piece. got The same test as in Example 1 was conducted and the results are shown in Table 2.

Figure 0007211744000003
Figure 0007211744000003

これらの結果から明らかなとおり、ビフェニルアラルキル型エポキシ樹脂とリン含有エポキシ樹脂を使用したエポキシ樹脂組成物は、高い耐熱性と難燃性を併せ持つエポキシ樹脂組成物が得られる。
As is clear from these results, an epoxy resin composition using a biphenyl aralkyl type epoxy resin and a phosphorus-containing epoxy resin can be obtained as an epoxy resin composition having both high heat resistance and flame retardancy.

Claims (5)

エポキシ樹脂と硬化剤を必須成分とするエポキシ樹脂組成物であって、エポキシ樹脂が下記一般式(1)で表されるビフェニルアラルキル型エポキシ樹脂と、リン含有エポキシ樹脂を含み、全エポキシ樹脂中において前記ビフェニルアラルキル型エポキシ樹脂を5質量%以上30質量%以下含むことを特徴とするエポキシ樹脂組成物。
Figure 0007211744000004
(ここで、nは繰り返し数であって0以上の数を示し、その平均値は1.3~20の数であり、R、RおよびRはそれぞれ独立に水素原子または炭素数1~8の炭化水素基を表す。)
An epoxy resin composition containing an epoxy resin and a curing agent as essential components, wherein the epoxy resin comprises a biphenyl aralkyl type epoxy resin represented by the following general formula (1) and a phosphorus-containing epoxy resin, and 3. An epoxy resin composition comprising 5% by mass or more and 30% by mass or less of the biphenyl aralkyl type epoxy resin .
Figure 0007211744000004
(Here, n is the number of repetitions and represents a number of 0 or more, the average value is a number of 1.3 to 20, R 1 , R 2 and R 3 are each independently a hydrogen atom or a carbon number of 1 represents a hydrocarbon group of ~8.)
リン含有エポキシ樹脂は、エポキシ当量が200~1000g/eq.であり、リン含有率が1.0~6.0質量%である請求項1に記載のエポキシ樹脂組成物。 The phosphorus-containing epoxy resin has an epoxy equivalent of 200 to 1000 g/eq. The epoxy resin composition according to claim 1, wherein the phosphorus content is 1.0 to 6.0% by mass. 請求項1または2に記載のエポキシ樹脂組成物を用いたことを特徴とするプリプレグ。 A prepreg using the epoxy resin composition according to claim 1 or 2. 請求項1または2に記載のエポキシ樹脂組成物を用いたことを特徴とする積層板。 A laminate using the epoxy resin composition according to claim 1 or 2. 請求項1または2に記載のエポキシ樹脂組成物を用いたことを特徴とするプリント配線基板。 A printed wiring board using the epoxy resin composition according to claim 1 or 2.
JP2018174770A 2018-09-19 2018-09-19 Epoxy resin composition and cured product thereof Active JP7211744B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018174770A JP7211744B2 (en) 2018-09-19 2018-09-19 Epoxy resin composition and cured product thereof
CN201910856761.XA CN110922717A (en) 2018-09-19 2019-09-11 Epoxy resin composition, prepreg, laminate, and printed wiring board
TW108133160A TWI799644B (en) 2018-09-19 2019-09-16 Epoxy resin composition, prepreg, laminate, and printed wiring substrate
KR1020190114996A KR20200033205A (en) 2018-09-19 2019-09-18 Epoxy resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018174770A JP7211744B2 (en) 2018-09-19 2018-09-19 Epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2020045421A JP2020045421A (en) 2020-03-26
JP7211744B2 true JP7211744B2 (en) 2023-01-24

Family

ID=69848658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018174770A Active JP7211744B2 (en) 2018-09-19 2018-09-19 Epoxy resin composition and cured product thereof

Country Status (4)

Country Link
JP (1) JP7211744B2 (en)
KR (1) KR20200033205A (en)
CN (1) CN110922717A (en)
TW (1) TWI799644B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112694623B (en) * 2020-12-28 2023-04-07 广东生益科技股份有限公司 Resin glue solution, prepreg and metal foil-clad laminate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307648A (en) 2003-04-07 2004-11-04 Mitsubishi Rayon Co Ltd Epoxy resin composition and prepreg
JP2007326929A (en) 2006-06-07 2007-12-20 Asahi Kasei Electronics Co Ltd Epoxy resin composition and prepreg using the resin composition
WO2008090614A1 (en) 2007-01-25 2008-07-31 Panasonic Electric Works Co., Ltd. Prepreg, printed wiring board, multilayer circuit board and process for manufacturing printed wiring board
JP2012072304A (en) 2010-09-29 2012-04-12 Nippon Steel Chem Co Ltd Phosphorus-containing epoxy resin
JP2013209503A (en) 2012-03-30 2013-10-10 Nippon Steel & Sumikin Chemical Co Ltd Epoxy resin composition and cured product thereof
JP2015209435A (en) 2014-04-23 2015-11-24 三光株式会社 Phosphorus-containing flame-retardant epoxy resin
WO2016171085A1 (en) 2015-04-21 2016-10-27 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2016190891A (en) 2015-03-30 2016-11-10 新日鉄住金化学株式会社 Polyvalent hydroxy resin, epoxy resin, method for producing the same, epoxy resin composition and cured product thereof
JP2017095524A (en) 2014-03-28 2017-06-01 新日鉄住金化学株式会社 Epoxy resin, epoxy resin composition and cured article

