JP4576657B2 - Steel continuous casting method - Google Patents

Steel continuous casting method Download PDF

Info

Publication number
JP4576657B2
JP4576657B2 JP2000039341A JP2000039341A JP4576657B2 JP 4576657 B2 JP4576657 B2 JP 4576657B2 JP 2000039341 A JP2000039341 A JP 2000039341A JP 2000039341 A JP2000039341 A JP 2000039341A JP 4576657 B2 JP4576657 B2 JP 4576657B2
Authority
JP
Japan
Prior art keywords
mold
continuous casting
mold powder
steel
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000039341A
Other languages
Japanese (ja)
Other versions
JP2001225152A (en
Inventor
康一 堤
圭児 渡辺
光兀 日野
徹也 長坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000039341A priority Critical patent/JP4576657B2/en
Publication of JP2001225152A publication Critical patent/JP2001225152A/en
Application granted granted Critical
Publication of JP4576657B2 publication Critical patent/JP4576657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、モールドパウダーを用いた鋼の連続鋳造方法に関する。
【0002】
【従来の技術】
鋼の連続鋳造においては、一般に、取り鍋からタンディッシュに注湯された溶鋼が浸漬ノズルを介して鋳型に注入され、鋳型内で形成された凝固シェルが鋳型の底部に続いて設けられた案内ロール群の間でスプレーノズルにより冷却されながら凝固され、鋳片としてピンチロールによって引き抜かれる。この際、鋳型内の溶鋼湯面(以下、メニスカス部という)にモールドパウダーを浮遊させ、溶鋼の熱によってモールドパウダーを溶融させて鋳型と凝固シェルとの間に流入させ、鋳型と凝固シェルとの摩擦を軽減して潤滑性を向上させている。また、モールドパウダーにより、鋳型内壁に鋳片が焼き付くことを防止するために、鋳型を所定の振動数、所定の振幅で振動させる装置が用いられている。このようなモールドパウダーを用いた鋼の連続鋳造においては、適切なモールドパウダーを選択しないと、鋳片の表面に縦割れが発生し、品質上の欠陥である鋳片表面欠陥が生じるおそれがある。したがって、無手入れの圧延用連続鋳造鋳片を安定して製造するためには、適切なモールドパウダーを選択することが重要である。
【0003】
ところで、炭素含有量が0.08〜0.20%である鋼の連続鋳造においては、不均一凝固が生じやすいため鋳片に縦割れが生じやすく、これを防止するためには鋳型/鋳片(凝固シェル)間の伝熱を遅くする、いわゆる「緩冷却」が有効であることが従来より指摘されている(例えば、鉄と鋼:67(1981),1508.)。この緩冷却の手段としては、鋳型の材質を変更したり、鋳型の冷却水量を減らしたりすることが試行されてきたが、いずれの場合も十分な縦割れ防止効果を得ることができなかった。
【0004】
そのような状況において、近年、鋼の連続鋳造に結晶析出温度の高いモールドパウダーを適用した結果、鋳片の縦割れ発生頻度が大きく減少するという結果が得られてきている(例えば、鉄と鋼:,83(1997),115等)。ここで、結晶析出温度は、一度モールドパウダーを溶融した後、一定の冷却速度で冷却した時に初晶が析出する温度を言うが、一般に結晶析出温度の高いモールドパウダーは、TTT図における結晶析出領域が大きい。つまり、いかに溶融したモールドパウダー中に結晶相を析出させるかが鍵となる。そこで従来の技術においては、モールドパウダー中の結晶相の一つであるCuspidine(3CaO・2SiO・CaF)が析出しやすいように、添加元素を工夫してモールドパウダー設計を行なっていた(前出、鉄と鋼:,83(1997),115等)。
【0005】
しかしながら、近年、環境問題への関心の高まりに伴ないフッ素(F)の環境への排出が問題となりつつあり、上記CuspidineはFを含有していることから、少量のFの添加でCuspidineの結晶相を析出させることのできるプロセスが求められている。
【0006】
また一方、レーザーフラッシュ法等で測定したところによると、モールドパウダーの結晶相はガラス相より熱伝導度が高く、このような結晶相を鋳型および鋳片の間に介在させた場合、鋳片は強冷却されるはずであるが、実際には鋳型の冷却水の温度上昇は低く、緩冷却となっている。このように鋳型/鋳片間の伝熱挙動については解明されていない部分も多く、モールドパウダーは試行錯誤的に製造され試験されているのが実情である。
