JP4568539B2 - Pump bearing structure - Google Patents

Pump bearing structure Download PDF

Info

Publication number
JP4568539B2
JP4568539B2 JP2004167193A JP2004167193A JP4568539B2 JP 4568539 B2 JP4568539 B2 JP 4568539B2 JP 2004167193 A JP2004167193 A JP 2004167193A JP 2004167193 A JP2004167193 A JP 2004167193A JP 4568539 B2 JP4568539 B2 JP 4568539B2
Authority
JP
Japan
Prior art keywords
diamond
sintered body
pump
bearing
body layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004167193A
Other languages
Japanese (ja)
Other versions
JP2005344878A (en
Inventor
裕紀 原
佳延 小川
秀樹 松本
一修 空井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2004167193A priority Critical patent/JP4568539B2/en
Publication of JP2005344878A publication Critical patent/JP2005344878A/en
Application granted granted Critical
Publication of JP4568539B2 publication Critical patent/JP4568539B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sliding-Contact Bearings (AREA)

Description

本発明はポンプ用軸受構造に関し、特に、軸受への負荷が大きい場合や先行待機運転ポンプの揚水遮断運転時のようなドライ運転される場合、さらにはスラリー水に晒される運転条件を伴う場合でも優れた摺動特性を発揮するポンプ用軸受構造に関する。   The present invention relates to a bearing structure for a pump, and in particular, when a load on the bearing is large, when a dry operation such as a pumping-off operation of a preceding standby operation pump is performed, or even when operating conditions are exposed to slurry water. The present invention relates to a pump bearing structure that exhibits excellent sliding characteristics.

従来より、先行待機運転ポンプの先行待機運転時のようなドライ運転に適するポンプ用軸受構造として、図5に示すものがある。このポンプ用軸受構造Bは、金属製の軸受ケース1と、この軸受ケース1に金属製のバックシェル3を介して嵌合されたゴム製の緩衝材2と、この緩衝材2に嵌合される窒化珪素などのセラミックからなる軸受6とを有し、この軸受6の内周面が主軸4と同時に回転する超硬合金製の軸スリーブ5に摺動するように構成されている。なお、図中、8はキー結合、9は軸受カバー、10は軸受止め板、11は中間軸受台を示す(特許文献1)。   FIG. 5 shows a conventional bearing structure for a pump suitable for a dry operation such as a preceding standby operation of a preceding standby operation pump. The pump bearing structure B includes a metal bearing case 1, a rubber cushioning material 2 fitted to the bearing case 1 via a metal back shell 3, and the cushioning material 2. The bearing 6 is made of ceramic such as silicon nitride, and the inner peripheral surface of the bearing 6 is configured to slide on a shaft sleeve 5 made of cemented carbide that rotates simultaneously with the main shaft 4. In the figure, 8 is a key connection, 9 is a bearing cover, 10 is a bearing stop plate, and 11 is an intermediate bearing base (Patent Document 1).

前記構成のポンプ用軸受構造Bは、たとえば、図6に示す立軸ポンプPに適用される。すなわち、吐出しボウル12に収容した羽根車13が固着されている主軸4は、複数のポンプ用軸受構造Bによって吐出しボウル12の内部および該吐出しボウル12の上側に設けた揚水管14の内部で回転自在に支持される。   The pump bearing structure B configured as described above is applied to, for example, a vertical shaft pump P shown in FIG. That is, the main shaft 4 to which the impeller 13 accommodated in the discharge bowl 12 is fixed is formed by a plurality of pump bearing structures B in the interior of the discharge bowl 12 and the pumping pipe 14 provided above the discharge bowl 12. It is supported rotatably inside.

特開2002−317814号公報(P7、図7)JP 2002-317814 A (P7, FIG. 7)

軸受の摺動面が窒化珪素などのセラミックで構成され、スリーブの摺動面が超硬合金で構成されている特許文献1記載のポンプ用軸受構造では、両者ともに硬質のために摩耗速度は小さい。しかし、軸受の摺動面とスリーブの摺動面との間の大気中の自己潤滑性が低い。このため、先行待機運転ポンプの先行待機運転時のドライ運転のように、大気中で両者が摺動すると両者間の摩擦係数が上昇し、摺動面の温度が大幅に上昇して、ポンプ用軸受構造の耐久性が低下する。また、摺動面にDLC(ダイヤモンドライクカ−ボン)と称する非晶質炭素膜を用いることも考えられるが、ケイ砂やアルミナ粒子などを含むスラリー水に晒されると、短時間で摺動面を構成するDLC膜が摩滅してしまうという問題点がある。   In the pump bearing structure described in Patent Document 1 in which the sliding surface of the bearing is made of ceramic such as silicon nitride and the sliding surface of the sleeve is made of cemented carbide, the wear rate is low because both are hard. . However, the self-lubricating property in the atmosphere between the bearing sliding surface and the sleeve sliding surface is low. For this reason, like the dry operation during the pre-standby operation of the pre-standby operation pump, if they slide in the atmosphere, the friction coefficient between the two increases, and the temperature of the sliding surface rises significantly, The durability of the bearing structure is reduced. It is also possible to use an amorphous carbon film called DLC (Diamond Like Carbon) on the sliding surface, but when exposed to slurry water containing silica sand or alumina particles, the sliding surface can be obtained in a short time. There is a problem that the DLC film that constitutes the material is worn out.

本発明は、このような問題を解決するものであって、その目的とするところは、軸受への負荷が大きい場合や先行待機運転ポンプの先行待機運転時のようなドライ運転時に優れた摺動特性を発揮し、スラリー水に晒される運転条件下でも優れた摺動特性を発揮して、耐久性を向上させることができるポンプ用軸受構造を提供することにある。   The present invention solves such a problem, and the object of the present invention is to provide excellent sliding during dry operation such as when the load on the bearing is large or during prior standby operation of the prior standby operation pump. An object of the present invention is to provide a pump bearing structure that exhibits characteristics, exhibits excellent sliding characteristics even under operating conditions exposed to slurry water, and can improve durability.

前記目的を達成するために、本発明に係るポンプ用軸受構造は、回転軸または回転軸に固着されたスリーブと、前記回転軸または前記スリーブと対向する軸受とで摺動面が構成されるポンプ用軸受において、前記回転軸または前記スリーブと前記軸受の少なくとも一方の摺動面がダイヤモンドを含む焼結体層で構成され、前記ダイヤモンド焼結体層のダイヤモンド含有率が80Vol%〜97Vol%の範囲内であり、かつダイヤモンドの粒径が0.5μm〜70μmの範囲内であり、前記ダイヤモンド焼結体層の硬度が30GPa以上であり、前記ダイヤモンド焼結体層の層厚が30μm〜7000μmの範囲内であり、かつ表面粗さRmaxが16μm以下であることを特徴とするものである。 To achieve the above object, a pump bearing structure according to the present invention is a pump in which a sliding surface is constituted by a rotating shaft or a sleeve fixed to the rotating shaft and a bearing facing the rotating shaft or the sleeve. In the bearing for a bearing, at least one sliding surface of the rotary shaft or the sleeve and the bearing is composed of a sintered body layer containing diamond, and a diamond content of the diamond sintered body layer is in a range of 80 Vol% to 97 Vol%. an inner, and the particle size of the diamond is in the range of 0.5Myuemu~70myuemu, hardness of the diamond sintered body layers Ri der least 30 GPa, the layer thickness of the diamond sintered body layer is 30μm~7000μm It is within the range, and the surface roughness Rmax is 16 μm or less .

このように、回転軸または回転軸に固着されたスリーブと軸受の少なくとも一方を構成している摺動面を硬度が高く、かつ大気中の自己潤滑性が高いダイヤモンド焼結体層としているので、大気中で回転軸または回転軸に固着されたスリーブと軸受との両者が摺動するドライ運転がなされても、両者間の摩擦係数が上昇しない。このため、ポンプ用軸受構造の耐久性を向上させることができる。また、硬度が高いダイヤモンド焼結体層の表面を摺動面としていることにより、スラリー水に晒される運転条件下における摺動面の摩滅を防止して、ポンプ用軸受構造の耐久性を向上させることができる。   As described above, since the rotating surface or the sliding surface constituting at least one of the sleeve fixed to the rotating shaft and the bearing is a diamond sintered body layer having high hardness and high self-lubricity in the atmosphere, Even if a dry operation is performed in which the rotating shaft or both the sleeve fixed to the rotating shaft and the bearing slide in the atmosphere, the friction coefficient between them does not increase. For this reason, durability of the bearing structure for pumps can be improved. In addition, since the surface of the diamond sintered body layer having high hardness is used as a sliding surface, wear of the sliding surface under operating conditions exposed to slurry water is prevented, and durability of the pump bearing structure is improved. be able to.

本発明においては、ダイヤモンド焼結体層のダイヤモンド含有率を80Vol%〜97Vol%の範囲内で、かつダイヤモンドの粒径を0.5μm〜70μmの範囲内としてある。これによると、ダイヤモンド焼結体層の高い自己潤滑性が保持されることで、摩擦係数の上昇を避けて、耐摩耗性が高められ、ポンプ用軸受構造の耐久性を向上させることができるとともに、割れや欠けあるいは剥離などの弊害を回避して、基材上にダイヤモンド焼結体層を確実に形成することができ、さらに、ビッカース硬度を30GPa以上にすることができる。   In the present invention, the diamond content of the sintered diamond layer is in the range of 80 Vol% to 97 Vol%, and the diamond particle size is in the range of 0.5 μm to 70 μm. According to this, since the high self-lubricating property of the diamond sintered body layer is maintained, an increase in the friction coefficient can be avoided, the wear resistance can be improved, and the durability of the pump bearing structure can be improved. Thus, it is possible to avoid the adverse effects such as cracking, chipping or peeling, and to reliably form the diamond sintered body layer on the substrate, and to make the Vickers hardness 30 GPa or more.

また、本発明においては、ダイヤモンド焼結体層の層厚が30μm〜7000μmの範囲内であり、かつ表面粗さRmaxを16μm以下にすることが好ましい。これによると、ダイヤモンド焼結体層の耐摩耗性が高められてポンプ用軸受構造の耐久性を向上させ、かつダイヤモンド焼結体層の加工性を良くすることができるとともに、ダイヤモンド焼結体層に摺動する相手側部材の摩耗を抑えて、ポンプ用軸受構造の耐久性を向上させることができる。   Moreover, in this invention, it is preferable that the layer thickness of a diamond sintered compact layer exists in the range of 30 micrometers-7000 micrometers, and surface roughness Rmax shall be 16 micrometers or less. According to this, the wear resistance of the diamond sintered body layer is enhanced, the durability of the pump bearing structure can be improved, and the workability of the diamond sintered body layer can be improved. The durability of the pump bearing structure can be improved by suppressing wear of the mating member that slides on the shaft.

さらに、本発明においては、ダイヤモンド焼結体層のダイヤモンド含有率が80Vol%〜95Vol%の範囲内で、かつダイヤモンド焼結体層の層厚が70μm〜5500μmの範囲内で、かつ表面粗さRmaxが10μm以下であるとともに、ダイヤモンドの粒径を0.8μm〜50μm範囲内にすることがさらに好ましい。   Furthermore, in the present invention, the diamond sintered body layer has a diamond content of 80 Vol% to 95 Vol%, a diamond sintered body layer has a layer thickness of 70 μm to 5500 μm, and a surface roughness Rmax. Is more preferably 10 μm or less, and the diamond particle size is more preferably in the range of 0.8 μm to 50 μm.

これによると、ダイヤモンド焼結体層の高い自己潤滑性の保持がより確実になって、摩擦係数の上昇を確実に避けて、耐摩耗性を高め、ポンプ用軸受構造の耐久性をさらに向上させ、かつダイヤモンド焼結体層の加工性をさらに良くすることができるとともに、割れや欠けあるいは剥離などの弊害を回避して、基材上にダイヤモンド焼結体層をより一層確実に形成することができる。   According to this, the high self-lubricating property of the diamond sintered body layer is more reliably maintained, the friction coefficient is surely avoided, the wear resistance is increased, and the durability of the pump bearing structure is further improved. In addition, it is possible to further improve the workability of the diamond sintered body layer, and avoid the adverse effects such as cracking, chipping or peeling, and more reliably form the diamond sintered body layer on the substrate. it can.

さらに、本発明においては、前記ダイヤモンド焼結体層を形成する基材が、超硬合金またはサーメットからなり、ダイヤモンド焼結体層に前記基材と同じ成分を含有している構造が好ましい。   Furthermore, in the present invention, a structure in which the base material forming the diamond sintered body layer is made of cemented carbide or cermet and the diamond sintered body layer contains the same components as the base material is preferable.

また、本発明は、前記スリーブまたは前記軸受の少なくとも一方を複数のセグメントで構成し、このセグメントが前記基材と前記ダイヤモンド焼結体層とで構成されているとともに、該ダイヤモンド焼結体層の表面を摺動面とした構造であってもよい。   In the present invention, at least one of the sleeve or the bearing is constituted by a plurality of segments, and the segments are constituted by the base material and the diamond sintered body layer. A structure in which the surface is a sliding surface may be used.

また、本発明においては、スリーブの摺動面が超硬合金であり、前記軸受が複数のセグメントで構成され、このセグメントが前記基材と前記ダイヤモンド焼結体層とで構成され、該ダイヤモンド焼結体層の表面を軸受の摺動面とした構造にすることが好ましい。   Further, in the present invention, the sliding surface of the sleeve is a cemented carbide, the bearing is composed of a plurality of segments, the segments are composed of the base material and the diamond sintered body layer, It is preferable to use a structure in which the surface of the bonded layer is a sliding surface of the bearing.

本発明によれば、硬度が高く、かつ大気中の自己潤滑性が高いダイヤモンド焼結体層の表面を摺動面としているので、軸受への負荷が大きい場合や大気中でスリーブと軸受との両者が摺動するドライ運転がなされても、両者間の摩擦係数が上昇しないので、耐摩耗性が高められ、ポンプ用軸受構造の耐久性を向上させることができる。さらに、スラリー水に晒される運転条件下においても摺動面の摩滅を防止して、耐久性を向上させるといった優れた摺動特性を発揮することができる。
また、スリーブまたは軸受の少なくとも一方を複数のセグメントで構成し、このセグメントを基材とダイヤモンド焼結体層とで構成した場合は、上記効果に加えて、摺動面を構成する1つの部材の表面積が小さくなるため、硬質のダイヤモンド焼結体層の表面仕上げなどの加工性が向上し、凹凸の少ない良質の摺動面を経済的に形成できるようになる。
According to the present invention, since the surface of the diamond sintered body layer having high hardness and high self-lubricity in the atmosphere is used as a sliding surface, the load between the sleeve and the bearing is increased in the atmosphere or when the load on the bearing is large. Even if a dry operation is performed in which both slide, the coefficient of friction between the two does not increase, so the wear resistance is improved and the durability of the pump bearing structure can be improved. Furthermore, excellent sliding characteristics such as preventing wear of the sliding surface and improving durability even under operating conditions exposed to slurry water can be exhibited.
In addition, when at least one of the sleeve or the bearing is constituted by a plurality of segments, and this segment is constituted by the base material and the diamond sintered body layer, in addition to the above effects, one member constituting the sliding surface Since the surface area is reduced, processability such as surface finishing of the hard diamond sintered body layer is improved, and a high-quality sliding surface with less unevenness can be economically formed.

図1は本発明の実施形態を示す縦断面図、図2は図1のA−A線断面図である。これらの図において、ポンプ用軸受構造Bは、複数のセグメント20によって構成された軸受21と、この軸受21の外周にたとえば接着剤(図示省略)を介して一体に結合されたNBR(ニトリルゴム)からなる筒状の緩衝部材22と、この緩衝部材22を嵌合して外周に配置されるステンレス(SUS304)製で筒状のハウジング23と、ポンプ主軸24の外周に固着されたスリーブ25とを備え、環状のハウジング23は軸受台(図示省略)を介してポンプ側に固定される。   FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention, and FIG. 2 is a sectional view taken along line AA of FIG. In these drawings, a pump bearing structure B includes a bearing 21 constituted by a plurality of segments 20 and an NBR (nitrile rubber) integrally coupled to the outer periphery of the bearing 21 via, for example, an adhesive (not shown). And a cylindrical housing 23 made of stainless steel (SUS304) and fitted on the outer periphery of the pump main shaft 24. The sleeve 25 is fixed to the outer periphery of the pump main shaft 24. The annular housing 23 is fixed to the pump side via a bearing base (not shown).

軸受21を構成している各セグメント20は、図3に示すように、タングステンカーバイトを含むコバルト基合金などの超硬合金からなる基材20Aと、この基材20A上に形成されたダイヤモンド焼結体層20Bとで構成され、前記スリーブ25は基材20Aと同様のタングステンカーバイトを含むコバルト基合金などの超硬合金によって構成されている。そして、軸受21の摺動面であるダイヤモンド焼結体層20Bの表面は、スリーブ25の外周摺動面にすべり接触し得る曲率半径を有する断面内向きの円弧状に形成してある。なお、図中、27は、スリーブ25にHIPにより形成した超硬合金層であり、その表面が摺動面となっている。   As shown in FIG. 3, each segment 20 constituting the bearing 21 includes a base material 20A made of a cemented carbide such as a cobalt base alloy containing tungsten carbide, and a diamond firing formed on the base material 20A. The sleeve 25 is made of cemented carbide such as a cobalt base alloy containing tungsten carbide similar to the base material 20A. The surface of the diamond sintered body layer 20 </ b> B, which is the sliding surface of the bearing 21, is formed in an inward arc shape having a radius of curvature that allows sliding contact with the outer peripheral sliding surface of the sleeve 25. In the figure, reference numeral 27 denotes a cemented carbide layer formed on the sleeve 25 by HIP, and its surface is a sliding surface.

前記実施形態におけるダイヤモンド焼結体層20Bは、たとえば粒径が7μmのダイヤモンド粒子を92Vol%含有し、ダイヤモンド焼結体層20Bの層厚が500μmで、かつダイヤモンド焼結体層20Bの表面粗さRmaxが0.4μm以下のものである。   The diamond sintered body layer 20B in the embodiment contains, for example, 92 Vol% of diamond particles having a particle diameter of 7 μm, the diamond sintered body layer 20B has a thickness of 500 μm, and the surface roughness of the diamond sintered body layer 20B. Rmax is 0.4 μm or less.

前記構成のポンプ用軸受構造Bを図6に示す立軸ポンプPに適用した場合には、硬度[ビッカース硬さ(GPa)]が高く、かつ大気中の自己潤滑性が高いダイヤモンド焼結体層20Bの表面を摺動面としているので、大気中でスリーブ25の外周摺動面27とダイヤモンド焼結体層20Bの両者が摺動するドライ運転がなされても、両者27,20B間の摩擦係数が上昇しない。このため、耐摩耗性が高められ、ポンプ用軸受構造Bの耐久性を向上させることができる。また、硬度が高いダイヤモンド焼結体層20Bの表面を摺動面としていることにより、スラリー水に晒される運転条件下における摺動面(ダイヤモンド焼結体層20Bの表面)の摩滅を防止して、ポンプ用軸受構造Bの耐久性を向上させることができる。   When the pump bearing structure B having the above configuration is applied to the vertical shaft pump P shown in FIG. 6, the diamond sintered body layer 20B having high hardness [Vickers hardness (GPa)] and high self-lubricity in the atmosphere. Therefore, even if a dry operation is performed in which both the outer peripheral sliding surface 27 of the sleeve 25 and the diamond sintered body layer 20B slide in the atmosphere, the friction coefficient between the both 27 and 20B is maintained. Does not rise. For this reason, abrasion resistance is improved and durability of the bearing structure B for pumps can be improved. Further, by using the surface of the diamond sintered body layer 20B having high hardness as a sliding surface, it is possible to prevent wear of the sliding surface (the surface of the diamond sintered body layer 20B) under operating conditions exposed to slurry water. The durability of the pump bearing structure B can be improved.

ここで、ダイヤモンド焼結体層20Bのダイヤモンド含有率が50Vol%未満であると、ダイヤモンド粒子が少なくなって、自己潤滑性が低くなり、摩擦係数が高くなって、ポンプ用軸受構造Bの耐久性が低下する。また、ダイヤモンド含有率が97Vol%を超えると、ダイヤモンド粒子が多くなりすぎて、焼結し難くなり、割れや欠けあるいは剥離などが生じて、ダイヤモンド焼結体層20Bの形態が損なわれる。したがって、ダイヤモンド含有率は50Vol%〜97Vol%、望ましくは55Vol%〜95Vol%、さらに望ましくは60Vol%〜92Vol%の範囲内に設定するのがよい。   Here, when the diamond content of the diamond sintered body layer 20B is less than 50 Vol%, the number of diamond particles decreases, the self-lubricity decreases, the friction coefficient increases, and the durability of the pump bearing structure B increases. Decreases. On the other hand, if the diamond content exceeds 97% by volume, the diamond particles become too much and it becomes difficult to sinter, cracking, chipping or peeling occurs, and the form of the diamond sintered body layer 20B is impaired. Therefore, the diamond content is preferably set within the range of 50 Vol% to 97 Vol%, desirably 55 Vol% to 95 Vol%, and more desirably 60 Vol% to 92 Vol%.

また、ダイヤモンド粒子の粒径が0.5μm未満であると細かくなりすぎて耐摩耗性が低くなり、ポンプ用軸受構造Bの耐久性が低下する。そして、粒径が70μmを超えると大きくなりすぎて、ワイヤーカット加工がし難くなり、加工性が悪くなる。したがって、ダイヤモンド粒子の粒径は0.5μm〜70μm、望ましくは0.8μm〜50μm、さらに望ましくは1μm〜36μmの範囲内に設定するのがよい。これらダイヤモンド粒子の粒径範囲と、前記ダイヤモンド含有率の範囲を組み合わせることで、ダイヤモンド焼結体層20Bのビッカース硬度は30GPa以上になる。   If the particle size of the diamond particles is less than 0.5 μm, the diamond particles become too fine and wear resistance is lowered, and the durability of the pump bearing structure B is lowered. And when a particle size exceeds 70 micrometers, it will become large too much and it will become difficult to perform a wire-cut process, and workability will worsen. Therefore, the particle size of the diamond particles should be set in the range of 0.5 μm to 70 μm, desirably 0.8 μm to 50 μm, and more desirably 1 μm to 36 μm. By combining the particle diameter range of these diamond particles and the range of the diamond content, the Vickers hardness of the diamond sintered body layer 20B becomes 30 GPa or more.

さらに、ダイヤモンド焼結体層20Bの層厚が30μm未満であると薄くなりすぎて耐摩耗性が低くなり、ポンプ用軸受構造Bの耐久性が低下する。そして、層厚が7000μmを超えると厚くなりすぎて、加工時間が著しく増大し、加工性が悪くなる。したがって、ダイヤモンド焼結体層20Bの層厚は30μm〜7000μm、望ましくは70μm〜5500μm、さらに望ましくは100μm〜4000μmの範囲内に設定するのがよい。   Further, if the thickness of the diamond sintered body layer 20B is less than 30 μm, the diamond sintered body layer 20B becomes too thin and wear resistance is lowered, and the durability of the pump bearing structure B is lowered. And when layer thickness exceeds 7000 micrometers, it will become thick too much, processing time will increase remarkably, and workability will worsen. Therefore, the layer thickness of the diamond sintered body layer 20B is set within the range of 30 μm to 7000 μm, desirably 70 μm to 5500 μm, and more desirably 100 μm to 4000 μm.

ダイヤモンド焼結体層20Bの表面粗さRmaxが16μmを超えると粗くなりすぎて、超硬合金によって構成されているスリーブ25が短時間で摩耗するので、ポンプ用軸受構造Bの耐久性が低下する。したがって、ダイヤモンド焼結体層20Bの表面粗さRmaxは16μm以下、望ましくは10μm以下、さらに望ましくは6.3μm以下に設定するのがよい。   When the surface roughness Rmax of the diamond sintered body layer 20B exceeds 16 μm, it becomes too rough and the sleeve 25 made of cemented carbide wears in a short time, so that the durability of the pump bearing structure B is lowered. . Therefore, the surface roughness Rmax of the diamond sintered body layer 20B is set to 16 μm or less, desirably 10 μm or less, and more desirably 6.3 μm or less.

本発明に係るポンプ用軸受構造Bの実施例1〜8と、比較例1〜7におけるダイヤモンド焼結体層20B(硬質層)の「加工性」、「硬質層の割れ、欠け,剥離」,「耐久時間」、「スラリー試験後の硬質層の状態」の試験結果を表1に示す。なお、表1において、耐久時間(h)※は、図6に示した立軸ポンプPにポンプ用軸受構造B適用して、ドライ運転した際にポンプ用軸受構造Bの摩擦係数が0.8を超えた時間で示している。参考に記すが、実施例3,8のものはダイヤ含有率が80Vol%未満であり、本発明の範疇外である。   Examples 1 to 8 of the pump bearing structure B according to the present invention and "processability" of the diamond sintered body layer 20B (hard layer) in Comparative Examples 1 to 7, "cracking, chipping, peeling of the hard layer", Table 1 shows the test results of “durability time” and “state of hard layer after slurry test”. In Table 1, the durability time (h) * indicates that the friction coefficient of the pump bearing structure B is 0.8 when the pump bearing structure B is applied to the vertical shaft pump P shown in FIG. Shown in overtime. Although it mentions for reference, the thing of Examples 3 and 8 has a diamond content of less than 80 Vol%, which is outside the scope of the present invention.

Figure 0004568539
Figure 0004568539

前記表1において、本発明に係るポンプ用軸受構造Bの実施例1〜8は、硬質層の「加工性」は全て良く、「硬質層の割れ、欠け,剥離」は全てにおいて発生せず、耐久時間は全て50時間を超えており、かつ「スラリー試験後の硬質層の状態」は全て摩滅しないといった優れた特性を示している。しかし、比較例1〜7において、比較例1では、硬質層のダイヤモンド含有率が50Vol%未満(40Vol%)であるため、ダイヤモンドよりも他の成分が多いため、ダイヤモンド特有の自己潤滑性が低くなり、摩擦係数が高くなって、ポンプ用軸受構造Bの耐久性が低下し(注1)、比較例2では、硬質層のダイヤモンド含有率が97Vol%を超えている(98Vol%)ため、焼結し難くなり、割れや欠けあるいは剥離などが生じる(注2)。また、比較例3では、ダイヤモンド粒子の粒径が0.5μm未満(0.1μm)であるため、細かくなりすぎて耐摩耗性が低くなり、スラリー試験後の硬質層に摩滅が生じ(注3)、比較例4では、ダイヤモンド粒子の粒径が70μmを超えている(100μm)ため、粒子が大きくなりすぎて、ワイヤーカット加工がし難くなり、硬質層の加工性が悪くなり(注4)、比較例5では、硬質層の表面粗さRmaxが16μmを超えている(25μm)ため、硬質層の表面が粗くなりすぎて、超硬合金によって構成されているスリーブ25の摺動面が短時間で摩耗するので、ポンプ用軸受構造Bの耐久性が低下する(注5)。さらに、比較例6では、硬質層の層厚が30μm未満(20μm)であるため、薄くなりすぎて耐摩耗性が低くなり、スラリー試験後の硬質層に摩滅が生じ(注6)、比較例7では、硬質層の層厚が7000μmを超えている(10000μm)ため、厚くなりすぎて、加工時間が著しく増大し、硬質層の加工性が悪くなったり(注7)、硬質層の応力歪みが大きくなって、割れや欠けあるいは剥離などを生じる(注8)ことがわかる。   In Table 1 above, Examples 1 to 8 of the pump bearing structure B according to the present invention have good “workability” of the hard layer, and “cracking, chipping and peeling of the hard layer” do not occur at all. All of the durability times exceeded 50 hours, and the “state of the hard layer after the slurry test” exhibited excellent characteristics such as not being worn out. However, in Comparative Examples 1 to 7, in Comparative Example 1, the hard layer has a diamond content of less than 50 Vol% (40 Vol%), and therefore contains more components than diamond, so the diamond-specific self-lubricity is low. Thus, the friction coefficient is increased, and the durability of the pump bearing structure B is decreased (Note 1). In Comparative Example 2, the diamond layer content of the hard layer exceeds 97 Vol% (98 Vol%). It becomes difficult to tie and cracks, chips or peeling occurs (Note 2). Further, in Comparative Example 3, since the particle diameter of the diamond particles is less than 0.5 μm (0.1 μm), it becomes too fine and wear resistance is lowered, and the hard layer after the slurry test is worn (Note 3). In Comparative Example 4, since the particle diameter of the diamond particles exceeds 70 μm (100 μm), the particles become too large to make wire cutting difficult, and the workability of the hard layer deteriorates (Note 4). In Comparative Example 5, since the surface roughness Rmax of the hard layer exceeds 16 μm (25 μm), the surface of the hard layer becomes too rough and the sliding surface of the sleeve 25 made of cemented carbide is short. Since it wears out over time, the durability of the pump bearing structure B is reduced (Note 5). Furthermore, in Comparative Example 6, since the thickness of the hard layer is less than 30 μm (20 μm), it becomes too thin and wear resistance becomes low, and wear occurs in the hard layer after the slurry test (Note 6). In No. 7, since the hard layer thickness exceeds 7000 μm (10000 μm), it becomes too thick, the processing time increases significantly, the workability of the hard layer deteriorates (Note 7), the stress strain of the hard layer It becomes clear that cracking, chipping or peeling occurs (Note 8).

なお、前記図1、図2で説明した実施形態では、図3に示すように、軸受21の各セグメント20の基材20Aを、タングステンカーバイトを含むコバルト基合金などの超硬合金で構成しているが、チタンカーバイトを主体にした焼結物のサーメットで基材20Aを構成してもよい。また、ダイヤモンド焼結体層20Bに基材20Aの金属成分であるコバルト基合金、あるいはサーメットなどの、使用した基材と同じ成分が含まれている構造であることが好ましい。   In the embodiment described with reference to FIGS. 1 and 2, as shown in FIG. 3, the base material 20A of each segment 20 of the bearing 21 is made of a cemented carbide such as a cobalt base alloy containing tungsten carbide. However, the base material 20A may be formed of a sintered cermet mainly composed of titanium carbide. Moreover, it is preferable that the diamond sintered body layer 20B has a structure in which the same component as the used base material such as a cobalt-based alloy or cermet which is a metal component of the base material 20A is included.

また、図4に示すように、複数のセグメント20を軸方向に分割してもよい。このような分割構造であれば、1枚の板からセグメントを切り出して加工する際の歩止まりが向上するほか、軸受21の軸線に対してポンプ主軸24の軸線が僅かに傾いても、軸方向に分割されている複数のセグメント20と、これらセグメント20の外周側に配置される筒状の緩衝部材22との協働によって、前記ポンプ主軸24の傾きを吸収することができる。   Further, as shown in FIG. 4, the plurality of segments 20 may be divided in the axial direction. With such a divided structure, the yield when cutting and processing a segment from a single plate is improved, and even if the axis of the pump main shaft 24 is slightly inclined with respect to the axis of the bearing 21, the axial direction The inclination of the pump main shaft 24 can be absorbed by the cooperation of the plurality of segments 20 divided into two and the cylindrical buffer member 22 disposed on the outer peripheral side of the segments 20.

さらに、前記図1、図2で説明した実施形態では、ポンプ主軸24に固着したスリーブ25上に超硬合金層27を形成し、この超硬合金層27と対向する軸受21の摺動面を、ダイヤモンド焼結体層20Bを有する複数のセグメント20で構成しているが、軸受21の摺動面を筒状の超硬合金や窒化珪素などのセラミックによって構成し、この軸受21と対向するスリーブ25の外周摺動面25Aを、ダイヤモンド焼結体層20Bを有する複数のセグメント20で構成してもよい。また、回転軸24にスリーブ25を固着した構成とせずに、回転軸24の表面を摺動面としてもよい。さらに、ダイヤモンド焼結体層20Bセグメント上に形成せずに、回転軸24やスリーブ25、軸受21の表面に直接形成し
てもよい。
Further, in the embodiment described with reference to FIGS. 1 and 2, the cemented carbide layer 27 is formed on the sleeve 25 fixed to the pump main shaft 24, and the sliding surface of the bearing 21 facing the cemented carbide layer 27 is formed. The sleeve 20 is composed of a plurality of segments 20 having a diamond sintered body layer 20B. The sliding surface of the bearing 21 is made of a cylindrical cemented carbide, ceramic such as silicon nitride, and the sleeve facing the bearing 21. The 25 outer peripheral sliding surfaces 25A may be composed of a plurality of segments 20 having a diamond sintered body layer 20B. In addition, the surface of the rotating shaft 24 may be a sliding surface without using the configuration in which the sleeve 25 is fixed to the rotating shaft 24. Further, it may be formed directly on the surface of the rotating shaft 24, the sleeve 25, or the bearing 21 without being formed on the diamond sintered body layer 20B segment.

本発明の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows embodiment of this invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. セグメントの一例を示す斜視図である。It is a perspective view which shows an example of a segment. セグメントの変形使用例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification use example of a segment. 従来例の縦断面図である。It is a longitudinal section of a conventional example. ポンプ用軸受構造の適用例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of application of the bearing structure for pumps.

20 セグメント
20A 基材
20B ダイヤモンド焼結体層
21 軸受
24 ポンプ主軸(回転軸)
25 スリーブ
20 segment 20A base material 20B diamond sintered body layer 21 bearing 24 pump main shaft (rotating shaft)
25 sleeve

Claims (5)

回転軸または回転軸に固着されたスリーブと、前記回転軸または前記スリーブと対向する軸受とで摺動面が構成されるポンプ用軸受において、
前記回転軸または前記スリーブと前記軸受の少なくとも一方の摺動面がダイヤモンドを含む焼結体層で構成され、前記ダイヤモンド焼結体層のダイヤモンド含有率が80Vol%〜97Vol%の範囲内であり、かつダイヤモンドの粒径が0.5μm〜70μmの範囲内であり、前記ダイヤモンド焼結体層の硬度が30GPa以上であり、
前記ダイヤモンド焼結体層の層厚が30μm〜7000μmの範囲内であり、かつ表面粗さRmaxが16μm以下であるポンプ用軸受構造。
In a bearing for a pump in which a sliding surface is constituted by a rotating shaft or a sleeve fixed to the rotating shaft and a bearing facing the rotating shaft or the sleeve,
At least one sliding surface of the rotating shaft or the sleeve and the bearing is composed of a sintered body layer containing diamond, and the diamond content of the diamond sintered body layer is in a range of 80 Vol% to 97 Vol%, and the particle size of the diamond is in the range of 0.5Myuemu~70myuemu, hardness of the diamond sintered body layers Ri der least 30 GPa,
A bearing structure for a pump, wherein the diamond sintered body layer has a layer thickness of 30 μm to 7000 μm and a surface roughness Rmax of 16 μm or less .
請求項1に記載のポンプ用軸受構造において、
前記ダイヤモンド焼結体層のダイヤモンド含有率が80Vol%〜95Vol%の範囲内であり、かつダイヤモンド焼結体層の層厚が70μm〜5500μmの範囲内であり、かつ表面粗さRmaxが10μm以下であるとともに、ダイヤモンドの粒径が0.8μm〜50μm範囲内であるポンプ用軸受構造。
In the pump bearing structure according to claim 1,
The diamond content of the diamond sintered body layer is in the range of 80 Vol% to 95 Vol%, the layer thickness of the diamond sintered body layer is in the range of 70 μm to 5500 μm, and the surface roughness Rmax is 10 μm or less. There is also a pump bearing structure in which the diamond particle size is in the range of 0.8 μm to 50 μm .
請求項1又は2に記載のポンプ用軸受構造において、
前記ダイヤモンド焼結体層を形成する基材が、超硬合金またはサーメットからなり、前記ダイヤモンド焼結体層に前記基材と同じ成分を含有しているポンプ用軸受構造。
The pump bearing structure according to claim 1 or 2,
The bearing structure for pumps in which the base material which forms the said diamond sintered compact layer consists of a cemented carbide or a cermet, and contains the same component as the said base material in the said diamond sintered compact layer .
請求項3に記載のポンプ用軸受構造において、
前記スリーブまたは前記軸受の少なくとも一方が複数のセグメントで構成され、このセグメントが前記基材と前記ダイヤモンド焼結体層とで構成されているとともに、該ダイヤモンド焼結体層の表面を摺動面としたポンプ用軸受構造。
The pump bearing structure according to claim 3 ,
At least one of the sleeve or the bearing is composed of a plurality of segments, the segments are composed of the base material and the diamond sintered body layer, and the surface of the diamond sintered body layer is a sliding surface. bearing structure for the pump.
請求項3又は4に記載のポンプ用軸受構造において、
前記スリーブの摺動面が超硬合金であり、前記軸受が複数のセグメントで構成され、このセグメントが前記基材と前記ダイヤモンド焼結体層とで構成され、該ダイヤモンド焼結体層の表面を軸受の摺動面としたポンプ用軸受構造。
The pump bearing structure according to claim 3 or 4 ,
The sliding surface of the sleeve is a cemented carbide, the bearing is composed of a plurality of segments, the segments are composed of the base material and the diamond sintered body layer, and the surface of the diamond sintered body layer is A bearing structure for a pump that is a sliding surface of the bearing.
JP2004167193A 2004-06-04 2004-06-04 Pump bearing structure Expired - Lifetime JP4568539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004167193A JP4568539B2 (en) 2004-06-04 2004-06-04 Pump bearing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167193A JP4568539B2 (en) 2004-06-04 2004-06-04 Pump bearing structure

Publications (2)

Publication Number Publication Date
JP2005344878A JP2005344878A (en) 2005-12-15
JP4568539B2 true JP4568539B2 (en) 2010-10-27

Family

ID=35497439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167193A Expired - Lifetime JP4568539B2 (en) 2004-06-04 2004-06-04 Pump bearing structure

Country Status (1)

Country Link
JP (1) JP4568539B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263185A (en) * 2006-03-28 2007-10-11 Kubota Corp Sliding bearing device and pump device
KR101349786B1 (en) * 2012-09-18 2014-02-13 국방과학연구소 Driving shaft assembly having composition material bearing, driving link assembly having the same and method of manufacturing driving link assembly
JP6628499B2 (en) * 2015-06-05 2020-01-08 株式会社クボタ Sliding member and pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313575A (en) * 2002-04-19 2003-11-06 National Institute Of Advanced Industrial & Technology Diamond composite self-lubrication friction material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2967245B2 (en) * 1991-08-22 1999-10-25 株式会社日立製作所 Waterless pump
JP3949181B2 (en) * 1994-10-11 2007-07-25 株式会社リード Diamond sintered body using hard alloy as binder and method for producing the same
JP3745396B2 (en) * 1994-11-15 2006-02-15 株式会社日立製作所 Water lubricated ceramic bearing device, pump and water wheel
JP3309897B2 (en) * 1995-11-15 2002-07-29 住友電気工業株式会社 Ultra-hard composite member and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313575A (en) * 2002-04-19 2003-11-06 National Institute Of Advanced Industrial & Technology Diamond composite self-lubrication friction material

Also Published As

Publication number Publication date
JP2005344878A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
US5322735A (en) Roller body, method of its manufacture, and of roller or plain bearings
JP6420272B2 (en) Sliding member
JP6628499B2 (en) Sliding member and pump
BR112015017292B1 (en) SLIDING ELEMENT, PARTICULARLY A PISTON RING, WITH A COATING
JP5270329B2 (en) Thrust slide bearing and pump equipped with the thrust slide bearing
JP4568539B2 (en) Pump bearing structure
EP2610426A2 (en) Diamond Enhanced Drilling Insert with High Impact Resistance
US9273724B1 (en) Thrust bearing pad having metallic substrate
JP3861097B2 (en) Rotating machine
US20110121518A1 (en) Silicon carbide mechanical seal
KR101288336B1 (en) Bearing having embedded hard particle layer and overlay and method of manufacture
JP2019116914A (en) Slide member and use thereof
JP2006220257A (en) Sliding bearing and pump device
US6619847B1 (en) Ceramic dynamic-pressure bearing, motor having bearing, hard disk drive, and polygon scanner
CN105134784B (en) A kind of compound rolling-element rolling hearing increasing rolling element contact cornerite
CN211343486U (en) Ceramic pump body
JP4318678B2 (en) Grinding wheel
JPH08152020A (en) Dynamic pressure bearing made of ceramic
JP6777529B2 (en) How to manufacture shaft sleeves, pumps, and shaft sleeves
JP2019190644A (en) Slide member
JP2001220605A (en) Sliding member excellent in wear resistance
JP2018105364A (en) Shaft/bearing structure and standby operation pump
JP7049243B2 (en) Sliding member and its manufacturing method
JP3574687B2 (en) Hydrodynamic bearing
JP6639556B2 (en) Sliding member and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

R150 Certificate of patent or registration of utility model

Ref document number: 4568539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140813

Year of fee payment: 4

EXPY Cancellation because of completion of term