JP4576315B2 - 連系する発電機を探知する方法およびそのプログラム - Google Patents

連系する発電機を探知する方法およびそのプログラム Download PDF

Info

Publication number
JP4576315B2
JP4576315B2 JP2005298784A JP2005298784A JP4576315B2 JP 4576315 B2 JP4576315 B2 JP 4576315B2 JP 2005298784 A JP2005298784 A JP 2005298784A JP 2005298784 A JP2005298784 A JP 2005298784A JP 4576315 B2 JP4576315 B2 JP 4576315B2
Authority
JP
Japan
Prior art keywords
phase current
generator
phase
reverse
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005298784A
Other languages
English (en)
Other versions
JP2007110829A (ja
Inventor
孝宜 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2005298784A priority Critical patent/JP4576315B2/ja
Publication of JP2007110829A publication Critical patent/JP2007110829A/ja
Application granted granted Critical
Publication of JP4576315B2 publication Critical patent/JP4576315B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

この発明は電力系統に連系する発電機を探知する方法およびそのプログラムに関し、特に逆相電流に基づいて電力系統に連系する発電機を探知する方法およびそのプログラムに関するものである。
近年の地球環境保護の観点や電力自由化の進展に伴い、マイクロガスタービンや風力発電などの分散型電源(DG:Distributed Generator)が普及しつつある。一般的に、このような分散型電源は、需要者の構内に配置され、配電線から需要者へ電力を供給するための引込線を介して連系することが多い。
そして、分散型電源の発電量と需要者における負荷量とのバランスに応じて、需要者側から配電線側への電力潮流、または配電線側から需要者側への電力潮流が生じる。すなわち、分散型電源の発電量が需要者における負荷量以上であれば、需要者側から配電線側への電力潮流が生じ、需要者における負荷量が分散型電源の発電量以上であれば、配電線側から需要者側への電力潮流が生じる。
従来の大型の発電機に比べて、分散型電源は容易に電力系統に連系できるため、分散型電源を新たに設置しようとする需要者は、電力系統の運用者(電力会社)の協力を必要とすることなく、分散型電源を連系させることができる。そのため、新たに分散型電源を連系しようとする需要者は、電力系統の運用者に対してその旨を届出ることが原則とされており、電力系統の運用者は、その届出を受けて新たな分散型電源の連系を把握する。
ところで、電力系統において、三相短絡などの電気的な故障が生じると、連系されている発電機からその故障点に対して故障電流が流入する。過大な短絡電流による設備破損や需給のアンバランスによる周波数変動などを防止するため、電力系統には、電気的な故障を検出し、故障点に流入する故障電流を遮断するための遮断器などの保護装置が所定の区間毎に設けられている。
遮断器には、定格電圧、定格電流、定格遮断電流、定格過渡回復電圧、定格遮断時間および標準動作責務などが規定されている。これらのうち、定格遮断電流は、遮断器が短絡電流を遮断できる最大値を規定するものであり、当該遮断器が設けられる電力系統において、連系されている発電機を考慮して決定されなければならず、未知の発電機が連系されていると、故障電流が定格遮断電流を超過し、故障電流を遮断できないことが危惧される。
また、配電線に電気的な故障が発生して遮断器が動作すると、上位の電力系統から配電線への給電は停止されるが、当該配電線に連系されている分散型電源が発電を継続していると、分散型電源により配電線が充電されるため、復旧作業を行なう作業者が感電することが危惧される。
したがって、連系されている分散型電源を把握しておくことは、電力系統の運用者にとって非常に重要な責務である。
そのため、特に作業者の感電を防止する観点から、特開2005−033851号公報(特許文献1)には、配電線に設置された遮断器の状態と、当該遮断器の下位側の配電線から駆動電圧を得て動作する子局装置からの応答とに基づいて、分散型電源の運転状態を監視する配電系統監視制御装置が開示されている。
特開2005−033851号公報
しかしながら、需要者から電力系統の運用者への届出がなされないことも想定され、そのような場合には、連系されている分散型電源を把握することができないという問題があった。
上述の特開2005−033851号公報(特許文献1)に開示された配電系統監視制御装置では、予め連系されている分散型電源を把握している場合において、その分散型電源の運転状態を監視できるが、把握されていない分散型電源を発見することはできなかった。
また、需要者へ電力を供給するための引込線おける電力潮流を計測することで、連系する分散型電源の有無を確認できる場合もあるが、需要者側から配電線側へ送出される電力潮流が存在しない場合には分散型電源を発見することはできない。すなわち、需要者における負荷量が大きく、分散型電源の発電電力のほぼすべてが需要者で消費される場合には、分散型電源を発見することはできなかった。
よって、連系する分散型電源を把握するための確実な手段が存在せず、電力系統の運用上および作業員の安全上において問題となることがあった。
そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、電力系統に連系する発電機を容易に探知するための連系する発電機を探知する方法およびそのプログラムを提供することである。
この発明によれば、三相交流系統において電路に接続されて連系する発電機を探知する方法であって、電路を流れる三相分の相電流を計測する計測ステップと、計測ステップにおいて計測された相電流から逆相電流を演算する第1の演算ステップと、第1の演算ステップにおいて演算された逆相電流の時間的変化を演算する第2の演算ステップと、第2の演算ステップにおいて演算された逆相電流が所定の時間的変化を有するか否かを判断し、逆相電流が所定の時間的変化を有すれば、電路に連系する発電機が存在すると探知する探知ステップとからなる。
好ましくは、逆相電流の変化は、発電機が電路と連系または解列することで生じる。
好ましくは、第2の演算ステップは、時間的変化として所定の期間毎に逆相電流の時間差分を演算する。
好ましくは、探知ステップは、逆相電流の時間差分が所定のしきい値を超過するか否かを判断するステップを含む。
好ましくは、探知対象の発電機に係る定数および三相交流系統に係る定数を受付ける受付ステップと、受付ステップにおいて受付けた定数と、第1の演算ステップにおいて演算された逆相電流とに基づいて、しきい値を決定するしきい値決定ステップとをさらに有する。
好ましくは、計測ステップは、さらに、電路の複数の地点を流れる三相分の相電流を同時に計測し、第1の演算ステップは、さらに、電路の複数の地点の各々における逆相電流を演算し、第2の演算ステップは、さらに、電路の複数の地点の各々における逆相電流の時間的変化を演算し、探知ステップは、電路の複数の地点の各々における逆相電流の時間的変化が所定の時間的変化を有するか否かを判断し、複数の地点の各々における時間的変化の有無に基づいて、電路において発電機が接続される区間を特定する区間特定ステップをさらに含む。
好ましくは、区間特定ステップは、電路上に配置された複数の地点のうち、逆相電流が所定の時間的変化を有する地点と、逆相電流が所定の時間的変化を有しない地点との間の区間において、発電機が接続されると特定する。
また、この発明によれば、上述の連系する発電機を探知する方法をコンピュータに実行させるためのプログラムである。
この発明によれば、電路を流れる相電流を計測し、その計測した相電流から演算される逆相電流の時間的変化に基づいて、連系する発電機の存在を探知する。よって、周知の計測手段により計測できる相電流を用いるため、電力系統に連系する発電機を容易に探知することができる。
この発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰返さない。
[実施の形態1]
図1は、実施の形態1に従う探知装置1の機能ブロック図である。
図1を参照して、探知装置1は、所定の周期毎に一相分の相電圧および三相分の相電流を受けて逆相電流を演算し、さらに、所定の時間間隔毎にその逆相電流の時間差分を演算する。そして、探知装置1は、逆相電流の時間差分が所定のしきい値を超過しているか否かを判断し、しきい値を超過している場合には、発電機の連系または解列が生じたと推定し、連系する発電機が存在するとみなして探知信号を外部へ出力する。ここで、探知装置1は、対称座標演算部4と、時間差分演算部6と、しきい値演算部8と、比較判定部10とからなる。
対称座標演算部4は、所定の周期毎にa相の相電圧および各相の相電流を受ける。そして、対称座標演算部4は、a相の相電圧を基準ベクトルとして、その基準ベクトルとの位相差に基づいて、各相の相電流をベクトル量に変換する。さらに、対称座標演算部4は、ベクトル量に変換された各相の相電流から逆相電流Iを演算し、時間差分演算部6へ出力する。
時間差分演算部6は、所定の周期毎に対称座標演算部4から逆相電流Iを受け、当該周期における逆相電流Iと所定の時間間隔だけ以前の逆相電流Iとのベクトル差を演算し、その演算したベクトル差の絶対値を時間差分ΔIとして比較判定部10へ出力する。
しきい値演算部8は、外部から探知対象の電力系統における系統定数を受け、かつ、対称座標演算部4から受けた初期状態における逆相電流Iに基づいて、発電機の連系により生じ得る逆相電流Iの変動分を推定し、しきい値として比較判定部10へ出力する。
比較判定部10は、時間差分演算部6から受けた時間差分ΔIがしきい値演算部8から受けたしきい値を超過したか否かを判断し、しきい値を超過している場合には、発電機の連系または解列が生じたと推定し、連系する発電機が存在すると判断して探知信号を外部へ出力する。
(対称座標法)
対称座標法は、三相交流系統における不平衡電流を、互いに大きさと方向が一致する単相電流(零相電流)、相回転方向が電圧の相回転方向と一致する三相平衡電流(正相電流)および相回転方向が電圧の相回転方向と反対である三相平衡電流(逆相電流)の3つの対称分に分解して表現する方法である。
図2は、対称座標法を説明するための図である。
図2を参照して、図中の左辺は、三相交流系統の各相(a相,b相,c相)の相電流をI,I,Iとして、中性点Oを基準にベクトルとして表現したものである。そして、複素ベクトル平面において、ベクトルを反時計回りに120°だけ回転させるベクトルオペレータaを用いて、各相の相電流を3つの対称分(零相電流I,正相電流I,逆相電流I)に分解したものが図中の右辺である。ここで、ベクトルオペレータa=(−1+j√3)/2である(但し、jは虚数単位)。なお、図2において、相電流I,I,Iおよび対称分I,I,Iについては、複素ベクトルであることを明確にするため、その上部に「・」(ドット)を付し、以下同様とする。
ここで、正相電流Iは、負荷の大きさを示す電流である。一方、逆相電流Iは、負荷がいずれかの相に偏って不平衡となった場合において、その偏った相およびその偏り量を示す電流である。そのため、各相の負荷が互いに同一であれば、逆相電流Iは存在しない。
また、零相電流Iは、地絡故障などの電力系統から中性点を介して回路が形成される場合に生じる電流である。
上述のように、各相の相電流と3つの対称分とは互いに一義的に対応し、相互に変換することができる。相電流を対称分へ変換するための行列式を(1)式に示す。また、対称分を相電流へ変換するための行列式を(2)式に示す。
Figure 0004576315
Figure 0004576315
なお、多くの配電線における逆相電流は、正相電流の数〜10数%程度の大きさしかなく、相電流を演算して逆相電流の時間差分を算出する場合には、各相の相電流を計測する計器は、定格値に対して誤差が0.5%程度以内の計測精度を有するものが望ましい。
(発電機の連系に伴う逆相電流の変化)
図3は、発電機の連系に伴う電力系統100の電流変化を説明するための図である。
図3(a)は、線路中央集中負荷にて模擬した電力系統100の単線系統図である。
図3(b)は、図3(a)に示す電力系統100を対称座標法にて表した対称座標回路101である。
図3(c)は、図3(c)に示す対称座標回路101を逆相電流源を用いて、簡略化近似した近似逆相回路102である。
図3(a)を参照して、電力系統100は、上位発電機50と、送電線52と、変電所54と、配電線64と、分散型電源66とからなる。
上位発電機50は、送電線52を介して発電した電力を変電所54へ送出する。なお、上位発電機50は、送電線52を介して連系する1または2以上の発電機を一括したものである。
送電線52は、上位発電機50と変電所54とを接続し、上位発電機50で発生した電力を搬送する。
変電所54は、送電線52を介して上位発電機50から受けた電力を配電用電圧に変圧して、配電線64を介して各負荷へ供給する。そして、変電所54は、変圧器56と、遮断器58,62と、母線60とからなる。変圧器56は、送電線52と接続され、送電線52を介して受けた電力を配電用電圧に変圧して遮断器58へ出力する。遮断器58は、変圧器56と母線60との間に介挿され、母線60上で短絡などの電気的な故障が発生すると、故障電流を遮断する。母線60は、変圧器56および遮断器58を介して受けた電力を負荷へ分配するための回線接続および回線切換を行なうための電路である。遮断器62は、母線60と配電線64との間に介挿され、配電線64上で短絡などの電気的な故障が発生すると、故障電流を遮断する。
配電線64は、変電所54から送出される電力を搬送し、各負荷へ分配する。
分散型電源66は、探知対象である発電機70を含み、配電線64に接続されて電力系統100と連系する。また、発電機70は、発電コストや負荷量などに応じて、運転時間を管理される。そのため、発電機70の運転および停止に伴い、遮断器68は、発電機70を配電線64と連系し、または発電機70を配電線64から解列する。
また、配電線64に接続される負荷には、三相負荷および単相負荷が含まれる。三相負荷は、三相モータなどの三相電流を消費する負荷である。一方、単相負荷は、多くの家庭用電化製品などのように単相電流を消費する負荷である。単相電流は、三相交流の3相のうちいずれか2相の間を流れる電流、またはいずれか一相と中性点との間を流れる電流である。そのため、電力系統100から見れば、負荷へ不平衡電流を供給することになり、配電線64には逆相電流が発生する。
ところで、負荷が配電線64の中心に集中配置されるとみなし、この負荷が平衡三相負荷と単相負荷とを含むとする。そして、単相負荷が、対称座標法で基準としたa相ではない、b相−c相間にのみ配置されるとすると、対称座標回路は、それぞれ線路中心に集中配置された単相負荷を除く対称要素(三相電圧源と平衡三相負荷)で構成される正相回路および逆相回路を、互いに単相負荷を介して接続した形態の回路として表現できる。この対称座標回路101を、図3(b)に示す。