【0007】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑みてなされたものであって、モールドパウダー中に結晶相が析出しやすく、モールドパウダーにより緩冷却を有効に行なうことができ、表面縦割れの極めて少ない鋳片を製造することができる鋼の連続鋳造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
従来の連続鋳造においては、粉末もしくは顆粒のモールドパウダーが水分を吸収すると、モールドパウダーがメニスカス上部に投入されて溶融する際に熱が奪われるとともに、モールドパウダーが溶融しにくくなることから、一般には鋳型近傍の雰囲気を乾燥させている。これに対し、本発明者らは表面縦割れの極めて少ない鋳片を製造すべく種々検討を重ねた結果、溶融したモールドパウダーが凝固する際に鋳型近傍の雰囲気中に水蒸気が存在すると、モールドパウダー中に結晶核生成の起点が増えて結晶が析出しやすくなることを知見した。
【0009】
本発明は、このような知見に基づいてなされたものであって、モールドパウダーを用いた炭素含有量が0.08〜0.20質量%の鋼の連続鋳造方法であって、鋳型近傍における雰囲気中の水蒸気分圧を0.05〜0.7atmとして連続鋳造を行うことを特徴とする鋼の連続鋳造方法を提供する。
【0010】
また、上記の鋼の連続鋳造方法において、さらに、凝固したモールドパウダーの表面粗さが5μm以上となるように連続鋳造を行なうことを特徴とする鋼の連続鋳造方法を提供する。
【0011】
【発明の実施の形態】
以下、本発明について具体的に説明する。
本発明では、鋳型近傍における雰囲気中の水蒸気分圧を0.05〜0.7atmとして連続鋳造を行なうことにより、溶融モールドパウダー中に結晶核生成の起点を増大させ、例えばCuspidine(3CaO・2SiO・CaF)のような結晶相を従来よりも効率よく析出することができるので、鋳片の緩冷却を有効に行なって、鋳片に生じる縦割れを防止することができる。
【0012】
鋳型近傍における雰囲気中の水蒸気分圧が0.05atm未満では結晶核生成の起点を増大する効果が十分でなく、結晶相を効率よく析出させることができない。一方、水蒸気分圧が0.7atmを超えると、モールドパウダー中のFと水蒸気が反応してHFを生成し、Fが減少して結晶相であるCuspidineが析出しにくくなる。また、水蒸気によってモールドパウダーが吸湿し、メニスカス近傍の溶鋼面に投入された際に溶融しにくくなり、鋳型/鋳片間に流れ込みにくくなってブレークアウト等の操業トラブルを発生させてしまう。このことから、本発明では、鋳型近傍の水蒸気分圧を0.05〜0.7atmとする。
【0013】
実際に、後述する表1のAに示すモールドパウダーを用い、鋳型近傍である鋳造床の水蒸気分圧を変化させて鋼の連続鋳造を行った結果、図1に示す結果が得られた。図1は、横軸にその際の水蒸気分圧をとり、縦軸に鋳片割れ個数をとって、これらの関係を示す図である。図1に示すように、鋳型近傍の水蒸気雰囲気を0.05〜0.7atmとした場合には鋳片表面に生じる縦割れが顕著に抑制されており、有効に緩冷却が行なわれていることがわかる。
【0014】
鋳型近傍における雰囲気中の水蒸気分圧を上述の範囲とするためには、例えば、連続鋳造機の鋳型近傍を囲う囲繞部材を配置し、この囲繞部材内側に水蒸気分圧を調整した雰囲気を供給することにより行なうことができる。また、鋳型近傍に設けたノズルから鋳型のメニスカス部に向けて水蒸気分圧を調整した雰囲気を吹き付けるようにしてもよい。
【0015】
また、本発明では、以上のようにして行なわれる連続鋳造に際して、鋳片に生じる縦割れを一層有効に抑制し、表面欠陥の極めて少ない鋼の鋳片を得るために、凝固後のモールドパウダーの表面粗さを5μm以上とすることが好ましい。凝固後のモールドパウダーの表面粗さが5μm未満では、このように優れた縦割れ抑制効果が発揮され難い。
【0016】
凝固後のモールドパウダーの表面粗さは、連続鋳造を行なった後、メニスカスに生成したスラグリムごと凝固したモールドパウダーを引き上げて回収し、凝固したモールドパウダー表面の凹凸の谷(最小値)と山(最大値)の差を測定することにより把握することができるが、この方法では連続鋳造の操業に支障をきたす可能性があるため、以下の手法によりモールドパウダーの表面粗さを推定してもよい。
【0017】
すなわち、鋼を鋳造する前に、予めイメージ加熱炉を備えたレーザ顕微鏡を用いて、使用するモールドパウダーを脱水したAr雰囲気下(つまり水蒸気分圧が0atmの雰囲気)で加熱し溶融させた後、実機の鋳型/鋳片間の冷却速度と推察される10K/secで室温まで冷却し、レーザ顕微鏡の機能である表面形状測定機能により、凝固したモールドパウダー表面の凹凸の谷と山の差r2を測定する。このようにして測定されたr2と水蒸気分圧が0.2atmの雰囲気下で凝固したモールドパウダーの表面粗さr3との間の関係を実測値に基づいて把握した結果、
1.25×r2≦r3≦1.4×r2
の範囲となった。これら実測値から(r3/r2)の平均値を求めると1.31となり、
r3=1.3×r2
と近似することができる。また、水蒸気の影響が現れる水蒸気分圧0.05atm以上において、連続鋳造中に凝固したモールドパウダーの表面粗さの実測値r1と上記r3との間の関係を把握した結果、
1.75×r3≦r1≦2.20×r3
の範囲となった。これら実測値から(r1/r3)の平均値を求めると2.00となり、
r1=2.0×r3
と近似することができる。したがって、鋳造前に使用するモールドパウダーのr2を測定しておけば、上記関係式から、連続鋳造中に凝固したモールドパウダーの実際の表面粗さr1を推定することができる。
【0018】
なお、レーザ顕微鏡のイメージ加熱炉ではモールドパウダーを入れるセルが小さいため、モールドパウダーが凝固する時に表面張力の影響を受けて表面粗さが小さくなってしまうが、相対的な関係は維持されるため、上述したように係数を乗ずる補正を行なうことによりイメージ加熱炉を用いた加熱および冷却後の表面粗さを測定したデータで十分実機の状況を再現することができる。
【0019】
実際に、水蒸気分圧0.3atmの雰囲気で、種々の表面粗さを示すモールドパウダーを用いて連続鋳造を行い、鋳片に生じた表面縦割れ個数を計測した結果、図2に示す結果が得られた。図2は、横軸にその際の凝固後のモールドパウダーの表面粗さをとり、縦軸に鋳片割れ個数をとって、これらの関係を示す図である。図2に示すように、凝固後のモールドパウダーの表面粗さを5μm以上とすることによって、鋳片に生じる縦割れを一層効果的に抑制することができることがわかる。なお、ここでの凝固後のモールドパウダーの表面粗さは、上記の手法により推定された値である。
【0020】
なお、本発明の連続鋳造方法では、例えば、SiO,CaO,Al,Fe,MgO,MnO,BaO,B等の酸化物を母材とし、その他にNaO,KO,LiO等の金属酸化物、NaF,KF,LiF,CaF,MgF,AlF,NaAlF等のフッ化物、それら金属の炭酸化物や硝酸化物等が添加された、一般的に用いられているモールドパウダーを使用することができるが、これに限定されるものではない。
【0021】
【実施例】
次に、本発明の実施例を示す。
表1に示すA、Bのモールドパウダーを用いて、表2に示す鋳造速度および水蒸気分圧の条件で鋼を連続鋳造し、表2に示すサイズの鋳片を製造した。表2には、得られた鋳片の縦割れ発生個数、それぞれのモールドパウダーを乾燥雰囲気でイメージ加熱炉により溶融凝固させた場合の表面粗さr2、所定の水蒸気分圧として溶融凝固させた場合の表面粗さr3、および、連続鋳造後の実機から凝固したモールドパウダーを回収して測定した表面粗さr1を併せて示す。なお、表2に示したr1〜r3の値は、それぞれ10ヶ所以上で測定された表面粗さの平均値である。
【0022】
表2より、雰囲気中の水蒸気分圧を0.05〜0.7atmに制御し、凝固したモールドパウダーの表面粗さを5μm以上とした場合には、鋳片の縦割れ発生個数が大幅に減少していることがわかる。また、表2にr3/r2およびr1/r3の値を示すが、これらの平均値は1.3および2.00であり、r3=1.3×r2、r1=2.0×r3の近似式を適用可能なことが確認された。
【0023】
【表1】

Figure 0004576657
【0024】
【表2】
Figure 0004576657
【0025】
【発明の効果】
本発明によれば、モールドパウダー中に結晶相が析出しやすく、モールドパウダーにより緩冷却を有効に行なうことができるので、表面縦割れの極めて少ない鋼の鋳片を製造することができる連続鋳造方法を提供することができる。すなわち、無手入れ圧延が可能な鋳片を安定して製造することができ、歩留まりの向上、製造コストの低減等、その工業的効果は非常に大きい。さらに、モールドパウダー中に結晶相を効率よく析出させることができるので、環境へのF排出量低減も期待することができる。
【図面の簡単な説明】
【図1】表1のAに示すモールドパウダーを用いて鋼を連続鋳造した場合における、鋳型近傍の水蒸気分圧と、得られた鋳片に生じた表面縦割れ個数との関係を示す図。
【図2】水蒸気分圧0.3atmの雰囲気で、種々の表面粗さのモールドパウダーを用いて鋼を連続鋳造した場合における、モールドパウダーの表面粗さと、鋳片表面の縦割れ個数との関係を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous casting method of steel using mold powder.
[0002]
[Prior art]
In continuous casting of steel, generally, molten steel poured into a tundish from a ladle is poured into a mold through an immersion nozzle, and a solidified shell formed in the mold is provided following the bottom of the mold. It is solidified while being cooled by a spray nozzle between roll groups, and is drawn out by a pinch roll as a slab. At this time, mold powder is floated on the molten steel surface in the mold (hereinafter referred to as a meniscus portion), the mold powder is melted