JP4579609B2 - マスクの製造方法 - Google Patents

マスクの製造方法 Download PDF

Info

Publication number
JP4579609B2
JP4579609B2 JP2004217430A JP2004217430A JP4579609B2 JP 4579609 B2 JP4579609 B2 JP 4579609B2 JP 2004217430 A JP2004217430 A JP 2004217430A JP 2004217430 A JP2004217430 A JP 2004217430A JP 4579609 B2 JP4579609 B2 JP 4579609B2
Authority
JP
Japan
Prior art keywords
pattern
mask
data
phase shift
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004217430A
Other languages
English (en)
Other versions
JP2006039121A (ja
Inventor
彰 今井
貴裕 町田
哲 青山
純 阿部
晴夫 小久保
寿文 横山
泰考 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Renesas Electronics Corp
Original Assignee
Dai Nippon Printing Co Ltd
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd, Renesas Electronics Corp filed Critical Dai Nippon Printing Co Ltd
Priority to JP2004217430A priority Critical patent/JP4579609B2/ja
Publication of JP2006039121A publication Critical patent/JP2006039121A/ja
Application granted granted Critical
Publication of JP4579609B2 publication Critical patent/JP4579609B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Description

この発明は、マスク、マスクの製造方法、パターンの形成方法、及び電子デバイスの製造方法に関する。さらに具体的には、光リソグラフィ技術におけるパターンの転写において用いられる位相シフトマスク並びにその製造方法、及び、この位相シフトマスクを用いたパターンの形成方法並びにこれを用いた電子デバイスの製造方法として好適なものである。
近年、半導体装置、液晶表示装置、磁気ヘッド等の電子デバイスの高度集積化、微細化に伴い、光リソグラフィ技術における解像力の向上が要求されている。光リソグラフィにおいて、解像できる限界のパターン寸法である限界解像度Rは、R=k・λ/(NA)として表される。なお、ここで、kは、結像条件と、レジスト条件とに依存する定数であり、λ(nm)は、露光光の波長、NAは、投影レンズの開口数を表す。
従って、解像力を向上させるためには、露光光源の波長λを短くするか、あるいは、レンズの開口数を大きくすればよい。しかし、露光技術において要求されるパターンサイズは、縮小化が進み、更なる微細なパターン形成の要求に対しては、短波長化、高開口数化に加えて、いわゆる超解像と呼ばれる技術を併用することが考えられている。この超解像と呼ばれる技術には、照明に関するものと、マスクに関するものとがある。
マスクに関する超解像技術としては、位相シフトマスクを用いるものがある。従来のクロムマスクが、光の振幅のみを制御するものであるのに対して、位相シフトマスクは、隣り合った透過領域を透過した各露光光間に位相差を導入して、この光を干渉させることにより解像度を向上させるものである。このマスクは、たとえば、細長い、透過領域と不透明領域との繰り返しパターン(ライン・アンド・スペースパターン:以下、L/Sパターンと称する)の場合に、マスク上の互いに隣り合った透過領域を透過した各光の位相差が180度となるように、透過領域に1つおきに、位相シフタを設けるものである。
また、このように、位相シフタを設けたマスクとしては、マスク基板を掘り込んで、マスク基板側に位相シフタを設けたものと、マスク基板とは反対側の遮光膜上に位相シフタを設けたものがある。
マスク基板を掘り込んで、位相シフタを設けたものの場合、その掘り込み部のエッジ(即ち、マスク基板の掘り込み開口部のエッジ)と、遮光パターンのエッジ(即ち、遮光膜側面)の位置が重なった構造となることが考えられる。このようにして設けた位相シフタ部の凹凸に起因して、マスクパターンを転写する基板面上においては、このパターンを透過した光の強度分布が変化し、設計寸法通りにパターンが転写されない場合がある。したがって、マスクパターンに形成されたパターンの寸法が、位相シフタを設けた透過パターンと、位相シフタを設けていない透過パターンとで同一であっても、基板に転写される転写パターンの寸法が異なってしまうことが考えられる。
この対策として、掘り込み部のエッジと、遮光パターンのエッジとが重ならないように、位相シフタ部を大きく開口し、遮光膜をオーバーハング形状に形成することが考えられている。通常、このようなパターンは、ある程度の深さまで異方的にドライエッチング加工した後、位相シフタに必要な深さまで、等方的にウェットエッチング加工することにより形成される。このように加工することにより、等方性エッチング量に対応して、遮光膜に接する部分のマスク基板をもエッチングすることができ、この部分の遮光膜を庇状、即ち、オーバーハング状にすることができる。
位相シフタ部を、このような形状にすることにより、位相シフタを設けた透過パターンの凹凸に起因する光強度分布の変化を抑えることができる。しかし、上述のような、異方性、等方性エッチングを組み合わせたエッチングにより位相シフタを形成すると、位相シフタの角部は、丸みを帯びたラウンディング形状となる。そして、この影響により、光強度分布に変化が生じ、位相シフタを設けた透過パターンと、設けられていない透過パターンとに対応する各転写パターンの寸法差が生じてしまう。
したがって、位相シフタを設けていない透過パターンと、位相シフタを設けた透過パターンとに対する各転写パターンに生じる寸法差分の補正を、予め位相シフタを設けた透過パターンに与えるように補正する方法が考えられている。具体的に例えば、位相シフタを設けたパターンに対応した領域の透過露光光強度が弱くなっている場合、位相シフタを設けていない透過パターンよりも、位相シフタを設けた透過パターンにおける遮光膜による開口幅を拡大する方法が考えられる(例えば、特許文献1参照)。
特開平10−333316号公報
しかし、マスク寸法の変化量に対する基板上の転写パターンの寸法変化量(Mask Error Enhancement Factor; 以下、この明細書において、MEEFと称することする)は、基板に形成するパターンの設計寸法や、パターン転写におけるプロセス等によって、異なることが知られている。したがって、微細パターンを、より正確に形成するためには、これらの影響を考慮し、より適切なマスク寸法の補正を行うことが必要である。
したがって、この発明は、より正確な微細パターンの形成ができるよう改良したマスク及びその製造方法、更に、これを用いた微細パターンの形成方法を提供するものである。
この発明のマスクは、光を透過するマスク基板と前記マスク基板に設けた遮光膜とにより構成されるマスクパターンを備え、前記マスクパターンを被処理基板に転写する際に用いるマスクであって、周期的に繰り返して配置され、パターン転写用の露光光を透過する第1の透過パターンと、前記第1の透過パターンと交互に、周期的に繰り返して配置され、前記マスク基板に形成された凹部である位相シフタ部を含み、かつ、前記位相シフタ部により、前記第1の透過パターンを透過する露光光に対して位相差を導入して前記露光光を透過する第2の透過パターンと、前記第1の透過パターンと前記第2の透過パターンとの間に配置され、遮光膜からなる遮光パターンと、を備え、前記第1の透過パターンは、周期的な配置方向の寸法が、設計上の完成パターン寸法よりも、小さく補正されているものである。
また、この発明のマスクの製造方法は、マスクパターンが第1の透過パターンと、前記第1の透過パターンを透過する露光光に対して、位相差を導入して前記露光光を透過する第2の透過パターンとを含み、かつ、被処理基板に、前記マスクパターンを露光により転写する際に用いるマスクの製造方法である。そして、前記マスクの製造方法において、前記マスクパターンの設計上の完成パターン寸法からなる透過パターンの基本データを、所定の補正値で一律に縮小するようにバイアス補正した第1のデータを算出する第1のデータ算出工程と、前記基本データと前記第2の透過パターンのデータとを重ねた第2のデータと、前記第1のデータとから、前記第1の透過パターンを形成する部分の寸法を前記補正値で縮小補正した値とし、前記第2の透過パターンを形成する部分の寸法をレイアウト寸法とした、第3のデータを算出する第3のデータ算出工程と、を含むマスクパターン設計データ算出工程と、マスク基板に、遮光膜を形成する遮光膜形成工程と、前記遮光膜に、前記第3のデータに基づき、前記遮光膜の所定の位置に複数の開口を形成する遮光膜エッチング形成工程と、前記複数の開口のうち、前記第2の透過パターンを形成する部分の開口に、位相差を導入する位相シフタを形成するため、前記マスク基板のエッチングを行うマスク基板エッチング工程と、を備えるものである。
また、この発明の微細パターンの形成方法は、被処理基板に、露光光に対して感光性を有する感光剤を塗布する感光剤塗布工程と、前記露光光を、マスクに照射して、前記マスクを透過した光を、前記被処理基板に照射し、前記感光剤を感光させる露光工程と、前記感光剤の現像を行う現像工程と、を備える。そして、前記マスクが、前記露光光を透過するマスク基板と前記マスク基板に設けた遮光膜とにより構成されるマスクパターンを備えたマスクであって、かつ、周期的に繰り返して配置され、前記露光光を透過する第1の透過パターンと、前記第1の透過パターンと交互に、周期的に繰り返して配置され、前記マスク基板に形成された凹部である位相シフタ部を含み、かつ、前記位相シフタ部により、前記第1の透過パターンを透過する露光光に対して位相差を導入して前記露光光を透過する第2の透過パターンと、前記第1の透過パターンと前記第2の透過パターンとの間に配置され、遮光膜からなる遮光パターンと、を備え、前記第1の透過パターンは、周期的な配置方向の寸法が、前記マスクパターンの設計上の完成パターン寸法よりも、小さく補正されているものである。
また、この発明の電子デバイスの製造方法は、被処理基板に、露光光に対して感光性を有する感光剤を塗布する感光剤塗布工程と、前記露光光を、マスクに照射して、前記マスクを透過した光を、前記被処理基板に照射し、前記感光剤を感光させる露光工程と、前記感光剤の現像を行う現像工程と、を備える。そして、前記電子デバイス製造方法において、前記マスクが、前記露光光を透過するマスク基板と前記マスク基板に設けた遮光膜とにより構成されるマスクパターンを備えたマスクであって、かつ、周期的に繰り返して配置され、前記露光光を透過する第1の透過パターンと、前記第1の透過パターンと交互に、周期的に繰り返して配置され、前記マスク基板に形成された凹部である位相シフタ部を含み、かつ、前記位相シフタ部により、前記第1の透過パターンを透過する露光光に対して位相差を導入して前記露光光を透過する第2の透過パターンと、前記第1の透過パターンと前記第2の透過パターンとの間に配置され、遮光膜からなる遮光パターンと、を備え、前記第1の透過パターンは、周期的な配置方向の寸法が、前記マスクパターンの設計上の完成パターン寸法よりも、小さく補正されているものである。
この発明においては、位相シフタを設けた透過パターンと、位相シフタを設けていない透過パターンとを有する位相シフトマスクにおいて、位相シフタを設けていない透過パターンを、レイアウト寸法よりも小さく補正することにより、マスク寸法の補正を行っている。これにより、位相シフトマスクの構造に起因した転写パターン寸法のばらつきを、より高精度に抑えることができる。
以下、図面を参照して本発明の実施の形態について説明する。なお、各図において、同一または相当する部分には同一符号を付してその説明を簡略化ないし省略する。なお、以下の説明において適宜説明するが、全体として、この明細書において、「位相シフトパターン」とは、位相シフタを設けた部分の透過パターンを意味し、「位相ゼロ度パターン」とは、位相シフタを設けていない部分の透過パターンを意味し、また、「透過パターン」とは、位相シフトパターンと位相ゼロ度パターンとを合わせた総称を意味するものとする。また、「レイアウト寸法」とは、マスクの設計上の完成パターン寸法となる設計寸法を意味し、即ち、寸法補正前の、マスクパターンの設計データ上の寸法を意味する。また、「転写パターン」とは、マスクパターンを、レジスト、あるいは被処理対象膜に転写したパターンを意味するものとする。
実施の形態1.
図1及び図2は、この発明の実施の形態1における4:1KrF縮小投影露光装置用位相シフトマスク100を説明するための模式図であり、図1は、断面を表し、図2は、位相シフトマスク100の遮光膜が設けられている側の面を表す。
図1及び図2に示すように、実施の形態1における位相シフトマスク100は、両端部がコンタクトホールパターンと接続するためのPAD形状をなし、中間部が1:1L/Sパターン形成用のマスクである。位相シフトにおけるマスク基板2は、合成石英基板である。この基板は、露光光に対して、約90%以上の透過率を有する。マスク基板2の大きさは、約6インチ角(約152.4mm)、厚さは、約0.25インチ(約63.5mm)である。
マスク基板2表面の所定の位置には、遮光膜4が形成されている。遮光膜4は、クロム膜であり、約100nm程度の膜厚を有する。また、遮光膜4は、露光光の透過率が、約0.1%以下であり、露光光をほぼ遮光するものである。
即ち、位相シフトマスク100においては、遮光膜4が形成され、これにより露光光が遮光される遮光パターンと、遮光膜4が設けられておらず、露光光を透過する透過パターンとにより、L/Sパターンが形成されている。
また、透過パターンは、位相ゼロ度パターン6と、位相シフトパターン8とが交互に配置されて形成されている。
位相ゼロ度パターン6は、単に、遮光膜4に開口を設けることにより、露光光が透過できるようにしたものである。
位相シフトパターン8は、基板を凹状に掘り込んだ位相シフタ10と、遮光膜4の、位相シフタ10のエッジ部より内側に突出した部分であるオーバーハング部12とにより構成されている。
この位相シフトマスク100を用いて転写された転写パターンの寸法は、最小パターン寸法が90nm、最小ピッチは、180nmとなる。すなわち、投影露光装置の縮小率が、1/4であるとすると、この位相シフトマスクのL/Sパターンのマスク上のレイアウト寸法では、各透過パターン6、8及び遮光パターンの幅Wが、360nmであり、最小ピッチPは、Wの2倍、約720nmである。
一方、実際の寸法においては、転写パターン上の寸法で、位相ゼロ度パターン6に対応する転写パターン寸法に換算すると、実際の転写パターン寸法より短く、約88nmである。また、位相シフトパターン8の遮光膜4と遮光膜4との幅に対応する転写パターンの寸法に換算すると、約90nmである。
すなわち、マスク上の寸法において、位相ゼロ度パターン6の幅Wは、352nmである。また、位相シフトパターン8の、遮光膜4と遮光膜4との幅W、即ち、透過部分の幅Wは、レイアウト寸法Wと同じで、360nmである。また、位相シフトパターン8の位相シフタ10は、幅W10が、約680nmであり、位相シフトパターン8が実際に光を透過する部分の幅Wは、360nmであるから、オーバーハング部12の幅W12は、マスク上寸法で、160nmである。また、最も深さの深い底部における深さD10が、約245nmである。
以上のような構造の位相シフトマスク100について、更に具体的に、その構造等を説明する。
まず、位相シフタ10の深さD10の値について説明する。
一般に、位相シフトマスクを用いる場合、その位相シフトマスクにおいて、位相ゼロ度パターンを透過する透過光に対して、位相シフトパターン8を透過する透過光の位相差が、正確に180度となる必要がある。これは、僅かなずれに対しても、それにより焦点がずれた位置においては、投影光学像の劣化が著しいためであり、例えば、位相差が、5度以上ずれた場合、十分な焦点深度をとれなくなってしまうものと考えられる。最適値である180度の位相差を正確に導入するための位相シフタの膜厚Dは、次式(1)にしたがって一次的に決定される。
D=λ/2(n−n) ・・・・(1)
但し、ここで、Dは、位相シフタの膜厚、λは、露光光の波長を表す。また、nは、露光波長λの位相シフタ膜の屈折率であり、nは、露光波長λに対するマスク設置雰囲気期待の屈折率を示す。
具体的に、位相シフトマスク100について算出する。この実施の形態1においては、露光波長λ=248nmを想定し、マスク基板2である合成石英基板の屈折率n=1.51であることを想定する。また、マスク設置雰囲気が大気であることを想定し、n=1として取り扱っている。この場合、位相シフタの最適な厚さの計算値は、式(1)から、243nmとなる。
但し、マスク基板2をエッチングして、位相シフトパターンを形成するような構造の場合、マスク基板2のエッチングされた面の微細な凹凸形状に起因して、位相差が180度となる最適な深さDの値が、式(1)とは、多少異なる値となる場合がある。したがって、最適エッチング深さDの目標値を、予め、実験により求めておくことが好ましい。実施の形態1における位相シフトマスク100についても、D10は、実験により、計算値243nmとは僅かに異なる、245nmと設定されている。
また、この実施の形態1においては、位相ゼロ度パターン6の幅Wを、レイアウト寸法Wよりも、約8nm小さくし、W=352nmに設定している。これについて説明する。
基板上に、微細パターンを転写する場合、レイアウト寸法の変化に対して、レジストに転写された転写パターンの寸法は同じ比率では変化せずに、拡大(露光方式によっては縮小)して影響が現れる現象が発生する。この比率が、MEEF(Mask Error Enhancement Factor)と称される。MEEFは、次式(2)で算出される。
MEEF=転写パターン寸法変化量/レイアウト寸法変化量 ・・・・(2)
図3は、マスクの透過パターンの寸法を変化させた場合の、位相シフトパターンに対する転写パターンの寸法から、位相ゼロ度パターンに対する転写パターンの寸法を引いた寸法(以下、「0−π転写パターン間寸法差」、と称する)の変化を説明するグラフであり、図3(a)は、位相シフトパターンの寸法のみを変化させた場合であり、図3(b)は、位相ゼロ度パターンの寸法のみを変化させた場合を示す。また、図3(a)、図3(b)において、それぞれ、横軸は、各透過パターンの寸法変化量(nm)、縦軸は、0−π転写パターン間寸法差(nm)を表す。
レイアウト寸法(マスクパターン寸法)を変化させることで、0−π転写パターン間寸法差が変化するが、この変化の傾きが、MEEFである。図3(a)に示すように、位相シフトパターン寸法を変化させた場合のMEEFは、約2.7であり、図3(b)に示すように、位相ゼロ度パターン寸法を変化させた場合のMEEFは、約2.1である。即ち、位相ゼロ度パターンを変化させた場合のほうが、MEEFが小さいことがわかる。
ところで、マスクパターンのレイアウト寸法は、実際の半導体装置の製造においては、そのレイアウトや、マスク製作上の制限から、任意に値を変化させることが出来ない場合が多い。例えば、マスクパターンを、電子線直接描画装置を用いて描画する場合、マスクパターンの最小描画単位は、その用いる描画装置の最小描画グリッドサイズにより制限され、この単位でしか、描画データ、即ち、レイアウト寸法を変化させることができない。一例を挙げると、例えば、日立ハイテクノロジー社製HL―950では、最小描画単位である最小描画グリッドサイズは、2.5nmである。したがって、基板への転写パターンの寸法も、最小グリッドサイズ×MEEF値の単位でしか変化させることができないことになる。従って、基板への転写パターンを細かく制御しようとする場合、MEEFの値がより小さい方の寸法を変化させることが好ましい。
また、マスクの断面構造を考慮した場合、位相ゼロ度パターンの寸法を小さくなるように補正した方が、マスクパターン欠陥防止の点からも有利である。具体的には、位相シフトパターン8においては、オーバーハング部12が形成されるが、オーバーハング部12は、庇のように、位相シフタ10上部の空間に突出した形状となっている。ここで、遮光膜4の幅Wが狭くなるような補正、すなわち、位相シフトパターン8の幅Wを大きくするような補正をする場合、マスク基板2に接する遮光膜4に対するオーバーハング部12の幅W12の割合が大きくなり、遮光膜4のはがれ等の欠陥を生じやすくなる。
また、図4は、位相シフトマスクの透過パターンを補正した場合の、露光光の強度分布を説明するための図であり、図4(b)は、位相シフトパターンの寸法を大きく補正した場合、また、図4(d)は、位相ゼロ度パターンの寸法を小さく補正した場合を表す。また、図4(b)、4(d)において、それぞれ、横軸は、被処理基板上の位置を示し、また、縦軸は、光強度(任意単位)を表す。また、図4(a)、図4(c)は、それぞれ、図4(b)、図4(d)に対応する場合の、位相シフトマスクの形状を表している。
図4(a)に示すような、位相シフトパターンの幅をレイアウト寸法Wp0より拡大する補正をした場合、図4(b)から、位相シフトパターンに対応する部分において、位相ゼロ度パターンよりも、光強度が小さくなっていることがわかる。これに対して、図4(c)に示すような、位相ゼロ度パターンの幅をレイアウト寸法Wz0より小さくする補正をした場合、図4(d)から、位相シフトパターンと位相ゼロ度パターンとの間で、光強度が同じになることがわかる。
以上の点を考慮すると、より微細なパターンを正確に制御して、被処理基板上にパターンを転写するためには、位相ゼロ度パターンの寸法を変化させたほうが効果的であることがわかる。従って、実施の形態1における位相シフトマスク100においても、この点を考慮して、位相ゼロ度パターン6の幅Wを、レイアウト寸法Wよりも8nm、即ち、ウェーハ上の寸法換算で、2nm小さく補正している。なお、補正を8nmとしたのは、マスクパターンの形成用の描画装置として、グリッドサイズが、ウェーハ上寸法換算で、1nmのものを用いたものであるため、このグリッド単位に乗るようにして、必要な補正を設定したためである。
次に、上述のような構造の位相シフトマスク100を製造する場合について説明する。
図5は、この発明の実施の形態1における位相シフトマスク100の製造方法を説明するためのフロー図である。また、図6〜図8は、位相シフトマスクの製造過程における状態を説明するための断面模式図である。
位相シフトマスクを製造する場合、まず、寸法補正を行った位相シフトマスクの製造用の設計データを準備する。ここでは、作成したデータを記録する記録部と、その記録部との間でデータの読み書きを行い、かつそのデータから必要なデータを算出する制御部とを有するワークステーション等のデータ作成手段を用いる。
このとき、位相ゼロ度パターン6をレイアウトする設計層と、位相シフトパターン8をレイアウトする設計層とを、異なる設計層としてレイアウトする。
そして、まず、各設計層において、必要な転写パターン及び、レジストの種類等を考慮し、所定のレイアウト寸法からなるマスクパターンを設定して、記録部に記録する。ここでのレイアウト寸法は寸法補正を行っていない状態のものであり、即ち、設計上の完成パターン寸法である。
次に、制御部は、このマスクパターンに、位相シフタ10を配置するパターンが丁度重なるようにレイアウトし、前記記録部に記録されたマスクパターンの位相シフトパターン部分に重ねて、位相シフトパターンの設計層のデータD1を作成して、これを再び記録部に記録する(ステップS2)。但し、位相シフタを配置するパターンのレイアウトは、人手で行っても良い。
その後、制御部は、上述したように、位相ゼロ度パターンの設計層の寸法補正を行う。ここでは、位相ゼロ度パターン6設計層用に、マスクパターン全体を、所定の補正量でレッセン処理する。これにより、補正した位相ゼロ度パターンの設計層のデータD2を作成し、再び、これを記録部に記録する(ステップS4)。
その後、制御部は、位相シフトパターンの設計層のデータD1と、位相ゼロ度パターンの設計層のデータD2とを、読み出し、演算により合成処理し、いずれかのデータに含まれるパターンを、透過パターンとし、新たなマスクパターン設計データを作成し、記録する(ステップS6)。
その後、このマスクパターン設計データを、マスク製造装置用のデータD3に変換する(ステップS8)。
次に、まずマスク基板2上に遮光膜4を堆積する。ここで、遮光膜4としては、クロム膜の表面に酸化クロムを積層したものを用いる。酸化クロムは、露光装置内でのフレア防止のために反射防止膜として用いるものである。その後、遮光膜4上に更にレジスト20を、膜厚0.3μmになるように塗布した後、温度100度で、5分間の熱処理を加える。その後、加速電圧50kVの電子線描画装置を用いて、データD3に基づき、レジスト20に描画を行い、更に、現像、熱処理を行う(ステップS10)。これにより、図6に示すように、遮光膜4上にレジストパターン20が形成される。その後、レジストパターン20をマスクとし、エッチングを行い、遮光膜4の、位相ゼロ度パターン6の位置と、位相シフトパターン8の位置に、それぞれ、幅W、Wの開口を形成する(ステップS12)。その後レジストを除去する。
次に、少なくとも、位相ゼロ度パターン6上を覆い、位相シフトパターン8のマスク基板2を露出するようにレジストマスク22を形成する(ステップS14)。ここでのレジストマスクの膜厚は、約0.3μmとする。その後、レジストマスク22をマスクとして、まず、図7に示すように、異方性ドライエッチングを行う(ステップS16)。異方性ドライエッチングは、最終的に形成する位相シフタ10の深さD10よりも、遮光膜4のオーバーハング部12の幅W12の分浅い深さに到達するまで行う。即ち、異方性ドライエッチングにより行うエッチングの深さは、D10−W12の値と一致する。ここでは、位相シフタの深さD10は、245nmであり、オーバーハング部12の幅W12は、160nmであるから、ドライエッチングは、85nm(245−160)の深さまで行う。その後、図8に示すように、等方性ウェットエッチングを行う(ステップS18)。等方性ウェットエッチングは、フッ酸系のエッチング液を用いて、位相シフタ10の深さ、245nmに到達するまで行う。その後、レジストマスク22を除去する。これにより、位相シフトマスク100が形成される。
以上説明したように、この実施の形態1においては、位相シフトマスク100の、位相ゼロ度パターン側の寸法を小さくする補正をおこなう。これにより、位相シフタによるレジストへ照射される光強度分布の変化を制御し、位相シフトパターン8に対応する転写パターンと、位相ゼロ度パターン6に対応する転写パターンとの間の0−π転写パターン間寸法差を、より確実に小さくすることができる。実際に、この実施の形態1における位相シフトマスク100の検査を行った結果、位相シフトマスク100における位相差の180度からのずれは、±1.5度以内、かつ、0−π転写パターン間寸法差は、ベストフォーカス位置で、±2nm以内であることが確認された。
なお、実施の形態1においては、L/Sパターンを形成する場合のマスクレイアウトについて説明した。位相シフトマスクは、ある程度周期性のあるパターン形成用のマスクとして有効なものであるが、この発明において位相シフトマスクは、必ずしも、L/Sパターンに限るものではない。この発明を適用した位相シフトマスクの他の例としては、例えば、図9に示すようなレイアウトを有する位相シフトマスク200が考えられる。
具体的なパターン寸法の一例を示す。位相シフトマスク200は、パターンピッチが幅方向にW=360nm、高さ方向にH=220nmである。また、位相ゼロ度パターン6の寸法は、−2nmの補正を加え、幅W=278nm、高さH=118nmとしている。更に、位相シフトパターンの寸法は、レイアウト通りの寸法で、幅W=280nm、高さH=120nmである。
また、この実施の形態1においては、マスクパターンの設計データの作成において、それぞれ、位相ゼロ度パターンの設計層と、位相シフトパターンの設計層とに分けて、設計データD1、D2を算出した後、このデータからマスク製造装置用のデータD3を作成する場合について説明した。しかし、この発明において、マスク製造用のデータ作成方法は、これに限るものではなく、他の方法で作成してもよい。例えば、まず、マスクパターンのレイアウト寸法に従った設計データによるマスクパターンを作成する。その後、記録部に記録された位相シフトパターンの自動配置プログラムを用いて、演算処理により、位相シフトパターンを所定のマスクパターンの透過パターンと重なるように配置する。このとき、レイアウトしたマスクパターとは別の設計層として、位相シフトパターンのデータを記録する。次に、最初にレイアウトしたマスクパターンをレッセン処理して、位相ゼロ度パターンの幅に寸法の補正を行う。再び、別の設計層として記録していた位相シフトパターンのデータとのOR合成(即ち、いずれかのパターンに含まれる部分を新たな透過パターンとする合成)を行い、更にこのデータを別の設計層として、記録する。これにより作成した透過パターンデータを用いて、遮光膜加工用マスクパターン描画データを作成する。このとき、位相シフタ加工用のデータとして、位相シフトパターンとして記録したデータを用いることができる。
なお、マスク製造時の透過パターンに対する位相シフトパターンの組み合わせずれを考慮し、位相シフトパターンデータから、描画用データを作成する際に、適宜マスクバイアス付加処理が行われる場合もある。
また、ここで、例えば、このようなマスクパターンの設計方法をシステム化して、このシステムにより算出することが考えられる。図10は、このようなシステムを説明するためのフロー図である。
通常、マスクパターンの寸法補正値の最適値は、マスクパターンのレイアウト、設計ルール、プロセス等に応じて決定される。したがって、マスクパターンレイアウト、設計ルール、プロセス等の補正値に変動を与える各要因ごとに、マスクパターンの補正の最適値を予めテーブル化し(ステップS20)、記録部に記録しておく。そして、設計パターンデータを入力すると(ステップS22)、制御部は、この入力された設計データに応じて、マスクパターンのレイアウト、設計ルール、プロセス等に関する必要な情報を読み出し、これに基づいて、記録部に記録されたデータから、最適な補正量を選択する(ステップS24)。その後、この補正値により、位相ゼロ度パターン6の幅の補正を行い、マスク製造のデータを算出する(ステップS26)。このように、マスクパターンのデータ製造の過程をシステム化することにより、より正確にマスクパターンを形成することが可能である。また、マスク製造プロセス改善等に応じて、補正値が変更になった場合でも、補正値テーブルを更新することで、より最適なマスクを製造することができる。
なお、この発明において、位相シフトマスクにおける、各膜の膜厚、マスクパターンの寸法等は、実施の形態1の位相シフトマスクに限定するものではない。これらは、必要に応じて、上述したマスクパターンの設計方法を考慮して、適宜、適切な値に決定するものであれば良い。
実施の形態2.
実施の形態2においては、実施の形態1において説明した位相シフトマスク100を用いて、微細パターンを形成する場合について説明する。
図11は、この発明の実施の形態2における微細パターンの形成方法を説明するためのフロー図である。また、図12は、位相シフトマスク100を用いた露光において用いる露光装置を概念的に表す模式図である。また、図13、図14は、微細パターンの各形成工程における被処理基板の状態を説明するための図である。
まず、図12に示すように、位相シフトマスク100のマスクパターンを転写する被処理基板であるウェーハ30にネガ型レジスト32を塗布する(ステップS32)。次に、図12に示すように、位相シフトマスク100を、マスクステージ36上に載置し、ウェーハ30を、ウェーハステージ38上に載置する(ステップS34)。ここで、マスクステージ36とウェーハステージ38とは、正確に位置合わせが行われる。この状態で、マスクステージ36と、ウェーハステージ38とを同期して連動させながら、露光を行う。ここでは、光源40から、波長248nmの露光光を発振し、コンデンサレンズ42で集光して位相シフトマスク100に照射する。その後、位相シフトマスク100を透過した透過光は、投影レンズ44に入射し、ここで所定の倍率(ここでは、1/4)に縮小され、ウェーハ30のレジスト32上で結像する。なお、この露光装置の開口数NAは、約0.8を想定している。
次に、レジストの現像を行い(ステップS38)、熱処理を行う(ステップS40)。これにより、図13に示すように、レジスト32に転写パターンが形成される。ここで転写されたパターンは、予め補正が行われているため、設計上の転写パターンのレイアウトに忠実なものとなっている
その後、図14に示すように、被加工膜50のエッチングを行い(ステップS42)、エッチング後、レジスト32を除去する(ステップS44)。これにより、被加工膜50に、所望のパターンを転写することができる。
以上説明したように、実施の形態1において説明したような寸法補正を行った位相シフトマスクを用いることにより、微細なパターンを、より正確に制御して転写することができる。
なお、実施の形態2においては、単に、被加工膜50に、位相シフトマスク100のパターンの転写を行い、これにより、微細パターンを形成する場合について説明した。しかし、この発明において、微細パターンの形成方法は、半導体装置の製造方法等のさまざまな場面に適用することができる。特に、この発明における位相シフトマスク100を用いることにより、微細なパターンをより正確に制御して転写することができるため、微細パターンの形成が必要な場合には効果的である。この位相シフトマスク100を用いた微細パターンの適用例としては、例えば、トランジスタのゲート電極のパターニング、コンタクトプラグ、ビアプラグ、あるいは配線形成のための溝パターンを形成するエッチングの際のマスク形成などが考えられる。
図15は、実施の形態2における微細パターンの形成方法を用いて形成した半導体装置を説明するための断面模式図である。但し、図15は、完成品としての半導体装置を示すものではなく、メモリセル部形成後の状態を表したものである。
図15に示すように、半導体装置において、p型Si基板52には、素子分離領域54が形成されている。また、Si基板52上には、シリコン酸化膜56、ポリシリコン膜58を堆積してパターニングし、更に、シリコン酸化膜60を積層した構造のワード線が形成されている。また、ワード線を埋め込んで、絶縁膜62、64、が積層され、更に、その上に、データ線66が形成されている。また、データ線66上には、絶縁膜68、70が積層されている。また、必要な個所に、コンタクトプラグ72が形成されている。
絶縁膜70上には、多結晶シリコンからなる蓄積電極74が形成されている。蓄積電極74には、キャパシタ用絶縁膜76が形成されている。キャパシタ用絶縁膜76は、五酸化タンタル、窒化シリコン、酸化シリコン、強誘電体、あるいはこれらの複合膜により構成される。また、キャパシタ用絶縁膜76には、ブレード電極78が形成されている。ブレード電極78は、多結晶シリコン、高融点金属、高融点金属シリサイド、あるいは、Al、Cu等の低抵抗な導電体により構成されている。更に、ブレード電極78上には、絶縁膜80、82が形成されている。
上述のような半導体装置の製造において、例えば、素子分離54の形成、ワード線の形成、データ線66の形成、コンタクトプラグ72の形成、蓄積電極74の形成におけるリソグラフィ工程において、位相シフトマスク100を用いて、上述したようなパターンの形成方法を用いた。従って、より高い寸法精度で、これらのパターニングが行われているため、デバイス特性の良好な半導体装置が得られている。
また、実施の形態2において、露光装置の概略を説明した。但し、これは、露光装置の一般的なものの概略を表したものであり、この発明を拘束するものではない。また、ここでは、走査型露光装置について説明したが、これに限るものではなく、マスクに光を照射し、これを透過した光によりパターンを転写するような場合に、適用することができる。
その他は、実施の形態1と同様であるから説明を省略する。
なお、例えば、実施の形態1、2において、位相ゼロ度パターン6は、この発明の「第1の透過パターン」に該当し、位相シフトパターン8は、「第2の透過パターン」に該当する。また、この発明において「設計上の完成パターン寸法」とは、具体的には、寸法補正前の、マスクパターン設計上の寸法を意味し、例えば、この実施の形態1、2におけるレイアウト寸法がこれに該当する。
また、例えば、実施の形態1において、ステップS、S、Sを実行することにより、それぞれ、この発明における「第2のデータ算出する工程」、「第1のデータ算出する工程」、「第3のデータ算出する工程」が実行される。また、例えば、ステップS12を実行することにより、「遮光膜エッチング工程」が実行され、ステップS16及びS18を実行することにより「マスク基板エッチング工程」が実行される。
また、例えば、実施の形態2において、ステップS32、S36、S38を実行することにより、それぞれ、この発明の「感光剤塗布工程」、「露光工程」、「現像工程」が実行される。
この発明の実施の形態1における位相シフトマスクを説明するための断面模式図である。 この発明の実施の形態1における位相シフトマスクを説明するための上面模式図である。 位相シフトマスクの透過パターンの寸法を変化させた場合の、0−π転写パターン間寸法差の変化を説明するグラフである。 位相シフトマスクの透過パターンを補正した場合の、露光光の強度分布を説明するための図である。 この発明の実施の形態1における位相シフトマスクの製造方法を説明するためのフロー図である。 この発明の実施の形態1における位相シフトマスクの製造過程における状態を説明するための模式図である。 この発明の実施の形態1における位相シフトマスクの製造過程における状態を説明するための模式図である。 この発明の実施の形態1における位相シフトマスクの製造過程における状態を説明するための模式図である。 この発明の実施の形態1における位相シフトマスクの他の例を説明するための上面図である。 この発明の実施の形態1における位相シフトマスクのレイアウト設計の方法を説明するためのフロー図である。 この発明の実施の形態2における微細パターンの形成方法を説明するためのフロー図である。 この発明の実施の形態2における微細パターン形成における露光の状態を説明するための概略図である。 この発明の実施の形態2における微細パターン形成工程における状態を説明するための断面模式図である。 この発明の実施の形態2における微細パターン形成工程における状態を説明するための断面模式図である。 この発明の実施の形態2における半導体装置を説明するための断面模式図である。
符号の説明
100 位相シフトマスク
2 マスク基板
4 遮光膜
6 位相ゼロ度パターン
8 位相シフトパターン
10 位相シフタ
12 オーバーハング部
20、22 レジストマスク
30 ウェーハ
32 レジスト
36 マスクステージ
38 ウェーハステージ
40 光源
42 コンデンサレンズ
44 投影レンズ
48 基板
50 被加工膜
52 Si基板
54 素子分離領域
56 シリコン酸化膜
58 ポリシリコン膜
60 シリコン酸化膜
62 絶縁膜
64 絶縁膜
66 データ線
68 絶縁膜
70 絶縁膜
72 コンタクトプラグ
74 蓄積電極
76 キャパシタ用絶縁膜
78 ブレード電極
80 絶縁膜
82 絶縁膜

Claims (2)

  1. マスクパターンが第1の透過パターンと、前記第1の透過パターンを透過する露光光に対して位相差を導入する第2の透過パターンとを含み、かつ、被処理基板に、前記マスクパターンを露光により転写する際に用いるマスクの製造方法であって、
    前記第1の透過パターンをレイアウトする第1の設計層と、前記第2の透過パターンをレイアウトする第2の設計層とを異なる設計層とし、第1の設計層に第1の透過パターンを設定する工程と、第2の設計層に第2の透過パターンを設定する工程と、
    前記第1の透過パターンを、所定の補正値で一律に縮小するようにバイアス補正して第1のデータを算出する工程と、
    前記第2の透過パターンの第2のデータと、前記第1のデータとを重ねて合成処理し、前記第1のデータ及び前記第2のデータのうち少なくとも一方のデータに含まれるパターンを透過パターンとする第3のデータを算出する工程と、
    を含むマスクパターン設計データ算出工程と、
    マスク基板に、遮光膜を形成する遮光膜形成工程と、
    前記遮光膜に、前記第3のデータに基づき、前記遮光膜の所定の位置に複数の開口を形成する遮光膜エッチング工程と、
    前記マスク基板のエッチングにより、前記複数の開口のうち、前記第2の透過パターンを形成する部分の開口に、位相差を導入する位相シフタを形成するマスク基板エッチング工程と、
    を備えることを特徴とするマスクの製造方法。
  2. 前記マスク基板エッチング工程は、
    前記マスク基板の所定の位置まで、前記マスク基板を異方的にエッチングする異方性エッチング工程と、
    前記異方性エッチング工程の後、前記位相シフタの深さに達するまで、前記マスク基板を等方的にエッチングする等方性エッチング工程と、
    を含むことを特徴とする請求項1に記載のマスクの製造方法。
JP2004217430A 2004-07-26 2004-07-26 マスクの製造方法 Active JP4579609B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004217430A JP4579609B2 (ja) 2004-07-26 2004-07-26 マスクの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004217430A JP4579609B2 (ja) 2004-07-26 2004-07-26 マスクの製造方法

Publications (2)

Publication Number Publication Date
JP2006039121A JP2006039121A (ja) 2006-02-09
JP4579609B2 true JP4579609B2 (ja) 2010-11-10

Family

ID=35904197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004217430A Active JP4579609B2 (ja) 2004-07-26 2004-07-26 マスクの製造方法

Country Status (1)

Country Link
JP (1) JP4579609B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103365070B (zh) * 2012-03-29 2015-05-06 山东浪潮华光光电子股份有限公司 一种pss图形的相移掩膜版及其制备方法
CN103454850B (zh) * 2013-09-24 2015-05-27 北京京东方光电科技有限公司 掩膜板及隔垫物制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234499A (ja) * 1994-02-22 1995-09-05 Sony Corp 位相シフトマスク並びに半導体装置の製造方法
JPH10333316A (ja) * 1997-05-29 1998-12-18 Hitachi Ltd 位相シフトマスク及びその製造方法
JP2003177504A (ja) * 2001-12-11 2003-06-27 Dainippon Printing Co Ltd 位相シフトマスク用データ補正方法
JP2003255511A (ja) * 2002-03-01 2003-09-10 Dainippon Printing Co Ltd 片掘り型の基板掘り込み型位相シフトマスクにおけるマスク断面構造の決定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234499A (ja) * 1994-02-22 1995-09-05 Sony Corp 位相シフトマスク並びに半導体装置の製造方法
JPH10333316A (ja) * 1997-05-29 1998-12-18 Hitachi Ltd 位相シフトマスク及びその製造方法
JP2003177504A (ja) * 2001-12-11 2003-06-27 Dainippon Printing Co Ltd 位相シフトマスク用データ補正方法
JP2003255511A (ja) * 2002-03-01 2003-09-10 Dainippon Printing Co Ltd 片掘り型の基板掘り込み型位相シフトマスクにおけるマスク断面構造の決定方法

Also Published As

Publication number Publication date
JP2006039121A (ja) 2006-02-09

Similar Documents

Publication Publication Date Title
JP4499616B2 (ja) 露光用マスクとその製造方法、及び半導体装置の製造方法
US5429897A (en) Attenuating type phase shifting mask and method of manufacturing thereof
JP4540327B2 (ja) フォトマスクのパターン形成方法
US7001711B2 (en) Patterning method using a photomask
US7799510B2 (en) Method for correcting mask pattern, photomask, method for fabricating photomask, electron beam writing method for fabricating photomask, exposure method, semiconductor device, and method for fabricating semiconductor device
JP5067313B2 (ja) ハーフトーン位相シフトマスクの製造方法及び半導体装置の製造方法
JP5220317B2 (ja) 半導体装置の製造方法
JP4641799B2 (ja) 半導体装置の製造方法
US20050031967A1 (en) Photomask, method for fabricating a pattern and method for manufacturing a semiconductor device
TWI480680B (zh) 曝光光罩及利用其來製造半導體裝置的方法
JP2005150494A (ja) 半導体装置の製造方法
US6428938B1 (en) Phase-shift mask for printing high-resolution images and a method of fabrication
US6183916B1 (en) Method for proximity effect compensation on alternative phase-shift masks with bias and optical proximity correction
JP2002072442A (ja) 位相シフトマスクの製造方法、レジストパターンの形成方法および半導体装置の製造方法
US7316872B2 (en) Etching bias reduction
JP4579609B2 (ja) マスクの製造方法
KR100803401B1 (ko) 리소그래피 마스크, 리소그래피 마스크 생성 방법, 반도체부품 제조 방법 및 데이터 세트 생성 방법
JP4254603B2 (ja) レベンソン型位相シフトマスク及びその製造方法
US7491474B2 (en) Masks for lithographic imagings and methods for fabricating the same
US8617797B2 (en) Pattern forming method, semiconductor device manufacturing method and phase shift photomask having dummy gate patterns
JP4829742B2 (ja) 膜のパターニング方法及び露光用マスク
KR20080104224A (ko) 포토마스크, 그 작성방법 및 그 포토마스크를 이용한패턴형성방법
JP2007123342A (ja) 半導体装置の製造方法。
US6767672B2 (en) Method for forming a phase-shifting mask for semiconductor device manufacture
JP2006189749A (ja) 多重透過位相マスクおよびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4579609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250