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3613724B2 (en) 1997-09-09 2005-01-26 東都化成株式会社 Phosphorus-containing epoxy resin composition
JP3533973B2 (en) 1998-01-27 2004-06-07 東都化成株式会社 Phosphorus-containing epoxy resin composition
JP2002206019A (en) 2000-09-12 2002-07-26 Mitsui Chemicals Inc Phosphorus-containing epoxy resin, flame-retardant and highly heat-retardant epoxy resin composition using the resin, and laminate
JP5640588B2 (en) * 2010-09-09 2014-12-17 Dic株式会社 Method for producing phosphorus atom-containing epoxy resin, curable resin composition, cured product thereof, printed wiring board resin composition, printed wiring board, flexible wiring board resin composition, semiconductor sealing material resin composition, and build Resin composition for interlayer insulation material for up-substrate
JP5747725B2 (en) 2011-08-05 2015-07-15 Dic株式会社 Novel phosphorus atom-containing epoxy resin, production method thereof, curable resin composition, cured product thereof, printed wiring board resin composition, printed wiring board, and semiconductor sealing material resin composition
CN108314774B (en) * 2012-06-15 2021-02-12 日铁化学材料株式会社 Phosphorus-containing epoxy resin, composition containing the epoxy resin as essential component, and cured product
JP6193689B2 (en) * 2013-09-09 2017-09-06 新日鉄住金化学株式会社 Phosphorus-containing epoxy resin and composition, cured product
JP6770793B2 (en) * 2015-08-19 2020-10-21 日鉄ケミカル&マテリアル株式会社 Flame-retardant epoxy resin composition and its cured product

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307648A (en) 2003-04-07 2004-11-04 Mitsubishi Rayon Co Ltd Epoxy resin composition and prepreg
JP2007326929A (en) 2006-06-07 2007-12-20 Asahi Kasei Electronics Co Ltd Epoxy resin composition and prepreg using the resin composition
WO2008090614A1 (en) 2007-01-25 2008-07-31 Panasonic Electric Works Co., Ltd. Prepreg, printed wiring board, multilayer circuit board and process for manufacturing printed wiring board
JP2012072304A (en) 2010-09-29 2012-04-12 Nippon Steel Chem Co Ltd Phosphorus-containing epoxy resin
JP2013209503A (en) 2012-03-30 2013-10-10 Nippon Steel & Sumikin Chemical Co Ltd Epoxy resin composition and cured product thereof
JP2017095524A (en) 2014-03-28 2017-06-01 新日鉄住金化学株式会社 Epoxy resin, epoxy resin composition and cured article
JP2015209435A (en) 2014-04-23 2015-11-24 三光株式会社 Phosphorus-containing flame-retardant epoxy resin
JP2016190891A (en) 2015-03-30 2016-11-10 新日鉄住金化学株式会社 Polyvalent hydroxy resin, epoxy resin, method for producing the same, epoxy resin composition and cured product thereof
WO2016171085A1 (en) 2015-04-21 2016-10-27 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board

Also Published As

Publication number Publication date
TW202012484A (en) 2020-04-01
JP2020045421A (en) 2020-03-26
CN110922717A (en) 2020-03-27
TWI799644B (en) 2023-04-21
KR20200033205A (en) 2020-03-27

Similar Documents

Publication Publication Date Title
JP7493456B2 (en) Phenol resin, epoxy resin, epoxy resin composition and cured product thereof
US11421071B2 (en) Phosphorus-containing epoxy resin, epoxy resin composition, prepreg, laminated plate, material for circuit board and cured product
WO2022124252A1 (en) Polyhydric hydroxy resin, epoxy resin, and their production methods, and epoxy resin composition and cured product thereof
JP7368551B2 (en) Method for producing epoxy resin composition and method for using biphenylaralkyl phenolic resin
KR20240113458A (en) Polyhydric hydroxy resin, epoxy resin, their production method, epoxy resin composition, and cured product thereof
CN107083027B (en) Oxazine resin composition, method for producing same, prepreg, laminate, and cured product
JP7132784B2 (en) Epoxy resin composition, prepreg, laminate and printed wiring board
JP2020122034A (en) Epoxy resin composition, and cured product of the same
JP7387413B2 (en) Epoxy resin composition, laminates and printed circuit boards using the same
JP7211744B2 (en) Epoxy resin composition and cured product thereof
WO2021246339A1 (en) Epoxy resin composition and cured product thereof
WO2021251289A1 (en) Phenol resin, epoxy resin, methods for producing these, epoxy resin composition and cured product thereof
WO2021246341A1 (en) Epoxy resin composition and cured product thereof
WO2024024525A1 (en) Epoxy resin, resin composition thereof, cured object therefrom, and method for producing epoxy resin
JP2024087617A (en) Epoxy resin, resin composition thereof, cured product thereof, and method for producing epoxy resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230112

R150 Certificate of patent or registration of utility model

Ref document number: 7211744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150