by the heat of the molten steel, and flows between the mold and the solidified shell. Reduces friction and improves lubricity. In addition, in order to prevent the slab from being seized onto the inner wall of the mold by the mold powder, an apparatus for vibrating the mold at a predetermined frequency and a predetermined amplitude is used. In continuous casting of steel using such mold powder, if an appropriate mold powder is not selected, vertical cracks may occur on the surface of the slab, which may result in a slab surface defect that is a quality defect. . Accordingly, it is important to select an appropriate mold powder in order to stably produce a continuous cast slab for rolling without maintenance.
[0003]
By the way, in continuous casting of steel having a carbon content of 0.08 to 0.20%, non-uniform solidification is likely to occur, so that vertical slabs are likely to occur in the slab. To prevent this, a mold / slab Conventionally, it has been pointed out that so-called “slow cooling” that slows heat transfer between (solidified shells) is effective (for example, iron and steel: 67 (1981), 1508.). As a means for this slow cooling, attempts have been made to change the material of the mold or reduce the amount of cooling water in the mold, but in any case, a sufficient effect of preventing vertical cracks has not been obtained.
[0004]
Under such circumstances, in recent years, as a result of applying mold powder having a high crystal precipitation temperature to continuous casting of steel, results have been obtained that the frequency of occurrence of vertical cracks in the slab is greatly reduced (for example, iron and steel). :, 83 (1997), 115 etc.). Here, the crystal precipitation temperature is a temperature at which the primary crystal is precipitated when the mold powder is once melted and then cooled at a constant cooling rate. In general, a mold powder having a high crystal precipitation temperature is a crystal precipitation region in the TTT diagram. Is big. That is, the key is how to precipitate the crystal phase in the molten mold powder. Therefore, in the prior art, the mold powder was designed by devising the additive element so that Cuspidine (3CaO.2SiO 2 .CaF 2 ), which is one of the crystal phases in the mold powder, is likely to precipitate (previous) And iron and steel: 83 (1997), 115 etc.).
[0005]
However, in recent years, with increasing interest in environmental problems, the emission of fluorine (F) into the environment is becoming a problem. Since Cuspidine contains F, the crystal of Cuspidine can be obtained by adding a small amount of F. There is a need for a process that can precipitate phases.
[0006]
On the other hand, according to the measurement by the laser flash method or the like, the crystalline phase of the mold powder has higher thermal conductivity than the glass phase, and when such a crystalline phase is interposed between the mold and the slab, the slab is Although it should be strongly cooled, the temperature rise of the mold cooling water is actually low and it is slowly cooled. As described above, there are many parts that have not been elucidated about the heat transfer behavior between the mold and the slab, and the fact is that the mold powder is manufactured and tested by trial and error.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and it is easy to precipitate a crystal phase in mold powder, and can effectively perform slow cooling with the mold powder. It is an object of the present invention to provide a continuous casting method for steel.
[0008]
[Means for Solving the Problems]
In conventional continuous casting, if the powder powder or granule mold powder absorbs moisture, the mold powder is put into the upper part of the meniscus and heat is taken away and the mold powder is difficult to melt. The atmosphere near the mold is dried. On the other hand, the present inventors have made various studies to produce a slab with extremely small surface vertical cracks. As a result, when steam is present in the atmosphere near the mold when the molten mold powder solidifies, It has been found that the starting point of crystal nucleation is increased and the crystals are easily precipitated.
[0009]
The present invention has been made on the basis of such knowledge, and is a continuous casting method of steel having a carbon content of 0.08 to 0.20% by mass using a mold powder, and includes an atmosphere in the vicinity of a mold. Provided is a continuous casting method for steel, characterized in that continuous casting is performed at a water vapor partial pressure of 0.05 to 0.7 atm.
[0010]
Moreover, in the above continuous casting method of steel, a continuous casting method of steel characterized by further performing continuous casting so that the surface roughness of the solidified mold powder becomes 5 μm or more is provided.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
In the present invention, by performing continuous casting with the partial pressure of water vapor in the atmosphere in the vicinity of the mold being 0.05 to 0.7 atm, the starting point of crystal nucleation is increased in the molten mold powder. For example, Cuspidine (3CaO · 2SiO 2 since · CaF 2) crystal phase, such as a can be precipitated efficiently than before, it is possible to prevent the vertical cracks that performed to enable slow cooling of the slab, resulting in slab.
[0012]
If the water vapor partial pressure in the atmosphere in the vicinity of the mold is less than 0.05 atm, the effect of increasing the starting point of crystal nucleation is not sufficient, and the crystal phase cannot be precipitated efficiently. On the other hand, when the partial pressure of water vapor exceeds 0.7 atm, F in the mold powder reacts with water vapor to generate HF, and F decreases to make it difficult to precipitate Cuspidine as a crystal phase. Further, the mold powder absorbs moisture due to water vapor, and when it is put on the molten steel surface in the vicinity of the meniscus, it becomes difficult to melt, and it is difficult to flow between the mold / slab, causing operational troubles such as breakout. Therefore, in the present invention, the water vapor partial pressure in the vicinity of the mold is set to 0.05 to 0.7 atm.
[0013]
Actually, the result shown in FIG. 1 was obtained as a result of performing continuous casting of steel by changing the water vapor partial pressure of the casting bed in the vicinity of the mold using the mold powder shown in Table 1 below. FIG. 1 is a diagram showing these relationships, with the horizontal axis representing the water vapor partial pressure and the vertical axis representing the number of slab cracks. As shown in FIG. 1, when the water vapor atmosphere in the vicinity of the mold is set to 0.05 to 0.7 atm, the vertical cracks generated on the surface of the slab are remarkably suppressed, and the effective cooling is performed. I understand.
[0014]
In order to set the partial pressure of water vapor in the atmosphere in the vicinity of the mold to the above range, for example, an enclosure member surrounding the vicinity of the mold of the continuous casting machine is arranged, and an atmosphere in which the partial pressure of water vapor is adjusted is supplied to the inside of the enclosure member. Can be done. Further, an atmosphere in which the water vapor partial pressure is adjusted may be sprayed from a nozzle provided in the vicinity of the mold toward the meniscus portion of the mold.
[0015]
Further, in the present invention, during continuous casting performed as described above, the vertical cracks generated in the slab are more effectively suppressed, and in order to obtain a steel slab having extremely few surface defects, The surface roughness is preferably 5 μm or more. When the surface roughness of the mold powder after solidification is less than 5 μm, it is difficult to exhibit such excellent longitudinal crack suppression effect.
[0016]
The surface roughness of the mold powder after solidification is obtained by continuously casting and then collecting and recovering the solidified mold powder together with the slag rim generated in the meniscus. Can be determined by measuring the difference in the maximum value), but this method may interfere with the operation of continuous casting. Therefore, the surface roughness of the mold powder may be estimated by the following method. .
[0017]
That is, before casting steel, using a laser microscope equipped with an image heating furnace in advance, the mold powder to be used is heated and melted in a dehydrated Ar atmosphere (that is, an atmosphere having a water vapor partial pressure of 0 atm). Cooling to room temperature at 10 K / sec, which is assumed to be the cooling rate between the mold / slab of the actual machine, and the surface shape measurement function that is the function of the laser microscope, the difference r2 between the valleys and peaks of the unevenness of the solidified mold powder surface taking measurement. As a result of grasping the relationship between r2 measured in this way and the surface roughness r3 of the mold powder solidified in an atmosphere having a water vapor partial pressure of 0.2 atm based on actual measurement values,
1.25 × r2 ≦ r3 ≦ 1.4 × r2
It became the range. The average value of (r3 / r2) is calculated from these measured values to be 1.31,
r3 = 1.3 × r2
And can be approximated. Further, as a result of grasping the relationship between the measured value r1 of the surface roughness of the mold powder solidified during continuous casting and the above r3 at a water vapor partial pressure of 0.05 atm or more where the influence of water vapor appears,
1.75 × r3 ≦ r1 ≦ 2.20 × r3
It became the range. When the average value of (r1 / r3) is obtained from these measured values, it becomes 2.00.
r1 = 2.0 × r3
And can be approximated. Therefore, if the r2 of the mold powder used before casting is measured, the actual surface roughness r1 of the mold powder solidified during the continuous casting can be estimated from the above relational expression.
[0018]
In the image heating furnace of a laser microscope, since the cell into which the mold powder is put is small, the surface roughness is reduced due to the influence of the surface tension when the mold powder solidifies, but the relative relationship is maintained. By performing the correction by multiplying by the coefficient as described above, the actual situation can be sufficiently reproduced with the data obtained by measuring the surface roughness after heating and cooling using the image heating furnace.
[0019]
Actually, continuous casting was performed using mold powders having various surface roughnesses in an atmosphere having a water vapor partial pressure of 0.3 atm, and the number of surface vertical cracks generated in the slab was measured. As a result, the result shown in FIG. Obtained. FIG. 2 is a diagram showing the relationship between the horizontal axis representing the surface roughness of the solidified mold powder and the vertical axis representing the number of slab cracks. As shown in FIG. 2, it can be seen that the vertical cracks generated in the slab can be more effectively suppressed by setting the surface roughness of the solidified mold powder to 5 μm or more. In addition, the surface roughness of the mold powder after solidification here is a value estimated by the above method.
[0020]
In the continuous casting method of the present invention, for example, an oxide such as SiO 2 , CaO, Al 2 O 3 , Fe 2 O 3 , MgO, MnO, BaO, B 2 O 3 is used as a base material, and Na 2 is also used. Addition of metal oxides such as O, K 2 O, Li 2 O, fluorides such as NaF, KF, LiF, CaF 2 , MgF 2 , AlF 3 , Na 3 AlF 6 , carbonates and nitrates of these metals However, the present invention is not limited to this, but a generally used mold powder can be used.
[0021]
【Example】
Next, examples of the present invention will be described.
Using the mold powders A and B shown in Table 1, steel was continuously cast under the conditions of the casting speed and water vapor partial pressure shown in Table 2, and slabs having the sizes shown in Table 2 were produced. Table 2 shows the number of vertical cracks generated in the obtained slab, the surface roughness r2 when each mold powder is melted and solidified in an image heating furnace in a dry atmosphere, and when melted and solidified as a predetermined water vapor partial pressure. The surface roughness r3 and the surface roughness r1 measured by collecting the solidified mold powder from the actual machine after continuous casting are also shown. In addition, the value of r1-r3 shown in Table 2 is an average value of the surface roughness measured in 10 or more places, respectively.
[0022]
From Table 2, when the water vapor partial pressure in the atmosphere is controlled to 0.05 to 0.7 atm, and the surface roughness of the solidified mold powder is 5 μm or more, the number of vertical cracks in the slab is greatly reduced. You can see that Table 2 shows the values of r3 / r2 and r1 / r3. These average values are 1.3 and 2.00, and r3 = 1.3 × r2, r1 = 2.0 × r3 It was confirmed that the formula was applicable.
[0023]
[Table 1]
Figure 0004576657
[0024]
[Table 2]
Figure 0004576657
[0025]
【The invention's effect】
According to the present invention, a crystal phase is likely to be precipitated in the mold powder, and since slow cooling can be effectively performed by the mold powder, a continuous casting method capable of producing a steel slab with extremely few surface vertical cracks. Can be provided. That is, a cast slab that can be subjected to maintenance-free rolling can be stably produced, and its industrial effects such as improvement in yield and reduction in production cost are very large. Furthermore, since the crystal phase can be efficiently precipitated in the mold powder, it can be expected to reduce the amount of F emission to the environment.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the partial pressure of water vapor in the vicinity of a mold and the number of surface vertical cracks generated in an obtained cast piece when steel is continuously cast using the mold powder shown in A of Table 1.
FIG. 2 shows the relationship between the surface roughness of mold powder and the number of vertical cracks on the slab surface when steel is continuously cast using mold powders with various surface roughnesses in an atmosphere with a water vapor partial pressure of 0.3 atm. FIG.

Claims (2)

モールドパウダーを用いた炭素含有量が0.08〜0.20質量%の鋼の連続鋳造方法であって、鋳型近傍における雰囲気中の水蒸気分圧を0.05〜0.7atmとして連続鋳造を行うことを特徴とする鋼の連続鋳造方法。This is a continuous casting method for steel having a carbon content of 0.08 to 0.20 mass% using mold powder, and continuous casting is performed with the partial pressure of water vapor in the atmosphere in the vicinity of the mold being 0.05 to 0.7 atm. A continuous casting method for steel characterized by the above. さらに、凝固したモールドパウダーの表面粗さが5μm以上となるように連続鋳造を行うことを特徴とする請求項1に記載の鋼の連続鋳造方法。  Furthermore, the continuous casting method of steel of Claim 1 which performs continuous casting so that the surface roughness of the solidified mold powder may be 5 micrometers or more.
JP2000039341A 2000-02-17 2000-02-17 Steel continuous casting method Expired - Fee Related JP4576657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000039341A JP4576657B2 (en) 2000-02-17 2000-02-17 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000039341A JP4576657B2 (en) 2000-02-17 2000-02-17 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2001225152A JP2001225152A (en) 2001-08-21
JP4576657B2 true JP4576657B2 (en) 2010-11-10

Family

ID=18562917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000039341A Expired - Fee Related JP4576657B2 (en) 2000-02-17 2000-02-17 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP4576657B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907453B2 (en) * 2007-06-29 2012-03-28 新日本製鐵株式会社 Steel continuous casting method
JP5423719B2 (en) * 2011-03-31 2014-02-19 新日鐵住金株式会社 Steel continuous casting method
JP7097198B2 (en) 2018-03-14 2022-07-07 日鉄建材株式会社 Mold powder
JP6875648B2 (en) * 2019-10-23 2021-05-26 品川リフラクトリーズ株式会社 Mold powder
CN113305274B (en) * 2020-02-26 2022-10-21 宝山钢铁股份有限公司 Medium carbon steel covering slag for continuous casting of wide and thick plates

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189847A (en) * 1985-02-20 1986-08-23 Nippon Kokan Kk <Nkk> Preventing method of moisture condensation on surface of cooling body for continuous casting
JPH04138858A (en) * 1990-09-29 1992-05-13 Kobe Steel Ltd Flux for continuous casting
JPH05200512A (en) * 1992-01-24 1993-08-10 Sumitomo Metal Ind Ltd Method for heating and supplying mold powder for continuous casting, and its equipment
JPH081294A (en) * 1994-06-15 1996-01-09 Sumitomo Metal Ind Ltd Method and device for heating mold powder for continuous casting
JPH1058102A (en) * 1996-08-20 1998-03-03 Nippon Steel Corp Method for continuously casting medium-carbon steel
JPH10193062A (en) * 1997-01-08 1998-07-28 Kawasaki Steel Corp Production of continuously cast slab excellent in surface characteristic
JPH10249500A (en) * 1997-03-11 1998-09-22 Nippon Steel Corp Powder for continuously casting steel and method for continuously casting steel using the powder
JPH11320058A (en) * 1997-08-26 1999-11-24 Sumitomo Metal Ind Ltd Mold powder for continuous casting and continuous casting method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189847A (en) * 1985-02-20 1986-08-23 Nippon Kokan Kk <Nkk> Preventing method of moisture condensation on surface of cooling body for continuous casting
JPH04138858A (en) * 1990-09-29 1992-05-13 Kobe Steel Ltd Flux for continuous casting
JPH05200512A (en) * 1992-01-24 1993-08-10 Sumitomo Metal Ind Ltd Method for heating and supplying mold powder for continuous casting, and its equipment
JPH081294A (en) * 1994-06-15 1996-01-09 Sumitomo Metal Ind Ltd Method and device for heating mold powder for continuous casting
JPH1058102A (en) * 1996-08-20 1998-03-03 Nippon Steel Corp Method for continuously casting medium-carbon steel
JPH10193062A (en) * 1997-01-08 1998-07-28 Kawasaki Steel Corp Production of continuously cast slab excellent in surface characteristic
JPH10249500A (en) * 1997-03-11 1998-09-22 Nippon Steel Corp Powder for continuously casting steel and method for continuously casting steel using the powder
JPH11320058A (en) * 1997-08-26 1999-11-24 Sumitomo Metal Ind Ltd Mold powder for continuous casting and continuous casting method

Also Published As

Publication number Publication date
JP2001225152A (en) 2001-08-21

Similar Documents

Publication Publication Date Title
JP4576657B2 (en) Steel continuous casting method
JP2017087273A (en) CONTINUOUS CASTING MOLD POWDER FOR Ti-CONTAINING STEEL, AND CONTINUOUS CASTING METHOD
JP5703919B2 (en) Mold flux for continuous casting of steel and continuous casting method
JPH08197214A (en) Powder for continuously casting steel
JP4451798B2 (en) Continuous casting method
JP2675376B2 (en) High speed continuous casting of steel
JP4527832B2 (en) Steel continuous casting method
JP3000371B2 (en) Continuous casting method
JPS5952014B2 (en) Continuous casting method for medium-coal range steel slabs
JP2985671B2 (en) Mold powder for continuous casting of steel
JPS626737A (en) Continuous casting mold for steel
JPH0399762A (en) Continuous casting method
JPH04138858A (en) Flux for continuous casting
JPH03210950A (en) Powder for continuous casting
JP3546137B2 (en) Steel continuous casting method
JPS5829546A (en) Production of large sized steel ingot having no segregation
JP2024004032A (en) Continuous casting method
JP2637005B2 (en) Evaluation method of powder for continuous casting of medium carbon steel
JPH0543973Y2 (en)
JPS58103940A (en) Continuous casting method for cast ingot
JP3342774B2 (en) Mold powder for continuous casting
JPS58157552A (en) Continuous casting method of metallic material
JPH0866752A (en) Continuous casting method for steel
JPH08206787A (en) Continuous casting method of slab of large section and mold for casting
JPH05138300A (en) Mold for horizontally continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4576657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees