JP4571390B2 - 難燃性芳香族ポリカーボネート樹脂組成物 - Google Patents

難燃性芳香族ポリカーボネート樹脂組成物 Download PDF

Info

Publication number
JP4571390B2
JP4571390B2 JP2003384757A JP2003384757A JP4571390B2 JP 4571390 B2 JP4571390 B2 JP 4571390B2 JP 2003384757 A JP2003384757 A JP 2003384757A JP 2003384757 A JP2003384757 A JP 2003384757A JP 4571390 B2 JP4571390 B2 JP 4571390B2
Authority
JP
Japan
Prior art keywords
component
weight
polycarbonate resin
resin composition
aromatic polycarbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003384757A
Other languages
English (en)
Other versions
JP2005146100A (ja
Inventor
秀則 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Chemicals Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP2003384757A priority Critical patent/JP4571390B2/ja
Publication of JP2005146100A publication Critical patent/JP2005146100A/ja
Application granted granted Critical
Publication of JP4571390B2 publication Critical patent/JP4571390B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、難燃性ポリカーボネート樹脂組成物およびその成形品に関する。更に詳しくは有機ハロゲン系難燃剤およびリン酸エステル系難燃剤を実質的に含有しなくとも良好な難燃性を有し、更には剛性、高温成形時の成形品外観、およびハウジング成形品において重視される面衝撃強度に優れた難燃性芳香族ポリカーボネート樹脂組成物およびその成形品、殊にOA機器のハウジングに関する。
芳香族ポリカーボネート樹脂は、優れた機械的特性、寸法精度、電気特性などを有し、エンジニアリングプラスチックとして電気・電子機器分野、自動車分野、OA機器分野などさまざまな分野において幅広く使用されている。そしてこれらの用途の中でもOA機器分野、電子・電気機器分野については、概して樹脂材料に難燃性が求められる。
これらの要望に応えるために、有機ハロゲン系難燃剤やリン酸エステル系難燃剤を配合した難燃性芳香族ポリカーボネート樹脂が広く使用されている(非特許文献1参照)。しかしながら、有機ハロゲン系難燃剤およびリン酸エステル系難燃剤のいずれにおいても、かかる難燃剤を配合した樹脂組成物は、万一燃焼したりもしくは焼却処理(サーマルリサイクル)された場合、または埋め立て廃棄された場合の環境への影響が問題視される場合がある。これらの難燃剤はかかる環境面での懸念を除けば、それぞれ他に替え難い特性を有していることから、容易に置き換え可能なものではない。しかしながら、他の特性は製品設計などによって補完しても、これらの難燃剤を実質的に使用することない難燃性樹脂材料を使用する動きも広がりつつある。
これに対して、シリコーン化合物や有機金属塩化合物を使用した難燃性芳香族ポリカーボネート樹脂組成物も従来より提案されている。例えば芳香族ポリカーボネート樹脂に有機アルカリ(土類)金属塩およびフッ素化ポリオレフィンを配合した難燃性ポリカーボネート樹脂組成物は公知である(特許文献1参照)。ポリカーボネート樹脂に特定の粘度を有するシリコーンワニスと有機スルホン酸金属塩を含んでなる難燃性ポリカーボネート樹脂は公知である(特許文献2参照)。ポリカーボネート樹脂に主鎖が分岐構造でかつ芳香族基を有するシリコーン化合物、および芳香族硫黄化合物の金属塩、更に繊維形成型の含フッ素ポリマーを含んでなる難燃性ポリカーボネート樹脂は公知である(特許文献3参照)。
しかしながら、OA機器や電子・電気機器分野においては、薄肉軽量化が進んでいることから高剛性が要求される場合が多く、更には特にハウジング成形品においては、十分な面衝撃強度、良好な外観や色相、反り変形の低減、長期特性(例えば耐湿熱性)、およびリサイクル性などがより強く要求されるようになっている。上記のポリカーボネート樹脂組成物は、これらの要求を十分に考慮したものではなかった。
またポリカーボネート樹脂に炭素数6〜20のアルキル基を有するアルコキシシランおよびパーフルオロアルキルスルホン酸アルカリ金属塩などの有機ブレンステッド酸のアルカリ金属塩を配合した難燃性のポリカーボネート樹脂組成物は公知である(特許文献4参照)。更に該樹脂組成物にガラス繊維や他の充填材を含んでよいことも公知である。しかしながるかかる樹脂組成物においても上記の要求を十分に満足するものとは言い難い。
アルコキシシラン化合物と無機充填材とを併用した芳香族ポリカーボネート樹脂組成物が良好な熱安定性を有することは公知であり(特許文献5参照)、更に芳香族ポリカーボネート樹脂、パーフルオロスルホン酸アルカリ金属塩、特定のアルキルアルコキシシラン、タルク、およびフィブリル形成能を有するポリテトラフルオロエチレンからなる樹脂組成物は公知である(特許文献6参照)。しかしながらかかる特許文献6の樹脂組成物でさえ、特にハウジング成形品に要求される上記要求を十分に満足するためには、更なる改良が必要であった。
「ポリカーボネート樹脂ハンドブック」(141頁6行〜143頁5行)(本間精一編、日刊工業新聞社発行、1992年) 特開昭51−45159号公報 特開平11−263903号公報 特開平11−217494号公報 特開平8−208970号公報 特開平6−322249号公報 特開2002−294063号公報
本発明の目的は、有機ハロゲン系難燃剤やリン酸エステル系難燃剤を実質的に含有しなくとも、良好な難燃性を有し、更には剛性、高温成形時の外観や色相、面衝撃強度、および長期特性(例えば耐湿熱性)に優れ、更に好適には低反り性やリサイクル性に優れた難燃性芳香族ポリカーボネート樹脂組成物を提供することにある。
本発明者はかかる目的を達成すべく、鋭意検討したところ、上記特許文献6の発明において十分に検討されていない特定のシラン化合物、スルホン酸アルカリ(土類)金属塩、および珪酸塩鉱物との組み合わせ、並びに該金属塩と珪酸塩鉱物との組成割合が、成形品外観および色相と、長期特性とを両立し、かつ良好な面衝撃強度を得るに重要であることを見出し、更に検討を進め本発明を完成するに至った。
本発明は、(1)芳香族ポリカーボネート樹脂(A成分)100重量部、珪酸塩鉱物(B成分)1〜50重量部(b重量部とする)、スルホン酸アルカリ(土類)金属塩(C成分)c重量部、および下記式(1)で表わされるシラン化合物(D成分)0.05〜5重量部からなる樹脂組成物であって、前記b(重量部)およびc(重量部)は、下記式(I)を満足する難燃性芳香族ポリカーボネート樹脂組成物にかかるものである。
0.008 ≦ c ≦b/100 (I)
Figure 0004571390
(ここで式(1)中、Xは水素原子、ハロゲン原子、およびRO(Rは炭素数1〜8のアルキル基を示し、該アルキル基はヘテロ原子を含有してよい)のいずれかを示し、Rは炭素数4〜30であり、フッ素原子で置換されてもよいアルキル基を示し、Rは炭素数1〜3であり、ハロゲン原子で置換されてもよいアルキル基を示し、mおよびnはそれぞれ1、2または3であり、4−(m+n)は0、1または2であり、X、R、およびRがそれぞれ複数存在するときは、それらは互いに同一であっても異なっていてもよい。)
かかる構成(1)によれば、良好な難燃性を有し、更には剛性、高温成形時の外観や色相、面衝撃強度、および長期特性(例えば耐湿熱性)に優れた難燃性芳香族ポリカーボネート樹脂組成物が提供される。
本発明の好適な態様の1つは、(2)更にA成分100重量部当たり、含フッ素滴下防止剤(E成分)0.01〜1重量部を含有してなる上記構成(1)の難燃性芳香族ポリカーボネート樹脂組成物である。特にハウジング成形品においては、UL規格94の垂直燃焼試験におけるV−0ランクが要求される場合が多い。かかるV−0ランクを達成するためには溶融滴下(ドリップ)の防止が必要とされ、かかる防止にはポリカーボネート樹脂の分子量向上、分岐ポリカーボネート樹脂や超高分子量ポリカーボネート樹脂の配合、並びに含フッ素ポリマーからなるドリップ防止剤(含フッ素滴下防止剤)の配合などの処方が代表的に例示される。しかしこれらの中でも、特にC成分の相乗的効果による難燃性が発揮され、また樹脂組成物の成形加工性に対する影響が少ない点において含フッ素滴下防止剤が好ましい。したがってかかる構成(2)によれば、成形加工性を維持しつつ更に良好な難燃性を有する上記の難燃性芳香族ポリカーボネート樹脂組成物が提供される。
本発明の好適な態様の1つは、(3)前記b(重量部)が0.008≦b/1500を満足するとき、上記式(I)に加えて更に下記式(II)を満足する前記構成(1)〜(2)の難燃性芳香族ポリカーボネート樹脂組成物である。
b/1500 ≦ c (II)
かかる構成(3)によれば、より難燃性、成形品の色相、および耐湿熱性のバランスに優れた上記難燃性芳香族ポリカーボネート樹脂組成物が提供される。
本発明の好適な態様の1つは、(4)上記B成分は、マイカ、タルクおよびワラストナイトから選ばれる少なくとも1種の珪酸塩鉱物である上記構成(1)〜(3)の難燃性芳香族ポリカーボネート樹脂組成物である。かかる構成(4)によれば、更に低反り性に優れ、また上記E成分の効果が十分に発揮されることにより難燃性に優れた上記難燃性芳香族ポリカーボネート樹脂組成物が提供される。
本発明の好適な態様の1つは、(5)更にA成分100重量部当たり、液晶ポリエステル(F成分)1〜30重量部含有してなる前記(1)〜(4)の難燃性芳香族ポリカーボネート樹脂組成物である。A成分〜D成分からなる樹脂組成物は、良好な耐熱性を有する一方で、流動性に関しては更に改良されることが望ましい場合がある。かかる改良については各種の流動改質剤の配合が考えられるが、良好な耐衝撃性を維持する必要性から芳香族ポリカーボネート樹脂の分子量を低下させる処方には限界があり、一方、各種の可塑剤を配合すると耐熱性がある程度犠牲となる。また通常配合される化合物は難燃性を悪化させる場合が多い。本発明においては更に液晶ポリエステルを配合すると、A成分〜D成分からなる樹脂組成物が有する特性を著しく低下させることなく許容される範囲において維持し、かつ流動性を改良できることも見出した。したがって、かかる構成(5)によれば、その良好な難燃性、耐熱性、および低反り性を維持しつつ、成形加工性および剛性により優れた上記上記難燃性芳香族ポリカーボネート樹脂組成物が提供される。
本発明の好適な態様の1つは、(6)上記構成(1)〜(5)の難燃性芳香族ポリカーボネート樹脂組成物から形成されたハウジング成形品である。既に記載のとおり、本発明は特にハウジング成形品に要求される各種の特性を満足するものであり、したがってかかる構成(6)によれば、有機ハロゲン系難燃剤やリン酸エステル系難燃剤を実質的に含有しなくとも、良好な難燃性を有し、更には剛性、高温成形時の外観や色相、面衝撃強度、および長期特性(例えば耐湿熱性)に優れ、更に好適には低反り性やリサイクル性に優れた難燃性芳香族ポリカーボネート樹脂組成物からなるハウジング成形品が提供される。
以下、更に本発明の詳細について説明する。
(A成分:芳香族ポリカーボネート樹脂)
本発明でA成分として使用される芳香族ポリカーボネート樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。
ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’−ビフェノール、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、4,4’−(p−フェニレンジイソプロピリデン)ジフェノール、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、ビス(4−ヒドロキシフェニル)オキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、ビス(4−ヒドロキシフェニル)エステル、ビス(4−ヒドロキシ−3−メチルフェニル)スルフィド、9,9−ビス(4−ヒドロキシフェニル)フルオレンおよび9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4−ヒドロキシフェニル)アルカンであり、なかでも耐衝撃性の点からビスフェノールAが特に好ましく、汎用されている。
本発明では、汎用のポリカーボネートであるビスフェノールA系のポリカーボネート以外にも、他の2価フェノール類を用いて製造した特殊なポリカーボネ−トをA成分として使用することが可能である。
例えば、2価フェノール成分の一部又は全部として、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称することがある)、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン(以下“Bis−TMC”と略称することがある)、9,9−ビス(4−ヒドロキシフェニル)フルオレン及び9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン(以下“BCF”と略称することがある)を用いたポリカーボネ−ト(単独重合体又は共重合体)は、吸水による寸法変化や形態安定性の要求が特に厳しい用途に適当である。これらのBPA以外の2価フェノールは、該ポリカーボネートを構成する2価フェノール成分全体の5モル%以上、特に10モル%以上、使用するのが好ましい。
殊に、高剛性かつより良好な耐加水分解性が要求される場合には、樹脂組成物を構成するA成分が次の(1)〜(3)の共重合ポリカーボネートであるのが特に好適である。
(1)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBCFが20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
(2)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPAが10〜95モル%(より好適には50〜90モル%、さらに好適には60〜85モル%)であり、かつBCFが5〜90モル%(より好適には10〜50モル%、さらに好適には15〜40モル%)である共重合ポリカーボネート。
(3)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBis−TMCが20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
これらの特殊なポリカーボネートは、単独で用いてもよく、2種以上を適宜混合して使用してもよい。また、これらを汎用されているビスフェノールA型のポリカーボネートと混合して使用することもできる。
これらの特殊なポリカーボネートの製法及び特性については、例えば、特開平6−172508号公報、特開平8−27370号公報、特開2001−55435号公報及び特開2002−117580号公報等に詳しく記載されている。
なお、上述した各種のポリカーボネートの中でも、共重合組成等を調整して、吸水率及びTg(ガラス転移温度)を下記の範囲内にしたものは、ポリマー自体の耐加水分解性が良好で、かつ成形後の低反り性においても格段に優れているため、形態安定性が要求される分野では特に好適である。
(i)吸水率が0.05〜0.15%、好ましくは0.06〜0.13%であり、かつTgが120〜180℃であるポリカーボネート、あるいは
(ii)Tgが160〜250℃、好ましくは170〜230℃であり、かつ吸水率が0.10〜0.30%、好ましくは0.13〜0.30%、より好ましくは0.14〜0.27%であるポリカーボネート。
ここで、ポリカーボネートの吸水率は、直径45mm、厚み3.0mmの円板状試験片を用い、ISO62−1980に準拠して23℃の水中に24時間浸漬した後の水分率を測定した値である。また、Tg(ガラス転移温度)は、JIS K7121に準拠した示差走査熱量計(DSC)測定により求められる値である。
カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。
前記二価フェノールとカーボネート前駆体を界面重合法によって芳香族ポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明の芳香族ポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環族を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環族を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られた芳香族ポリカーボネート樹脂の2種以上を混合した混合物であってもよい。
分岐ポリカーボネート樹脂は、本発明の難燃性芳香族ポリカーボネート樹脂組成物の有するドリップ防止能をさらに相乗的に改善可能であるため、その使用は好ましい。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。
分岐ポリカーボネート樹脂中の多官能性化合物の割合は、芳香族ポリカーボネート樹脂全量中、0.001〜1モル%、好ましくは0.005〜0.9モル%、より好ましくは0.01〜0.8モル%、特に好ましくは0.05〜0.4モル%である。また特に溶融エステル交換法の場合、副反応として分岐構造が生ずる場合があるが、かかる分岐構造量についても、芳香族ポリカーボネート樹脂全量中、前記した範囲であることが好適である。なお、かかる分岐構造量についてはH−NMR測定により算出することが可能である。
脂肪族の二官能性のカルボン酸は、α,ω−ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環族ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環族ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、およびトリシクロデカンジメタノールなどが例示される。
さらにポリオルガノシロキサン単位を共重合した、ポリカーボネート−ポリオルガノシロキサン共重合体の使用も可能である。
界面重合法による反応は、通常二価フェノールとホスゲンとの反応であり、酸結合剤および有機溶媒の存在下に反応させる。酸結合剤としては例えば水酸化ナトリウムや水酸化カリウムなどのアルカリ金属水酸化物、ピリジンなどが用いられる。
有機溶媒としては例えば塩化メチレン、クロロベンゼンなどのハロゲン化炭化水素が用いられる。
また、反応促進のために例えば第三級アミンや第四級アンモニウム塩などの触媒を用いることができ、分子量調節剤として例えばフェノール、p−tert−ブチルフェノール、p−クミルフェノールなどの単官能フェノール類を用いるのが好ましい。さらに単官能フェノール類としては、デシルフェノール、ドデシルフェノール、テトラデシルフェノール、ヘキサデシルフェノール、オクタデシルフェノール、エイコシルフェノール、ドコシルフェノールおよびトリアコンチルフェノールなどを挙げることができる。これらの比較的長鎖のアルキル基を有する単官能フェノール類は、流動性や耐加水分解性の向上が求められる場合に有効である。
反応温度は通常0〜40℃、反応時間は数分〜5時間、反応中のpHは通常10以上に保つのが好ましい。
溶融エステル交換法による反応は、通常二価フェノールと炭酸ジエステルとのエステル交換反応であり、不活性ガスの存在下に二価フェノールと炭酸ジエステルを混合し、減圧下通常120〜350℃で反応させる。減圧度は段階的に変化させ、最終的には133Pa以下にして生成したフェノール類を系外に除去させる。反応時間は通常1〜4時間程度である。
炭酸ジエステルとしては、例えばジフェニルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネートおよびジブチルカーボネートなどが挙げられ、なかでもジフェニルカーボネートが好ましい。
重合速度を速めるために重合触媒を使用することができ、重合触媒としては、例えば水酸化ナトリウムや水酸化カリウムなどのアルカリ金属やアルカリ土類金属の水酸化物、ホウ素やアルミニウムの水酸化物、アルカリ金属塩、アルカリ土類金属塩、第4級アンモニウム塩、アルカリ金属やアルカリ土類金属のアルコキシド、アルカリ金属やアルカリ土類金属の有機酸塩、亜鉛化合物、ホウ素化合物、ケイ素化合物、ゲルマニウム化合物、有機錫化合物、鉛化合物、アンチモン化合物、マンガン化合物、チタン化合物、ジルコニウム化合物などの通常エステル化反応やエステル交換反応に使用される触媒があげられる。触媒は単独で使用してもよいし、二種類以上を併用して使用してもよい。これらの重合触媒の使用量は、原料の二価フェノール1モルに対し、好ましくは1×10−8〜1×10−3当量、より好ましくは1×10−7〜5×10−4当量の範囲で選ばれる。
また、重合反応において、フェノール性の末端基を減少するために、重縮反応の後期あるいは終了後に、例えば2−クロロフェニルフェニルカーボネート、2−メトキシカルボニルフェニルフェニルカーボネートおよび2−エトキシカルボニルフェニルフェニルカーボネートなどの化合物を加えることができる。
さらに溶融エステル交換法では触媒の活性を中和する失活剤を用いることが好ましい。かかる失活剤の量としては、残存する触媒1モルに対して0.5〜50モルの割合で用いるのが好ましい。また重合後の芳香族ポリカーボネート樹脂に対し、0.01〜500ppmの割合、より好ましくは0.01〜300ppm、特に好ましくは0.01〜100ppmの割合で使用する。失活剤としては、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩などのホスホニウム塩、テトラエチルアンモニウムドデシルベンジルサルフェートなどのアンモニウム塩などが好ましく挙げられる。
前記以外の反応形式の詳細についても、成書および特許公報などで良く知られている。
本発明の難燃性芳香族ポリカーボネート樹脂組成物を製造するにあたり、芳香族ポリカーボネート樹脂の粘度平均分子量(M)は、特に限定されないが、好ましくは10,000〜50,000であり、より好ましくは14,000〜30,000であり、さらに好ましくは14,000〜24,000である。
粘度平均分子量が10,000未満の芳香族ポリカーボネート樹脂では、実用上期待される耐衝撃性などが得られない場合があり、また十分なドリップ防止能が得られないことから難燃性においても劣りやすい。一方、粘度平均分子量が50,000を超える芳香族ポリカーボネート樹脂から得られる樹脂組成物は、射出成形時の流動性に劣る点で汎用性に劣る。また成形加工温度が高くなることで本発明の特徴である透明性が十分に活かされない場合がある。
なお、前記芳香族ポリカーボネート樹脂は、その粘度平均分子量が前記範囲外のものを混合して得られたものであってもよい。殊に、前記範囲(50,000)を超える粘度平均分子量を有する芳香族ポリカーボネート樹脂は、樹脂のエントロピー弾性の向上によって、本発明の難燃性芳香族ポリカーボネート樹脂組成物の有するドリップ防止能をさらに相乗的に改善可能である。かかる改善効果は、前記分岐ポリカーボネートよりもさらに良好である。より好適な態様としては、A成分が粘度平均分子量70,000〜300,000の芳香族ポリカーボネート樹脂(A−3−1成分)、および粘度平均分子量10,000〜30,000の芳香族ポリカーボネート樹脂(A−3−2成分)からなり、その粘度平均分子量が16,000〜35,000である芳香族ポリカーボネート樹脂(A3成分)(以下、“高分子量成分含有芳香族ポリカーボネート樹脂”と称することがある)も使用できる。
かかる高分子量成分含有芳香族ポリカーボネート樹脂(A3成分)において、A−3−1成分の分子量は70,000〜200,000が好ましく、より好ましくは80,000〜200,000、さらに好ましくは100,000〜200,000、特に好ましくは100,000〜160,000である。またA−3−2成分の分子量は10,000〜25,000が好ましく、より好ましくは11,000〜24,000、さらに好ましくは12,000〜24,000、特に好ましくは12,000〜23,000である。
高分子量成分含有芳香族ポリカーボネート樹脂(A3成分)は前記A−3−1成分とA−3−2成分を種々の割合で混合し、所定の分子量範囲を満足するよう調整して得ることができる。好ましくは、A3成分100重量%中、A−3−1成分が2〜40重量%の場合であり、より好ましくはA−3−1成分が3〜30重量%であり、さらに好ましくはA−3−1成分が4〜20重量%であり、特に好ましくはA−3−1成分が5〜20重量%である。
また、A−3成分の調製方法としては、(1)A−3−1成分とA−3−2成分とを、それぞれ独立に重合しこれらを混合する方法、(2)特開平5−306336号公報に示される方法に代表される、GPC法による分子量分布チャートにおいて複数のポリマーピークを示す芳香族ポリカーボネート樹脂を同一系内において製造する方法を用い、かかる芳香族ポリカーボネート樹脂を本発明のA−1成分の条件を満足するよう製造する方法、および(3)かかる製造方法((2)の製造法)により得られた芳香族ポリカーボネート樹脂と、別途製造されたA−3−1成分および/またはA−3−2成分とを混合する方法などを挙げることができる。
本発明でいう粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlに芳香族ポリカーボネート0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mを算出する。
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−40.83
c=0.7
また前記の粘度平均分子量の算出法は、本発明の樹脂組成物や該樹脂組成物から成形された成形品の粘度平均分子量測定にも適用される。すなわち、本発明においてこれらの粘度平均分子量は、塩化メチレン100mlに成形品0.7gを溶解した溶液から20℃で求めた比粘度(ηsp)を前記式に挿入して求めたものである。
(B成分:珪酸塩鉱物)
本発明のB成分の珪酸塩鉱物について更に説明する。該B成分は、少なくとも金属酸化物成分とSiO成分とからなる珪酸塩鉱物である。B成分の珪酸塩鉱物は、オルトシリケート、ジシリケート、環状シリケート、および鎖状シリケートなどが好適である。B成分の珪酸塩鉱物は結晶状態を取るものであり、更に該結晶は各珪酸塩鉱物が取り得るいずれの変態であってもよい。また結晶の形状も繊維状や板状などの各種の形状を取ることができる。
B成分の珪酸塩鉱物は複合酸化物、酸素酸塩(イオン格子からなる)、固溶体のいずれの化合物でもよく、更に複合酸化物は単一酸化物の2種以上の組合せ、および単一酸化物と酸素酸塩との2種以上の組合せのいずれであってもよく、更に固溶体においても2種以上の金属酸化物の固溶体、および2種以上の酸素酸塩の固溶体のいずれであってもよい。
B成分の珪酸塩鉱物は、水和物であってもよい。水和物における結晶水の形態はSi−OHとして水素珪酸イオンとして入るもの、金属陽イオンに対して水酸イオン(OH)としてイオン的に入るもの、および構造の隙間にHO分子として入るもののいずれの形態であってもよい。
B成分の珪酸塩鉱物は、天然物に対応する人工合成物を使用することもできる。人工合成物としては、従来公知の各種の方法、例えば固体反応、水熱反応、および超高圧反応などを利用した各種の合成法、から得られた珪酸塩鉱物が利用できる。
各金属酸化物成分(MO)における珪酸塩鉱物の具体例としては以下のものが挙げられる。ここでカッコ内の表記はかかる珪酸塩鉱物を主成分とする鉱物等の名称であり、例示された金属塩としてカッコ内の化合物が使用できることを意味する。
Oをその成分に含むものとしては、KO・SiO、KO・4SiO・HO、KO・Al・2SiO(カルシライト)、KO・Al・4SiO(白リュウ石)、およびKO・Al・6SiO(正長石)、などが挙げられる。
NaOをその成分に含むものとしては、NaO・SiO、およびその水化物、NaO・2SiO、2NaO・SiO、NaO・4SiO、NaO・3SiO・3HO、NaO・Al・2SiO、NaO・Al・4SiO(ヒスイ輝石)、2NaO・3CaO・5SiO、3NaO・2CaO・5SiO、およびNaO・Al・6SiO(曹長石)などが挙げられる。
LiOをその成分に含むものとしては、LiO・SiO、2LiO・SiO、LiO・SiO・HO、3LiO・2SiO、LiO・Al・4SiO(ペタライト)、LiO・Al・2SiO(ユークリプタイト)、およびLiO・Al・4SiO(スポジュメン)などが挙げられる。
BaOをその成分に含むものとしては、BaO・SiO、2BaO・SiO、BaO・Al・2SiO(セルシアン)、およびBaO・TiO・3SiO(ベントアイト)などが挙げられる。
CaOをその成分に含むものとしては、3CaO・SiO(セメントクリンカー鉱物のエーライト)、2CaO・SiO(セメントクリンカー鉱物のビーライト)、2CaO・MgO・2SiO(オーケルマナイト)、2CaO・Al・SiO(ゲーレナイト)、オーケルマナイトとゲーレナイトとの固溶体(メリライト)、CaO・SiO(ウォラストナイト(α−型、β−型のいずれも含む))、CaO・MgO・2SiO(ジオプサイド)、CaO・MgO・SiO(灰苦土カンラン石)、3CaO・MgO・2SiO(メルウイナイト)、CaO・Al・2SiO(アノーサイト)、5CaO・6SiO・5HO(トバモライト、その他5CaO・6SiO・9HOなど)などのトバモライトグループすいわ物、2CaO・SiO・HO(ヒレブランダイト)などのウォラストナイトグループ水和物、6CaO・6SiO・HO(ゾノトライト)などのゾノトライトグループ水和物、2CaO・SiO・2HO(ジャイロライト)などのジャイロライトグループ水和物、CaO・Al・2SiO・HO(ローソナイト)、CaO・FeO・2SiO(ヘデンキ石)、3CaO・2SiO(チルコアナイト)、3CaO・Al・3SiO(グロシュラ)、3CaO・Fe・3SiO(アンドラダイト)、6CaO・4Al・FeO・SiO(プレオクロアイト)、並びにクリノゾイサイト、紅レン石、褐レン石、ベスブ石、オノ石、スコウタイト、およびオージャイトなどが挙げられる。
更にCaOをその成分に含む珪酸塩鉱物としてポルトランドセメントを挙げることができる。ポルトランドセメントの種類は特に限定されるものではなく、普通、早強、超早強、中よう熱、耐硫酸塩、白色などのいずれの種類も使用できる。更に各種の混合セメント、例えば高炉セメント、シリカセメント、フライアッシュセメントなどもB成分として使用できる。
またその他のCaOをその成分に含む珪酸塩鉱物として高炉スラグやフェライトなどを挙げることができる。
ZnOをその成分に含むものとしては、ZnO・SiO、2ZnO・SiO(トロースタイト)、および4ZnO・2SiO・HO(異極鉱)などが挙げられる。
MnOをその成分に含むものとしては、MnO・SiO、2MnO・SiO、CaO・4MnO・5SiO(ロードナイト)およびコーズライトなどが挙げられる。
FeOをその成分に含むものとしては、FeO・SiO(フェロシライト)、2FeO・SiO(鉄カンラン石)、3FeO・Al・3SiO(アルマンジン)、および2CaO・5FeO・8SiO・HO(テツアクチノセン石)などが挙げられる。
CoOをその成分に含むものとしては、CoO・SiOおよび2CoO・SiOなどが挙げられる。
MgOをその成分に含むものとしては、MgO・SiO(ステアタイト、エンスタタイト)、2MgO・SiO(フォルステライト)、3MgO・Al・3SiO(バイロープ)、2MgO・2Al・5SiO(コーディエライト)、2MgO・3SiO・5HO、3MgO・4SiO・HO(タルク)、5MgO・8SiO・9HO(アタパルジャイト)、4MgO・6SiO・7HO(セピオライト)、3MgO・2SiO・2HO(クリソライト)、5MgO・2CaO・8SiO・HO(透セン石)、5MgO・Al・3SiO・4HO(緑泥石)、KO・6MgO・Al・6SiO・2HO(フロゴバイト)、NaO・3MgO・3Al・8SiO・HO(ランセン石)、並びにマグネシウム電気石、直セン石、カミントンセン石、バーミキュライト、スメクタイトなどが挙げられる。
Feをその成分に含むものとしては、Fe・SiOなどが挙げられる。
ZrOをその成分に含むものとしては、ZrO・SiO(ジルコン)およびAZS耐火物などが挙げられる。
Alをその成分に含むものとしては、Al・SiO(シリマナイト、アンダリューサイト、カイアナイト)、2Al・SiO、Al・3SiO、3Al・2SiO(ムライト)、Al・2SiO・2HO(カオリナイト)、Al・4SiO・HO(パイロフィライト)、Al・4SiO・HO(ベントナイト)、KO・3NaO・4Al・8SiO(カスミ石)、KO・3Al・6SiO・2HO(マスコバイト、セリサイト)、KO・6MgO・Al・6SiO・2HO(フロゴバイト)、並びに各種のゼオライト、フッ素金雲母、および黒雲母などを挙げることができる。
上記珪酸塩鉱物の中でも特に好適であるのは、剛性向上効果が高く、低反り性も良好であり、更に入手容易である点で、マイカ、タルク、およびワラストナイトである。
(タルク)
本発明におけるタルクとは、化学組成的には含水珪酸マグネシウムであり、一般的には化学式4SiO・3MgO・2HOで表され、通常層状構造を持った鱗片状の粒子であり、また組成的にはSiOを56〜65重量%、MgOを28〜35重量%、HO約5重量%程度から構成されている。その他の少量成分としてFeが0.03〜1.2重量%、Alが0.05〜1.5重量%、CaOが0.05〜1.2重量%、KOが0.2重量%以下、NaOが0.2重量%以下などを含有している。タルクの粒子径は、沈降法により測定される平均粒径が0.1〜50μm(より好ましくは0.1〜10μm、更に好ましくは0.2〜5μm、特に好ましくは0.2〜3.5μm)の範囲であることが好ましい。更にかさ密度を0.5(g/cm)以上としたタルクを原料として使用することが特に好適である。タルクの平均粒径は、液相沈降法の1つであるX線透過法で測定されたD50(粒子径分布のメジアン径)をいう。かかる測定を行う装置の具体例としてはマイクロメリティックス社製Sedigraph5100などを挙げることができる。
またタルクを原石から粉砕する際の製法に関しては特に制限はなく、軸流型ミル法、アニュラー型ミル法、ロールミル法、ボールミル法、ジェットミル法、および容器回転式圧縮剪断型ミル法等を利用することができる。さらに粉砕後のタルクは、各種の分級機によって分級処理され、粒子径の分布が揃ったものが好適である。分級機としては特に制限はなく、インパクタ型慣性力分級機(バリアブルインパクターなど)、コアンダ効果利用型慣性力分級機(エルボージェットなど)、遠心場分級機(多段サイクロン、ミクロプレックス、ディスパージョンセパレーター、アキュカット、ターボクラシファイア、ターボプレックス、ミクロンセパレーター、およびスーパーセパレーターなど)などを挙げることができる。
さらにタルクは、その取り扱い性等の点で凝集状態であるものが好ましく、かかる製法としては脱気圧縮による方法、集束剤を使用し圧縮する方法等がある。特に脱気圧縮による方法が簡便かつ不要の集束剤樹脂成分を本発明の樹脂組成物中に混入させない点で好ましい。
(マイカ)
マイカの平均粒径としては、マイクロトラックレーザー回折法により測定した平均粒径が10〜100μmのものを使用できる。好ましくは平均粒径が20〜50μmのものである。マイカの平均粒径が10μm未満では剛性に対する改良効果が十分でなく、100μmを越えても剛性の剛性の向上が十分でなく、衝撃特性等の機械的強度の低下も著しく好ましくない。マイカの厚みとしては、電子顕微鏡の観察により実測した厚みが0.01〜1μmのものを使用できる。好ましくは厚みが0.03〜0.3μmである。アスペクト比としては5〜200、好ましくは10〜100のものを使用できる。また使用するマイカ(C−1成分)はマスコバイトマイカが好ましく、そのモース硬度は約3である。マスコバイトマイカはフロゴバイトなど他のマイカに比較してより高剛性および高強度を達成でき、本発明の課題をより良好なレベルにおいて解決する。また、マイカの粉砕法としては乾式粉砕法および湿式粉砕法のいずれで製造されたものであってもよい。乾式粉砕法の方が低コストで一般的であるが、一方湿式粉砕法は、マイカをより薄く細かく粉砕するのに有効である(樹脂組成物の剛性向上効果はより高くなる)。
(ワラストナイト)
ワラストナイトの繊維径は0.1〜10μmが好ましく、0.1〜5μmがより好ましく、0.1〜3μmが更に好ましい。またそのアスペクト比(平均繊維長/平均繊維径)は3以上が好ましい。アスペクト比の上限としては30以下が挙げられる。ここで繊維径は電子顕微鏡で強化フィラーを観察し、個々の繊維径を求め、その測定値から数平均繊維径を算出する。電子顕微鏡を使用するのは、対象とするレベルの大きさを正確に測定することが光学顕微鏡では困難なためである。繊維径は、電子顕微鏡の観察で得られる画像に対して、繊維径を測定する対象のフィラーをランダムに抽出し、中央部の近いところで繊維径を測定し、得られた測定値より数平均繊維径を算出する。観察の倍率は約1000倍とし、測定本数は500本以上(600本以下が作業上好適である)で行う。一方平均繊維長の測定は、フィラーを光学顕微鏡で観察し、個々の長さを求め、その測定値から数平均繊維長を算出する。光学顕微鏡の観察は、フィラー同士があまり重なり合わないように分散されたサンプルを準備することから始まる。観察は対物レンズ20倍の条件で行い、その観察像を画素数が約25万であるCCDカメラに画像データとして取り込む。得られた画像データを画像解析装置を使用して、画像データの2点間の最大距離を求めるプログラムを使用して、繊維長を算出する。かかる条件の下では1画素当りの大きさが1.25μmの長さに相当し、測定本数は500本以上(600本以下が作業上好適である)で行う。
本発明のワラストナイトは、その元来有する白色度を十分に樹脂組成物に反映させるため、原料鉱石中に混入する鉄分並びに原料鉱石を粉砕する際に機器の摩耗により混入する鉄分を磁選機によって極力取り除くことが好ましい。かかる磁選機処理によりワラストナイト中の鉄の含有量はFeに換算して、0.5重量%以下であることが好ましい。
珪酸塩鉱物(より好適には、マイカ、タルク、ワラストナイト)は、表面処理されていないことが好ましいが、シランカップリング剤、高級脂肪酸エステル、およびワックスなどの各種表面処理剤で表面処理されていてもよい。さらに各種樹脂、高級脂肪酸エステル、およびワックスなどの集束剤で造粒し顆粒状とされていてもよい。本発明における珪酸塩鉱物において特に好適であるのはタルクである。かかるタルクは剛性と耐衝撃性との両立においてワラストナイトと共に良好である一方、そのまま芳香族ポリカーボネート樹脂に配合した場合の色相の悪化および外観の悪化(例えばシルバーストリークの発生)が大きい。本発明の樹脂組成物において、珪酸塩鉱物としてタルクが配合された樹脂組成物は、最も顕著にその色相が改善され、その結果より幅広い技術分野にタルクを配合した樹脂組成物を適用可能とするものである。かかる理由により特にタルクが珪酸塩鉱物として好ましい。
(C成分:スルホン酸アルカリ(土類)金属塩)
本発明におけるスルホン酸アルカリ(土類)金属塩とは、パーフルオロアルキルスルホン酸とアルカリ金属またはアルカリ土類金属との金属塩、または芳香族スルホン酸とアルカリ金属またはアルカリ土類金属塩との金属塩をいう。
本発明の金属塩を構成するアルカリ金属としてはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムが挙げられ、アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウムおよびバリウムが挙げられる。より好適にはアルカリ金属である。かかるアルカリ金属の中でも、透明性の要求がより高い場合にはイオン半径のより大きいルビジウムおよびセシウムが好適である一方、これらは汎用的でなくまた精製もし難いことから、結果的にコストの点で不利となる場合がある。一方、コストや難燃性の点で有利であるがリチウムおよびナトリウムなどのより小さいイオン半径の金属は逆に透明性の点で不利な場合がある。これらを勘案してスルホン酸アルカリ金属塩中のアルカリ金属を使い分けることができるが、いずれの点においても特性のバランスに優れたスルホン酸カリウム塩が最も好適である。かかるカリウム塩と他のアルカリ金属からなるスルホン酸アルカリ金属塩とを併用することもできる。
パーフルオロアルキルスルホン酸アルカリ金属塩の具体例としては、トリフルオロメタンスルホン酸カリウム、パーフルオロブタンスルホン酸カリウム、パーフルオロヘキサンスルホン酸カリウム、パーフルオロオクタンスルホン酸カリウム、ペンタフルオロエタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸ナトリウム、パーフルオロオクタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸リチウム、パーフルオロブタンスルホン酸リチウム、パーフルオロヘプタンスルホン酸リチウム、トリフルオロメタンスルホン酸セシウム、パーフルオロブタンスルホン酸セシウム、パーフルオロオクタンスルホン酸セシウム、パーフルオロヘキサンスルホン酸セシウム、パーフルオロブタンスルホン酸ルビジウム、およびパーフルオロヘキサンスルホン酸ルビジウム等が挙げられ、これらは1種もしくは2種以上を併用して使用することができる。ここでパーフルオロアルキル基の炭素数は、1〜18の範囲が好ましく、1〜10の範囲がより好ましく、更に好ましくは1〜8の範囲である。これらの中で特にパーフルオロブタンスルホン酸カリウムが好ましい。
アルカリ金属からなるパーフルオロアルキルスルホン酸アルカリ(土類)金属塩中には、通常少なからず弗化物イオン(F)が混入する。かかる弗化物イオンの存在は難燃性を低下させる要因となり得るので、できる限り低減されることが好ましい。かかる弗化物イオンの割合はイオンクロマトグラフィー法により測定できる。弗化物イオンの含有量は、100ppm以下が好ましく、40ppm以下が更に好ましく、10ppm以下が特に好ましい。また製造効率的に0.2ppm以上であることが好適である。かかる弗化物イオン量の低減されたパーフルオロアルキルスルホン酸アルカリ(土類)金属塩は、製造方法は公知の製造方法を用い、かつかかる金属塩を製造する際の原料中に含有される弗化物イオンの量を低減する方法、反応により得られた弗化水素などを反応時に発生するガスや加熱によって除去する方法、並びにかかる金属塩を製造する際に再結晶および再沈殿等の精製方法を用いて弗化物イオンの量を低減する方法などによって製造することができる。特にパーフルオロアルキルスルホン酸アルカリ(土類)金属塩は比較的水に溶けやすいことから、イオン交換水、特に電気抵抗値が18MΩ・cm以上、すなわち電気伝導度が約0.55μS/cm以下を満足する水を用い、かつ常温よりも高い温度で溶解させて洗浄を行い、その後冷却させて再結晶化させる工程により製造することが好ましい。
芳香族スルホン酸アルカリ(土類)金属塩の具体例としては、例えばジフェニルサルファイド−4,4’−ジスルホン酸ジナトリウム、ジフェニルサルファイド−4,4’−ジスルホン酸ジカリウム、5−スルホイソフタル酸カリウム、5−スルホイソフタル酸ナトリウム、ポリエチレンテレフタル酸ポリスルホン酸ポリナトリウム、1−メトキシナフタレン−4−スルホン酸カルシウム、4−ドデシルフェニルエーテルジスルホン酸ジナトリウム、ポリ(2,6−ジメチルフェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,3−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,4−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(2,6−ジフェニルフェニレンオキシド)ポリスルホン酸ポリカリウム、ポリ(2−フルオロ−6−ブチルフェニレンオキシド)ポリスルホン酸リチウム、ベンゼンスルホネートのスルホン酸カリウム、ベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸ストロンチウム、ベンゼンスルホン酸マグネシウム、p−ベンゼンジスルホン酸ジカリウム、ナフタレン−2,6−ジスルホン酸ジカリウム、ビフェニル−3,3’−ジスルホン酸カルシウム、ジフェニルスルホン−3−スルホン酸ナトリウム、ジフェニルスルホン−3−スルホン酸カリウム、ジフェニルスルホン−3,3’−ジスルホン酸ジカリウム、ジフェニルスルホン−3,4’−ジスルホン酸ジカリウムな、α,α,α−トリフルオロアセトフェノン−4−スルホン酸ナトリウム、ベンゾフェノン−3,3’−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸ジナトリウム、チオフェン−2,5−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸カルシウム、ベンゾチオフェンスルホン酸ナトリウム、ジフェニルスルホキサイド−4−スルホン酸カリウム、ナフタレンスルホン酸ナトリウムのホルマリン縮合物、およびアントラセンスルホン酸ナトリウムのホルマリン縮合物などを挙げることができる。これら芳香族スルホン酸アルカリ(土類)金属塩では、特にカリウム塩が好適である。これらの芳香族スルホン酸アルカリ(土類)金属塩の中でも、ジフェニルスルホン−3−スルホン酸カリウム、およびジフェニルスルホン−3,3’−ジスルホン酸ジカリウムが好適であり、特にこれらの混合物(前者と後者の重量比が15/85〜30/70)が好適である。
(D成分:シラン化合物)
本発明のD成分は、下記式(1)で示されるシラン化合物である。
Figure 0004571390
(ここで式(1)中、Xは水素原子、ハロゲン原子、およびRO(Rは炭素数1〜8のアルキル基を示し、該アルキル基はヘテロ原子を含有してよい)のいずれかを示し、Rは炭素数4〜30であり、フッ素原子で置換されてもよいアルキル基を示し、Rは炭素数1〜3であり、ハロゲン原子で置換されてもよいアルキル基を示し、mおよびnはそれぞれ1、2または3であり、4−(m+n)は0、1または2であり、X、R、およびRがそれぞれ複数存在するときは、それらは互いに同一であっても異なっていてもよい。)
C成分のアルコキシシラン化合物の具体例としては、Xがメトキシ基の例として、ブチルトリメトキシシラン、イソブチルトリメトキシシラン、ブチルメチルジメトキシシラン、ブチルジメチルメトキシシラン、tert−ブチルトリメトキシシラン、tert−ブチルジメチルメトキシシラン、ジブチルジメトキシシラン、およびトリブチルメトキシシラン(以上Rが炭素数4のアルキル基の場合、以下単に“R=C”と表記する);ペンチルトリメトキシシラン、およびメチルペンチルジメトキシシラン(R=C);ヘキシルトリメトキシシラン、トリヘキシルメトキシシラン、ノナフルオロへキシルトリメトキシシラン、およびノナフルオロヘキシルメチルジメトキシシラン(R=C);ヘプチルメチルジメトキシシラン(R=C);オクチルトリメトキシシラン、メチルオクチルジメトキシシラン、ジメチルオクチルメトキシシラン、およびトリデカフルオロオクチルトリメトキシシラン(R=C);ノニルトリメトキシシラン(R=C);デシルトリメトキシシラン、デシルメチルジメトキシシラン、ヘプタデカフルオロデシルメチルジメトキシシラン、およびヘプタデカフルオロデシルトリメトキシシラン(R=C10);ドデシルトリメトキシシラン、およびドデシルメチルジメトキシシラン(R=C12);テトラデシルトリメトキシシラン(R=C14);オクタデシルトリメトキシシラン、メチルオクタデシルジメトキシシラン、およびジメチルオクタデシルメトキシシラン(R=C18);エイコシルトリメトキシシラン(R=C20);ドコシルトリメトキシシラン、およびドコシルメチルジメトキシシラン(R=C22)などが挙げられる。Xがメトキシ基以外の例として、上記シラン化合物のメトキシ基がエトキシ基、水素原子、および塩素原子などに置換したシラン化合物が例示される。
本発明のシラン化合物は、その反応基(X)によって、容易に珪酸塩鉱物表面に結合すると考えられる。かかる結合によって珪酸塩鉱物表面の反応活性点が減少し、それによりかかる表面の活性点と芳香族ポリカーボネート樹脂組成物との反応が抑制される。更に、その機構は不明確であるがC成分のスルホン酸アルカリ(土類)金属塩の作用がシラン化合物の作用に相乗的に組み合わされ、本発明の効果が得られるものと考えられる。シラン化合物において重要な点は、適度な長さのアルキル基を有することにより、かかるシラン化合物が芳香族ポリカーボネート樹脂に対して親和性を有するのではなく非親和的であるという点である。これにより珪酸塩鉱物は、芳香族ポリカーボネート樹脂中で溶融混練される際に高い剪断力の作用から逃れられるようになる。その結果かかる表面での発熱は減少し、上記の反応活性点での反応がより抑制されるようになる。したがって、上記式(1)では、通常のシランカップリング剤のような芳香族ポリカーボネート樹脂に反応性を有するエポキシ基などの官能基を有していない。またその機構は不明確であるが、反応活性点での反応の抑制においてC成分のスルホン酸アルカリ(土類)金属塩の作用がシラン化合物の作用に相乗的に組み合わされると考えられる。更に低い親和性によって珪酸塩鉱物が芳香族ポリカーボネート樹脂中で溶融混練される際の粘度上昇が抑制される。したがって該珪酸塩鉱物は分散混合性に優れた状態となっており、その結果均一な分散が達成され、芳香族ポリカーボネート樹脂との非親和性の作用と共に良好な耐衝撃性に貢献しているものと考えられる。
上記の如くシラン化合物は、珪酸塩鉱物表面に対する高い反応性と芳香族ポリカーボネート樹脂組成物に対する非親和性が求められる。したがって上記式(1)において、4−(m+n)=0であり、m=2(即ちn=2)またはm=3(即ちn=1)であることが好ましい。特にm=3およびn=1であることが好ましい。また上記式(1)においてXは、取り扱い性や反応性の点から、メトキシ基およびエトキシ基が好ましく、特にメトキシ基が好ましい。
一方でRにおける炭素数が多いほど(鎖長が長いほど)、芳香族ポリカーボネート樹脂に対する非親和性は高くなる傾向にある。しかしながらRの炭素数が多いほどそれ自体の熱安定性が低下して色相が悪化する傾向にある。したがってRの炭素数は、好適には4〜18であり、より好適には4〜10である。
(E成分:含フッ素滴下防止剤)
E成分としての含フッ素滴下防止剤としては、フィブリル形成能を有する含フッ素ポリマーを挙げることができ、かかるポリマーとしてはポリテトラフルオロエチレン、テトラフルオロエチレン系共重合体(例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、など)、米国特許第4379910号公報に示されるような部分フッ素化ポリマー、フッ素化ジフェノールから製造されるポリカーボネート樹脂などを挙げることができる。中でも好ましくはポリテトラフルオロエチレン(以下PTFEと称することがある)である。
フィブリル形成能を有するPTFEの分子量は極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その分子量は、標準比重から求められる数平均分子量において100万〜1000万、より好ましく200万〜900万である。かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル形成能を有するPTFEは樹脂中での分散性を向上させ、さらに良好な難燃性および機械的特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。
かかるフィブリル形成能を有するPTFEの市販品としては例えば三井・デュポンフロロケミカル(株)のテフロン(登録商標)6J、ダイキン工業(株)のポリフロンMPAFA500およびF−201Lなどを挙げることができる。PTFEの水性分散液の市販品としては、旭アイシーアイフロロポリマーズ(株)製のフルオンAD−1、AD−936、ダイキン工業(株)製のフルオンD−1およびD−2、三井・デュポンフロロケミカル(株)製のテフロン(登録商標)30Jなどを代表として挙げることができる。
混合形態のPTFEとしては、(1)PTFEの水性分散液と有機重合体の水性分散液または溶液とを混合し共沈殿を行い共凝集混合物を得る方法(特開昭60−258263号公報、特開昭63−154744号公報などに記載された方法)、(2)PTFEの水性分散液と乾燥した有機重合体粒子とを混合する方法(特開平4−272957号公報に記載された方法)、(3)PTFEの水性分散液と有機重合体粒子溶液を均一に混合し、かかる混合物からそれぞれの媒体を同時に除去する方法(特開平06−220210号公報、特開平08−188653号公報などに記載された方法)、(4)PTFEの水性分散液中で有機重合体を形成する単量体を重合する方法(特開平9−95583号公報に記載された方法)、および(5)PTFEの水性分散液と有機重合体分散液を均一に混合後、さらに該混合分散液中でビニル系単量体を重合し、その後混合物を得る方法(特開平11−29679号などに記載された方法)により得られたものが使用できる。これらの混合形態のPTFEの市販品としては、三菱レイヨン(株)の「メタブレン A3000」(商品名)、およびGEスペシャリティーケミカルズ社製 「BLENDEX B449」(商品名)などを挙げることができる。
混合形態におけるPTFEの割合としては、PTFE混合物100重量%中、PTFEが1〜60重量%が好ましく、より好ましくは5〜55重量%である。PTFEの割合がかかる範囲にある場合は、PTFEの良好な分散性を達成することができる。なお、上記E成分の割合は正味の含フッ素滴下防止剤の量を示し、混合形態のPTFEの場合には、正味のPTFE量を示す。
(F成分:液晶ポリエステル)
本発明の難燃性芳香族ポリカーボネート樹脂組成物は、成形加工時の流動性を改良するため従来公知の流動改質成分を含有することが可能である。かかる流動改質成分としては例えば、可塑剤(例えばリン酸エステル、リン酸エステルオリゴマー、ホスファゼンオリゴマー、脂肪酸エステル、脂肪族ポリエステル、および脂肪族ポリカーボネート等に代表される)、高剛性かつ高流動性の他の熱可塑性樹脂や熱可塑性樹脂オリゴマー(例えば、スチレン、アクリロニトリル、およびポリメチルメタクリレートから選択された少なくとも1種の成分を重合してなる重合体、またはオリゴマー、高剛性ポリカーボネートのオリゴマーなどに代表される)、液晶ポリマー(例えば液晶ポリエステルなどに代表される)、剛直型分子(例えばポリp−フェニレン化合物などに代表される)、並びに滑剤(例えば鉱物油、合成油、高級脂肪酸エステル、高級脂肪酸アミド、ポリオルガノシロキサン、オレフィン系ワックス、ポリアルキレングリコール、およびフッ素オイルなどに代表される)などが例示される。本発明において実質的にリン酸エステル系難燃剤を含有しなくとも良好な難燃性を有する点をより有効に活用するためには、リン酸エステル類を含有しないことが好ましく、更に(ポリ)オレフィン化合物や(ポリ)ビニル化合物は、その配合があまりに多いと難燃性を損なう場合がある。したがって上記においてその流動改質成分としては、特に液晶ポリマーが好適であり、中でも液晶ポリエステルが好適である。かかる液晶ポリエステルの配合は、樹脂組成物の更なる剛性向上にも寄与する。
本発明のF成分の「液晶ポリエステル」とは、サーモトロピック液晶ポリエステルであり、溶融状態でポリマー分子鎖が一定方向に配列する性質を有している。かかる分子鎖の配列状態の形態はネマチック型、スメチック型、コレステリック型、ディスコチック型のいずれの形態であってもよく、また、2種以上の形態を呈するものであってもよい。さらに、液晶ポリエステルの構造としては、主鎖型、側鎖型、剛直主鎖屈曲側鎖型等のいずれの構造であってもよいが、好ましいのは主鎖型液晶ポリエステルである。
上記配列状態の形態、すなわち異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することができる。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージにのせた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。本発明の液晶ポリエステルは直交偏光子の間で検査したときに、たとえ溶融静止状態であっても偏光は透過し、光学的に異方性を示す。
また、液晶ポリエステルの耐熱性はいかなる範囲であってもよいが、芳香族ポリカーボネート樹脂の加工温度に近い部分で溶融し液晶相を形成するものが適切である。この点で液晶ポリエステルの荷重たわみ温度が150〜280℃、好ましくは180〜250℃であるものがより好適である。かかる液晶ポリエステルはいわゆる耐熱性区分のII型に属するものである。かかる耐熱性を有する場合には耐熱性のより高いI型に比較して成形加工性に優れ、及び耐熱性のより低いIII型に比較して良好な難燃性が達成される。
本発明で用いられる液晶ポリエステルは、ポリエステル及びポリエステルアミドを包含するものであり、芳香族ポリエステル及び芳香族ポリエステルアミドが好ましく、芳香族ポリエステル及び芳香族ポリエステルアミドを同一分子鎖中に部分的に含むポリエステルも好ましい例である。
特に好ましくは、芳香族ヒドロキシカルボン酸、芳香族ヒドロキシアミン、芳香族ジアミンの群から選ばれた1種又は2種以上の化合物を構成成分として含有する全芳香族ポリエステル、全芳香族ポリエステルアミドである。
より具体的には、
1)主として、芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上からなるポリエステル、
2)主として、a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上とb)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体の1種又は2種以上とc)芳香族ジオール、脂環族ジオール、脂肪族ジオール及びその誘導体の少なくとも1種又は2種以上とからなるポリエステル、
3)主として、a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、b)芳香族ヒドロキシアミン、芳香族ジアミン及びその誘導体の1種又は2種以上と、c)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体の1種又は2種以上とからなるポリエステルアミド、並びに、
4)主として、a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、b)芳香族ヒドロキシアミン、芳香族ジアミン及びその誘導体の1種又は2種以上と、c)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体の1種又は2種以上と、d)芳香族ジオール、脂環族ジオール、脂肪族ジオール及びその誘導体の少なくとも1種又は2種以上とからなるポリエステルアミド、
が挙げられるが、上記1)の主として芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上からなるポリエステルが特に好ましい。さらに、上記の構成成分に必要に応じ分子量調整剤を併用してもよい。
本発明の液晶ポリエステルを構成する具体的化合物の好ましい例は、2,6−ナフタレンジカルボン酸、2,6−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン及び6−ヒドロキシ−2−ナフトエ酸等のナフタレン化合物、4,4’−ジフェニルジカルボン酸、4,4’−ジヒドロキシビフェニル等のビフェニル化合物、p−ヒドロキシ安息香酸、テレフタル酸、ハイドロキノン、p−アミノフェノール及びp−フェニレンジアミン等のパラ位置換のベンゼン化合物及びそれらの核置換ベンゼン化合物(置換基は塩素、臭素、メチル、フェニル、1−フェニルエチルより選ばれる)、イソフタル酸、レゾルシン等のメタ位置換のベンゼン化合物、並びに、下記一般式(2)、(3)又は(4)で表される化合物である。中でも、p−ヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸が特に好ましく、両者を混合してなる液晶ポリエステルが好適である。両者の割合は前者が80〜50モル%の範囲が好ましく、75〜60モル%の範囲がより好ましく、後者が20〜50モル%の範囲が好ましく、25〜40モル%の範囲がより好ましい。
Figure 0004571390
Figure 0004571390
Figure 0004571390
[但し、上記一般式(2)、(3)、(4)において、XはC〜Cのアルキレン基及びアルキリデン基、−O−、−SO−、−SO−、−S−、並びに−CO−より選ばれる基であり、Yは−(CH−(n=1〜4)、及びO(CHO−(n=1〜4)より選ばれる基である。]
また、本発明の樹脂組成物においてF成分として使用される液晶ポリエステルは、上述の構成成分の他に同一分子鎖中に部分的に異方性溶融相を示さないポリアルキレンテレフタレートを含むものであってもよい。この場合のアルキレン基の炭素原子数は2〜4である。
本発明においてF成分となる上記液晶ポリエステルの基本的な製造方法は、特に制限がなく、公知のポリエステルの重縮合法に準じて製造できる。上記液晶ポリエステルは、また、60℃でペンタフルオロフェノールに0.1重量%濃度で溶解したときに、少なくとも約2.0dl/g、たとえば約2.0〜10.0dl/gの対数粘度値(IV値)を一般に示す。
これらの中でも、p−ヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸で代表される芳香族ヒドロキシカルボン酸を主成分とするIVが2.0〜10.0dl/g全芳香族ポリエステルが特に好適である。
(各成分の組成割合について)
本発明は、芳香族ポリカーボネート樹脂(A成分)100重量部、珪酸塩鉱物(B成分)1〜50重量部(b重量部とする)、スルホン酸アルカリ(土類)金属塩(C成分)c重量部、および下記式(1)で表わされるシラン化合物(D成分)0.05〜5重量部からなる樹脂組成物であって、前記b(重量部)およびc(重量部)は、下記式(I)を満足することを要件とする。
0.008 ≦ c ≦b/100 (I)
本発明の樹脂組成物は、B成分の珪酸塩鉱物に対して適切な割合のスルホン酸アルカリ(土類)金属塩(C成分)を含有することにより、上述の本発明の特性に優れるものであり、特にその色相、耐湿熱性、および難燃性のいずれにも優れるものである。上記式(I)において、cが0.008を下回ると本発明において良好な色相および難燃性が達成されず、b/100を上回ると耐湿熱性の点で劣るようになる。かかるcの上限は、好ましくはb/200であり、より好ましくはb/250である。
一方、その下限は、前記b(重量部)が0.008≦b/1500を満足するとき下記式(II)を満足するものであり、
b/1500 ≦ c (II)
更に0.008≦b/1000を満足するとき下記式(III)を満足するものである。
b/1000 ≦ c (III)
また各成分の組成割合は、B成分はより好適にはA成分100重量部当たり、5〜30重量部、より好適には8〜25重量部である。B成分はA成分100重量部当たり1重量部未満では、剛性向上などの効果が十分に発揮されず、50重量部を超えると面衝撃強度が逆に低下する傾向を示す。B成分の好適な範囲においては良好な剛性と面衝撃強度との両立が高いレベルで可能である。
D成分の組成割合は、B成分の粒径などにも依存するがB成分のA成分100重量部当たりの重量割合(b重量部)に対して、b/25〜b/5の範囲がより好適であり、b/20〜b/8の範囲が更に好適である。またA成分100重量部当たりのD成分の組成割合は好適には0.1〜3重量部、より好適には0.2〜1.5重量部である。D成分がA成分100重量部当たり0.05重量部未満であると良好な色相、外観、および面衝撃強度などが得られず、5重量部を超えても面衝撃強度が低下したり難燃性が低下するようになる。
E成分は、A成分100重量部当たり、0.01〜1重量部が好適であり、0.05〜0.8重量部がより好適であり、0.1〜0.6重量部が更に好適である。かかる範囲においては十分な溶融滴下防止効果と良好な外観や流動特性を両立可能である。
更にF成分は、A成分100重量部当たり1〜30重量部が好適であり、3〜20重量部がより好適であり、4〜15重量部が特に好適である。かかる範囲であると難燃性や成形品外観に大きな影響を与えることなく、良好な流動性を得ることが可能である。
(その他の添加剤)
(リン系安定剤)
本発明においては、更に良好な色相かつ安定した流動性を有する難燃性芳香族ポリカーボネート樹脂組成物を得るためリン系安定剤を含有することが好ましい。リン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステルなどが例示される。
具体的にはホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられる。
更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2’−エチリデンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイトなどを挙げることができる。
ホスフェート化合物としては、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどを挙げることができ、好ましくはトリフェニルホスフェート、トリメチルホスフェートである。
ホスホナイト化合物としては、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等があげられ、テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。
ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。
上記リン系安定剤は、1種のみならず2種以上を混合して用いることができる。上記リン系安定剤の中でも、ホスファイト化合物またはホスホナイト化合物が好ましい。殊にトリメチルホスフェートに代表されるホスフェート化合物が配合されることが好ましい。更にF成分の液晶ポリエステルを含有する場合には、トリデシルホスファイト、トリオクチルホスファイト、およびトリオクタデシルホスファイトなどのトリアルキルホスファィト、並びにジステアリルペンタエリスリトールジホスファイトに代表されるジアルキルペンタエリスリトールジホスファイトが配合されることが好ましい。かかるホスファイトの配合によって液晶ポリエステルと芳香族ポリカーボネート樹脂との不要なエステル交換反応が抑制され、液晶ポリエステルの有する粘弾性特性が有効に発揮され、樹脂組成物の流動性や剛性の改良が達成される。
(ヒンダードフェノール系安定剤)
本発明の樹脂組成物は、更にヒンダードフェノール系安定剤を含有することにより、例えば成形加工時の色相悪化や長期間の使用における色相の悪化などの効果が更に発揮される。ヒンダードフェノール系安定剤としては、例えば、α−トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n−オクタデシル−β−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ビス[2−tert−ブチル−4−メチル6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,2−チオジエチレンビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3’,5’−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、およびテトラキス[メチレン−3−(3’,5’−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンなどが例示される。これらはいずれも入手容易である。上記ヒンダードフェノール系安定剤は、単独でまたは2種以上を組合せて使用することができる。
リン系安定剤およびヒンダードフェノール系安定剤の配合量は、芳香族ポリカーボネート樹脂(A成分)100重量部に対し、0.0001〜1重量部、好ましくは0.001〜0.5重量部、より好ましくは0.005〜0.3重量部である。安定剤が上記範囲よりも少なすぎる場合には良好な安定化効果を得ることが難しく、上記範囲を超えて多すぎる場合は、組成物の物性低下を起こす場合がある。
(紫外線吸収剤)
本発明の難燃性芳香族ポリカーボネート樹脂組成物は、その色相や外観に優れることから、塗装などを施すことなく使用される場合がある。かかる場合には良好な耐光性を要求される場合があり、かかる場合に紫外線吸収剤の配合が効果的である。
紫外線吸収剤としては、具体的にはベンゾフェノン系では、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ベンジロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシトリハイドライドレイトベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−ソジウムスルホキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2−ヒドロキシ−4−n−ドデシルオキシベンソフェノン、および2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノンなどが例示される。
紫外線吸収剤としては、具体的に、ベンゾトリアゾール系では、例えば、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジクミルフェニル)フェニルベンゾトリアゾール、2−(2−ヒドロキシ−3−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−アミルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−4−オクトキシフェニル)ベンゾトリアゾ−ル、2,2’−メチレンビス(4−クミル−6−ベンゾトリアゾールフェニル)、2,2’−p−フェニレンビス(1,3−ベンゾオキサジン−4−オン)、および2−[2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミドメチル)−5−メチルフェニル]ベンゾトリアゾ−ル、並びに2−(2’−ヒドロキシ−5−メタクリロキシエチルフェニル)−2H−ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や2−(2’―ヒドロキシ−5−アクリロキシエチルフェニル)―2H―ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2−ヒドロキシフェニル−2H−ベンゾトリアゾール骨格を有する重合体などが例示される。
紫外線吸収剤は、具体的に、ヒドロキシフェニルトリアジン系では、例えば、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−メチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−エチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−プロピルオキシフェノール、および2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ブチルオキシフェノールなどが例示される。さらに2−(4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4−ジメチルフェニル基となった化合物が例示される。
紫外線吸収剤は、具体的に環状イミノエステル系では、例えば2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−m−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、および2,2’−p,p’−ジフェニレンビス(3,1−ベンゾオキサジン−4−オン)などが例示される。
また紫外線吸収剤としては、具体的にシアノアクリレート系では、例えば1,3−ビス−[(2’−シアノ−3’,3’−ジフェニルアクリロイル)オキシ]−2,2−ビス[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3−ビス−[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。
さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/または光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。前記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。
紫外線吸収剤の配合量は、芳香族ポリカーボネート樹脂(A成分)100重量部に対して0.01〜2重量部、好ましくは0.03〜2重量部、より好ましくは0.02〜1重量部、更に好ましくは0.05〜0.5重量部である。
(光安定剤)
本発明の樹脂組成物においては、上記紫外線吸収剤と更に光安定剤を併用することができる。かかる光安定剤としては、例えばビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレート、ポリ{[6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル][(2,2,6,6−テトラメチルピペリジル)イミノ]ヘキサメチレン[(2,2,6,6−テトラメチルピペリジル)イミノ]}、およびポリメチルプロピル3−オキシ−[4−(2,2,6,6−テトラメチル)ピペリジニル]シロキサンなどに代表されるヒンダードアミン系の光安定剤が例示される。上記光安定剤は単独であるいは2種以上の混合物を用いてもよい。光安定剤の配合量は芳香族ポリカーボネート樹脂(A成分)100重量部に対して0.0005〜3重量部が好ましく、0.01〜2重量部がより好ましく、0.02〜1重量部が更に好ましい。
(蛍光増白剤)
本発明の樹脂組成物は、特にその珪酸塩鉱物の割合が10重量部以下の領域では極めて良好な色相を呈すことが可能であるから、それ自体を光拡散性の必要な用途に使用することも可能である。更にかかる機能を必要としない場合でも色相を調節する必要が生ずる場合がある。かかる場合に蛍光増白剤の配合は効果的である。蛍光増白剤としてはクマリン系、ナフタルイミド系、ベンゾオキサゾリル系蛍光増白剤等があげられ、中でもクマリン系蛍光増白剤が好ましく、かかる蛍光増白剤としては例えばハッコールケミカル(株)製ハッコールPSRが好適に例示される。蛍光増白剤の配合量は、ポリカーボネート樹脂(A成分)100重量部に対し0.0001〜3重量部、好ましくは0.0005〜1重量部、より好ましくは0.0005〜0.5重量部、更に好ましくは0.001〜0.5重量部、特に好ましくは0.001〜0.1重量部である。
(他の難燃剤)
本発明の樹脂組成物は、有機ハロゲン系難燃剤やリン酸エステル系難燃剤を実質的に含有しなくとも良好な難燃性を達成するものであるが、かかる難燃剤を配合しても何らその難燃効果を阻害するものではない。しかしながら本発明の特徴をより生かすためには、本発明の難燃性芳香族ポリカーボネート樹脂組成物は、有機ハロゲン系難燃剤やリン酸エステル系難燃剤を実質的に含有しないことが好ましい。一方、本発明の特徴を生かして更なる難燃性を向上させるために、例えばシリコーン系難燃剤や各種有機アルカリ(土類)金属塩を更に配合することも可能である。
かかるシリコーン系難燃剤は、シロキサン結合を有する化合物であり燃焼時の化学反応によって難燃性を向上させるものであり、従来芳香族ポリカーボート樹脂の難燃剤として提案された各種の化合物を使用することができる。シリコーン化合物はその燃焼時にそれ自体が結合してまたは樹脂に由来する成分と結合してストラクチャーを形成することにより、または該ストラクチャー形成時の還元反応により、ポリカーボネート樹脂に難燃効果を付与するものと考えられている。したがってかかる反応における活性の高い基を含んでいることが好ましく、より具体的にはアルコキシ基およびハイドロジェン(即ちSi−H基)から選択された少なくとも1種の基を所定量含んでいることが好ましい。かかる基(アルコキシ基、Si−H基)の含有割合としては、0.1〜1.2mol/100gの範囲が好ましく、0.12〜1mol/100gの範囲がより好ましく、0.15〜0.6mol/100gの範囲が更に好ましい。かかる割合はアルカリ分解法より、シリコーン化合物の単位重量当たりに発生した水素またはアルコールの量を測定することにより求められる。尚、アルコキシ基は炭素数1〜4のアルコキシ基が好ましく、特にメトキシ基が好適である。したがって、本発明のC成分は、その燃焼時において何らかの作用によって難燃性を向上させる点において寄与しているものと考えられる。
一般的にシリコーン化合物の構造は、以下に示す4種類のシロキサン単位を任意に組み合わせることによって構成される。すなわち、
M単位:(CHSiO1/2、H(CHSiO1/2、H(CH)SiO1/2、(CH(CH=CH)SiO1/2、(CH(C)SiO1/2、(CH)(C)(CH=CH)SiO1/2等の1官能性シロキサン単位、
D単位:(CHSiO、H(CH)SiO、HSiO、H(C)SiO、(CH)(CH=CH)SiO、(CSiO等の2官能性シロキサン単位、
T単位:(CH)SiO3/2、(C)SiO3/2、HSiO3/2、(CH=CH)SiO3/2、(C)SiO3/2等の3官能性シロキサン単位、
Q単位:SiOで示される4官能性シロキサン単位である。
本発明でいうシリコーン系難燃剤は構造は、具体的には、示性式としてD、T、M、M、M、M、M、M、M、D、D、Dが挙げられる。この中で好ましいシリコーン化合物の構造は、M、M、M、Mであり、さらに好ましい構造は、MまたはMである。
ここで、前記示性式中の係数m、n、p、qは各シロキサン単位の重合度を表す1以上の整数であり、各示性式における係数の合計がシリコーン化合物の平均重合度となる。この平均重合度は好ましくは3〜150の範囲、より好ましくは3〜80の範囲、更に好ましくは3〜60の範囲、特に好ましくは4〜40の範囲である。かかる好適な範囲であるほど良好な難燃性において優れるようになる。更に後述するように芳香族基を所定量含むシリコーン化合物においては透明性にも優れる。またm、n、p、qのいずれかが2以上の数値である場合、その係数の付いたシロキサン単位は、結合する水素原子や有機残基が異なる2種以上のシロキサン単位とすることができる。
更に本発明のシリコーン系難燃剤は、直鎖状であっても分岐構造を持つものであってもよい。またシリコン原子に結合する有機残基は炭素数1〜30、より好ましくは1〜20の有機残基であることが好ましい。かかる有機残基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、デシル基などのアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基、トリル基等のアリール基およびアラルキル基を挙げることがでる。さらに好ましくは炭素数1〜8のアルキル基、アルケニル基またはアリール基である。アルキル基としては、特にはメチル基、エチル基、プロピル基等の炭素数1〜4のアルキル基が好ましい。
さらに本発明のシリコーン系難燃剤はアリール基を含有することが、難燃性およびより透明性に優れた芳香族ポリカーボネート樹脂組成物を提供できる点で好ましい。より好適には下記一般式(5)で示される芳香族基が含まれる割合(芳香族基量)が好ましくは10〜70重量%(より好適には15〜60重量%)である。
Figure 0004571390
(式(5)中、Xはそれぞれ独立にOH基、炭素数1〜20の一価の有機残基を示す。nは0〜5の整数を表わす。さらに式(5)中においてnが2以上の場合はそれぞれ互いに異なる種類のXを取ることができる。)
本発明のシリコーン系難燃剤は、前記Si−H基およびアルコキシ基以外にも反応基を含有していてもよく、かかる反応基としては例えば、アミノ基、カルボキシル基、エポキシ基、ビニル基、メルカプト基、およびメタクリロキシ基などが例示される。
本発明のシリコーン系難燃剤においてSi−H基を有するシリコーン化合物としては、下記一般式(6)および(7)で示される構成単位の少なくとも一種以上を含むシリコーン化合物が好適に例示される。
Figure 0004571390
Figure 0004571390
(式(6)および式(7)中、Z〜Zはそれぞれ独立に水素原子、炭素数1〜20の一価の有機残基、または下記一般式(8)で示される化合物を示す。α1〜α3はそれぞれ独立に0または1を表わす。m1は0もしくは1以上の整数を表わす。さらに式(6)中においてm1が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。)
Figure 0004571390
(式(8)中、Z〜Zはそれぞれ独立に水素原子、炭素数1〜20の一価の有機残基を示す。α4〜α8はそれぞれ独立に0または1を表わす。m2は0もしくは1以上の整数を表わす。さらに式(8)中においてm2が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。)
本発明のシリコーン系難燃剤において、アルコキシ基を有するシリコーン化合物としては、例えば一般式(9)および一般式(10)に示される化合物から選択される少なくとも1種の化合物があげられる。
Figure 0004571390
(式(9)中、βはビニル基、炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示す。γ、γ、γ、γ、γ、およびγは炭素数1〜6のアルキル基およびシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示し、少なくとも1つの基がアリール基またはアラルキル基である。δ、δ、およびδは炭素数1〜4のアルコキシ基を示す。)
Figure 0004571390
(式(10)中、βおよびβはビニル基、炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示す。γ、γ、γ、γ10、γ11、γ12、γ13およびγ14は炭素数1〜6のアルキル基、、炭素数3〜6のシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示し、少なくとも1つの基がアリール基またはアラルキルである。δ、δ、δ、およびδは炭素数1〜4のアルコキシ基を示す。)
シリコーン系難燃剤は、芳香族ポリカーボネート樹脂(A成分)100重量部に対して、0.01〜5重量部であることが好ましく、より好ましくは0.05〜3重量部、更に好ましくは0.08〜2重量部である。かかる好適な組成割合によって、B成分〜D成分との相乗効果に優れ良好な難燃性を有する芳香族ポリカーボネート樹脂組成物が提供される。
各種有機アルカリ(土類)金属塩を本発明の芳香族ポリカーボネート樹脂組成物に更に配合することができる。例えば硫酸エステルのアルカリ(土類)金属塩が挙げられ、特に一価および/または多価アルコール類の硫酸エステルのアルカリ(土類)金属塩を挙げることができ、かかる具体例としては例えば、メチル硫酸エステル、エチル硫酸エステル、ラウリル硫酸エステル、ヘキサデシル硫酸エステル、ポリオキシエチレンアルキルフェニルエーテルの硫酸エステル、ペンタエリスリトールのモノ、ジ、トリ、テトラ硫酸エステル、ラウリン酸モノグリセライドの硫酸エステル、パルミチン酸モノグリセライドの硫酸エステル、ステアリン酸モノグリセライドの硫酸エステルなどが例示される。これらの硫酸エステルのアルカリ(土類)金属塩として好ましくはラウリル硫酸エステルのアルカリ(土類)金属塩を挙げることができる。
また他の有機アルカリ(土類)金属塩としては、芳香族スルホンアミドのアルカリ(土類)金属塩を挙げることができ、例えばサッカリン、N−(p−トリルスルホニル)−p−トルエンスルホイミド、N−(N’−ベンジルアミノカルボニル)スルファニルイミド、およびN−(フェニルカルボキシル)スルファニルイミドのアルカリ(土類)金属塩などが挙げられる。これらの有機アルカリ(土類)金属塩の配合割合は、A成分100重量部当たり好ましくは0.001〜1重量部であり、より好ましくは0.005〜0.5重量部である。
(充填材)
本発明の芳香族ポリカーボネート樹脂組成物には、本発明の効果を発揮する範囲において、強化フィラーとしてB成分以外の各種充填材を配合することができる。例えば、炭酸カルシウム、ガラス繊維、ガラスビーズ、ガラスバルーン、ガラスミルドファイバー、ガラスフレーク、炭素繊維、炭素フレーク、カーボンビーズ、カーボンミルドファイバー、グラファイト、気相成長法極細炭素繊維(繊維径が0.1μm未満)、カーボンナノチューブ(繊維径が0.1μm未満であり、中空状)、フラーレン、金属フレーク、金属繊維、金属コートガラス繊維、金属コート炭素繊維、金属コートガラスフレーク、シリカ、金属酸化物粒子、金属酸化物繊維、金属酸化物バルーン、並びに各種ウイスカー(チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカー、および塩基性硫酸マグネシウムなど)などが例示される。これらの強化フィラーは1種もしくは2種以上を併用して含むものであってもよい。
(他の樹脂やエラストマー)
本発明の樹脂組成物には、他の樹脂やエラストマーを本発明の効果を発揮する範囲において、少割合使用することもできる。
かかる他の樹脂としては、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリスチレン樹脂、アクリロニトリル/スチレン共重合体(AS樹脂)、アクリロニトリル/ブタジエン/スチレン共重合体(ABS樹脂)、ポリメタクリレート樹脂、フェノール樹脂、エポキシ樹脂等の樹脂が挙げられる。
また、エラストマーとしては、例えばイソブチレン/イソプレンゴム、スチレン/ブタジエンゴム、エチレン/プロピレンゴム、アクリル系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、コアシェル型のエラストマーであるMBS(メタクリル酸メチル/ステレン/ブタジエン)ゴム、MAS(メタクリル酸メチル/アクリロニトリル/スチレン)ゴム等が挙げられる。
その他、本発明の難燃性芳香族ポリカーボネート樹脂組成物には、成形品に種々の機能の付与や特性改善のために、それ自体知られた添加物を少割合配合することができる。これら添加物は本発明の目的を損なわない限り、通常の配合量である。
かかる添加剤としては、摺動剤(例えばPTFE粒子)、着色剤(例えばカーボンブラック、酸化チタンなどの顔料、染料)、光拡散剤(例えばアクリル架橋粒子、シリコン架橋粒子、極薄ガラスフレーク、炭酸カルシウム粒子)、蛍光染料、無機系蛍光体(例えばアルミン酸塩を母結晶とする蛍光体)、帯電防止剤、結晶核剤、無機および有機の抗菌剤、光触媒系防汚剤(例えば微粒子酸化チタン、微粒子酸化亜鉛)、ラジカル発生剤、赤外線吸収剤(熱線吸収剤)、およびフォトクロミック剤などが挙げられる。
(ポリカーボネート樹脂組成物の製造)
本発明の難燃性芳香族ポリカーボネート樹脂組成物を製造するには、任意の方法が採用される。例えばA成分〜D成分、および任意に他の成分をそれぞれV型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などの予備混合手段を用いて充分に混合した後、場合により押出造粒器やブリケッティングマシーンなどにより造粒を行い、その後ベント式二軸ルーダーに代表される溶融混練機で溶融混練、およびペレタイザー等の機器によりペレット化する方法が挙げられる。
各成分の溶融混練機への供給方法としては、(i)A成分〜D成分および他の成分はそれぞれ独立に溶融混練機に供給する方法、(ii)A成分〜D成分および他の成分の一部を予備混合した後、残りの成分と独立に溶融混練機に供給する方法、(iii)C成分を水または有機溶剤で希釈混合して溶融混練機に供給する方法、更に(iv)かかる希釈混合物を他の成分と予備混合した後、溶融混練機に供給する方法などが例示される。尚、配合する成分に液状のものがある場合(例えば前記(iii)、(iv)において)、溶融混練機への供給にいわゆる液注装置、または液添装置を使用することができる。
押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。溶融混練機としては二軸押出機の他にバンバリーミキサー、混練ロール、単軸押出機、3軸以上の多軸押出機などを挙げることができる。
上記の如く押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。ペレット化に際して外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。得られたペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1〜5mm、より好ましくは1.5〜4mm、さらに好ましくは2〜3.3mmである。一方、円柱の長さは好ましくは1〜30mm、より好ましくは2〜5mm、さらに好ましくは2.5〜3.5mmである。
(成形品)
本発明の難燃性芳香族ポリカーボネート樹脂組成物からなる成形品は、通常そのペレットを射出成形して得ることができる。かかる射出成形においては、通常の成形方法だけでなく、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体を注入する方法を含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などを挙げることができる。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。
また本発明によれば、難燃性芳香族ポリカーボネート樹脂組成物を押出成形し、各種異形押出成形品、シート、フィルムなどの形とすることもできる。またシート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法なども使用可能である。さらに特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の難燃性芳香族ポリカーボネート樹脂組成物を回転成形やブロー成形などにより成形品とすることも可能である。
(表面処理)
さらに本発明の成形品には、各種の表面処理を行うことが可能である。表面処理としては、ハードコート、撥水・撥油コート、親水性コート、帯電防止コート、紫外線吸収コート、赤外線吸収コート、並びにメタライジング(蒸着など)などの各種の表面処理を行うことができる。表面処理方法としては、液剤のコーティングの他、蒸着法、溶射法、およびメッキ法が挙げられる。蒸着法としては物理蒸着法および化学蒸着法のいずれも使用できる。物理蒸着法としては真空蒸着法、スパッタリング、およびイオンプレーティングが例示される。化学蒸着(CVD)法としては、熱CVD法、プラズマCVD法、および光CVD法などが例示される。特に本発明の樹脂組成物は、ハウジング成形品に好適であることから、電磁波遮蔽用メッキが施されることが好ましく、本発明の樹脂組成物はかかるメッキ特性においても良好である。
本発明の難燃性芳香族ポリカーボネート樹脂組成物は、珪酸塩鉱物、スルホン酸アルカリ(土類)金属塩、および特定のシラン化合物を特定割合で組合せることにより、有機ハロゲン系難燃剤やリン酸エステル系難燃剤を実質的に含有しなくとも、良好な難燃性を有し、更には剛性、高温成形時の外観や色相、面衝撃強度、および長期特性(例えば耐湿熱性)に優れた樹脂組成物が得られることを見出し、更には含フッ素滴下防止剤を組合せ、また珪酸塩鉱物として好適なものを使用することにより低反り性やリサイクル性にも優れた難燃性芳香族ポリカーボネート樹脂組成物、およびその成形品(特に好適にはハウジング成形品)を提供する。本発明の難燃性芳香族ポリカーボネート樹脂組成物はその特定の成分およびその特定の組成割合からなるものであり、これにより従来公知の組成物にはない上記特性を有する樹脂組成物を提供するものである。本発明の難燃性芳香族ポリカーボネート樹脂組成物は、OA機器分野、電気電子機器分野などの各種工業用途に極めて有用であり、特にOA機器および電気電子機器のハウジング成形品に対応した良好な特性を満足するものである。特にパソコン、ノートパソコン、ゲーム機(家庭用ゲーム機、業務用ゲーム機、パチンコ、およびスロットマシーンなど)、ディスプレー装置(CRT、液晶、プラズマ、プロジェクタ、および有機ELなど)、並びにプリンター、コピー機、スキャナーおよびファックス(これらの複合機を含む)などのハウジング成形品において好適である。
本発明の難燃性芳香族ポリカーボネート樹脂組成物は、その他幅広い用途に有用であり、例えば、携帯情報端末(いわゆるPDA)、携帯電話、携帯書籍(辞書類等)、携帯テレビ、記録媒体(CD、MD、DVD、次世代高密度ディスク、ハードディスクなど)のドライブ、記録媒体(ICカード、スマートメディア、メモリースティックなど)の読取装置、光学カメラ、デジタルカメラ、パラボラアンテナ、電動工具、VTR、アイロン、ヘアードライヤー、炊飯器、電子レンジ、音響機器、照明機器、冷蔵庫、エアコン、空気清浄機、マイナスイオン発生器、およびタイプライターなどを挙げることができ、これらのハウジング成形品やその他の部品に本発明の難燃性芳香族ポリカーボネート樹脂組成物から形成された樹脂製品を使用することができる。またその他の樹脂製品としては、ランプソケット、ランプリフレクター、ランプハウジング、インストルメンタルパネル、センターコンソールパネル、ディフレクター部品、カーナビケーション部品、カーオーディオビジュアル部品、オートモバイルコンピューター部品などの車両用部品を挙げることができる。以上から明らかなように本発明の奏する工業的効果は極めて大である。
本発明者が現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。
以下に実施例を挙げてさらに説明するが、本発明はそれに限定されるものではない。尚、評価としては以下の項目について実施した。
(i)剛性(曲げ弾性率)
ISO178に準拠して曲げ弾性率(MPa)を測定した。試験片形状は、長さ80mm×幅10mm×厚み4mmであった。
(ii)難燃性
UL規格94の垂直燃焼試験を、厚み1.5mmで行いその等級を評価した。
(iii)色相および外観
図1に示すノートパソコンのハウジング成形品を成形し、その色相およびシルバーストリークの有無を観察した。評価はパージ直後から10ショット目までを廃棄し、11ショット目を色相評価用に、その後20ショットまでの成形品をシルバーストリーク評価用とした。色相はカラーコンピュータ(TC−1800MK−II:東京電色(株)製)を用いて、かかるハウジング成形品の鏡面部分におけるL値、およびb値を測定した。またシルバーストリークが全て発生したものは×、一度でも発生したものは△、一度も発生しなかったものは○として評価した。尚、L値が大きくなるほど明度が高くなることから、成形品は目視観察においてより強い白色感を有し、またb値が小さい(絶対値の大きい負の値である)ほど青みが増加することから、成形品は目視観察においてはより強い白色感を有する。したがって、かかる評価においてはL値は大きいほどかつb値が小さいほど好ましい。
(iv)面衝撃強度
上記外観評価用に作成した図1に示すノートパソコンのハウジング成形品のうち、20ショット目の成形品から図2において破線で示される部分を切り出し(裏面にボスやリブは存在しないように切り出し)て評価用サンプルとし、かかるサンプルを面衝撃試験した。高速衝撃試験機((株)島津製作所製)により評価した。撃芯径6.4mm、受け台座12.8mm、撃芯の衝突速度7m/sで高速面衝撃試験を行い、破断までのエネルギー値を測定した。測定は切り出された4点のサンプルで行い、その平均値を取った。また4点のサンプル中、延性的な破壊形態を示した割合を示した。
(v)耐湿熱性
上記外観評価用に作成した図1に示すノートパソコンのハウジング成形品のうち、19ショット目の成形品から、図2において破線で示される部分を切り出し(裏面にボスやリブは存在しないように切り出し)て評価用サンプルとし、かかるサンプルをプレッシャークッカー試験機((株)平山製作所製超加速寿命試験装置(PC―305III/V))にて120℃、相対湿度100%、2気圧の条件下で24時間処理をした。処理前後の粘度平均分子量より、保持率を算出し評価を行った。
(vi)リサイクル性
図1に示すノートパソコンのハウジング成形品を成形し、その21ショット目〜150ショット目までの成形品をスプルーも含めて回収し、これらを直径8mmの小孔を多数有する金属製スクリーンを設置した粉砕機((株)朋来鉄工所製SB−210)にて、70kg/hの処理能力で粉砕し、V型ブレンダーにて均一にブレンドし各成形品の粉砕物を得た。かかる粉砕物をバージンペレットの評価と同様に乾燥して成形し、かかる粉砕物100%からなる曲げ試験片、UL試験片およびノートパソコンハウジングを成形し、その曲げ弾性率、並びに色相および外観の評価を行った。
原料としては、以下のものを用いた。
(A成分)
PC−1:ビスフェノールAおよび末端停止剤としてp−tert−ブチルフェノール、並びにホスゲンから界面重縮合法で合成した直鎖状芳香族ポリカーボネート樹脂パウダー(帝人化成(株)製:パンライトL−1225WX、粘度平均分子量19,700)
PC−2:ビスフェノールAおよび末端停止剤としてp−tert−ブチルフェノール、並びにホスゲンから界面重縮合法で合成した直鎖状芳香族ポリカーボネート樹脂パウダー(帝人化成(株)製:CM−1000、粘度平均分子量16,000)
PC−3:ビスフェノールAおよび末端停止剤としてp−tert−ブチルフェノール、並びにホスゲンから界面重縮合法で合成した直鎖状芳香族ポリカーボネート樹脂において、粘度平均分子量15,200のものが10重量部、粘度平均分子量23,700のものが80重量部、および120,000のものが10重量部を溶融混合してなり、その粘度平均分子量が29,500の芳香族ポリカーボネート樹脂ペレット
(B成分)
TALC:タルク(林化成工業(株)製:Upn HS−T0.8)
MICA:マイカ(コープケミカル(株)製:ミクロマイカ MK−100)
WSN:ワラストナイト(NYCO社製:NYGLOS4)
(C成分)
Bayowet:弗化物イオン量40ppmのパーフルオロブタンスルホン酸カリウム塩(バイエル社製BayowetC4)
KSS:ジフェニルスルホン−3,3’−ジスルホン酸ジカリウム塩とジフェニルスルホン−3−モノスルホン酸カリウム塩との2:8の混合物(ユーシービージャパン製KSS)
(D成分)
D048:イソブチルトリメトキシシラン(東レ・ダウ・コーニング(株)製:AY43−048)
D3103:デシルトリメトキシシラン(信越シリコーン(株)製:KBM3103)
(D成分以外)
D403:γ−グリシドキシプロピル−トリメトキシシラン(信越シリコーン(株)製「KBM−403」)
D13:メチルトリメトキシシラン(信越シリコーン(株)製「KBM−13」)
(E成分)
PTFE:フィブリル形成能を有するポリテトラフルオロエチレン(ダイキン工業(株)製:ポリフロンMPA FA500)
B449:フィブリル形成能を有するポリテトラフルオロエチレン粒子とスチレン−アクリロニトリル共重合体粒子からなる混合物(ポリテトラフルオロエチレン含有量50重量%)(GEスペシャリティーケミカルズ社製 BLENDEX B449)
(F成分)
LCP:液晶ポリエステル樹脂(ポリプラスチックス(株)製:べクトラ A950)
(その他)
TMP:リン系安定剤(大八化学工業(株)製:TMP)
[実施例1〜8、比較例1〜7]
表1〜表2に示す組成で芳香族ポリカーボネート樹脂、珪酸塩鉱物、スルホン酸アルカリ金属塩、およびシラン化合物、並びに他の成分をタンブラーを用いて均一に混合して予備混合物を作成し、かかる混合物を押出機のスクリュー根元に位置する第1供給口より供給した。尚、タンブラーに供給する際、各成分は以下の濃度となるようにPC−2のパウダーと均一に混合したマスターを作成し、かかるマスターをタンブラーに供給した。すなわちC−1、C−2、D−1〜D−4、およびTMPは10重量%のマスターとし、PTFEは2.5重量%のマスターとした(比較例:シランが多すぎる例は除く)。得られた予備混合物を径30mmφのベント式二軸押出機[(株)日本製鋼所製TEX30XSST]の第1供給口(スクリュー根元部)に供給し、シリンダー温度280℃、スクリュー回転数150rpm、吐出量20kg/h、およびベント減圧度3kPaで溶融押出してペレット化した。
得られたペレットを120℃で5時間熱風循環式乾燥機により乾燥した。乾燥後、射出成形機(東芝機械(株)製:IS−150EN)によりシリンダー温度300℃、金型温度80℃、成形サイクル40秒で曲げ弾性率および燃焼性評価用の試験片を成形した。また乾燥後のペレットをシリンダ内径50mmφの射出成形機(住友重機機械工業(株)製ULTRA220−NIVA)を使用し、図1に示すノートパソコンのハウジング成形品をシリンダー温度300℃および金型温度80℃で、射出速度75mm/secで成形した。これらの成形品を用いて各特性を測定した。それらの結果を表1〜表2に示す。尚、実施例およびそのリサイクル性の評価において作成されたノートパソコンのハウジング成形品はいずれも反りの認められない良好なものであった。
Figure 0004571390
Figure 0004571390
上記表から明らかなように、本発明の難燃性芳香族ポリカーボネート樹脂組成物は、他のシラン化合物や他の組成割合では達成できない良好な特性を有していることがわかる。
実施例において使用したノートパソコンのハウジングを模した成形品の表側斜視概要図である(縦178mm×横245mm×縁の高さ10mm、厚み1.2mm)。 実施例において使用した成形品の表面側正面概要図であり、ゲート位置、ウエルドラインの様子および評価用サンプルの切り出し部分を示す。 実施例において使用した成形品の裏面側正面概要図であり、リブ付ボスがある様子を示す(艶消し面の部分は上下両側にリブがあるボスとなる)。
符号の説明
1 ノートパソコンのハウジングを模した成形品本体
2 艶消し表面部
3 鏡面部
4 ゲート(ピンゲート0.8mmφ、5個所)
5 およそのウエルドライン
6 評価用サンプルの切り出し部
7 リブ付ボス(鏡面部裏側に対応)
8 リブ付ボス(鏡面部裏側に対応)

Claims (6)

  1. 芳香族ポリカーボネート樹脂(A成分)100重量部、珪酸塩鉱物(B成分)1〜50重量部(b重量部とする)、スルホン酸アルカリ(土類)金属塩(C成分)c重量部、および下記式(1)で表わされるシラン化合物(D成分)0.05〜5重量部からなる樹脂組成物であって、前記b(重量部)およびc(重量部)は、下記式(I)を満足する難燃性芳香族ポリカーボネート樹脂組成物。
    0.008 ≦ c ≦b/100 (I)
    Figure 0004571390
    (ここで式(1)中、Xは水素原子、ハロゲン原子、およびRO(Rは炭素数1〜8のアルキル基を示し、該アルキル基はヘテロ原子を含有してよい)のいずれかを示し、Rは炭素数4〜30であり、フッ素原子で置換されてもよいアルキル基を示し、Rは炭素数1〜3であり、ハロゲン原子で置換されてもよいアルキル基を示し、mおよびnはそれぞれ1、2または3であり、4−(m+n)は0、1または2であり、X、R、およびRがそれぞれ複数存在するときは、それらは互いに同一であっても異なっていてもよい。)
  2. 更にA成分100重量部当たり、含フッ素滴下防止剤(E成分)0.01〜1重量部を含有してなる請求項1に記載の難燃性芳香族ポリカーボネート樹脂組成物。
  3. 前記b(重量部)が0.008≦b/1500を満足するとき、上記式(I)に加えて更に下記式(II)を満足する請求項1または請求項2のいずれか1項に記載の難燃性芳香族ポリカーボネート樹脂組成物。
    b/1500 ≦ c (II)
  4. 上記B成分は、マイカ、タルクおよびワラストナイトから選ばれる少なくとも1種の珪酸塩鉱物である請求項1〜請求項3のいずれか1項に記載の難燃性芳香族ポリカーボネート樹脂組成物。
  5. 更にA成分100重量部当たり、液晶ポリエステル(F成分)1〜30重量部含有してなる請求項1〜請求項4のいずれか1項に記載の難燃性芳香族ポリカーボネート樹脂組成物。
  6. 上記請求項1〜請求項5のいずれか1項に記載の難燃性芳香族ポリカーボネート樹脂組成物から形成されたハウジング成形品。
JP2003384757A 2003-11-14 2003-11-14 難燃性芳香族ポリカーボネート樹脂組成物 Expired - Lifetime JP4571390B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003384757A JP4571390B2 (ja) 2003-11-14 2003-11-14 難燃性芳香族ポリカーボネート樹脂組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003384757A JP4571390B2 (ja) 2003-11-14 2003-11-14 難燃性芳香族ポリカーボネート樹脂組成物

Publications (2)

Publication Number Publication Date
JP2005146100A JP2005146100A (ja) 2005-06-09
JP4571390B2 true JP4571390B2 (ja) 2010-10-27

Family

ID=34693047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003384757A Expired - Lifetime JP4571390B2 (ja) 2003-11-14 2003-11-14 難燃性芳香族ポリカーボネート樹脂組成物

Country Status (1)

Country Link
JP (1) JP4571390B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008858A1 (ja) * 2004-07-20 2006-01-26 Teijin Chemicals Ltd. 芳香族ポリカーボネート樹脂組成物およびその製造方法
JP2015227421A (ja) * 2014-06-02 2015-12-17 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物
JP6993176B2 (ja) 2017-10-31 2022-01-13 住友化学株式会社 液晶ポリエステル樹脂組成物および射出成形体
KR102593859B1 (ko) * 2023-07-20 2023-10-26 주식회사 보울보울 친환경 소재를 이용한 반려동물용 식기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279081A (ja) * 2000-03-29 2001-10-10 Sumitomo Dow Ltd 難燃性ポリカーボネート系樹脂組成物
JP2002037997A (ja) * 2000-07-24 2002-02-06 Teijin Chem Ltd 難燃性芳香族ポリカーボネート樹脂組成物
JP2002294063A (ja) * 2001-03-29 2002-10-09 Teijin Chem Ltd 難燃性芳香族ポリカーボネート樹脂組成物
WO2003078525A1 (fr) * 2002-03-18 2003-09-25 Asahi Kasei Chemicals Corporation Composition de resine de polycarbonate aromatique ignifugee

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3470730B2 (ja) * 1994-03-28 2003-11-25 三菱瓦斯化学株式会社 熱可塑性樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279081A (ja) * 2000-03-29 2001-10-10 Sumitomo Dow Ltd 難燃性ポリカーボネート系樹脂組成物
JP2002037997A (ja) * 2000-07-24 2002-02-06 Teijin Chem Ltd 難燃性芳香族ポリカーボネート樹脂組成物
JP2002294063A (ja) * 2001-03-29 2002-10-09 Teijin Chem Ltd 難燃性芳香族ポリカーボネート樹脂組成物
WO2003078525A1 (fr) * 2002-03-18 2003-09-25 Asahi Kasei Chemicals Corporation Composition de resine de polycarbonate aromatique ignifugee

Also Published As

Publication number Publication date
JP2005146100A (ja) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4310205B2 (ja) 難燃性芳香族ポリカーボネート樹脂組成物
JP6195904B2 (ja) ガラス繊維強化ポリカーボネート樹脂組成物
JP4681382B2 (ja) 熱可塑性樹脂組成物
JP5021928B2 (ja) ガラス繊維強化難燃性樹脂組成物からなる鏡筒
JP5021918B2 (ja) ガラス繊維強化難燃性樹脂組成物
JP4747102B2 (ja) 樹脂組成物およびフラットパネルディスプレイ固定枠
JP5085862B2 (ja) フラットパネルディスプレイ固定枠用樹脂組成物およびフラットパネルディスプレイ固定枠
JP5752990B2 (ja) ハイサイクル成形性熱可塑性樹脂組成物
JP6181513B2 (ja) 炭素繊維強化ポリカーボネート樹脂組成物
JP6196072B2 (ja) 加飾成形用樹脂組成物
JP2011026439A (ja) ガラス繊維強化樹脂組成物
JP2011001514A (ja) ガラス繊維強化樹脂組成物を射出成形して得られる電気・電子機器部品
JP4571391B2 (ja) 難燃性芳香族ポリカーボネート樹脂組成物
JP5330295B2 (ja) 難燃性熱可塑性樹脂組成物
JP2010015091A (ja) ガラス繊維強化樹脂組成物からなる鏡筒
JP2015059138A (ja) 難燃性ガラス繊維強化ポリカーボネート樹脂組成物
JP5080054B2 (ja) 難燃性樹脂組成物の製造方法
JP2014055231A (ja) 加飾成形用樹脂組成物
JP2009114364A (ja) 樹脂組成物
JP2015137308A (ja) 難燃性炭素繊維強化ポリカーボネート樹脂組成物
JP2010275413A (ja) ガラス強化樹脂組成物
JP2011016901A (ja) 電気・電子機器部品
JP2011140545A (ja) 繊維強化樹脂組成物およびこれを成形してなる樹脂成形体
JP4571390B2 (ja) 難燃性芳香族ポリカーボネート樹脂組成物
JP2017132822A (ja) 熱可塑性樹脂組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100812

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4571390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150