図3(b)を参照して、電力系統100の対称座標回路101は、上位発電機50の起電力Eと、上位系統の正相リアクタンスXs1と、配電線64の正相リアクタンスXL1と、平衡三相負荷Zと、発電機70の正相内部リアクタンスXg1と、発電機70の起電力Eとからなる正相回路、および、上位系統の逆相リアクタンスXs2と、配電線64の逆相リアクタンスXL2と、発電機70の逆相内部リアクタンスXg2とからなる逆相回路を含み、さらに、正相回路と逆相回路とを互いに結合する単相負荷Zを含む。
一般的な電力系統においては、系統電圧を一定範囲に保つように電源電圧が制御されており、発電機の起電力E、Eの変化範囲が小さいこと、および、線路の電圧降下や電力損失低減のために線路リアクタンスが小さく設定されていることから、逆相電流Iは、単相負荷Zの値に最も大きく依存する。
そこで、これを配電線64の電圧と無関係に逆相電流Iを流す一種の電流源である逆相電流吸入源80とみなす。したがって、近似逆相回路102では、上位発電機50から供給される逆相電流Is2と、発電機70から供給される逆相電流Ig2との和が負荷で生じる逆相電流Iとなる。
対称座標回路101では、上位発電機50の起電力Eに応じた正相電流Is1と、発電機70の起電力Eに応じた正相電流Ig1とが負荷へ供給される。そのため、遮断器68が投入されて、発電機70が配電線64に連系された瞬間には、発電機70の起電力Eに応じた正相電流Ig1だけ変化する。しかしながら、発電機70の起電力Eは、界磁電流を調整することで比較的自由に変更でき、また連系する際には起電力Eを系統電圧と概略一致させるため、正相電流Ig1の増加量は小さく、全く増加しない場合も想定される。したがって正相電流Ig1を観測することで、連系する発電機70を探知することはできない。
図3(c)を参照して、電力系統100の近似逆相回路102は、上位系統の逆相リアクタンスXs2と、配電線64の逆相リアクタンスXL2と、発電機70の逆相内部リアクタンスXg2と、逆相電流吸入源80とからなる。
逆相電流Iは、負荷で消費される不平衡電流により生じ、負荷の三相不平衡に最も大きく依存するため、配電線64の電圧と無関係に逆相電流Iを流す一種の電流源である逆相電流吸入源80とみなす。したがって、近似逆相回路102では、上位発電機50から供給される逆相電流Is2と、発電機70から供給される逆相電流Ig2との和が負荷で生じる逆相電流Iとなる。
そのため、遮断器68が投入されて、発電機70が配電線64に連系された瞬間には、発電機70から逆相電流Ig2が供給されるため、逆相電流Iが不変であれば、上位発電機50から供給される逆相電流Is2は、逆相電流Ig2だけ減少する。また、遮断器68が開放されて、発電機70が配電線64から解列された瞬間には、発電機70から供給される逆相電流Ig2が無くなるため、上位発電機50から供給される逆相電流Is2は、逆相電流Ig2だけ増加する。
よって、配電線64へ供給される逆相電流Ig2の時間的変化を観測することで、発電機70の連系または解列が発生したか否かを推定できる。これは、発電機の存在が知られていない電力系統において、逆相電流の時間的変化に基づく推定により、その電力系統に連系する発電機が探知できることを意味する。
たとえば、図3(a)および図3(c)を参照して、変電所54において、母線60から配電線64へ流れる電流を観測することで、電力系統100に連系する発電機70を探知できる。
なお、配電線64に接続される単相負荷は時々刻々と変化するため、逆相電流Iも時間的に変化する。そのため、発電機70が連系または解列されなくても、上位発電機50から供給される逆相電流Is2は、時間的に変化する。しかしながら、多くの単相負荷は小容量であり、また、互いの相関性も低いため、発電機70が連系または解列された瞬間の逆相電流Is2の変化量は、負荷の変動による逆相電流Is2の変化量より大きい。よって、負荷の変動により逆相電流Is2が変化したとしても、その影響を受けることなく、電力系統100に連系する発電機を探知することができる。
(しきい値の決定)
図1に示すしきい値演算部8は、発電機70が連系または解列されたと判断する、すなわち電力系統100に連系する発電機70を探知するためのしきい値を決定する。
再度、図3(c)を参照して、探知前においては、発電機70の存在は知られていないので、上位発電機50から配電線64へ供給される逆相電流Is2だけが観測可能である。
ここで、発電機70が連系すると、逆相電流Is2は発電機70が供給する逆相電流Ig2だけ減少し、発電機70が解列されると、逆相電流Is2は発電機70が供給していた逆相電流Ig2だけ増加する。
しかしながら、観測時点において発電機70が連系中であるのか、または解列中であるのかを知ることはできないので、その時点において観測された逆相電流Is2が増加するのか、または減少するのかを判断できない。いずれの場合についても逆相電流Is2の変化量を推定し、最適なしきい値を決定する。
(i)発電機70が解列中の場合
初期状態において発電機70が解列中であるとすると、発電機70が連系された瞬間において、逆相電流Is2は、発電機70が供給する逆相電流Ig2だけ減少する。したがって、初期状態において観測された逆相電流をIs2 (0)とすると、発電機70の連系中におけるキルヒホッフの法則に基づいて(3)式が成立する。
(Is2 (0)−Ig2)×(Xs2+XL2/2)=Ig2×(XL2/2+Xg2)・・・(3)
(3)式をIg2について解くと、(4)式が得られる。
g2=Is2 (0)×(Xs2+XL2/2)/(Xs2+XL2+Xg2)=ΔIs2 (1)・・・(4)
(ii)発電機70が連系中の場合
初期状態において発電機70が連系中であるとすると、発電機70が解列された瞬間において、逆相電流Is2は、発電機70が供給していた逆相電流Ig2だけ増加する。したがって、初期状態において観測された逆相電流をIs2 (0)とすると、発電機70の連系中におけるキルヒホッフの法則に基づいて(5)式が成立する。
s2 (0)×(Xs2+XL2/2)=Ig2×(XL2/2+Xg2)・・・(5)
(5)式をIg2について解くと、(6)式が得られる。
g2=Is2 (0)×(Xs2+XL2/2)/(XL2/2+Xg2)=ΔIs2 (2)・・・(6)
そして、(4)式および(6)式により導出された逆相電流Ig2の変化分ΔIs2 (1)およびΔIs2 (2)のうち、(7)式によりいずれか大きい方の値をしきい値ΔITHとして決定する。
ΔITH=max(ΔIs2 (1),ΔIs2 (2))・・・(7)
さらに、発電機および線路のリアクタンス値の誤差を考慮して、(8)式に示すように、(7)式に補正定数αを乗じてしきい値ΔITHとして決定してもよい。
ΔITH=α×max(ΔIs2 (1),ΔIs2 (2))・・・(8)
また、上位系統の逆相リアクタンスXs2は、観測点より上位側の電力系統に応じた値であり、かつ、配電線64の逆相リアクタンスXL2は、配電線64の線路長および線路径などに応じた値であるため、いずれも系統運用側にとって既知である。また、発電機70の逆相内部リアクタンスXg2は、探知対象とする最小の発電機の定格容量に応じて決まる。そこで、ユーザは、上位系統の逆相リアクタンスXs2、配電線64の逆相リアクタンスXL2および発電機70の逆相内部リアクタンスXg2をしきい値演算部8へ与える。
なお、電力系統における系統定数は、単位法(PU法)により表現されることが多く、また発電機の逆相内部リアクタンスは一般的に機器定格容量ベースで15%前後なので、たとえば、検知対象とする最小の発電機の定格容量を200[kVA]とすると、発電機70の逆相内部リアクタンスXg2を750%(10[MVA]ベース)に設定すればよい。
上述のような過程により決定されたしきい値を用いて、配電線64に連系する発電機70が存在するか否かを探知する。
(出力容量の決定装置)
図4は、実施の形態1に従う探知装置1を実現するコンピュータ20の概略構成図である。
図4を参照して、コンピュータ20には、マウス34と、キーボード36と、ディスプレイ38と、インターフェイス部(I/F)42と、計測部44とが接続される。そして、コンピュータ20は、それぞれバス40に接続された、CPU(Central Processing Unit)22と、オペレーティングシステムに送られたプログラムなどを記憶したROM(Read Only Memory)24と、実行されるプログラムをロードするための、およびプログラム実行中のデータを記憶するためのRAM(Random Access Memory)26と、ハードディスク(HDD)28と、CD−ROM(Compact Disc Read Only Memory)ドライブ30とを備える。CD−ROMドライブ30には、CD−ROM32が装着される。
マウス34およびキーボード36は、ユーザにより入力されたデータをコンピュータ20へ与える。
ディスプレイ38は、コンピュータ32で演算された結果などをユーザに対して表示する。
インターフェイス部42は、コンピュータ20のバス40に接続され、計測部44から受けたデータをバス40を介してCPU22などへ与える。
計測部44は、各相の相電流を検出する変流器(CT:Current Transformer)や相電圧を検出する電圧変成器(PT:Potential Transformer)などからのアナログ信号をアナログ・デジタル変換して、インターフェイス部42へ出力する。なお、実際の変電所では、それぞれの配電線に対して変流器や電圧変成器が既に配置されている場合も多く、それらの出力信号を利用することも可能である。
図5は、実施の形態1に従う連系する発電機を探知するプログラムのフローチャートである。
コンピュータ20は、CPU22が発電機を探知するプログラムを実行することにより、図5に示した各ステップの処理を行なう。
一般的にこのようなプログラムは、CD−ROM32などの記録媒体に記憶されて流通し、CD−ROMドライブ30などにより記録媒体から読取られてハードディスク28に一旦記憶される。さらにハードディスク28からRAM26に読出されてCPU22により実行される。
図5を参照して、CPU22は、計測部44を介して、相電流(三相分)および相電圧(一相分)を取得する(ステップS100)。そして、CPU22は、取得した相電流および相電圧に基づいて逆相電流を演算する(ステップS102)。
CPU22は、対象とする発電機の逆相内部リアクタンスおよび電力系統定数を受付ける(ステップS104)。ユーザは、探知対象とする発電機の逆相内部リアクタンス、観測点より上位系統の逆相リアクタンス、配電線の逆相リアクタンスを入力する。そして、CPU22は、演算した逆相電流と、入力された発電機の逆相内部リアクタンスおよび電力系統定数とに基づいて、逆相電流のしきい値を演算する(ステップS106)。
CPU22は、所定の周期に応じた時間が経過しているか否かを判断する(ステップS108)。所定の周期に応じた時間が経過していない場合(ステップS108においてNOの場合)には、CPU22は、所定の周期に応じた時間が経過するまで待つ(ステップS108)。所定の周期に応じた時間が経過している場合(ステップS108においてYESの場合)には、CPU22は、計測部44を介して、相電流(三相分)および相電圧(一相分)を取得する(ステップS110)。そして、CPU22は、取得した相電流および相電圧に基づいて逆相電流を演算する(ステップS112)。さらに、CPU22は、前回演算した逆相電流との時間差分を演算する(ステップS114)。
そして、CPU22は、演算した逆相電流の時間差分がしきい値を超過しているか否かを判断する(ステップS116)。しきい値を超過している場合(ステップS116においてYESの場合)には、CPU22は、観測している電力系統に発電機の連系または解列が発生したと判断する(ステップS118)。
しきい値を超過していない場合(ステップS116においてNOの場合)には、CPU22は、観測している電力系統に発電機の連系または解列が発生していないと判断する(ステップS120)。
そして、CPU22は、所定の観測期間が経過しているか否かを判断する(ステップS122)。所定の観測期間が経過していない場合(ステップS122においてNOの場合)には、ステップS108,S110,S112,S114,S116,S118,S120を繰返し実行する。
所定の観測期間が経過している場合(ステップS122においてYESの場合)には、CPU22は、観測している電力系統に発電機の連系または解列が発生したか否かに応じて、電力系統に連系する発電機の有無を出力する(ステップS124)。そして、CPU22は、処理を終了する。
(変形例)
実際の電力系統では、変電所内の同一の母線に対して複数の配電線が接続されることが多い。このように構成された複数の配電線はバンクと称される。そして、このバンク構成では、複数の配電線のそれぞれに不平衡負荷が接続されるため、それぞれの配電線に逆相電流が生じる。そこで、実施の形態1の変形例においては、バンク構成の電力系統におけるしきい値を決定する場合について説明する。
図6は、発電機の連系に伴うバンク構成の電力系統200内の電流変化を説明するための図である。
図6(a)は、電力系統200の単線系統図である。
図6(b)は、図6(a)に示す電力系統200を逆相電流源を用いて、簡略化近似した近似逆相回路202である。
図6(a)を参照して、電力系統200は、図3(a)に示す電力系統100において、変電所54を変電所72に代えたものである。
変電所72は、母線60に接続された3つの遮断器62を備え、それぞれ配電線64を介して、上位発電機50から受けた電力を負荷へ分配する。そして、1つの配電線64に分散型電源66および負荷(単相負荷および三相負荷)が接続され、他の2つの配電線64には、負荷(単相負荷および三相負荷)のみが接続される。
図6(b)を参照して、電力系統200の近似逆相回路202は、上位系統の逆相リアクタンスXs2と、配電線64の逆相リアクタンスXL2と、発電機70の逆相内部リアクタンスXg2と、逆相電流吸入源80,82とからなる。
逆相電流吸入源80は、分散型電源66が接続される配電線において生じる逆相電流Iと等価な電流源であり、逆相電流吸入源82は、分散型電源66が接続される配電線以外の配電線において生じる逆相電流を一括した逆相電流Ir2と等価な電流源である。
なお、実際には、分散型電源66が接続される配電線以外の配電線の逆相リアクタンスが存在するが、実施の形態1の変形例においては、その逆相リアクタンスの値を計測する必要がないので、図6(b)においては図示しない。
まず、遮断器68が投入されて、発電機70が配電線64に連系すると、発電機70から逆相電流Ig2(=Ig2’+Ig2”)が供給されるため、逆相電流吸入源80における逆相電流Iが一定であれば、変電所72から供給される逆相電流Is2は、発電機70から供給される逆相電流Ig2だけ減少する。また、遮断器68が開放されて、発電機70が配電線64から解列されると、発電機70から供給される逆相電流Ig2が無くなるため、変電所72から供給される逆相電流Is2は、逆相電流Ig2だけ増加する。
ここで、逆相電流Ig2’は、発電機70から逆相電流吸入源80へ供給される逆相電流であり、逆相電流Ig2”は、発電機70から逆相電流吸入源82へ供給される逆相電流である。逆相電流Ig2’および逆相電流Ig2”は、ベクトル量であるため、それぞれを求めた後に、重ね合わせの理に従ってベクトル演算を行ない、逆相電流Ig2を求める。
実施の形態1の変形例では、初期状態において、探知対象の配電線64へ供給される逆相電流Is2(観測点1)および上位発電機50から供給される逆相電流Ir2+Is2(観測点2)を観測することでしきい値を決定し、その後、探知対象の配電線64へ供給される逆相電流Is2(観測点1)を観測することで発電機70を探知する。
(i)発電機70が解列中の場合
初期状態において発電機70が解列中であるとすると、発電機70が連系された瞬間において、逆相電流吸入源80へ供給される逆相電流Ig2’および逆相電流吸入源82へ供給される逆相電流Ig2”が生じる。そのため、観測点1における逆相電流は、|Ig2’+Ig2”|だけ減少する。以下では、逆相電流Ig2’およびIg2”をそれぞれ導出する。
したがって、初期状態において観測点1で観測された逆相電流をIs2 (0)とすると、発電機70の連系中における逆相電流吸入源80についてのキルヒホッフの法則に基づいて(9)式が成立する。
g2’×(Xg2+XL2/2)=(I (0)−Ig2’)×(Xs2+XL2/2)・・・(9)
(9)式をIg2’について解くと、(10)式が得られる。
g2’=I (0)×(Xs2+XL2/2)/(X+XL2+Xg2)・・・(10)
また、初期状態において観測点2で観測された逆相電流をIr2 (0)+Is2 (0)とすると、検知対象の配電線以外の配電線において生じる逆相電流Ir2 (0)は、初期状態において観測点2で観測された逆相電流Ir2 (0)+Is2 (0)から観測点1で観測された逆相電流Is2 (0)をベクトル的に減算することで得られる。
そして、発電機70の連系中における逆相電流吸入源82についてのキルヒホッフの法則に基づいて(11)式が成立する。
g2”×(Xg2+XL2)=(Ir2 (0)−Ig2”)×Xs2・・・(11)
(11)式をIg2”について解くと、(12)式が得られる。
g2”=Ir2 (0)×Xs2/(X+XL2+Xg2)・・・(12)
したがって、観測点1における逆相電流の変化分ΔIs2 (1)は、(10)式および(12)式から、
ΔIs2 (1)=|Ig2|=|Ig2’+Ig2”|・・・(13)
となる。但し、Ig2’およびIg2”は、それぞれベクトル値であるので、ベクトル演算を行なう。
(ii)発電機70が連系中の場合
初期状態において発電機70が連系中であるとすると、発電機70が解列された瞬間において、逆相電流吸入源80へ供給されていた逆相電流Ig2’および逆相電流吸入源82へ供給されていた逆相電流Ig2”が消滅する。そのため、観測点1における逆相電流は、|Ig2’+Ig2”|だけ増加する。以下では、逆相電流Ig2’およびIg2”をそれぞれ導出する。
発電機70の連系中における逆相電流吸入源80についてのキルヒホッフの法則に基づいて(14)式が成立する。
g2’×(Xg2+XL2/2)=I (0)×(Xs2+XL2/2)・・・(14)
(14)式をIg2’について解くと、(15)式が得られる。
g2’=I (0)×(Xs2+XL2/2)/(XL2/2+Xg)・・・(15)
また、初期状態において発電機70が解列中である場合と同様に、逆相電流吸入源82についてのキルヒホッフの法則に基づいて(12)式が成立する。
したがって、観測点1における逆相電流の変化分ΔIs2 (2)は、(15)式および(12)式から、
ΔIs2 (2)=|Ig2|=|Ig2’+Ig2”|・・・(16)
となる。但し、Ig2’およびIg2”は、それぞれベクトル値であるので、ベクトル演算を行なう。
さらに、(13)式および(16)式により導出された逆相電流Ig2の変化分のうち、(17)式によりいずれか大きい方の値をしきい値ΔITHとして決定する。
ΔITH=max(ΔIs2 (1),ΔIs2 (2))・・・(17)
さらに、発電機および線路のリアクタンス値の誤差を考慮して、(18)式に示すように、(17)式に補正定数αを乗じてしきい値ΔITHとして決定してもよい。
ΔITh=α×max(ΔIs2 (1),ΔIs2 (2))・・・(18)
(適用例)
上述した探知装置1を模擬系統に適用した場合の効果を以下に示す。適用した模擬系統は、図6(a)に示すバンク構成の電力系統200とした。そして、電力系統200の変電所72内の観測点1における逆相電流Iを観測した。
適用例においては、10サイクル毎に平均化した各相の相電流を用いて、10サイクル毎に逆相電流Iを演算し、60サイクル前(6ステップ前)との時間差分ΔIを算出した。これは、平均化することで誤差を抑制するためである。また、上述の(18)式に基づいてしきい値を決定し、補正定数α=0.8とした。
図7は、模擬系統における逆相電流の時間差分ΔIを時間軸上に示したグラフである。
適用例においては、発電機を解列中から連系させた場合、発電機70を連系中から解列させた場合、および負荷変動だけを生じさせた場合の3通りについて、逆相電流の時間差分ΔIを観測した。なお、図7においては、発電機70を連系させた時点と発電機70を解列させた時点とが一致するようにプロットしている。
図7を参照して、発電機70を解列中から連系させた場合および発電機70を連系中から解列させた場合のいずれにおいても、瞬間的に大きな時間差分ΔIが生じている。一方、負荷変動だけを生じさせた場合においても、時間差分ΔIが生じているが、その値は、発電機70を連系または解列させた場合に比較して小さい。したがって、適切なしきい値を設定することで、電力系統に負荷変動が生じている場合であっても、発電機70の連系または解列を探知することができる。
図8は、模擬系統における逆相電流を複素ベクトル平面上に示したグラフである。
図8を参照して、発電機70を解列中から連系させた場合および発電機70を連系中から解列させた場合のいずれにおいても、有効分および無効分が大きく変化している。これは、上位発電機50および発電機70から供給される逆相電流の分担比が変化するためである。一方、負荷変動だけを生じさせた場合においては、その変化分は、発電機70を連系または解列させた場合に比較して小さい。そのため、電力系統に負荷変動が生じている場合であっても、発電機70の連系または解列を探知することができる。
したがって、図7および図8に示す結果から、電力系統に連系する発電機70を探知することができる。
この発明の実施の形態1によれば、配電線を流れる相電流を計測し、その計測した相電流から演算される逆相電流の時間差分が所定のしきい値を超過するか否かに基づいて、連系する発電機の存在を探知する。相電流は、多くの変電所に配置されている変流器や電圧変成器などを利用して容易に計測できるため、特別な計測手段などを用いることなく、電力系統に連系する発電機を容易に探知することができる。
また、複数の配電線が共通の母線に接続されるバンク構成を有する電力系統においても、配電線毎の相電流を計測することで、連係する発電機を配電線単位で探知することができる。よって、多くの配電線から構成される複雑な電力系統においても、連系する発電機を把握することができる。
[実施の形態2]
上述の実施の形態1においては、変電所における逆相電流を観測し、その逆相電流が流れる配電線に連系する発電機が存在するか否かを探知する方法について説明した。一方、実施の形態2においては、発電機が配電線のいずれの区間に存在するかを探知する方法について説明する。
図9は、実施の形態2に従う連系する発電機の探知方法を説明するための図である。
図9(a)は、適用対象の電力系統300の概略構成図である。
図9(b)は、図9(a)に示す電力系統300の観測点1における逆相電流の時間差分の時間波形である。
図9(c)は、図9(a)に示す電力系統300の観測点2における逆相電流の時間差分の時間波形である。
図9(d)は、図9(a)に示す電力系統300の観測点3における逆相電流の時間差分の時間波形である。
図9(e)は、図9(a)に示す電力系統300の観測点4における逆相電流の時間差分の時間波形である。
図9(f)は、図9(a)に示す電力系統300の観測点5における逆相電流の時間差分の時間波形である。
図9(a)を参照して、2つの配電線64が共通の母線60に接続されるバンク構成となっている電力系統300において、発電機70が遮断器68を介して1つの配電線64に連系するとする。すると、遮断器68の投入または開放に伴い、発電機70が連系または解列された瞬間において逆相電流が変化する。このとき、図9(a)に示す観測点1〜5における逆相電流の時間差分の時間波形は、それぞれ図9(b)〜図9(f)となる。
図9(b)〜図9(f)を参照して、発電機70が連系する連系点より上位発電機50側の観測点1〜3においてのみ逆相電流に変化が生じていることがわかる。そこで、図9(a)に示す配電線64において負荷A,B,Cを想定し、各負荷へ供給される逆相電流の変化について説明する。
図9(a)に示す配電線64における負荷Aについてみると、上位発電機50から供給される逆相電流IS2 および発電機70から供給される逆相電流Ig2 が存在する。この逆相電流IS2 および逆相電流Ig2 は、互いに流れる向きが反対となるので、観測点1において観測される逆相電流は、発電機70の連系または解列により少なくとも逆相電流Ig2 分の変化が生じる。同様にして、負荷Bについても逆相電流Ig2 が存在するため、観測点2および3において観測される逆相電流は、発電機70の連系または解列により変化が生じる。
一方、負荷Cについてみると、上位発電機50から供給される逆相電流IS2 および発電機70から供給される逆相電流Ig2 は、互いに流れる向きが同一であるので、観測点3において観測される逆相電流は、負荷Cに供給される全体の逆相電流となる。すなわち、発電機70が連系または解列されると、負荷Cに供給される全体の逆相電流のうち、上位発電機50と発電機70との供給比率が変化するだけで、観測値は変化しない。
また、負荷Cと同様に、発電機70が連系されない配電線64に対しても、上位発電機50から供給される逆相電流および発電機70から供給される逆相電流が存在し、かつ、互いに流れ向きが同一である。そのため、観測点5において観測される逆相電流は、配電線64に供給される全体の逆相電流となり、発電機70の連系または解列にかかわらずその値は一定値となる。
上述のように、探知対象の発電機70より上位発電機50側、すなわち上位電源系統側に存在する観測点においてのみ、発電機70の連系または解列に伴う逆相電流の変化が生じる。したがって、配電線64の複数の観測点における逆相電流を同時に観測し、逆相電流の変化分が生じる観測点とその下位側(系統末端側)に隣接する観測点との間に検知対象の発電機70が存在すると判断できる。
さらに、配電線64上には、各需要者へ電力を供給するための引込線分岐部が配置されるので、それぞれの引込線分岐部の上位側および下位側を同時に観測することで、上位側でのみ逆相電流の変化を観測すれば、当該引込線分岐部を介して接続される需要者の構内に発電機70が存在すると探知できる。また、上位側および下位側のいずれにおいても逆相電流の変化を観測すれば、より下位側の引込線分岐部を介して接続される需要者の構内に発電機70が存在すると判断できる。
図10は、実施の形態2に従う連系する発電機を探知するプログラムのフローチャートである。なお、図4に示すコンピュータ20における計測部44は、n個の観測点に流れる電流を観測し、各観測点は、上位電源系統側から観測点1,2,・・・,nの順で配置される。
図10を参照して、CPU22は、計測部44を介して、観測点1,2,・・・,nのそれぞれにおける相電流(三相分)および相電圧(一相分)を取得する(ステップS200)。そして、CPU22は、取得した相電流および相電圧に基づいて、観測点1,2,・・・,nのそれぞれにおける逆相電流を演算する(ステップS202)。
CPU22は、図5に示すステップS104およびS106と同様の処理を行ない、観測点1,2,・・・,nのそれぞれにおける逆相電流のしきい値を演算する(ステップS204)。
まず、CPU22は、所定の周期に応じた時間が経過しているか否かを判断する(ステップS206)。所定の周期に応じた時間が経過していない場合(ステップS206においてNOの場合)には、CPU22は、所定の周期に応じた時間に到達するまで待つ(ステップS206)。所定の周期に応じた時間が経過していない場合(ステップS206においてYESの場合)には、CPU22は、計測部44を介して、観測点1,2,・・・,nのそれぞれにおける相電流(三相分)および相電圧(一相分)を取得する(ステップS208)。そして、CPU22は、取得した相電流および相電圧に基づいて、観測点1,2,・・・,nのそれぞれにおける逆相電流を演算する(ステップS210)。さらに、CPU22は、観測点1,2,・・・,nのそれぞれにおいて前回演算した逆相電流との時間差分を演算する(ステップS212)。
そして、CPU22は、変数kの初期値を1として(ステップS214)、観測点1における逆相電流の時間差分がしきい値を超過しているか否かを判断する(S216)。観測点1における逆相電流の時間差分がしきい値を超過していない場合(ステップS216においてNOの場合)には、CPU22は、ステップS216においてYESとなるまで、ステップS206,S208,S210,S212,S214およびS216を繰返し実行する。
観測点1における逆相電流の時間差分がしきい値を超過している場合(ステップS216においてYESの場合)には、CPU22は、変数kに1を加算して(ステップS218)、観測点kにおける逆相電流の時間差分がしきい値を超過しているか否かを判断する(ステップS220)。以下、CPU22は、ステップS220においてNOとなるまで、ステップS218およびS220を繰返し実行する。
観測点kにおける逆相電流の時間差分がしきい値を超過していない場合(ステップS220においてNOの場合)には、CPU22は、そのときの観測点kと上位電源系統側に隣接する観測点k−1との間に発電機が存在すると判断する(ステップS222)。そして、CPU22は、ディスプレイ38などにその位置を表示し、処理を終了する。
この発明の実施の形態2によれば、配電線の複数の地点における相電流を計測して逆相電流を演算し、さらに、その複数の地点の各々において、その演算した逆相電流が所定のしきい値を超過するか否かを判断する。そして、配電線上において、所定のしきい値を超過する地点と、所定のしきい値を超過しない地点との間の区間に連系される発電機が存在すると検知する。よって、発電機が連系される配電線を探知した後に、さらにその配電線のいずれの区間に発電機が連系されるかを探知することができるため、発電機を連係する需要者を特定することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
実施の形態1に従う探知装置の機能ブロックの機能ブロック図である。 対称座標法を説明するための図である。 発電機の連系に伴う電力系統の電流変化を説明するための図である。 実施の形態1に従う探知装置を実現するコンピュータ20の概略構成図である。 実施の形態1に従う連系する発電機を探知するプログラムのフローチャートである。 発電機の連系に伴うバンク構成の電力系統内の電流変化を説明するための図である。 模擬系統における逆相電流の時間差分を時間軸上に示したグラフである。 模擬系統における逆相電流を複素ベクトル平面上に示したグラフである。 実施の形態2に従う連系する発電機の探知方法を説明するための図である。 実施の形態2に従う連系する発電機を探知するプログラムのフローチャートである。
符号の説明
1 探知装置、4 対称座標演算部、6 時間差分演算部、8 しきい値演算部、10 比較判定部、20 コンピュータ、22 CPU、24 ROM、26 RAM、28 ハードディスク(HDD)、30 ドライブ、32 コンピュータ、34 マウス、36 キーボード、38 ディスプレイ、40 バス、42 インターフェイス部(I/F)、44 計測部、50 上位発電機、52 送電線、54,72 変電所、56 変圧器、58,62,68 遮断器、60 母線、64 配電線、66 分散型電源、70 発電機、80,82 逆相電流吸入源、100,200,300 電力系統、101 対称座標回路、102,202 近似逆相回路、a ベクトルオペレータ、E,E 起電力、I 零相電流、I,Ig1,Is1 正相電流、I,Ig2’ Ig2”,Ig2 ,Ig2 ,Ig2 ,Ir2,Is2,IS2 ,IS2 逆相電流、I,I,I 相電流、Xg1 正相内部リアクタンス、Xg2 逆相内部リアクタンス、XL1,Xs1 正相リアクタンス、XL2,Xs2 逆相リアクタンス、Z 正相インピーダンス、Z 平衡三相負荷、Z 単相負荷、α 補正定数、ΔI 時間差分、ΔIs2 (1),ΔIs2 (1) 変化分、ΔITH しきい値。

Claims (8)

  1. 三相交流系統において電路に接続されて連系する発電機を探知する方法であって、
    前記電路を流れる三相分の相電流を計測する計測ステップと、
    前記計測ステップにおいて計測された相電流から逆相電流を演算する第1の演算ステップと、
    前記第1の演算ステップにおいて演算された逆相電流の時間的変化を演算する第2の演算ステップと、
    前記第2の演算ステップにおいて演算された逆相電流が所定の時間的変化を有するか否かを判断し、前記逆相電流が所定の時間的変化を有すれば、前記電路に連系する発電機が存在すると探知する探知ステップとからなる、連系する発電機を探知する方法。
  2. 前記逆相電流の変化は、発電機が前記電路と連系または解列することで生じる、請求項1に記載の連系する発電機を探知する方法。
  3. 前記第2の演算ステップは、時間的変化として所定の期間毎に前記逆相電流の時間差分を演算する、請求項1または2に記載の連系する発電機を探知する方法。
  4. 前記探知ステップは、前記逆相電流の時間差分が所定のしきい値を超過するか否かを判断するステップを含む、請求項3に記載の連系する発電機を探知する方法。
  5. 探知対象の発電機に係る定数および前記三相交流系統に係る定数を受付ける受付ステップと、
    前記受付ステップにおいて受付けた定数と、前記第1の演算ステップにおいて演算された逆相電流とに基づいて、前記しきい値を決定するしきい値決定ステップとをさらに有する、請求項4に記載の連系する発電機を探知する方法。
  6. 前記計測ステップは、さらに、前記電路の複数の地点を流れる三相分の相電流を同時に計測し、
    前記第1の演算ステップは、さらに、前記電路の複数の地点の各々における逆相電流を演算し、
    前記第2の演算ステップは、さらに、前記電路の複数の地点の各々における逆相電流の時間的変化を演算し、
    前記探知ステップは、前記電路の複数の地点の各々における逆相電流の時間的変化が所定の時間的変化を有するか否かを判断し、前記複数の地点の各々における前記時間的変化の有無に基づいて、前記電路において発電機が接続される区間を特定する区間特定ステップをさらに含む、請求項1〜5のいずれか1項に記載の連系する発電機を探知する方法。
  7. 前記区間特定ステップは、前記電路上に配置された複数の地点のうち、前記逆相電流が所定の時間的変化を有する地点と、前記逆相電流が所定の時間的変化を有しない地点との間の区間において、発電機が接続されると特定する、請求項に記載の連系する発電機を探知する方法。
  8. 請求項1〜7のいずれか1項に記載の連系する発電機を探知する方法をコンピュータに実行させるためのプログラム。
JP2005298784A 2005-10-13 2005-10-13 連系する発電機を探知する方法およびそのプログラム Expired - Fee Related JP4576315B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005298784A JP4576315B2 (ja) 2005-10-13 2005-10-13 連系する発電機を探知する方法およびそのプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005298784A JP4576315B2 (ja) 2005-10-13 2005-10-13 連系する発電機を探知する方法およびそのプログラム

Publications (2)

Publication Number Publication Date
JP2007110829A JP2007110829A (ja) 2007-04-26
JP4576315B2 true JP4576315B2 (ja) 2010-11-04

Family

ID=38036239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005298784A Expired - Fee Related JP4576315B2 (ja) 2005-10-13 2005-10-13 連系する発電機を探知する方法およびそのプログラム

Country Status (1)

Country Link
JP (1) JP4576315B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5442282B2 (ja) * 2009-03-12 2014-03-12 株式会社日立製作所 発電機出力の推定方法および装置
JP5222211B2 (ja) * 2009-04-14 2013-06-26 一般財団法人電力中央研究所 発電機の運転状態検出方法および装置
JP5476848B2 (ja) * 2009-08-10 2014-04-23 東京電力株式会社 太陽光発電量予測方法および実負荷予測方法、並びに配電系統制御システム
JP5222261B2 (ja) * 2009-09-25 2013-06-26 一般財団法人電力中央研究所 分散形電源の運転状態判別方法および装置並びに運転状態判別プログラム
JP7215226B2 (ja) * 2019-02-28 2023-01-31 東京電力ホールディングス株式会社 接続相推定装置、接続相推定プログラム及び接続相推定方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088963A (ja) * 2002-08-28 2004-03-18 Mitsubishi Electric Corp 配電系統における分散型電源の連系状態推定方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088963A (ja) * 2002-08-28 2004-03-18 Mitsubishi Electric Corp 配電系統における分散型電源の連系状態推定方法

Also Published As

Publication number Publication date
JP2007110829A (ja) 2007-04-26

Similar Documents

Publication Publication Date Title
US8775104B2 (en) Method and system for protecting an electrical power transmission network
US8823307B2 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
JP7006237B2 (ja) 電力供給システムの保護装置を備えたシステム
JP4231849B2 (ja) 単独運転検出方法および単独運転検出装置
EP2097961A1 (en) Power supply monitoring system
JP4576315B2 (ja) 連系する発電機を探知する方法およびそのプログラム
US20120081817A1 (en) Arrangement For Protecting Equipment Of A Power System
US6760670B2 (en) Crossover fault classification for power lines with parallel circuits
JP4599120B2 (ja) 電気設備の絶縁監視装置と方法
Taft Fault intelligence: distribution grid fault detection and classification
US6738719B2 (en) Crossover fault classification for power lines with parallel circuits
JP4892914B2 (ja) 充電電流測定方法および充電電流測定プログラム
JP6315829B2 (ja) 断線区間特定システム、および、断線区間特定方法
US20030074146A1 (en) Crossover fault classification for power lines with parallel circuits
JP5903143B1 (ja) 断線検出装置およびその方法
US6741943B2 (en) Crossover fault classification for power lines with parallel circuits
US6721670B2 (en) Crossover fault classification for power lines with parallel circuits
KR101144278B1 (ko) 계기용 변성기 보호용 단자대
US20230280415A1 (en) Detection of a failure condition in a three-phase electrical asset
KR20050010097A (ko) 계통 연계 분산 전원의 단독운전 판단 방법
Lepadat et al. Considerations on the unbalance regime of the three-phase consumers
Estima et al. Real-time Condition Monitoring of Grounding Transformers
CN118169506A (zh) 电缆线路故障的检测方法、装置、电子设备和存储介质
Kotharkar et al. Grid connection to CPP in a deregulated electricity market: A case study related to fault current levels
CN114597852A (zh) 用于检测低压三相网络中故障的方法和系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees