JP7023106B2 - Sliding member - Google Patents

Sliding member Download PDF

Info

Publication number
JP7023106B2
JP7023106B2 JP2017250095A JP2017250095A JP7023106B2 JP 7023106 B2 JP7023106 B2 JP 7023106B2 JP 2017250095 A JP2017250095 A JP 2017250095A JP 2017250095 A JP2017250095 A JP 2017250095A JP 7023106 B2 JP7023106 B2 JP 7023106B2
Authority
JP
Japan
Prior art keywords
sliding contact
particles
sliding
sliding member
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017250095A
Other languages
Japanese (ja)
Other versions
JP2019116913A (en
Inventor
隆弘 蒲
実 日根野
正明 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2017250095A priority Critical patent/JP7023106B2/en
Publication of JP2019116913A publication Critical patent/JP2019116913A/en
Application granted granted Critical
Publication of JP7023106B2 publication Critical patent/JP7023106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sliding-Contact Bearings (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

本発明は、摺動部材およびその利用、特に、ポンプに好適に利用できる摺動部材に関する。 The present invention relates to a sliding member and its use, particularly a sliding member that can be suitably used for a pump.

排水ポンプの一種として、先行待機運転ポンプが知られている。先行待機運転ポンプは、例えばゲリラ豪雨のような急激な水量の増加に対応すべく、予め無水状態で全速運転(先行待機運転)することや、気水混合状態での排水を行うことが可能となっている。このような先行待機運転ポンプに適用できる摺動部材が、例えば特許文献1に開示されている。 As a kind of drainage pump, a preceding standby operation pump is known. The preceding standby operation pump can operate at full speed in an anhydrous state in advance (preceding standby operation) and drain water in a mixed state of air and water in order to cope with a sudden increase in water volume such as guerrilla rainstorm. It has become. For example, Patent Document 1 discloses a sliding member applicable to such a preceding standby operation pump.

特許文献1に記載の摺動部材は、被摺動部材に対して相対的に摺動する摺動部材であって、摺動部材基部と、上記摺動部材基部の表面に散在して固定されるとともに、上記被摺動部材に摺接する摺接粒子と、を備え、上記摺接粒子が、上記摺動部材基部の表面から突出しているという構成を備えている。 The sliding member described in Patent Document 1 is a sliding member that slides relatively with respect to the sliding member, and is scattered and fixed to the sliding member base and the surface of the sliding member base. In addition, it is provided with sliding contact particles that are in sliding contact with the sliding member, and the sliding contact particles are configured to protrude from the surface of the sliding member base.

特開2016-211727号公報(2016年12月15日公開)Japanese Unexamined Patent Publication No. 2016-21727 (published on December 15, 2016)

ポンプ等を構成する軸部には摺動部材が設けられており、摺動性の良い摺動部材を提供することが課題とされていた。この課題を解決するため、特許文献1に記載の摺動部材が開発されていた。特許文献1に記載の摺動部材は、前記課題を解決する上で有用であった。 A sliding member is provided on the shaft portion constituting the pump or the like, and it has been an issue to provide a sliding member having good slidability. In order to solve this problem, the sliding member described in Patent Document 1 has been developed. The sliding member described in Patent Document 1 has been useful in solving the above-mentioned problems.

ところで、特許文献1に記載の摺動部材は、摺接粒子として平均粒子径が10~500μmの摺接粒子をスリーブ(摺動部材基部)の外周に固定し、摺接粒子の表面を研削加工することにより、作製したものである。摺動部材と被摺動部材との摺動においては、加工された摺接面(粒子摺接面)を有する摺接粒子の群が被摺動部材と接するように摺動する。ここで、スリーブの単位表面積あたりの粒子摺接面の面積の和が、スリーブの少なくとも2つ以上の単位表面積あたりの上記粒子摺接面の面積の和の平均値から大きく外れる場合を考える。この場合、スリーブの単位表面積あたりの粒子摺接面の面積の和が上記平均値よりも小さくなるところでは、粒子摺接面は大きな圧力を受け、摺動は高面圧を伴うことになる。その結果、摺動部材(摺接粒子)は偏摩耗しやすくなり、かつ、摺動の相手材である被摺動部材への攻撃性が高くなるため被摺動部材の摩耗が大きくなる虞がある。ここで、摺接粒子の粒子摺接面の面積の和の変動の原因としては、摺接粒子を施工(固定)する基材(摺動部材基部)の寸法精度(円筒度、同軸度、外径のサイズ)等が挙げられる。 By the way, in the sliding member described in Patent Document 1, sliding contact particles having an average particle diameter of 10 to 500 μm are fixed to the outer periphery of a sleeve (sliding member base) as sliding contact particles, and the surface of the sliding contact particles is ground. By doing so, it was produced. In sliding between the sliding member and the sliding member, a group of sliding contact particles having a processed sliding contact surface (particle sliding contact surface) slides so as to be in contact with the sliding member. Here, consider a case where the sum of the areas of the particle sliding contact surfaces per unit surface area of the sleeve greatly deviates from the average value of the sum of the areas of the particle sliding contact surfaces per at least two or more unit surface areas of the sleeve. In this case, where the sum of the areas of the particle sliding contact surfaces per unit surface area of the sleeve is smaller than the above average value, the particle sliding contact surfaces receive a large pressure, and the sliding is accompanied by a high surface pressure. As a result, the sliding member (sliding contact particles) is likely to be unevenly worn, and the aggression to the sliding member, which is the mating material for sliding, is increased, so that the sliding member may be worn more. be. Here, the cause of the change in the sum of the areas of the particle sliding contact surfaces of the sliding contact particles is the dimensional accuracy (cylindricity, coaxiality, outside) of the base material (sliding member base) on which the sliding contact particles are applied (fixed). Diameter size) and the like.

摺動部材の偏摩耗は、摺動部材および当該被摺動部材を備える装置の劣化を引き起こし、当該装置の長期間の使用を妨げ得る。摺動部材の偏摩耗を抑制する観点からは、特許文献1に記載の摺動部材には改善の余地があったため、摺動部材の偏摩耗を抑えることが可能な新たな摺動部材の開発が望まれていた。 Uneven wear of the sliding member may cause deterioration of the sliding member and the device including the sliding member, and may hinder the long-term use of the device. From the viewpoint of suppressing uneven wear of the sliding member, there was room for improvement in the sliding member described in Patent Document 1, and therefore, development of a new sliding member capable of suppressing uneven wear of the sliding member. Was desired.

本発明はこのような観点からされたもので、優れた摺動性を有する摺動部材を提供することを目的とする。 The present invention has been made from such a viewpoint, and an object of the present invention is to provide a sliding member having excellent slidability.

本願発明者は、上記目的を達成するために鋭意検討を重ねた結果、摺動部材基部の単位表面積あたりの粒子摺接面の面積の和を所定の範囲内とすることによって、摺動性を改善することができることを見出し、本発明を完成するに至った。すなわち、本願発明は、以下の発明を包含する。 As a result of diligent studies to achieve the above object, the inventor of the present application has determined the slidability by keeping the sum of the areas of the particle sliding contact surfaces per unit surface area of the sliding member base within a predetermined range. We have found that it can be improved and have completed the present invention. That is, the invention of the present application includes the following inventions.

[1]被摺動部材に対して相対的に摺動する摺動部材であって、摺動部材基部と、上記摺動部材基部の表面に散在して固定される摺接粒子と、を備え、上記摺接粒子は、上記摺動部材基部の表面から突出しており、かつ、上記被摺動部材に摺接する粒子摺接面を有しており、上記摺動部材基部の単位表面積あたりの上記粒子摺接面の面積の和は、上記摺動部材基部の少なくとも2つ以上の単位表面積あたりの上記粒子摺接面の面積の和の平均値を100%としたとき、75%~125%の範囲内であることを特徴とする、摺動部材。 [1] A sliding member that slides relatively with respect to the sliding member, and includes a sliding member base and sliding contact particles scattered and fixed on the surface of the sliding member base. The sliding contact particles have a particle sliding contact surface that protrudes from the surface of the sliding member base and is in sliding contact with the sliding member, and is described above per unit surface area of the sliding member base. The sum of the areas of the particle sliding contact surfaces is 75% to 125% when the average value of the sum of the areas of the particle sliding contact surfaces per at least two or more unit surface areas of the sliding member base is 100%. A sliding member, characterized in that it is within the range.

[2]上記摺動部材基部の表面の垂直方向から見たときの、上記摺接粒子が占める面積の割合である面密度が20~70%であることを特徴とする[1]に記載の摺動部材。 [2] The surface density according to [1], which is the ratio of the area occupied by the sliding contact particles when viewed from the vertical direction of the surface of the sliding member base. Sliding member.

[3]上記摺接粒子の平均粒子径は、10~250μmであることを特徴とする[1]または[2]に記載の摺動部材。 [3] The sliding member according to [1] or [2], wherein the average particle size of the sliding contact particles is 10 to 250 μm.

[4]上記摺動部材基部の表面から上記摺接粒子の上記粒子摺接面までの平均高さは、0.8μm以上であることを特徴とする[1]~[3]のいずれか1つに記載の摺動部材。 [4] Any one of [1] to [3], wherein the average height from the surface of the sliding member base to the particle sliding contact surface of the sliding contact particles is 0.8 μm or more. The sliding member described in 1.

[5]上記摺接粒子は、ダイヤモンド粒子、ダイヤモンドライクカーボン粒子、立方晶窒化ホウ素、ガラス状カーボン粒子、アルミナ粒子、炭化ホウ素粒子、炭化ケイ素粒子、炭化タングステン粒子、窒化ケイ素粒子
および炭化モリブデン粒子のうちの少なくとも1種以上を含むことを特徴とする[1]~[4]のいずれか1つに記載の摺動部材。
[5] The sliding contact particles include diamond particles, diamond-like carbon particles, cubic boron nitride, glassy carbon particles, alumina particles, boron carbide particles, silicon carbide particles, tungsten carbide particles, silicon nitride particles, and molybdenum carbide particles. The sliding member according to any one of [1] to [4], which comprises at least one of them.

[6]軸及び軸受を有する軸・軸受構造に用いられ、上記粒子摺接面は、上記軸・軸受構造の軸を中心とする同一円周上にあることを特徴とする[1]~[5]のいずれか1つに記載の摺動部材。 [6] Used in a shaft / bearing structure having a shaft and a bearing, the particle sliding contact surface is characterized to be on the same circumference centered on the shaft of the shaft / bearing structure [1] to [ 5] The sliding member according to any one of.

[7]上記摺接粒子は、少なくとも一部が被膜にて被覆されていることを特徴とする[1]~[6]のいずれか1つに記載の摺動部材。 [7] The sliding member according to any one of [1] to [6], wherein the sliding contact particles are at least partially covered with a coating film.

本発明の一態様によれば、優れた摺動性を有する摺動部材を提供することができる。 According to one aspect of the present invention, it is possible to provide a sliding member having excellent slidability.

本発明の一実施形態に係る摺動部材および被摺動部材を備える軸・軸受構造の、軸方向に垂直な断面を示す断面概略図である。FIG. 5 is a schematic cross-sectional view showing a cross section perpendicular to the axial direction of a shaft / bearing structure including a sliding member and a sliding member according to an embodiment of the present invention. 本発明の一実施形態に係る摺動部材の、外面側からみた構成を示す上面図である。It is a top view which shows the structure seen from the outer surface side of the sliding member which concerns on one Embodiment of this invention. 本発明の一実施形態に係る摺動部材の摺接粒子が、摺動部材基部上へ電着された状態を示す断面図である。It is sectional drawing which shows the state which the sliding contact particle of the sliding member which concerns on one Embodiment of this invention is electrodeposited on the sliding member base. 往復摺動試験における、面圧と摩耗量との関係を示すグラフである。It is a graph which shows the relationship between a surface pressure and a wear amount in a reciprocating sliding test.

本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能である。本発明はまた、異なる実施形態や実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態や実施例についても本発明の技術的範囲に含まれる。なお、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意図する。 An embodiment of the present invention will be described below, but the present invention is not limited thereto. The present invention is not limited to the configurations described below, and various modifications can be made within the scope of the claims. The present invention also includes embodiments and examples obtained by appropriately combining the technical means disclosed in different embodiments and examples within the technical scope of the present invention. In addition, all the academic documents and patent documents described in the present specification are incorporated as references in the present specification. Further, unless otherwise specified in the present specification, "A to B" representing a numerical range is intended to be "A or more (including A and larger than A) and B or less (including B and smaller than B)".

本明細書の以下の記載において、本発明の一実施形態に係るX、または本発明の一態様に係るX(Xは任意の固有名詞、例えば摺動部材、摺接粒子、粒子摺接面、など)を、単に「本X」と称する場合もある。 In the following description of the present specification, X according to an embodiment of the present invention, or X according to an aspect of the present invention (X is an arbitrary proper noun, for example, a sliding member, a sliding contact particle, a particle sliding contact surface, etc. Etc.) may be simply referred to as "book X".

〔1.摺動部材〕
本発明の一態様に係る摺動部材は、被摺動部材に対して相対的に摺動する摺動部材であって、摺動部材基部と、上記摺動部材基部の表面に散在して固定される摺接粒子と、を備え、上記摺接粒子は、上記摺動部材基部の表面から突出しており、かつ、上記被摺動部材に摺接する粒子摺接面を有しており、上記摺動部材基部の単位表面積あたりの上記粒子摺接面の面積の和は、上記摺動部材基部の少なくとも2つ以上の単位表面積あたりの上記粒子摺接面の面積の和の平均値を100%としたとき、75%~125%の範囲内であることを特徴としている。
[1. Sliding member]
The sliding member according to one aspect of the present invention is a sliding member that slides relatively with respect to the sliding member, and is scattered and fixed to the surface of the sliding member base and the sliding member base. The sliding contact particles are provided with the sliding contact particles, and the sliding contact particles protrude from the surface of the sliding member base and have a particle sliding contact surface that is in sliding contact with the sliding member. The sum of the areas of the particle sliding contact surfaces per unit surface area of the moving member base is 100%, which is the average value of the sum of the areas of the particle sliding contact surfaces per at least two or more unit surface areas of the sliding member base. When it is, it is characterized in that it is in the range of 75% to 125%.

本明細書において、「摺動部材基部の単位表面積あたりの粒子摺接面の面積の和」を、「粒子摺接面の面積の和」とも称する。また、本明細書において、「上記摺動部材基部の少なくとも2つ以上の単位表面積あたりの上記粒子摺接面の面積の和の平均値」を、「面積の和の平均値」または単に「平均値」とも称する。 In the present specification, "the sum of the areas of the particle sliding contact surfaces per unit surface area of the sliding member base" is also referred to as "the sum of the areas of the particle sliding contact surfaces". Further, in the present specification, "the average value of the sum of the areas of the particle sliding contact surfaces per at least two or more unit surface areas of the sliding member base" is referred to as "the average value of the sum of the areas" or simply "the average value". Also called "value".

上記構成によれば、摺動部材は、摺動部材基部の表面から突出している摺接粒子を有する。これにより、被摺動部材は、摺接粒子の粒子摺接面と摺接し、摺動部材基部の表面とは摺接しない。これにより、摺動部材は、摩擦係数が低く、摩擦による熱の発生が抑えられ、耐久性に優れた部材となる。 According to the above configuration, the sliding member has sliding contact particles protruding from the surface of the sliding member base. As a result, the sliding member is in sliding contact with the particle sliding contact surface of the sliding contact particles, and is not in sliding contact with the surface of the sliding member base. As a result, the sliding member has a low coefficient of friction, suppresses the generation of heat due to friction, and becomes a member with excellent durability.

また、上記構成によれば、摺動部材では、摺接粒子が摺動部材基部の外表面上に散在しているため、摺接粒子間に摺接粒子が存在しない領域(粒子間領域)が形成される。そのため、摺動部材基部が温度の上昇によって熱膨張するとき、摺動部材基部の外表面上に固定されている摺接粒子は、該熱膨張に付随して移動することができる。換言すれば、摺接粒子は、摺動部材基部の熱膨張に付随して移動する。したがって、摺動部材基部と摺接粒子との熱膨張係数を合わせる必要が無く、摺動部材基部の材料の選択性が広い。 Further, according to the above configuration, in the sliding member, since the sliding contact particles are scattered on the outer surface of the sliding member base, there is a region (interparticle region) in which the sliding contact particles do not exist between the sliding contact particles. It is formed. Therefore, when the sliding member base portion thermally expands due to an increase in temperature, the sliding contact particles fixed on the outer surface of the sliding member base portion can move in association with the thermal expansion. In other words, the sliding contact particles move with the thermal expansion of the sliding member base. Therefore, it is not necessary to match the coefficient of thermal expansion between the sliding member base and the sliding contact particles, and the material selectivity of the sliding member base is wide.

さらに、後述するスラリー液が粒子間領域に侵入することによって、スラリー液が被摺動部材と接触する機会を減少させることが可能となる。それゆえ、被摺動部材の摩耗の抑制を期待することができる。粒子間領域は、上記スラリー液中の固体物(スラリー粒子、とも称する)を保持することにより、当該固体物による摺動部材基部および被摺動部材の損傷を防止すること等に重要な役割を果たす。 Further, the slurry liquid described later invades the interparticle region, so that the chance of the slurry liquid coming into contact with the sliding member can be reduced. Therefore, it can be expected that the wear of the sliding member is suppressed. The interparticle region plays an important role in preventing damage to the sliding member base and the sliding member due to the solid substance by holding the solid substance (also referred to as slurry particle) in the slurry liquid. Fulfill.

また、上記構成によれば、粒子摺接面の面積の和は、面積の和の平均値を100%としたとき、75%~125%の範囲内である。これにより、摺動部材は、粒子摺接面の面積の和と、摺接粒子の突出し高さとが所定の範囲に揃えられた摺接粒子を備えることが可能となる。そのため、当該摺動部材が被摺動部材と摺接するときの、被摺動部材の双方に対する面圧が所定の範囲内となる。これにより、摺動部材と被摺動部材とが摺接するときの摺接粒子の偏摩耗を抑えることができ、かつ、被摺動部材の摩耗を抑えることができる。また、被摺動部材の摩耗が著しい場合には、被摺動部材は偏摩耗となるが、上記構成であれば、当該偏摩耗も抑えることができる。 Further, according to the above configuration, the sum of the areas of the particle sliding contact surfaces is in the range of 75% to 125% when the average value of the sum of the areas is 100%. This makes it possible for the sliding member to include sliding contact particles in which the sum of the areas of the particle sliding contact surfaces and the protruding height of the sliding contact particles are aligned in a predetermined range. Therefore, when the sliding member is in sliding contact with the sliding member, the surface pressure on both of the sliding members is within a predetermined range. As a result, uneven wear of the sliding contact particles when the sliding member and the sliding member are in sliding contact can be suppressed, and wear of the sliding member can be suppressed. Further, when the wear of the sliding member is significant, the sliding member becomes uneven wear, but with the above configuration, the uneven wear can also be suppressed.

さらに、上記構成によれば、摺接粒子は、「摺動部材基部の表面からの突出し部(突出し高さ)」と「摺動部材基部への固定部」との両方を十分に確保することができる。上記構成によれば、特に、摺接粒子における突出し高さを一定の範囲内とすることが可能である。 Further, according to the above configuration, the sliding contact particles sufficiently secure both "a protruding portion (protruding height) from the surface of the sliding member base" and "a fixing portion to the sliding member base". Can be done. According to the above configuration, it is possible to keep the protruding height of the sliding contact particles within a certain range.

<摺動部材の構成>
本発明の一態様に係る摺動部材について、図1~4に基づいて説明すれば、以下のとおりである。なお、以下の実施形態では、摺動部材として、土砂(スラリー粒子)を含む水(スラリー液、とも称する)を排出するためのポンプに用いられる回転機構における軸・軸受構造の軸部材について説明する。しかしながら、本摺動部材は、被摺動部材に対して相対的に摺動する部材である限り、上記軸部材に限定されるものではない。例えば、軸部材に対して相対的に摺動する軸・軸受構造における軸受部材にも適用することができる。
<Structure of sliding member>
The sliding member according to one aspect of the present invention will be described below with reference to FIGS. 1 to 4. In the following embodiment, a shaft member having a shaft / bearing structure in a rotary mechanism used for a pump for discharging water (also referred to as a slurry liquid) containing earth and sand (slurry particles) as a sliding member will be described. .. However, the present sliding member is not limited to the above-mentioned shaft member as long as it is a member that slides relative to the sliding member. For example, it can be applied to a bearing member in a shaft / bearing structure that slides relatively with respect to the shaft member.

図1は、本発明の一態様に係る摺動部材を含む軸・軸受構造1Aの、軸方向に垂直な断面を示す断面概略図である。 FIG. 1 is a schematic cross-sectional view showing a cross section of a shaft / bearing structure 1A including a sliding member according to one aspect of the present invention, which is perpendicular to the axial direction.

図1に示すように、軸・軸受構造1Aは、摺動部材としての軸部材10と、被摺動部材としての軸受部材11とからなっている。軸部材10は、円筒形状の軸スリーブである。なお、軸部材10は、軸スリーブに限定されるものではなく、軸であってもよい。 As shown in FIG. 1, the shaft / bearing structure 1A includes a shaft member 10 as a sliding member and a bearing member 11 as a sliding member. The shaft member 10 is a cylindrical shaft sleeve. The shaft member 10 is not limited to the shaft sleeve, but may be a shaft.

軸部材10は、図1に示すように、少なくとも、摺動部材基部としての基体10aと、基体10aの外表面上に散在して固定された摺接粒子10bとを備える。基体10aは円筒形状である。また、摺接粒子10bが基体10aの外表面上に散在しているため、摺接粒子10b間に摺接粒子10bが存在しない領域(以下、粒子間領域)12が形成されている。なお、図1においては、基体10aの外表面全体に散在する摺接粒子10bのうち、一部のみを図示している。 As shown in FIG. 1, the shaft member 10 includes at least a substrate 10a as a base of a sliding member and sliding contact particles 10b scattered and fixed on the outer surface of the substrate 10a. The substrate 10a has a cylindrical shape. Further, since the sliding contact particles 10b are scattered on the outer surface of the substrate 10a, a region (hereinafter, interparticle region) 12 in which the sliding contact particles 10b do not exist is formed between the sliding contact particles 10b. In addition, in FIG. 1, only a part of the sliding contact particles 10b scattered on the entire outer surface of the substrate 10a is shown.

軸部材10は、基体10aの外表面上に、摺接粒子10bを固定するための固定部材(図1では図示せず)を備えていてもよい。つまり、軸部材10の基部(すなわち摺動部材基部)は、基体10aのみからなっていてもよいし、基体10aおよび固定部材からなっていてもよい。軸部材10の基部が基体10aのみからなる場合は、軸部材10の基部の表面は、基体10aの外表面となる。また、軸部材10の基部が基体10aおよび固定部材からなる場合は、軸部材10の基部の表面は、固定部材の外表面となる。 The shaft member 10 may include a fixing member (not shown in FIG. 1) for fixing the sliding contact particles 10b on the outer surface of the substrate 10a. That is, the base portion of the shaft member 10 (that is, the base portion of the sliding member) may be composed of only the substrate 10a, or may be composed of the substrate 10a and the fixing member. When the base of the shaft member 10 is composed of only the base 10a, the surface of the base of the shaft member 10 is the outer surface of the base 10a. When the base of the shaft member 10 is composed of the substrate 10a and the fixing member, the surface of the base of the shaft member 10 is the outer surface of the fixing member.

固定部材としては、例えば、電着による摺接粒子10bの固定に用いるニッケルリン膜等の金属膜、ロウ付けによる摺接粒子10bの固定に用いるロウ材等を挙げることができる。 Examples of the fixing member include a metal film such as a nickel phosphorus film used for fixing the sliding contact particles 10b by electrodeposition, a brazing material used for fixing the sliding contact particles 10b by brazing, and the like.

さらに、軸部材10は、粒子間領域12に、摺接粒子10bと同一材料の粒子であって、摺接粒子10bよりも粒子径の小さい粒子を備えていてもよい。該粒子は、例えば、軸部材10を製造する際に、摺接粒子10bの原材料となる粉体の粒度分布に起因して不可避的に備えられる粒子である。 Further, the shaft member 10 may include particles having the same material as the sliding contact particles 10b and having a smaller particle diameter than the sliding contact particles 10b in the interparticle region 12. The particles are, for example, particles that are inevitably provided due to the particle size distribution of the powder that is the raw material of the sliding contact particles 10b when the shaft member 10 is manufactured.

基体10aは、一般的に用いられる材質によって形成されており、例えば、Co系、Ni系の硬質合金等から成る。基体10aの硬さはHv600kg/mm以上であることが好ましく、Hv800kg/mm以上であることがより好ましい。スラリー液に含まれる固体物の主成分である珪砂の硬さがHv1000kg/mm程度であるので、基体10aの硬さを珪砂の硬さ(Hv1000kg/mm)に近づけることにより、上記固体物による基体10aの損傷を軽減または抑制することができる。また、基体10aの表面粗さRaは、1.0μm以下であることが好ましい。 The substrate 10a is made of a generally used material, and is made of, for example, a Co-based or Ni-based hard alloy. The hardness of the substrate 10a is preferably Hv 600 kg / mm 2 or more, and more preferably Hv 800 kg / mm 2 or more. Since the hardness of the silica sand, which is the main component of the solid substance contained in the slurry liquid, is about Hv 1000 kg / mm 2 , the hardness of the substrate 10a is brought close to the hardness of the silica sand (Hv 1000 kg / mm 2 ) to bring the solid substance to the hardness. Damage to the substrate 10a due to the above can be reduced or suppressed. Further, the surface roughness Ra of the substrate 10a is preferably 1.0 μm or less.

一方、基体10aへの摺接粒子10bの固定が上記固定部材によって行われる場合は、基体10aを上記固定部材がコートするため、硬さがHv600kg/mm未満である基体10a(例えば、SUS304などのステンレス鋼)も好ましく用いることができる。 On the other hand, when the sliding contact particles 10b are fixed to the substrate 10a by the fixing member, the fixing member coats the substrate 10a, so that the substrate 10a has a hardness of less than Hv 600 kg / mm 2 (for example, SUS304 or the like). (Stainless steel) can also be preferably used.

摺接粒子10bは、基体10aの表面から突出しており、かつ、軸受部材11に摺接する粒子摺接面13を有している。摺接粒子10bは、粒子摺接面13を介して軸受部材11に摺接することにより、軸受部材11を荷重支持している。本発明の一態様に係る摺動部材(軸部材)10を含む軸・軸受構造1Aは、スラリー液をも排出対象とする先行待機運転ポンプに用いられるため、摺接粒子10bの硬さは、珪砂の硬さ以上であることが好ましい。 The sliding contact particles 10b have a particle sliding contact surface 13 that protrudes from the surface of the substrate 10a and is in sliding contact with the bearing member 11. The sliding contact particles 10b support the bearing member 11 by being loaded by sliding contact with the bearing member 11 via the particle sliding contact surface 13. Since the shaft / bearing structure 1A including the sliding member (shaft member) 10 according to one aspect of the present invention is used for the preceding standby operation pump that also discharges the slurry liquid, the hardness of the sliding contact particles 10b is determined. It is preferable that the hardness is equal to or higher than that of silica sand.

本発明の一態様に係る摺動部材(軸部材)10は、摺接粒子10bが、ダイヤモンド粒子、ダイヤモンドライクカーボン粒子(Diamond-like Carbon粒子(以下、DLC粒子という))、立方晶窒化ホウ素、ガラス状カーボン粒子、アルミナ粒子、炭化ホウ素粒子、炭化ケイ素粒子、炭化タングステン粒子、窒化ケイ素粒子および炭化モリブデン粒子のうちの少なくとも1種以上を含む構成としてもよい。 In the sliding member (shaft member) 10 according to one aspect of the present invention, the sliding contact particles 10b are diamond particles, diamond-like carbon particles (Diamond-like Carbon particles (hereinafter referred to as DLC particles)), cubic boron nitride, and the like. It may be configured to contain at least one of glassy carbon particles, alumina particles, boron carbide particles, silicon carbide particles, tungsten carbide particles, silicon nitride particles and molybdenum carbide particles.

上記構成によれば、上記各粒子の摩擦係数が低いので、上記各粒子のうちの少なくとも1種以上を摺接粒子として含む摺動部材は、被摺動部材との間に水等の潤滑剤が存在しない無潤滑条件下においても円滑に摺動することができる。さらに、摩擦係数が低いことにより、摩擦による熱の発生が抑えられ、材料の耐久性が向上する。 According to the above configuration, since the friction coefficient of each of the particles is low, the sliding member containing at least one of the particles as a sliding contact particle is a lubricant such as water between the sliding member and the sliding member. It can slide smoothly even under non-lubricated conditions where there is no particle. Further, the low coefficient of friction suppresses the generation of heat due to friction and improves the durability of the material.

ここで、上記ダイヤモンド粒子には、ダイヤモンドの単結晶粒子、ダイヤモンド焼結体を粉砕した粒子も含まれる。また、上記DLC粒子には、バインダーを使用してDLC粉末を造粒したもの、およびDLC粉末の焼結体を粉砕した粒子も含まれる。 Here, the diamond particles include single crystal particles of diamond and particles obtained by crushing a diamond sintered body. Further, the DLC particles include particles obtained by granulating DLC powder using a binder and particles obtained by crushing a sintered body of DLC powder.

摺接粒子10bは、基体10aの外表面上に1粒子の厚さで散在している。すなわち、基体10a上に固定された摺接粒子10bの粒子の上に、別の摺接粒子10bが固定されていることはほとんど無い。基体10aの外表面上において、2つ以上の異なる摺接粒子10bが隣接している箇所があってもよい。ただし、隣接する異なる摺接粒子10b間は接合されていない。 The sliding contact particles 10b are scattered on the outer surface of the substrate 10a with a thickness of one particle. That is, another sliding contact particle 10b is rarely fixed on the particles of the sliding contact particle 10b fixed on the substrate 10a. There may be locations on the outer surface of the substrate 10a where two or more different sliding contact particles 10b are adjacent to each other. However, the adjacent different sliding contact particles 10b are not joined.

図2は、軸・軸受構造1Aが備える軸部材10の、外面側からみた構成を示す上面図である。図2に示すように、摺接粒子10bは粒子摺接面13を有しており、摺接粒子10b間には粒子間領域12が形成されている。 FIG. 2 is a top view showing a configuration of the shaft member 10 included in the shaft / bearing structure 1A as viewed from the outer surface side. As shown in FIG. 2, the sliding contact particles 10b have a particle sliding contact surface 13, and an interparticle region 12 is formed between the sliding contact particles 10b.

基体10aの単位表面積あたりの粒子摺接面13の面積の和は、基体10aの少なくとも2つ以上の単位表面積あたりの粒子摺接面13の面積の和の平均値を100%としたとき、75%~125%の範囲内である。ここで、上記単位表面積は、少なくとも2つ以上の粒子摺接面13を含むことが好ましい。なお、後述するように、粒子摺接面13の面積の和は、基体10aの単位表面をレーザー顕微鏡で観察することによって得た顕微鏡写真に基づいて測定することができる。 The sum of the areas of the particle sliding contact surfaces 13 per unit surface area of the substrate 10a is 75 when the average value of the sum of the areas of the particle sliding contact surfaces 13 per at least two or more unit surface areas of the substrate 10a is 100%. It is in the range of% to 125%. Here, the unit surface area preferably includes at least two or more particle sliding contact surfaces 13. As will be described later, the sum of the areas of the particle sliding contact surfaces 13 can be measured based on a micrograph obtained by observing the unit surface of the substrate 10a with a laser microscope.

基体10aの単位表面積あたりの粒子摺接面13の面積の和の平均値を得るときに選択される基体10aの単位表面は、少なくとも2つ以上であり、10以上であることが好ましく、20以上であることがより好ましく、40以上であることがさらに好ましく、80以上であることが特に好ましい。また、粒子摺接面13の面積の和の平均値を得るときに選択される基体10aの単位表面は、ランダムに、かつ、基体10aの全体から偏りなく選択されることが好ましい。また、上記単位表面の大きさは、特に限定されず、基体10aの大きさ等によって適宜設定される。 The unit surface of the substrate 10a selected when obtaining the average value of the sum of the areas of the particle sliding contact surfaces 13 per the unit surface area of the substrate 10a is at least 2 or more, preferably 10 or more, preferably 20 or more. Is more preferable, 40 or more is further preferable, and 80 or more is particularly preferable. Further, it is preferable that the unit surface of the substrate 10a selected when obtaining the average value of the sum of the areas of the particle sliding contact surfaces 13 is randomly selected and evenly selected from the entire substrate 10a. The size of the unit surface is not particularly limited, and is appropriately set depending on the size of the substrate 10a and the like.

例えば、基体10aが直径85mm×100mmLの軸スリーブの場合には、粒子摺接面13の面積の和の平均値を得るときに選択される基体10aの単位表面は、円周方向から10箇所、かつ軸方向から8箇所、合計80箇所(10×8)が選択され得る。また、このとき、基体10aの単位表面は、1mm×1mmの大きさであり得る。 For example, when the substrate 10a is a shaft sleeve having a diameter of 85 mm × 100 mm L, the unit surface of the substrate 10a selected when obtaining the average value of the sum of the areas of the particle sliding contact surfaces 13 is 10 points from the circumferential direction. In addition, 8 locations from the axial direction, a total of 80 locations (10 × 8) can be selected. Further, at this time, the unit surface of the substrate 10a may have a size of 1 mm × 1 mm.

摺接粒子10bが有する粒子摺接面13は、後述する方法によって、摺接粒子10bの先端(換言すれば、軸受部材11側の端部)が加工されることによって、形成される。それ故に、基体10aの単位表面積あたりの粒子摺接面13の面積の和が平均値よりも大きいことは、当該単位表面では、摺接粒子10bの加工(例えば、研削加工)の程度が大きいことを意味する。一方、基体10aの単位表面積あたりの粒子摺接面13の面積の和が平均よりも小さいことは、当該単位表面では、摺接粒子10bの加工の程度が小さいことを意味する。 The particle sliding contact surface 13 of the sliding contact particles 10b is formed by processing the tip of the sliding contact particles 10b (in other words, the end portion on the bearing member 11 side) by a method described later. Therefore, the fact that the sum of the areas of the particle sliding contact surfaces 13 per unit surface area of the substrate 10a is larger than the average value means that the degree of processing (for example, grinding) of the sliding contact particles 10b is large on the unit surface. Means. On the other hand, the fact that the sum of the areas of the particle sliding contact surfaces 13 per unit surface area of the substrate 10a is smaller than the average means that the degree of processing of the sliding contact particles 10b is small on the unit surface.

摺接粒子10bの加工の程度と摺接粒子10bの基体10aの表面からの突出し高さは相関関係にあり、摺接粒子10bの先端が加工によって削られるほど、突出し高さは小さくなる。 The degree of processing of the sliding contact particles 10b and the protrusion height of the sliding contact particles 10b from the surface of the substrate 10a are correlated, and the more the tip of the sliding contact particles 10b is scraped by the processing, the smaller the protrusion height becomes.

粒子摺接面13の面積は、軸部材10と軸受部材11とが摺動するときの、摺接粒子10b(粒子摺接面13)および軸受部材11の双方に対する面圧と相関関係にある。粒子摺接面13の面積が小さいほど、上記面圧は大きくなる。上記面圧の増大は、摺接粒子10bの偏摩耗を引き起こす場合があり、かつ/または軸受部材11の摩耗を引き起こす場合がある。 The area of the particle sliding contact surface 13 correlates with the surface pressure on both the sliding contact particles 10b (particle sliding contact surface 13) and the bearing member 11 when the shaft member 10 and the bearing member 11 slide. The smaller the area of the particle sliding contact surface 13, the larger the surface pressure. The increase in the surface pressure may cause uneven wear of the sliding contact particles 10b and / or may cause wear of the bearing member 11.

本発明の一態様における摺動部材(軸部材)10では、粒子摺接面13の面積の和が、面積の和の平均値を100%としたとき、75%以上である。従って、粒子摺接面13の面積の和が小さすぎないため、軸部材10と軸受部材11とが摺動する場合の、摺接粒子10bの偏摩耗および/または軸受部材11の摩耗を抑えることができる。本明細書においては、後述する実施例において、面圧の増加が、被摺動部材における摩耗量の増加を引き起こすことを実証している。 In the sliding member (shaft member) 10 according to one aspect of the present invention, the sum of the areas of the particle sliding contact surfaces 13 is 75% or more when the average value of the sum of the areas is 100%. Therefore, since the sum of the areas of the particle sliding contact surfaces 13 is not too small, uneven wear of the sliding contact particles 10b and / or wear of the bearing member 11 when the shaft member 10 and the bearing member 11 slide is suppressed. Can be done. In the present specification, in Examples described later, it is demonstrated that an increase in surface pressure causes an increase in the amount of wear in the sliding member.

本発明の一態様における摺動部材(軸部材)10では、粒子摺接面13の面積の和が、面積の和の平均値を100%としたとき、125%以下である。すなわち、摺接粒子10bの加工の程度は一定の範囲内であり、大きすぎないため、当該摺接粒子10bの突出しについて、一定以上の突出し高さを確保することができる。これによって、軸受部材11と軸部材10の基部との摺接を阻止することが可能である。従って、本発明の一態様における摺動部材(軸部材)10であれば、軸受部材11と軸部材10との摺接における摩擦係数を小さくすることができる。また、一定以上の突出し高さを確保することができるため、スラリー中の固体物による軸部材10の基部の摩耗を十分に抑制することができるという利点も有する。 In the sliding member (shaft member) 10 according to one aspect of the present invention, the sum of the areas of the particle sliding contact surfaces 13 is 125% or less when the average value of the sum of the areas is 100%. That is, since the degree of processing of the sliding contact particles 10b is within a certain range and is not too large, it is possible to secure a protrusion height of a certain level or more for the protrusion of the sliding contact particles 10b. This makes it possible to prevent sliding contact between the bearing member 11 and the base portion of the shaft member 10. Therefore, with the sliding member (shaft member) 10 according to one aspect of the present invention, the coefficient of friction at the sliding contact between the bearing member 11 and the shaft member 10 can be reduced. Further, since the protrusion height of a certain level or more can be secured, there is an advantage that the wear of the base portion of the shaft member 10 due to the solid material in the slurry can be sufficiently suppressed.

本発明の一態様に係る摺動部材(軸部材)10は、摺接粒子10bの平均粒子径が10~250μmである構成としてもよい。上記構成によれば、摺接粒子10bの平均粒子径が10μm以上であるから、摺接粒子10bの固定部を確保でき、それにより摺接粒子10bの耐剥離性を高めることができる。摺接粒子10bの固定部とは、摺接粒子10bのうち、基体10a、または、基体10aおよび固定部材に埋め込まれている部分である。換言すれば、摺接粒子10bの固定部とは、摺接粒子10bのうち、軸部材10の表面から突出している部分(突出し部とも称する)ではない部分、である。摺接粒子10bの耐剥離性とは、摺接粒子10bの基体10aからの剥離(脱落)の困難さを意図する。故に、耐剥離性が高いことは、摺接粒子10bが基体10aから剥離し難いことを意図する。 The sliding member (shaft member) 10 according to one aspect of the present invention may have a configuration in which the average particle diameter of the sliding contact particles 10b is 10 to 250 μm. According to the above configuration, since the average particle diameter of the sliding contact particles 10b is 10 μm or more, it is possible to secure a fixed portion of the sliding contact particles 10b, thereby improving the peeling resistance of the sliding contact particles 10b. The fixed portion of the sliding contact particles 10b is a portion of the sliding contact particles 10b that is embedded in the substrate 10a or the substrate 10a and the fixing member. In other words, the fixed portion of the sliding contact particles 10b is a portion of the sliding contact particles 10b that is not a portion (also referred to as a protruding portion) protruding from the surface of the shaft member 10. The peeling resistance of the sliding contact particles 10b is intended to be difficult for the sliding contact particles 10b to be peeled off (dropped off) from the substrate 10a. Therefore, the high peel resistance is intended that the sliding contact particles 10b are difficult to peel from the substrate 10a.

また、上記構成によれば、摺接粒子10bの平均粒子径が250μm以下であるから、(1)高価である摺接粒子10bの使用量を抑えることができ、(2)硬質粒子である摺接粒子10bの加工の困難性を低減することができ、かつ、(3)摺接粒子10bの加工時に摺接粒子10bの固定箇所(基体10a、または、基体10aおよび固定部材に埋め込まれている部分)にかかる負荷を低減することができる。摺接粒子10bの加工の困難性は、粒子摺接面13の形成の困難性ともいえる。 Further, according to the above configuration, since the average particle diameter of the sliding contact particles 10b is 250 μm or less, (1) the amount of expensive sliding contact particles 10b used can be suppressed, and (2) the sliding contact particles are hard particles. It is possible to reduce the difficulty of processing the contact particles 10b, and (3) it is embedded in the fixing portion (base 10a or the base 10a and the fixing member) of the sliding contact particles 10b at the time of processing the sliding contact particles 10b. The load on the part) can be reduced. The difficulty in processing the sliding contact particles 10b can be said to be the difficulty in forming the particle sliding contact surface 13.

本明細書において、摺接粒子10bの平均粒子径は、レーザー回折式粒子径分布測定装置:株式会社島津製作所、SALD-2100により計測される値である。上述のように、摺接粒子10bが粒子摺接面13を有するためには、後述する方法によって、摺接粒子10bの先端(換言すれば、軸受部材11側の端部)が加工されることによって、粒子摺接面13が形成される必要がある。本明細書における「摺接粒子の平均粒子径」とは、上記加工を行う前の摺接粒子の平均粒子径を意味する。 In the present specification, the average particle size of the sliding contact particles 10b is a value measured by a laser diffraction type particle size distribution measuring device: Shimadzu Corporation, SALD-2100. As described above, in order for the sliding contact particles 10b to have the particle sliding contact surface 13, the tip of the sliding contact particles 10b (in other words, the end on the bearing member 11 side) is processed by the method described later. Needs to form the particle sliding contact surface 13. As used herein, the "average particle size of the sliding contact particles" means the average particle size of the sliding contact particles before the above processing.

スラリー液中に含まれる固体物は、硬さがHv1000kg/mm程度であるので、スラリー液の移動速度が速いほど、上記固体物が軸部材10の基部(基体10a)に接触した場合、当該基部に与える力が大きくなり、当該基部を摩耗させやすくなる。 Since the hardness of the solid substance contained in the slurry liquid is about Hv 1000 kg / mm 2 , the faster the moving speed of the slurry liquid is, the more the solid substance comes into contact with the base portion (base 10a) of the shaft member 10. The force applied to the base is increased, and the base is easily worn.

一方、本発明の一態様に係る摺動部材(軸部材)10は、摺接粒子10bの平均粒子径が10~250μmであるため、軸部材10と軸受部材11との間に侵入し、粒子間領域12を移動するスラリー液が摺接粒子10bに接触しやすい。スラリー液が摺接粒子10bに接触すると、スラリー液の移動速度が低下するため、軸部材10の基部(基体10a)に与える衝撃を和らげることができ、軸部材10の基部の摩耗を十分に抑制することができる。その結果、軸部材10の基部において、摺接粒子10bの固定代(摺接粒子10bの固定部)を大きく確保することができるため、摺接粒子10bを安定的に固定し、長期間使用することができる。 On the other hand, in the sliding member (shaft member) 10 according to one aspect of the present invention, since the average particle diameter of the sliding contact particles 10b is 10 to 250 μm, the sliding member (shaft member) 10 penetrates between the shaft member 10 and the bearing member 11 and has particles. The slurry liquid moving in the inter-region 12 easily comes into contact with the sliding contact particles 10b. When the slurry liquid comes into contact with the sliding contact particles 10b, the moving speed of the slurry liquid decreases, so that the impact applied to the base portion (base 10a) of the shaft member 10 can be softened, and the wear of the base portion of the shaft member 10 is sufficiently suppressed. can do. As a result, a large fixing allowance for the sliding contact particles 10b (fixing portion of the sliding contact particles 10b) can be secured at the base of the shaft member 10, so that the sliding contact particles 10b can be stably fixed and used for a long period of time. be able to.

摺接粒子10bの平均粒子径は、100~250μmであることが好ましく、150~250μmであることがより好ましく、200~250μmであることがさらに好ましい。 The average particle size of the sliding contact particles 10b is preferably 100 to 250 μm, more preferably 150 to 250 μm, and even more preferably 200 to 250 μm.

ここで、摺接粒子10bの原料であり、加工により摺接粒子10bとなる粒子(例えば硬質粒子)を原料粒子と称する。原料粒子について、すべての原料粒子に対して体積基準で60%に相当する複数の原料粒子の粒子径が、原料粒子の平均粒子径を100%としたとき、75%~125%の範囲であることが好ましい。上記構成であれば、原料粒子の粒子径が小さいことにより、原料粒子から摺接粒子10bにならない粒子が増えることを抑制できる。また、上記構成であれば、粒子摺接面13の形成のための摺接粒子10bの加工に伴うコストの増加を抑制することができる。すなわち、粒子摺接面13の形成のために、摺接粒子10bに対して、無駄な、または余分な加工を行う必要がない、との利点を有する。上記「摺接粒子10bにならない粒子」とは、被摺動部材(軸受)11と摺接することができない粒子を意味する。 Here, particles (for example, hard particles) that are raw materials for the sliding contact particles 10b and become sliding contact particles 10b by processing are referred to as raw material particles. Regarding the raw material particles, the particle size of the plurality of raw material particles corresponding to 60% on a volume basis with respect to all the raw material particles is in the range of 75% to 125% when the average particle size of the raw material particles is 100%. Is preferable. With the above configuration, since the particle size of the raw material particles is small, it is possible to suppress an increase in the number of particles that do not become sliding contact particles 10b from the raw material particles. Further, with the above configuration, it is possible to suppress an increase in cost associated with the processing of the sliding contact particles 10b for forming the particle sliding contact surface 13. That is, there is an advantage that it is not necessary to perform unnecessary or extra processing on the sliding contact particles 10b for forming the particle sliding contact surface 13. The above-mentioned "particles that do not become sliding contact particles 10b" mean particles that cannot be in sliding contact with the sliding member (bearing) 11.

本発明の一態様に係る摺動部材(軸部材)10は、基体10aの表面から摺接粒子10bの粒子摺接面13までの平均高さ(突出し高さ、とも称する)が、0.8μm以上である構成としてもよい。上記構成によれば、軸部材10において、摺接粒子10bが基体10aの表面から突出し、軸受部材11が摺接粒子10bの粒子摺接面13と摺接し、基体10aの表面とは摺接しない状態を維持することができる。また、上述したように、基体10aの表面から突き出した摺接粒子10bの部分は、スラリー液の移動速度を低下させ得る。なお、上記突出し高さは、レーザー顕微鏡を用いて測定することができる。 The sliding member (shaft member) 10 according to one aspect of the present invention has an average height (also referred to as a protruding height) of 0.8 μm from the surface of the substrate 10a to the particle sliding contact surface 13 of the sliding contact particles 10b. The above configuration may be used. According to the above configuration, in the shaft member 10, the sliding contact particles 10b protrude from the surface of the substrate 10a, the bearing member 11 slides into contact with the particle sliding contact surface 13 of the sliding contact particles 10b, and does not slide with the surface of the substrate 10a. The state can be maintained. Further, as described above, the portion of the sliding contact particles 10b protruding from the surface of the substrate 10a can reduce the moving speed of the slurry liquid. The protrusion height can be measured using a laser microscope.

軸受部材11が基体10aの表面とは摺接しない状態を容易に維持するために、かつ、スラリー液の移動速度をより低下させるために、摺接粒子10bの突出し高さは、1μm以上であることが好ましい。 The protruding height of the sliding contact particles 10b is 1 μm or more in order to easily maintain the state in which the bearing member 11 does not slide with the surface of the substrate 10a and to further reduce the moving speed of the slurry liquid. Is preferable.

また、摺接粒子10bの突出し部は、摺接粒子10bのうち、固定部および加工によって取り除かれた部分以外の部分に相当する。例えば、ニッケル電着では、摺接粒子10bは摺接粒子10bの60~70%が固定されるため、残りの30~40%のうち、加工によって取り除かれた部分以外の部分が、突出し部となる。 Further, the protruding portion of the sliding contact particles 10b corresponds to a portion of the sliding contact particles 10b other than the fixed portion and the portion removed by processing. For example, in nickel electrodeposition, 60 to 70% of the sliding contact particles 10b are fixed to the sliding contact particles 10b, so that the remaining 30 to 40% of the remaining 30 to 40% is a protruding portion other than the portion removed by processing. Become.

また、摺接粒子10bの突出し高さは、大きくなりすぎると摺接粒子10bの固定強度が小さくなる傾向がある。従って、摺接粒子10bの突出し高さは、150μm以下であることが好ましく、100μm以下であることがより好ましく、60μm以下であることがさらに好ましい。 Further, if the protruding height of the sliding contact particles 10b becomes too large, the fixing strength of the sliding contact particles 10b tends to decrease. Therefore, the protruding height of the sliding contact particles 10b is preferably 150 μm or less, more preferably 100 μm or less, and further preferably 60 μm or less.

基体10aの表面の垂直方向から見たときの、摺接粒子10bが占める面積の割合である面密度は、20~70%であることが好ましい。ここで、面密度が大きいことは、摺接粒子10b間の間隔が狭いことを意味し、反対に面密度が小さいことは、摺接粒子10b間の間隔が広いことを意味する。なお、上記面密度は、レーザー顕微鏡を用いて測定することができる。 The surface density, which is the ratio of the area occupied by the sliding contact particles 10b when viewed from the vertical direction of the surface of the substrate 10a, is preferably 20 to 70%. Here, a large surface density means that the distance between the sliding contact particles 10b is narrow, and a small surface density means that the distance between the sliding contact particles 10b is wide. The surface density can be measured using a laser microscope.

面密度を20~70%とすることにより、摺動に伴い各摺接粒子10bに加わる負荷を適度に保ち、かつ、ポンプの排出対象となるスラリー液を粒子間領域12へと逃がしやすくなる。また、スラリー液中の固体物を粒子間領域12にとどめやすくなるため、当該固体物が軸受部材11に与える力を低減することができ、軸受部材11の摩耗を抑制することができる。 By setting the surface density to 20 to 70%, the load applied to each sliding contact particle 10b due to sliding is maintained at an appropriate level, and the slurry liquid to be discharged by the pump is easily released to the interparticle region 12. Further, since the solid substance in the slurry liquid can be easily retained in the interparticle region 12, the force exerted by the solid substance on the bearing member 11 can be reduced, and the wear of the bearing member 11 can be suppressed.

面密度が20%未満である場合、粒子間領域12が広くなるため、上記固体物を粒子間領域12にとどめにくくなる。そのため、面密度を30%以上、40%以上、または50%以上とすることがより好ましい。また、面密度が70%を超える場合には、摺接粒子の間隔が狭くなり、粒子間領域12に水を貯えにくくなる、もしくは貯えられた水が排出されにくくなる。そのため、より好ましくは60%以下とする。
<摺接粒子10bの固定方法>
摺接粒子10bは、基体10aの外表面上に固定されていればよく、固定方法は特に限定されるものではない。例えば、電着、ロウ付け、スパークプラズマ焼結(Spark PlasmaSintering)(以下、SPSという)などの方法を用いることができる。
When the surface density is less than 20%, the interparticle region 12 becomes wide, so that it becomes difficult to keep the solid matter in the interparticle region 12. Therefore, it is more preferable to set the surface density to 30% or more, 40% or more, or 50% or more. Further, when the surface density exceeds 70%, the spacing between the sliding contact particles becomes narrow, and it becomes difficult to store water in the interparticle region 12, or it becomes difficult for the stored water to be discharged. Therefore, it is more preferably 60% or less.
<Fixing method of sliding contact particles 10b>
The sliding contact particles 10b may be fixed on the outer surface of the substrate 10a, and the fixing method is not particularly limited. For example, methods such as electrodeposition, brazing, and Spark PlasmaSintering (hereinafter referred to as SPS) can be used.

図3は、軸部材10の摺接粒子10bが、基体10a上に電着された状態を示す断面図である。電着は周知の方法によって行うことができる。例えば、まず、基体10aの外表面上に、摺接粒子10bの粉末を配置することによって摺接粒子10bを付着させる。その後、ニッケルリン液中で通電することにより、基体10aの表面にニッケルリンが施される。これによって、摺接粒子10bの一部分が固定部材であるニッケルリン膜20に埋め込まれ、基体10a上に固定される。この方法は、ニッケル電着とも称される。 FIG. 3 is a cross-sectional view showing a state in which the sliding contact particles 10b of the shaft member 10 are electrodeposited on the substrate 10a. Electrodeposition can be performed by a well-known method. For example, first, the sliding contact particles 10b are attached by arranging the powder of the sliding contact particles 10b on the outer surface of the substrate 10a. Then, by energizing in the nickel phosphorus solution, nickel phosphorus is applied to the surface of the substrate 10a. As a result, a part of the sliding contact particles 10b is embedded in the nickel phosphorus film 20 which is a fixing member, and is fixed on the substrate 10a. This method is also referred to as nickel electrodeposition.

上記固定方法がロウ付けである場合、例えば、まず、基体10aの外表面上に、摺接粒子10bの粉末を配置することによって摺接粒子10bを付着させる。次に、摺接粒子10bをニッケルリン等によって点付固定する。その後、Ni-Cr-B-SiまたはCu-Ag-In-Ti等からなるロウ材粉末のペーストを塗布し、ロウ材の融点以上に加熱することにより、摺接粒子10bの一部分がロウ材に埋め込まれ、基体10a上に固定される。 When the fixing method is brazing, for example, first, the sliding contact particles 10b are attached by arranging the powder of the sliding contact particles 10b on the outer surface of the substrate 10a. Next, the sliding contact particles 10b are spot-fixed with nickel phosphorus or the like. After that, a paste of brazing material powder made of Ni-Cr-B-Si, Cu-Ag-In-Ti, etc. is applied and heated above the melting point of the brazing material, so that a part of the sliding contact particles 10b becomes the brazing material. It is embedded and fixed on the substrate 10a.

また、上記固定方法がSPSである場合、例えば、まず、基体10aの外表面上に、摺接粒子10bの粉末を配置することによって摺接粒子10bを付着させる。その後、従来公知のSPS装置にて、例えば950℃、30MPaの条件下で加圧成形を行い、基体10a上に保持されなかった他の摺接粒子10bを降圧後に除去することによって、摺接粒子10bを基体10a上に固定することができる。 When the fixing method is SPS, for example, first, the powder of the sliding contact particles 10b is placed on the outer surface of the substrate 10a to attach the sliding contact particles 10b. After that, pressure molding is performed with a conventionally known SPS device under the conditions of, for example, 950 ° C. and 30 MPa, and the other sliding contact particles 10b that are not retained on the substrate 10a are removed after the pressure reduction to remove the sliding contact particles. 10b can be fixed on the substrate 10a.

摺接粒子10bが、基体10a、または、基体10aおよび固定部材に埋め込まれる深さ(換言すれば、摺接粒子10bに対する摺接粒子10bの固定部の割合)は、摺接粒子10bが基体10aの外表面上で固定される限り、特に限定されない。軸部材10が固定部材を備えている場合には、摺接粒子10bに対する摺接粒子10bの固定部の割合は、当該固定部材の種類によって異なってもよい。 The depth at which the sliding contact particles 10b are embedded in the substrate 10a or the substrate 10a and the fixing member (in other words, the ratio of the fixed portion of the sliding contact particles 10b to the sliding contact particles 10b) is such that the sliding contact particles 10b are the substrate 10a. As long as it is fixed on the outer surface of the particle, it is not particularly limited. When the shaft member 10 includes a fixing member, the ratio of the fixing portion of the sliding contact particles 10b to the sliding contact particles 10b may differ depending on the type of the fixing member.

例えば、固定方法が電着である場合、摺接粒子10bを十分に固定し、安定した摺動を行うためには、摺接粒子10bの平均粒子径の50%以上がニッケルリン膜(固定部材)に埋め込まれることが好ましい。一方、固定方法がロウ付けの場合は、摺接粒子10bの平均粒子径の20%以上60%未満に相当する部分をロウ材(固定部材)に埋め込むことによって、摺接粒子10bを基体10a上に十分に固定することができる。 For example, when the fixing method is electrodeposition, in order to sufficiently fix the sliding contact particles 10b and perform stable sliding, 50% or more of the average particle diameter of the sliding contact particles 10b is a nickel phosphorus film (fixing member). ) Is preferred. On the other hand, when the fixing method is brazing, the sliding contact particles 10b are placed on the substrate 10a by embedding a portion corresponding to 20% or more and less than 60% of the average particle diameter of the sliding contact particles 10b in the brazing material (fixing member). Can be sufficiently fixed to.

すなわち、ロウ付けは、摺接粒子10bのうち、基体10a上への固定のために用いられる部分を少なくしつつ、摺接粒子10bを基体10a上に強く固定することができるため好ましい。上記摺接粒子が、上記摺動部材基部にロウ付けされている場合には、高価な摺接粒子の使用量を少なくしつつ、所望の摺動性を得ることができる。 That is, brazing is preferable because the sliding contact particles 10b can be strongly fixed on the substrate 10a while reducing the portion of the sliding contact particles 10b that is used for fixing to the substrate 10a. When the sliding contact particles are brazed to the sliding member base, the desired sliding property can be obtained while reducing the amount of expensive sliding contact particles used.

各摺接粒子10bの先端、つまり、軸受部材11側の端部には、軸受部材11に摺接する粒子摺接面13が存在する。粒子摺接面13は、軸部材10の軸方向から見たときに、軸部材10の軸を中心とした同一円周上にあることが好ましい。すなわち、各摺接粒子10bの粒子摺接面13によって、図1に示すように、軸部材10の軸を中心とした円周面である部材間摺接面14が形成されることが好ましい。該部材間摺接面14は、軸部材10が回転するときに、被摺動部材である軸受部材11と摺接する。 At the tip of each sliding contact particle 10b, that is, at the end on the bearing member 11 side, there is a particle sliding contact surface 13 that is in sliding contact with the bearing member 11. It is preferable that the particle sliding contact surface 13 is on the same circumference about the axis of the shaft member 10 when viewed from the axial direction of the shaft member 10. That is, as shown in FIG. 1, it is preferable that the particle sliding contact surface 13 of each sliding contact particle 10b forms a sliding contact surface 14 between members, which is a circumferential surface centered on the axis of the shaft member 10. The sliding contact surface 14 between the members is in sliding contact with the bearing member 11 which is a sliding member when the shaft member 10 rotates.

上記構成によれば、軸部材10が回転する際に、軸受部材11と摺接するのは摺接粒子10bのみとなる。したがって、軸部材10は、摩擦係数が低く、摩擦による熱の発生が抑えられたものとなるため、耐久性が向上したものとなる。 According to the above configuration, when the shaft member 10 rotates, only the sliding contact particles 10b are in sliding contact with the bearing member 11. Therefore, the shaft member 10 has a low coefficient of friction and suppresses the generation of heat due to friction, so that the durability is improved.

<粒子摺接面13の形成方法>
本実施の形態における、基体10a上に固定された摺接粒子10bにおける粒子摺接面13の形成方法について以下に説明する。粒子摺接面13は、摺接粒子10bの先端が加工されることにより形成されるため、粒子摺接面13の形成方法は、換言すれば、摺接粒子10bの加工方法ともいえる。
<Method of forming the particle sliding contact surface 13>
The method of forming the particle sliding contact surface 13 in the sliding contact particles 10b fixed on the substrate 10a in the present embodiment will be described below. Since the particle sliding contact surface 13 is formed by processing the tip of the sliding contact particles 10b, the method for forming the particle sliding contact surface 13 can be said to be, in other words, a processing method for the sliding contact particles 10b.

基体10a上に上述の方法により固定された摺接粒子10bにおける粒子摺接面13は、粒子摺接面13が同一円周上にあるように形成される。すなわち、基体10aの回転中心軸から、最外にある粒子摺接面13までの距離を等しくして、摺接粒子10bの粒子摺接面13が同一円周上にあるようにする。粒子摺接面13の形成方法としては、ダイヤモンドおよび/または炭化珪素等の砥石で摺接粒子10bを削る(研削加工する)、放電加工する、といった方法を用いることができる。当業者においては、本実施の形態における摺接粒子10bのような高硬度な材料を加工する方法として、適当なものを選択すればよい。 The particle sliding contact surface 13 of the sliding contact particles 10b fixed on the substrate 10a by the above method is formed so that the particle sliding contact surface 13 is on the same circumference. That is, the distance from the rotation center axis of the substrate 10a to the outermost particle sliding contact surface 13 is made equal so that the particle sliding contact surface 13 of the sliding contact particles 10b is on the same circumference. As a method for forming the particle sliding contact surface 13, a method such as grinding (grinding) or electric discharge machining of the sliding contact particles 10b with a grindstone such as diamond and / or silicon carbide can be used. Those skilled in the art may select an appropriate method for processing a high-hardness material such as the sliding contact particles 10b in the present embodiment.

本軸部材10では、(a)摺接粒子10bの基体10aへの固定精度を上げること、(b)基体10aの寸法精度を上げること、(c)上記(a)および/または(b)に記載した精度を考慮して、摺接粒子10bの平均粒子径を決定すること、等によって、粒子摺接面13の面積の和が、面積の和の平均値を100%としたとき、75%~125%の範囲内となるように、粒子摺接面13が形成される(換言すれば、摺接粒子10bが加工される)。 In the main shaft member 10, (a) the accuracy of fixing the sliding contact particles 10b to the substrate 10a is improved, (b) the dimensional accuracy of the substrate 10a is improved, and (c) the above (a) and / or (b). By determining the average particle diameter of the sliding contact particles 10b in consideration of the described accuracy, etc., the sum of the areas of the particle sliding contact surfaces 13 is 75% when the average value of the sum of the areas is 100%. The particle sliding contact surface 13 is formed so as to be within the range of about 125% (in other words, the sliding contact particles 10b are processed).

ここで、上記(a)の「摺接粒子10bの基体10aへの固定精度を上げる」とは、摺接粒子10bの基体10aへの固定において、基体10aの外表面から、加工前の固定された摺接粒子10bの先端までの距離の、各摺接粒子10b間におけるバラツキを小さくすることである。また、上記(b)の「基体10aの寸法精度を上げる」とは、(b-1)基体10a(軸スリーブ)の外径の中心と内径の中心とのずれを小さくすること、および、(b-2)基体10aの円筒度を小さくすること、等である。 Here, the above-mentioned (a) "improving the fixing accuracy of the sliding contact particles 10b to the substrate 10a" means that the sliding contact particles 10b are fixed to the substrate 10a from the outer surface of the substrate 10a before processing. The purpose is to reduce the variation in the distance to the tip of the sliding contact particles 10b between the sliding contact particles 10b. Further, "improving the dimensional accuracy of the substrate 10a" in (b) above means (b-1) reducing the deviation between the center of the outer diameter and the center of the inner diameter of the substrate 10a (shaft sleeve), and (b-1). b-2) To reduce the cylindricity of the substrate 10a, etc.

上記(b-1)について、基体10aの直径(外径)が大きくなるほど、基体10aの外径の中心と内径の中心とのずれは大きくなる傾向がある。また、摺接粒子10bの平均粒子径が小さい場合には、基体10aの外径の中心と内径の中心とのずれが大きくなるほど、摺接粒子10b間の粒子摺接面13の面積のバラツキは大きくなり、当該面積が本発明の範囲外となる傾向がある。従って、上記(c)のように、基体10aの外径の中心と内径の中心とのずれの程度を考慮して、使用する摺接粒子10bの平均粒子径を適宜選択することによって、粒子摺接面13の面積の和が、面積の和の平均値を100%としたとき、75%~125%の範囲内とすることができる。 Regarding the above (b-1), as the diameter (outer diameter) of the substrate 10a becomes larger, the deviation between the center of the outer diameter and the center of the inner diameter of the substrate 10a tends to increase. Further, when the average particle diameter of the sliding contact particles 10b is small, the larger the deviation between the center of the outer diameter and the center of the inner diameter of the substrate 10a, the greater the variation in the area of the particle sliding contact surface 13 between the sliding contact particles 10b. It tends to be large and the area is out of the scope of the present invention. Therefore, as described in (c) above, the average particle diameter of the sliding contact particles 10b to be used is appropriately selected in consideration of the degree of deviation between the center of the outer diameter of the substrate 10a and the center of the inner diameter. The sum of the areas of the contact surfaces 13 can be in the range of 75% to 125% when the average value of the sum of the areas is 100%.

上記(b-2)について、摺接粒子10bの平均粒子径が小さい場合には、基体10aの円筒度が大きいほど、すなわち、基体10aの幾何学的に正しい円筒からの狂いの大きさが大きいほど、摺接粒子10b間の粒子摺接面13の面積のバラツキは大きくなり、当該面積が本発明の範囲外となる傾向がある。従って、上記(c)のように、基体10aの円筒度を考慮して、使用する摺接粒子10bの平均粒子径を適宜選択することによって、粒子摺接面13の面積の和が、面積の和の平均値を100%としたとき、75%~125%の範囲内とすることができる。 Regarding (b-2) above, when the average particle diameter of the sliding contact particles 10b is small, the larger the cylindricity of the base 10a, that is, the larger the amount of deviation from the geometrically correct cylinder of the base 10a. The more the variation in the area of the particle sliding contact surface 13 between the sliding contact particles 10b becomes large, and the area tends to be out of the range of the present invention. Therefore, as described in (c) above, by appropriately selecting the average particle diameter of the sliding contact particles 10b to be used in consideration of the cylindricity of the substrate 10a, the sum of the areas of the particle sliding contact surfaces 13 is the area. When the average value of the sum is 100%, it can be in the range of 75% to 125%.

<被膜を有する摺接粒子>
本発明の一実施形態に係る摺動部材において、上記摺接粒子は、少なくとも一部が被膜にて被覆されていることが好ましい。上記の構成によれば、摺接粒子の先端の角部を被膜によって表面が円滑な面となるように覆うことができ、摺動部材の摺接面を円滑な面にすることができる。
<Sliding particles with a coating>
In the sliding member according to the embodiment of the present invention, it is preferable that at least a part of the sliding contact particles is covered with a coating film. According to the above configuration, the corner portion of the tip of the sliding contact particles can be covered with a coating so that the surface becomes a smooth surface, and the sliding contact surface of the sliding member can be made a smooth surface.

本発明の一実施形態に係る摺動部材において、上記被膜は、少なくとも上記摺接粒子の先端を覆い、ダイヤモンドライクカーボン膜又はガラス状カーボン膜からなる構成としてもよい。 In the sliding member according to the embodiment of the present invention, the coating film may cover at least the tips of the sliding contact particles and may be composed of a diamond-like carbon film or a glassy carbon film.

上記の構成によれば、摺接粒子の先端の角部をダイヤモンドライクカーボン膜又はガラス状カーボン膜からなる被膜によって表面が円滑な面となるように覆うことができ、軸部材の摺接面をさらに円滑な面にすることができる。 According to the above configuration, the corners of the tips of the sliding contact particles can be covered with a coating film made of a diamond-like carbon film or a glassy carbon film so that the surface becomes a smooth surface, and the sliding contact surface of the shaft member can be covered. It can be made smoother.

本発明の一実施形態に係る摺動部材において、上記被膜は、先端面の周りを覆うダイヤモンドライクカーボン膜又はガラス状カーボン膜からなり、上記先端面から側面に至る角部に対応する部分の上記被膜の外面が曲面になっている構成としてもよい。 In the sliding member according to the embodiment of the present invention, the coating film is made of a diamond-like carbon film or a glassy carbon film that covers the periphery of the tip surface, and is a portion corresponding to a corner portion from the tip surface to the side surface. The outer surface of the coating film may be curved.

上記の構成によれば、ダイヤモンドライクカーボン膜又はガラス状カーボン膜からなる被膜は、摺接粒子の先端面の周りを覆い、かつ摺接粒子の先端面から側面に至る角部に対応する部分の外面が曲面になっている。したがって、摺動部材の摺接面の円滑性をさらに向上し、角部による被摺動面への攻撃性を緩和することができる。 According to the above configuration, the coating film made of a diamond-like carbon film or a glassy carbon film covers the periphery of the tip surface of the sliding contact particles and corresponds to the corner portion from the tip surface to the side surface of the sliding contact particles. The outer surface is curved. Therefore, the smoothness of the sliding contact surface of the sliding member can be further improved, and the aggression of the corner portion to the sliding surface can be alleviated.

上記被膜の膜厚は、被膜の効果を十分に享受するために、5μm~10μmとすることが好ましい。 The film thickness of the coating is preferably 5 μm to 10 μm in order to fully enjoy the effect of the coating.

摺接粒子の少なくとも一部が被膜にて被覆されている場合であり、かつ、摺接粒子の先端、すなわち粒子摺接面の少なくとも一部が被膜にて被覆されている場合には、摺接粒子の突出し高さは、摺動部材基部の表面から当該被膜の先端までの高さとなる。 When at least a part of the sliding contact particles is covered with a coating, and when the tip of the sliding contact particles, that is, at least a part of the particle sliding contact surface is covered with a coating, the sliding contact is performed. The protruding height of the particles is the height from the surface of the base of the sliding member to the tip of the coating.

<被膜を有する摺接粒子の粒子摺接面の形成方法>
被膜を有する摺接粒子の粒子摺接面は、次の2つの方法によって、形成され得る。
<Method of forming the particle sliding contact surface of the sliding contact particles having a coating>
The particle sliding contact surface of the sliding contact particles having a coating film can be formed by the following two methods.

第1の形成方法は、以下の工程を順に含む方法である:(1)上述した方法によって、摺接粒子を摺動部材基部の外表面上に固定する工程;(2)上述した方法によって、上記(1)の工程において固定された摺接粒子の先端を加工し、粒子摺接面を形成する工程;および(3)当該粒子摺接面の少なくとも一部が覆われるように、被膜を形成する工程。 The first forming method is a method including the following steps in order: (1) a step of fixing the sliding contact particles on the outer surface of the sliding member base by the above-mentioned method; (2) by the above-mentioned method. The step of processing the tip of the sliding contact particles fixed in the step (1) above to form the particle sliding contact surface; and (3) forming a coating film so that at least a part of the particle sliding contact surface is covered. Process to do.

第2の形成方法は、以下の工程を順に含む方法である:(1)上述した方法によって、摺接粒子を摺動部材基部の外表面上に固定する工程;(2)上述した方法によって、上記(1)の工程において固定された摺接粒子の少なくとも一部の先端面が覆われるように、被膜を形成する工程;および(3)上記(1)の工程において得られた、少なくとも一部の先端面が被覆された摺接粒子を加工し、粒子摺接面を形成する工程。 The second forming method is a method including the following steps in order: (1) a step of fixing the sliding contact particles on the outer surface of the sliding member base by the above-mentioned method; (2) by the above-mentioned method. A step of forming a film so that at least a part of the tip surface of the sliding contact particles fixed in the step (1) is covered; and (3) at least a part obtained in the step (1) above. A process of processing sliding contact particles whose tip surface is covered to form a particle sliding contact surface.

<被膜の形成方法>
摺接粒子の少なくとも一部がダイヤモンドライクカーボン膜(以下、DLC膜とも称する)にて被覆されている摺接粒子は、摺接粒子にDLC膜をコーティングすることにより調整することができる。DLC膜のコーティング方法としては、真空あるいは大気圧におけるプラズマを用いた蒸着技術による手法、および有機溶媒などの液中から炭素膜を電気的に析出させる手法などが知られている。現在は、真空装置を用いた蒸着法によるコーティング法が主流である。
<Method of forming a film>
The sliding contact particles in which at least a part of the sliding contact particles is coated with a diamond-like carbon film (hereinafter, also referred to as a DLC film) can be adjusted by coating the sliding contact particles with a DLC film. As a method for coating a DLC film, a method by a vapor deposition technique using plasma in vacuum or atmospheric pressure, a method of electrically precipitating a carbon film from a liquid such as an organic solvent, and the like are known. Currently, the coating method by the vapor deposition method using a vacuum device is the mainstream.

真空装置を用いた蒸着法によるDLC膜のコーティング方法は、炭素供給源として固体炭素を用いる手法と炭化水素系の原料を用いる手法とに大別される。固体炭素(グラファイト)を炭素供給源とする手法としては、アークイオンプレーティング、非平衡マグネトロンスパッタリングおよびフィルタードアークイオンプレーティングが知られている。また、炭化水素系ガス(CH、C、C等)を炭素供給源とする手法としては、高周波プラズマCVD、パルス方式直流プラズマCVD、イオン化蒸着およびプラズマイオン注入・成膜が知られている。 The method of coating a DLC film by a vapor deposition method using a vacuum device is roughly classified into a method of using solid carbon as a carbon supply source and a method of using a hydrocarbon-based raw material. Arc ion plating, non-equilibrium magnetron sputtering, and filtered arc ion plating are known as methods using solid carbon (graphite) as a carbon source. In addition, as a method using a hydrocarbon gas (CH 4 , C 6 H 6 , C 2 H 2 , etc.) as a carbon supply source, high-frequency plasma CVD, pulsed DC plasma CVD, ionization vapor deposition, and plasma ion implantation / deposition are performed. It has been known.

摺接粒子の少なくとも一部がガラス状カーボン膜にて被覆されている摺接粒子は、摺接粒子に熱硬化性樹脂を主成分とするガラス状カーボン用樹脂組成物を塗布し、硬化した後、不活性雰囲気中または真空下で焼成炭化することにより調整することができる。 For the sliding contact particles in which at least a part of the sliding contact particles is coated with a glassy carbon film, the glassy carbon resin composition containing a thermosetting resin as a main component is applied to the sliding contact particles and then cured. It can be adjusted by firing and carbonizing in an inert atmosphere or under vacuum.

<被摺動部材>
次に、上述した本発明の一態様に係る軸部材(摺動部材)に対して相対的に摺動する軸受部材(被摺動部材)について、図1を参照して説明する。本実施形態において、軸受部材11は、図1に示すように、内部に軸部材10が収容される円筒形状を有しており、軸部材10を軸支する。
<Sliding member>
Next, a bearing member (sliding member) that slides relative to the shaft member (sliding member) according to the above-described aspect of the present invention will be described with reference to FIG. In the present embodiment, as shown in FIG. 1, the bearing member 11 has a cylindrical shape in which the shaft member 10 is housed, and supports the shaft member 10.

軸受部材11の材質は、例えば、硬質のセラミックスや超硬合金等から成り、セラミックスまたはサーメットであることが好ましい。これにより、被摺動部材としての耐久性を向上させることができる。軸受部材11の内側表面は、表面の凹凸が、摺動部材である軸部材10における摺接粒子間の領域深さに達しないことが好ましいが、表面粗さRaが1.0μm以下であれば摩擦等にそれほど影響はないため問題はない。なお、軸受部材11の表面に、摩擦係数を低く、または耐摩耗性を向上するための焼結体や膜を形成するような加工がされていても良い。 The material of the bearing member 11 is, for example, made of hard ceramics, cemented carbide, or the like, and is preferably ceramics or cermet. This makes it possible to improve the durability of the member to be slid. It is preferable that the unevenness of the surface of the inner surface of the bearing member 11 does not reach the region depth between the sliding contact particles in the shaft member 10 which is a sliding member, but when the surface roughness Ra is 1.0 μm or less. There is no problem because it does not affect friction so much. The surface of the bearing member 11 may be processed to form a sintered body or a film for lowering the coefficient of friction or improving wear resistance.

〔2.軸・軸受構造〕
以上、軸及び軸受を有する軸・軸受構造に用いられる場合を例に挙げて、摺動部材を説明した。すなわち、本発明の一態様に係る摺動部材は、軸及び軸受を有する軸・軸受構造に用いられ、上記粒子摺接面は、上記軸・軸受構造の軸を中心とする同一円周上にある構成としてもよい。
[2. Shaft / bearing structure]
The sliding member has been described above by taking as an example the case where it is used for a shaft / bearing structure having a shaft and a bearing. That is, the sliding member according to one aspect of the present invention is used for a shaft / bearing structure having a shaft and a bearing, and the particle sliding contact surface is on the same circumference centered on the shaft of the shaft / bearing structure. It may have a certain configuration.

上記構成によれば、当該摺動部材を当該摺動部材と被摺動部材とからなるポンプ用軸・軸受構造に用いた場合、摺動部材が回転する際に、被摺動部材と摺接するのは摺接粒子のみとなる。したがって、摺動部材は、摩擦係数が低く、摩擦による熱の発生が抑えられ、材料の耐久性が向上する。 According to the above configuration, when the sliding member is used in a pump shaft / bearing structure composed of the sliding member and the sliding member, the sliding member comes into sliding contact with the sliding member when the sliding member rotates. Only the sliding particles. Therefore, the sliding member has a low coefficient of friction, heat generation due to friction is suppressed, and the durability of the material is improved.

〔3.先行待機運転ポンプ〕
本発明の一態様に係る摺動部材は、先行待機運転ポンプに好適に使用できる。本摺動部材を備える先行待機運転ポンプは、被摺動部材の摩耗が抑制されるため安定した運転が可能であり、そのため、耐久性に優れた先行待機運転ポンプとなり得る。
[3. Leading standby operation pump]
The sliding member according to one aspect of the present invention can be suitably used for a preceding standby operation pump. The preceding standby operation pump provided with this sliding member is capable of stable operation because wear of the sliding member is suppressed, and therefore can be a preceding standby operation pump having excellent durability.

〔往復摺動試験〕
摺動部材基部としての外径80mm×内径70mm×100mmLのSUS304材(円筒形状)の外表面に、摺接粒子として平均粒子径100μmの単結晶ダイヤモンド粒子(以下、ダイヤ粒子とも称する)をニッケル電着して固定し、軸スリーブ(摺動部材)を作製した。
[Reciprocating sliding test]
Single crystal diamond particles (hereinafter, also referred to as diamond particles) having an average particle diameter of 100 μm as sliding contact particles are nickel-electric on the outer surface of a SUS304 material (cylindrical shape) having an outer diameter of 80 mm × an inner diameter of 70 mm × 100 mm L as a sliding member base. The shaft sleeve (sliding member) was manufactured by wearing and fixing it.

次に、上記ダイヤ粒子に対して研削加工を行い、ダイヤ粒子の先端に粒子摺接面を、当該粒子摺接面が上記摺動部材基部を中心とする同一円周上に存在するように形成した。 Next, the diamond particles are ground to form a particle sliding contact surface at the tip of the diamond particles so that the particle sliding contact surface exists on the same circumference centered on the sliding member base. did.

その後、粒子摺接面を形成した後の軸スリーブから、60mm×10mm×厚さ5mm(試験面は60mm×10mm)の範囲のチップを切り出し、それを用いてディスクを作製した。直径5mm×25mmLの窒化ケイ素ピンとディスクとを、周速は0.5m/secの条件にて、2時間摺動させ、往復摺動試験を実施した。 Then, a chip in the range of 60 mm × 10 mm × thickness 5 mm (test surface is 60 mm × 10 mm) was cut out from the shaft sleeve after forming the particle sliding contact surface, and a disk was produced using the chip. A reciprocating sliding test was carried out by sliding a silicon nitride pin having a diameter of 5 mm × 25 mm L and a disk at a peripheral speed of 0.5 m / sec for 2 hours.

ここで、上記ディスクを複数枚作製し、各々のディスクについて、異なる面圧において、上記往復摺動試験を実施した。またこのとき、ディスクと窒化ケイ素ピンとの間に潤滑剤がない条件で往復摺動試験を実施した。なお、軸スリーブおよびチップは、本発明の一態様における摺動部材であり、窒化ケイ素ピンは被摺動部材である。 Here, a plurality of the above discs were prepared, and the reciprocating sliding test was carried out for each disc at different surface pressures. At this time, a reciprocating sliding test was carried out under the condition that there was no lubricant between the disk and the silicon nitride pin. The shaft sleeve and the tip are sliding members in one aspect of the present invention, and the silicon nitride pin is a sliding member.

各面圧における往復摺動試験後に、窒化ケイ素ピンの摩耗量を、レーザー顕微鏡(キーエンス社製、モデルVK-9700)を用いて測定した。往復摺動試験の結果を図4に示した。 After the reciprocating sliding test at each surface pressure, the amount of wear of the silicon nitride pin was measured using a laser microscope (Model VK-9700 manufactured by KEYENCE CORPORATION). The results of the reciprocating sliding test are shown in FIG.

図4は、往復摺動試験における、面圧と摩耗量との関係を示すグラフである。横軸は面圧(N/mm)を示し、縦軸は摩耗量(オーダー:10-7、単位:μm)を示す。面圧に対する摩耗量のプロットから、近似直線を作製した。 FIG. 4 is a graph showing the relationship between the surface pressure and the amount of wear in the reciprocating sliding test. The horizontal axis shows the surface pressure (N / mm 2 ), and the vertical axis shows the amount of wear (order: 10-7 , unit: μm). An approximate straight line was created from the plot of the amount of wear with respect to the surface pressure.

図4より、面圧と摩耗量とは正の相関関係があることが分かった。すなわち、面圧が増加するほど摩耗量が増加することが分かった。 From FIG. 4, it was found that there is a positive correlation between the surface pressure and the amount of wear. That is, it was found that the amount of wear increases as the surface pressure increases.

〔軸スリーブの内径と摺接粒子の平均粒子径との関係〕
(製造例1)
摺動部材基部としての直径85mm×100mLのSUS304材の表面に、摺接粒子として様々な平均粒子径を有する単結晶ダイヤモンド粒子(以下、ダイヤ粒子とも称する)をニッケル電着して固定し、軸スリーブ(摺動部材)を作製した。ここで、電着によって、ダイヤ粒子の平均粒子径の60%がニッケルリン膜に埋め込まれた。
[Relationship between the inner diameter of the shaft sleeve and the average particle diameter of the sliding contact particles]
(Manufacturing Example 1)
Single crystal diamond particles (hereinafter, also referred to as diamond particles) having various average particle diameters as sliding contact particles are fixed by nickel electrodeposition on the surface of a SUS304 material having a diameter of 85 mm × 100 mL as a sliding member base, and a shaft is formed. A sleeve (sliding member) was manufactured. Here, by electrodeposition, 60% of the average particle size of the diamond particles was embedded in the nickel phosphorus film.

次に、上記ダイヤ粒子に対して研削加工を行い、ダイヤ粒子の先端に粒子摺接面を、当該粒子摺接面が上記摺動部材基部を中心とする同一円周上に存在するように形成した。ここで、研削加工は、加工前のダイヤ粒子の突出し先端から、ダイヤ粒子の平均粒子径の30%の長さに相当する部分を削除することを目指して行った。 Next, the diamond particles are ground to form a particle sliding contact surface at the tip of the diamond particles so that the particle sliding contact surface exists on the same circumference centered on the sliding member base. did. Here, the grinding process was performed with the aim of removing a portion corresponding to a length of 30% of the average particle diameter of the diamond particles from the protruding tip of the diamond particles before processing.

その後、粒子摺接面を形成した軸スリーブについて、突出し高さ(μm)を、レーザー顕微鏡(キーエンス社製、モデルVK-9700)を用いて測定し、最小突出し高さおよび最大突出し高さを表1に示した。また、軸スリーブの、円周方向に10箇所、かつ軸方向に8箇所の合計80箇所(10×8)において、単位表面(1mm×1mm)を設定した。レーザー顕微鏡を用いて各単位表面を観察し、顕微鏡写真を撮影した。そして、当該写真に基づいて、粒子摺接面の面積の和の平均値(平均面積値)を得た。また、80箇所の単位表面のうち、粒子摺接面の面積の和の最小値および最大値について、平均値を100%としたときの、最小値および最大値のそれぞれの比を算出し、最小面積率比(%)および最大面積率比(%)とした。 After that, the protrusion height (μm) of the shaft sleeve on which the particle sliding contact surface was formed was measured using a laser microscope (Keyence, model VK-9700), and the minimum protrusion height and the maximum protrusion height were shown. Shown in 1. Further, the unit surface (1 mm × 1 mm) was set at a total of 80 locations (10 × 8) of the shaft sleeve at 10 locations in the circumferential direction and 8 locations in the axial direction. The surface of each unit was observed using a laser microscope, and a micrograph was taken. Then, based on the photograph, the average value (mean area value) of the sum of the areas of the particle sliding contact surfaces was obtained. Further, among the 80 unit surfaces, the ratios of the minimum value and the maximum value when the average value is 100% are calculated for the minimum value and the maximum value of the sum of the areas of the particle sliding contact surfaces, and the minimum value is calculated. The area ratio ratio (%) and the maximum area ratio ratio (%) were used.

用いた摺接粒子の平均粒子径、ならびに、最小突出し高さ、最大突出し高さ、平均面積値(mm)、最小面積率比、および最大面積率比を、表1に示す。 Table 1 shows the average particle size of the sliding contact particles used, as well as the minimum protrusion height, maximum protrusion height, average area value (mm 2 ), minimum area ratio, and maximum area ratio.

(製造例2)
摺動部材基部としての直径164mm×100mLのSUS304材を用いたこと以外は、製造例1と同様の条件にて電着(単結晶ダイヤモンド粒子のニッケル電着)および粒子摺接面の形成(摺接粒子の研削加工)を行った。
(Manufacturing Example 2)
Electroplation (nickel electrodeposition of single crystal diamond particles) and formation of particle sliding contact surface (sliding) under the same conditions as in Production Example 1 except that a SUS304 material having a diameter of 164 mm × 100 mL was used as the base of the sliding member. Grinding of contact particles) was performed.

その後、製造例1と同じ方法にて、突出し高さ(μm)を測定し、粒子摺接面の面積の和の平均値を得、最小面積率比(%)および最大面積率比(%)を算出した。 Then, the protrusion height (μm) is measured by the same method as in Production Example 1, the average value of the sum of the areas of the particle sliding contact surfaces is obtained, and the minimum area ratio (%) and the maximum area ratio (%) are obtained. Was calculated.

用いた摺接粒子の平均粒子径、ならびに、最小突出し高さ、最大突出し高さ、最小面積率比、および最大面積率比を、表2に示す。 Table 2 shows the average particle size of the sliding contact particles used, as well as the minimum protrusion height, maximum protrusion height, minimum area ratio, and maximum area ratio.

Figure 0007023106000001
Figure 0007023106000001

Figure 0007023106000002
Figure 0007023106000002

表1および2より、摺接粒子の平均粒子径の増加に依存して、最小突出し高さおよび最大突出し高さならびに最小面積率比が増加し、最大面積率比が減少することが分かった。すなわち、平均粒子径の大きな摺接粒子を用いた場合には、粒子摺接面を形成した軸スリーブの製造における材料または加工のバラツキ(例えば、摺接粒子の摺動部材基部への固定、および/または摺動部材基部の寸法のバラツキなど)の影響を緩和できる。 From Tables 1 and 2, it was found that the minimum protrusion height, the maximum protrusion height, and the minimum area ratio ratio increased and the maximum area ratio ratio decreased, depending on the increase in the average particle size of the sliding contact particles. That is, when sliding contact particles having a large average particle diameter are used, there are variations in materials or processing in the manufacture of the shaft sleeve having the particle sliding contact surface (for example, fixing the sliding contact particles to the base of the sliding member, and fixing the sliding contact particles to the base of the sliding member. / Or the influence of the dimensional variation of the base of the sliding member can be mitigated.

本発明は、無水状態での先行運転や、土砂等を含むスラリーの気液混合状態での排水といった、軸・軸受構造にとって過酷な条件での運転を行う先行待機運転ポンプに利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used for a preceding standby operation pump that operates under harsh conditions for the shaft / bearing structure, such as preceding operation in an anhydrous state and drainage in a gas-liquid mixed state of a slurry containing earth and sand. ..

1A 軸・軸受構造
10 軸部材(摺動部材)
10a 基体(摺動部材基部)
10b 摺接粒子
11 軸受部材(被摺動部材)
12 粒子間領域
13 粒子摺接面
14 部材間摺接面
20 ニッケルリン膜
1A Shaft / Bearing structure 10 Shaft member (sliding member)
10a Substrate (sliding member base)
10b Sliding particles 11 Bearing member (sliding member)
12 Inter-particle region 13 Particle sliding contact surface 14 Inter-member sliding contact surface 20 Nickel phosphorus film

Claims (8)

被摺動部材に対して相対的に摺動する摺動部材であって、
摺動部材基部と、
上記摺動部材基部の表面に散在して固定される摺接粒子と、を備え、
上記摺接粒子は、
上記摺動部材基部の表面から突出しており、かつ、上記被摺動部材に摺接する粒子摺接面を有しており、
上記摺動部材基部の計測した全ての単位表面積あたりの上記粒子摺接面の面積の和は、上記摺動部材基部の少なくとも2つ以上の単位表面積あたりの上記粒子摺接面の面積の和の平均値を100%としたとき、78%~114%の範囲内であることを特徴とする、摺動部材。
A sliding member that slides relative to the sliding member.
Sliding member base and
It is provided with sliding contact particles scattered and fixed on the surface of the sliding member base.
The above sliding particles are
It has a particle sliding contact surface that protrudes from the surface of the sliding member base and is in sliding contact with the sliding member.
The sum of the areas of the particle sliding contact surfaces per unit surface area measured by the sliding member base is the sum of the areas of the particle sliding contact surfaces per at least two or more unit surface areas of the sliding member base. A sliding member, characterized in that it is in the range of 78% to 114% when the average value is 100%.
上記摺動部材基部の表面の垂直方向から見たときの、上記摺接粒子が占める面積の割合である面密度が20~70%であることを特徴とする請求項1に記載の摺動部材。 The sliding member according to claim 1, wherein the surface density, which is the ratio of the area occupied by the sliding contact particles, is 20 to 70% when viewed from the vertical direction of the surface of the sliding member base. .. 上記摺接粒子の平均粒子径は、10~250μmであることを特徴とする請求項1または2に記載の摺動部材。 The sliding member according to claim 1 or 2, wherein the average particle diameter of the sliding contact particles is 10 to 250 μm. 上記摺動部材基部の表面から上記摺接粒子の上記粒子摺接面までの平均高さは、0.8μm以上であることを特徴とする請求項1~3のいずれか1項に記載の摺動部材。 The sliding according to any one of claims 1 to 3, wherein the average height of the sliding contact particles from the surface of the sliding member base to the particle sliding contact surface is 0.8 μm or more. Moving member. 上記摺接粒子は、ダイヤモンド粒子、ダイヤモンドライクカーボン粒子、立方晶窒化ホウ素、ガラス状カーボン粒子、アルミナ粒子、炭化ホウ素粒子、炭化ケイ素粒子、炭化タングステン粒子、窒化ケイ素粒子および炭化モリブデン粒子のうちの少なくとも1種以上を含むことを特徴とする請求項1~4のいずれか1項に記載の摺動部材。 The sliding contact particles are at least one of diamond particles, diamond-like carbon particles, cubic boron nitride, glassy carbon particles, alumina particles, boron carbide particles, silicon carbide particles, tungsten carbide particles, silicon nitride particles and molybdenum carbide particles. The sliding member according to any one of claims 1 to 4, wherein the sliding member includes one or more of them. 軸及び軸受を有する軸・軸受構造に用いられ、
上記粒子摺接面は、上記軸・軸受構造の軸を中心とする同一円周上にあることを特徴とする請求項1~5のいずれか1項に記載の摺動部材。
Used for shaft / bearing structures with shafts and bearings
The sliding member according to any one of claims 1 to 5, wherein the particle sliding contact surface is on the same circumference about the axis of the shaft / bearing structure.
上記摺接粒子は、少なくとも一部が被膜にて被覆されていることを特徴とする請求項1~6のいずれか1項に記載の摺動部材。 The sliding member according to any one of claims 1 to 6, wherein the sliding contact particles are at least partially covered with a coating film. 上記摺動部材基部は、円筒形状の軸スリーブであり、
上記軸スリーブの直径が85mmの場合に、上記摺接粒子の平均粒子径は、53~105μmである一方、
上記軸スリーブの直径が164mmの場合に、上記摺接粒子の平均粒子径は、105~150μmであることを特徴とする請求項3に記載の摺動部材。
The base of the sliding member is a cylindrical shaft sleeve.
When the diameter of the shaft sleeve is 85 mm, the average particle diameter of the sliding contact particles is 53 to 105 μm, while the diameter is 53 to 105 μm.
The sliding member according to claim 3, wherein when the diameter of the shaft sleeve is 164 mm, the average particle diameter of the sliding contact particles is 105 to 150 μm.
JP2017250095A 2017-12-26 2017-12-26 Sliding member Active JP7023106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017250095A JP7023106B2 (en) 2017-12-26 2017-12-26 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017250095A JP7023106B2 (en) 2017-12-26 2017-12-26 Sliding member

Publications (2)

Publication Number Publication Date
JP2019116913A JP2019116913A (en) 2019-07-18
JP7023106B2 true JP7023106B2 (en) 2022-02-21

Family

ID=67304358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017250095A Active JP7023106B2 (en) 2017-12-26 2017-12-26 Sliding member

Country Status (1)

Country Link
JP (1) JP7023106B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7516331B2 (en) 2021-09-21 2024-07-16 株式会社ノリタケカンパニーリミテド Wear-resistant materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348699A (en) 2000-07-14 2002-12-04 Osaka Gas Co Ltd Plated film and coated article therewith
JP2004353730A (en) 2003-05-28 2004-12-16 Aisin Seiki Co Ltd Bearing unit
JP2016211727A (en) 2015-03-31 2016-12-15 株式会社クボタ Slide member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348699A (en) 2000-07-14 2002-12-04 Osaka Gas Co Ltd Plated film and coated article therewith
JP2004353730A (en) 2003-05-28 2004-12-16 Aisin Seiki Co Ltd Bearing unit
JP2016211727A (en) 2015-03-31 2016-12-15 株式会社クボタ Slide member

Also Published As

Publication number Publication date
JP2019116913A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP6420272B2 (en) Sliding member
CN106604798B (en) The manufacturing method of cutting insert and cutting element and machined object
WO2021146552A1 (en) Radially adjustable radial pdc bearings
JP2002349173A (en) Insert chip for petroleum excavation tricone bit, manufacturing method thereof, and petroleum excavation tricone bit
JP2005500489A (en) Components with bearing or wear-resistant surfaces
KR101816050B1 (en) Method for manufacturing friction stir tool for high strength materials
JP7023106B2 (en) Sliding member
US12049922B2 (en) Corrosion resistant bearing elements, bearing assemblies, bearing apparatuses, and motor assemblies using the same
JP6628499B2 (en) Sliding member and pump
JP6653841B2 (en) Manufacturing method of sliding member
JP2014506298A (en) Ultra-hard structure and manufacturing method thereof
JP2019116914A (en) Slide member and use thereof
JP6569376B2 (en) Carbide tool and manufacturing method thereof
WO2014139941A1 (en) Roller bearing assembly and elements thereof, and method of making a roller element
TWI603929B (en) Scribing wheel with pin, holding unit and scoring device
JP6639556B2 (en) Sliding member and manufacturing method thereof
JP2018105364A (en) Shaft/bearing structure and standby operation pump
JP6289991B2 (en) Double layer cemented carbide
JP2019190644A (en) Slide member
TW201512445A (en) Coated CMP retaining ring
JP6515387B2 (en) Carbide tool and method of manufacturing the same
WO2011111724A1 (en) Die for forming dynamic pressure grooves and method for manufacturing dynamic pressure-type oil-impregnated sintered bearing
JP6962702B2 (en) Molds for press molding, manufacturing methods for glass blanks, and manufacturing methods for glass substrates for magnetic disks
TWI693118B (en) Tool with hard coating and super hard coating and manufacturing method thereof
JP2005028544A (en) Coated tool and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190906

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190906

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210106

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210405

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210622

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211005

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211118

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211221

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220125

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220208

R150 Certificate of patent or registration of utility model

Ref document number: 7023106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150