JP4567220B2 - Liquid hydrogen cooling system for superconducting magnet - Google Patents

Liquid hydrogen cooling system for superconducting magnet Download PDF

Info

Publication number
JP4567220B2
JP4567220B2 JP2001064165A JP2001064165A JP4567220B2 JP 4567220 B2 JP4567220 B2 JP 4567220B2 JP 2001064165 A JP2001064165 A JP 2001064165A JP 2001064165 A JP2001064165 A JP 2001064165A JP 4567220 B2 JP4567220 B2 JP 4567220B2
Authority
JP
Japan
Prior art keywords
liquid hydrogen
superconducting magnet
superconducting
cooling system
sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001064165A
Other languages
Japanese (ja)
Other versions
JP2002272060A (en
Inventor
一夫 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2001064165A priority Critical patent/JP4567220B2/en
Publication of JP2002272060A publication Critical patent/JP2002272060A/en
Application granted granted Critical
Publication of JP4567220B2 publication Critical patent/JP4567220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、リニアモーターカーに搭載される超電導磁石の液体水素冷却システムに関するものである。
【0002】
【従来の技術】
従来の超電導磁石は、液体ヘリウムで冷却されている。
図5は従来の液体ヘリウム冷却超電導磁石の模式図である。
この図に示すように、超電導コイル1は2超電導コイルずつの2区画に区分されている。ここで、機械的損傷等により一方の区画の真空度が低下すると、そちらにあった液体ヘリウム3はもちろん、上部の液体ヘリウムタンク2に蓄えられていた大量の液体ヘリウム3も短時間に蒸発してしまう。この大量の液体ヘリウム3が蒸発すると一気に圧力が高まるため、液体ヘリウムタンク2に設けた安全弁(図示なし)が吹いてガス4は大気中に放出される。
【0003】
一方、本願発明者は、既に、燃料電池と組み合わせる水素冷却超電導磁石を搭載するリニアモーターカーを提案している(特開2000−92627参照)。 図6は係る液体水素冷却超電導磁石を搭載するリニアモーターカーの概略システム構成図である。
この図において、11は液体水素冷却超電導磁石、12は個々の超電導コイル、13は熱シールド板、14は液体水素タンク、15は蒸発した水素ガスを通し、熱シールド板13に固定される水素冷却配管、16は車両基地に設置される液体水素補充装置、17は電磁バルブ、18は蒸発した水素ガスを通す配管、19はその配管18に接続される水素貯蔵装置(水素吸着合金)、20は前記配管18と接続されて、水素ガスが供給され、直流電力を出力する燃料電池、21はDC/AC変換器、22は電磁バルブの制御装置である。
【0004】
係る液体水素冷却超電導磁石は、蒸発する水素を燃料電池により発電に供せるため、浮上式鉄道に用いた場合、車載冷凍機が不要となる、他に車上電源装置を搭載する必要がなくなる、など大きな利点がある。
【0005】
【発明が解決しようとする課題】
しかしながら、水素ガスが磁石から大量に大気中に放出されると爆発の恐れがあり、その水素ガスの大気との混合比がかなりの広い範囲で爆発を起こす危険性がある。
本発明は、上記問題点を除去し、万一水素ガスが磁石から大量に大気中に放出される恐れがある場合には、当該部位への液体水素供給を停止し、水素ガスの外部への発生を最小限にとどめ、安全度の向上を図り得る超電導磁石の液体水素冷却システムを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕超電導磁石の液体水素冷却システムにおいて、液体水素を導入する液体水素タンクと、この液体水素タンクに接続される複数の区画に分割された超電導磁石と、この複数の区画に分割された超電導磁石の各区画にそれぞれ接続されるバッファと、前記複数の区画の各区画に対応して配置される圧力センサーと、前記液体水素タンクからの液体水素圧が所定値に上昇した時に閉止する駆動装置付き閉止弁と、前記超電導磁石と前記バッファとの間に配置される安全弁と、前記圧力センサーからの情報を取り込み、前記駆動装置付き閉止弁を制御する制御装置とを具備することを特徴とする。
【0007】
〔2〕上記〔1〕記載の超電導磁石の液体水素冷却システムにおいて、前記安全弁を前記制御装置により制御することを特徴とする。
〔3〕上記〔1〕又は〔2〕記載の超電導磁石の液体水素冷却システムにおいて、前記超電導磁石は、2超電導コイルをそれぞれ配置した2区画に分割することを特徴とする。
【0008】
〔4〕上記〔1〕又は〔2〕記載の超電導磁石の液体水素冷却システムにおいて、前記超電導磁石は、1超電導コイルをそれぞれ配置した両端の2区画と2超電導コイルを配置した中央の1区画に分割することを特徴とする。
〔5〕上記〔1〕又は〔2〕記載の超電導磁石の液体水素冷却システムにおいて、前記超電導磁石は、1超電導コイルをそれぞれ配置した4区画に分割することを特徴とする。
【0009】
〔6〕上記〔1〕又は〔2〕記載の超電導磁石の液体水素冷却システムにおいて、前記バッファを共通に1個配置することを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について、詳細に説明する。
図1は本発明の第1実施例を示す超電導磁石の液体水素冷却システムの模式図である。
この図において、31は液体水素冷却超電導磁石、32は液体水素タンク、33は液体水素、34は液体水素タンク32と液体水素冷却超電導磁石31を連通する通路35に配置される液体水素圧が上昇した時に閉じる閉止弁、36は液体水素冷却超電導磁石31とバッファB1,B2とを連通する通路37に配置される安全弁、38は液体水素圧を検知する圧力センサー、39はその圧力センサー38の情報が取り込まれるとともに、各種の弁を駆動するように制御する制御装置、40は閉止弁34を駆動する駆動装置、41は安全弁36を駆動する駆動装置である。なお、当然、安全弁36は駆動装置41により駆動されることなく、異常圧力により応動するようにしてもよい。
【0011】
このように、液体水素冷却超電導磁石31を2以上の区画に分け、液体水素タンク32から各区画には、液体水素タンク32と液体水素冷却超電導磁石31を連通する通路35に配置された、液体水素圧が上昇した時に閉じる閉止弁34を介して液体水素33を供給する。そして、いずれかの区画の圧力が高まると、その区画に対応する圧力センサー38が動作して制御装置39により駆動装置40が動作し閉止弁34を閉じ、液体水素33の供給を停止する。各区画は安全弁36を介して外部のバッファB1とB2に接続されており、各区画が保持していた液体水素33は真空度低下等により蒸発しても、外部に水素ガスH2 が放出されることなくバッファB1とB2に導かれる。
【0012】
したがって、液体水素33は外気に放出されることなく、その放出による爆発の恐れもない。
なお、実際は液体水素冷却超電導磁石31部分より液体水素タンク32の方が、冷媒(液体水素)の量は遙に多い。
図2は本発明の第2実施例を示す超電導磁石の概略配置の模式図である。なお、この図においては、水素ガスの排出機構については省略されている。
【0013】
上記第1実施例では、超電導磁石を2区画に分けるようにしたが、この実施例では、左端に1超電導コイル51、中央に2超電導コイル52、右端に1超電導コイル53の3区画に分けるようにしている。
このように構成することにより、比較的真空が破れやすい両端の超電導コイル数を減らして、安全な水素ガスH2 の排出を行うように構成することができる。
【0014】
図3は本発明の第3実施例を示す超電導磁石の概略配置の模式図である。なお、この図においては、水素ガスの排出機構については省略されている。
この実施例では、この図に示すように、超電導磁石を各1超電導コイル61〜64として各1区画に分けるようにしている。
このように構成することにより、真空破壊の領域を極力小さく限定することにより、異常時の緊急的運行を行うことができる。
【0015】
図4は本発明の第4実施例を示す超電導磁石の液体水素冷却システムの模式図である。
上記第1実施例では、バッファB1,B2は左右に配置するようにしたが、この実施例では、回収管71に接続されるバッファB0としてまとめて1個配置するように構成する。このように構成することにより、水素ガスH2 をまとめて回収することが容易になり、その水素ガスを回収して省エネルギー化を図ることができる。
【0016】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、それらを本発明の範囲から排除するものではない。
【0017】
【発明の効果】
以上、詳細に説明したように、本発明によれば、液体水素冷却超電導磁石の真空度が低下しても液体水素の蒸発量は最小限に抑えられることになり、かつ蒸発した水素ガスはバッファに導入される。よって、水素ガスが大気中に放出される恐れがなくなるので、爆発の恐れはなくなり、液体水素冷却超電導磁石の安全性を大幅に向上させることができる。
【図面の簡単な説明】
【図1】 本発明の第1実施例を示す超電導磁石の液体水素冷却システムの模式図である。
【図2】 本発明の第2実施例を示す超電導磁石の概略配置の模式図である。
【図3】 本発明の第3実施例を示す超電導磁石の概略配置の模式図である。
【図4】 本発明の第4実施例を示す超電導磁石の液体水素冷却システムの模式図である。
【図5】 従来の液体ヘリウム冷却超電導磁石の模式図である。
【図6】 液体水素冷却超電導磁石を搭載するリニアモーターカーの概略システム構成図である。
【符号の説明】
31 液体水素冷却超電導磁石
32 液体水素タンク
33 液体水素
34 閉止弁
35,37 通路
36 安全弁
38 圧力センサー
39 制御装置
40 閉止弁を駆動する駆動装置
41 安全弁を駆動する駆動装置
B0,B1,B2 バッファ
51 左端の1超電導コイル
52 中央の2超電導コイル
53 右端の1超電導コイル
61〜64 1超電導コイル
71 回収管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid hydrogen cooling system for a superconducting magnet mounted on a linear motor car.
[0002]
[Prior art]
Conventional superconducting magnets are cooled with liquid helium.
FIG. 5 is a schematic diagram of a conventional liquid helium cooled superconducting magnet.
As shown in this figure, the superconducting coil 1 is divided into two sections each having two superconducting coils. Here, when the degree of vacuum in one section decreases due to mechanical damage or the like, not only the liquid helium 3 there, but also a large amount of liquid helium 3 stored in the upper liquid helium tank 2 evaporates in a short time. End up. When this large amount of liquid helium 3 evaporates, the pressure increases at a stroke, so that a safety valve (not shown) provided in the liquid helium tank 2 blows and the gas 4 is released into the atmosphere.
[0003]
On the other hand, the present inventor has already proposed a linear motor car on which a hydrogen-cooled superconducting magnet combined with a fuel cell is mounted (see Japanese Patent Laid-Open No. 2000-92627). FIG. 6 is a schematic system configuration diagram of a linear motor car equipped with such a liquid hydrogen cooled superconducting magnet.
In this figure, 11 is a liquid hydrogen cooled superconducting magnet, 12 is an individual superconducting coil, 13 is a heat shield plate, 14 is a liquid hydrogen tank, 15 is a hydrogen cooler fixed to the heat shield plate 13 through the evaporated hydrogen gas. Piping, 16 is a liquid hydrogen replenishing device installed at a vehicle base, 17 is an electromagnetic valve, 18 is a piping for passing evaporated hydrogen gas, 19 is a hydrogen storage device (hydrogen adsorption alloy) connected to the piping 18, 20 is A fuel cell connected to the pipe 18 and supplied with hydrogen gas and outputs DC power, 21 is a DC / AC converter, and 22 is a control device for an electromagnetic valve.
[0004]
Such a liquid hydrogen-cooled superconducting magnet can be used for power generation by the fuel cell by evaporating hydrogen, so when used in a floating railway, there is no need for an on-vehicle refrigerator, and there is no need to install an on-board power supply device. There are great advantages.
[0005]
[Problems to be solved by the invention]
However, if a large amount of hydrogen gas is released from the magnet into the atmosphere, there is a risk of explosion, and there is a risk of explosion in a fairly wide range of the mixing ratio of the hydrogen gas to the atmosphere.
The present invention eliminates the above problems, and if there is a possibility that a large amount of hydrogen gas is released from the magnet into the atmosphere, the liquid hydrogen supply to the part is stopped and the hydrogen gas is discharged to the outside. An object of the present invention is to provide a liquid hydrogen cooling system for a superconducting magnet capable of minimizing generation and improving safety.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides
[1] In a liquid hydrogen cooling system for a superconducting magnet, a liquid hydrogen tank for introducing liquid hydrogen, a superconducting magnet divided into a plurality of sections connected to the liquid hydrogen tank, and a superconducting divided into the plurality of sections A buffer connected to each section of the magnet, a pressure sensor arranged corresponding to each section of the plurality of sections, and a drive that closes when the liquid hydrogen pressure from the liquid hydrogen tank rises to a predetermined value And a safety valve disposed between the superconducting magnet and the buffer, and a control device that takes in information from the pressure sensor and controls the shut-off valve with the driving device. To do.
[0007]
[2] The superconducting magnet liquid hydrogen cooling system according to [1], wherein the safety valve is controlled by the control device.
[3] In the liquid hydrogen cooling system for a superconducting magnet according to [1] or [2], the superconducting magnet is divided into two sections each having two superconducting coils.
[0008]
[4] In the liquid hydrogen cooling system for a superconducting magnet according to [1] or [2] above, the superconducting magnet is divided into two sections at both ends each having one superconducting coil and one section at the center having two superconducting coils. It is characterized by dividing .
[5] In the liquid hydrogen cooling system for a superconducting magnet according to [1] or [2], the superconducting magnet is divided into four sections each having one superconducting coil.
[0009]
[6] The liquid hydrogen cooling system for a superconducting magnet according to [1] or [2] above, wherein one of the buffers is arranged in common.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a schematic view of a superconducting magnet liquid hydrogen cooling system according to a first embodiment of the present invention.
In this figure, 31 is a liquid hydrogen-cooled superconducting magnet, 32 is a liquid hydrogen tank, 33 is liquid hydrogen, 34 is a liquid hydrogen pressure disposed in a passage 35 connecting the liquid hydrogen tank 32 and the liquid hydrogen-cooled superconducting magnet 31. A shut-off valve that closes when the liquid hydrogen is cooled, 36 is a safety valve disposed in a passage 37 that connects the liquid hydrogen cooled superconducting magnet 31 and the buffers B1 and B2, 38 is a pressure sensor that detects the liquid hydrogen pressure, and 39 is information on the pressure sensor 38. Is a control device that controls to drive various valves, 40 is a drive device that drives the closing valve 34, and 41 is a drive device that drives the safety valve 36. Of course, the safety valve 36 may be driven by the abnormal pressure without being driven by the driving device 41.
[0011]
In this way, the liquid hydrogen cooled superconducting magnet 31 is divided into two or more sections, and the liquid hydrogen tank 32 is connected to each section by a passage 35 communicating with the liquid hydrogen tank 32 and the liquid hydrogen cooled superconducting magnet 31. Liquid hydrogen 33 is supplied through a shut-off valve 34 that closes when the hydrogen pressure rises. When the pressure in any of the compartments increases, the pressure sensor 38 corresponding to that compartment operates, the control device 39 operates the drive device 40, closes the shut-off valve 34, and stops the supply of the liquid hydrogen 33. Each section is connected to external buffers B1 and B2 via safety valves 36, and even if the liquid hydrogen 33 held in each section evaporates due to a decrease in vacuum or the like, hydrogen gas H 2 is released to the outside. Without being led to the buffers B1 and B2.
[0012]
Therefore, the liquid hydrogen 33 is not released to the outside air, and there is no risk of explosion due to the release.
Actually, the liquid hydrogen tank 32 has much more refrigerant (liquid hydrogen) than the liquid hydrogen cooled superconducting magnet 31.
FIG. 2 is a schematic diagram of a schematic arrangement of superconducting magnets showing a second embodiment of the present invention. In this figure, the hydrogen gas discharge mechanism is omitted.
[0013]
In the first embodiment, the superconducting magnet is divided into two sections. However, in this embodiment, the superconducting magnet is divided into three sections: one superconducting coil 51 at the left end, two superconducting coils 52 at the center, and one superconducting coil 53 at the right end. I have to.
With this configuration, it is possible to reduce the number of superconducting coils at both ends, which are relatively easy to break the vacuum, and to safely discharge the hydrogen gas H 2 .
[0014]
FIG. 3 is a schematic diagram of a schematic arrangement of superconducting magnets showing a third embodiment of the present invention. In this figure, the hydrogen gas discharge mechanism is omitted.
In this embodiment, as shown in this figure, the superconducting magnet is divided into one section as each one superconducting coil 61-64.
By constituting in this way, the emergency operation at the time of abnormality can be performed by limiting the area of vacuum break as small as possible.
[0015]
FIG. 4 is a schematic diagram of a superconducting magnet liquid hydrogen cooling system according to a fourth embodiment of the present invention.
In the first embodiment, the buffer B1, B2 has been to arrange the left and right, in this example, configured to collectively arranged one as a buffer B0 is connected to the recovery pipe 71. By configuring in this way, it becomes easy to collect the hydrogen gas H 2 together, and the hydrogen gas can be collected to save energy.
[0016]
In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and they are not excluded from the scope of the present invention.
[0017]
【The invention's effect】
As described above in detail, according to the present invention, even if the vacuum degree of the liquid hydrogen-cooled superconducting magnet is reduced, the amount of evaporation of liquid hydrogen can be minimized, and the evaporated hydrogen gas is buffered. To be introduced. Therefore, there is no risk of hydrogen gas being released into the atmosphere, so there is no risk of explosion, and the safety of the liquid hydrogen cooled superconducting magnet can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a superconducting magnet liquid hydrogen cooling system according to a first embodiment of the present invention.
FIG. 2 is a schematic view of a schematic arrangement of superconducting magnets showing a second embodiment of the present invention.
FIG. 3 is a schematic view of a schematic arrangement of superconducting magnets showing a third embodiment of the present invention.
FIG. 4 is a schematic diagram of a liquid hydrogen cooling system for a superconducting magnet according to a fourth embodiment of the present invention.
FIG. 5 is a schematic diagram of a conventional liquid helium cooled superconducting magnet.
FIG. 6 is a schematic system configuration diagram of a linear motor car equipped with a liquid hydrogen cooled superconducting magnet.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 31 Liquid hydrogen cooling superconducting magnet 32 Liquid hydrogen tank 33 Liquid hydrogen 34 Closing valve 35, 37 Passage 36 Safety valve 38 Pressure sensor 39 Control apparatus 40 Driving device which drives a closing valve 41 Driving device which drives a safety valve B0, B1, B2 Buffer 51 1 superconducting coil at the left end 52 2 superconducting coils at the center 53 1 superconducting coil at the right end 61-64 1 superconducting coil 71 recovery tube

Claims (6)

(a)液体水素を導入する液体水素タンクと、
(b)該液体水素タンクに接続される複数の区画に分割された超電導磁石と、
(c)該複数の区画に分割された超電導磁石の各区画にそれぞれ接続されるバッファと、
(d)前記複数の区画の各区画に対応して配置される圧力センサーと、
(e)前記液体水素タンクからの液体水素圧が所定値に上昇した時に閉止する駆動装置付き閉止弁と、
(f)前記超電導磁石と前記バッファとの間に配置される安全弁と、
(g)前記圧力センサーからの情報を取り込み、前記駆動装置付き閉止弁を制御する制御装置とを具備することを特徴とする超電導磁石の液体水素冷却システム。
(A) a liquid hydrogen tank for introducing liquid hydrogen;
(B) a superconducting magnet divided into a plurality of sections connected to the liquid hydrogen tank;
(C) a buffer connected to each section of the superconducting magnet divided into the plurality of sections;
(D) a pressure sensor disposed corresponding to each of the plurality of sections;
(E) a shut-off valve with a driving device that closes when the liquid hydrogen pressure from the liquid hydrogen tank rises to a predetermined value;
(F) a safety valve disposed between the superconducting magnet and the buffer;
(G) A liquid hydrogen cooling system for a superconducting magnet, comprising a control device that takes in information from the pressure sensor and controls the shut-off valve with the driving device.
請求項1記載の超電導磁石の液体水素冷却システムにおいて、前記安全弁を前記制御装置により制御することを特徴とする超電導磁石の液体水素冷却システム。  2. The liquid hydrogen cooling system for a superconducting magnet according to claim 1, wherein the safety valve is controlled by the control device. 請求項1又は2記載の超電導磁石の液体水素冷却システムにおいて、前記超電導磁石は、2超電導コイルをそれぞれ配置した2区画に分割することを特徴とする超電導磁石の液体水素冷却システム。3. The liquid hydrogen cooling system for a superconducting magnet according to claim 1, wherein the superconducting magnet is divided into two sections each having two superconducting coils. 請求項1又は2記載の超電導磁石の液体水素冷却システムにおいて、前記超電導磁石は、1超電導コイルをそれぞれ配置した両端の2区画と2超電導コイルを配置した中央の1区画に分割することを特徴とする超電導磁石の液体水素冷却システム。3. The liquid hydrogen cooling system for a superconducting magnet according to claim 1 or 2, wherein the superconducting magnet is divided into two sections at both ends where one superconducting coil is respectively arranged and one central section where two superconducting coils are arranged. Superconducting magnet liquid hydrogen cooling system. 請求項1又は2記載の超電導磁石の液体水素冷却システムにおいて、前記超電導磁石は、1超電導コイルをそれぞれ配置した4区画に分割することを特徴とする超電導磁石の液体水素冷却システム。3. The liquid hydrogen cooling system for a superconducting magnet according to claim 1, wherein the superconducting magnet is divided into four sections each having one superconducting coil. 請求項1又は2記載の超電導磁石の液体水素冷却システムにおいて、前記バッファを共通に1個配置することを特徴とする超電導磁石の液体水素冷却システム。  3. The liquid hydrogen cooling system for a superconducting magnet according to claim 1, wherein one buffer is arranged in common.
JP2001064165A 2001-03-08 2001-03-08 Liquid hydrogen cooling system for superconducting magnet Expired - Fee Related JP4567220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001064165A JP4567220B2 (en) 2001-03-08 2001-03-08 Liquid hydrogen cooling system for superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001064165A JP4567220B2 (en) 2001-03-08 2001-03-08 Liquid hydrogen cooling system for superconducting magnet

Publications (2)

Publication Number Publication Date
JP2002272060A JP2002272060A (en) 2002-09-20
JP4567220B2 true JP4567220B2 (en) 2010-10-20

Family

ID=18923027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001064165A Expired - Fee Related JP4567220B2 (en) 2001-03-08 2001-03-08 Liquid hydrogen cooling system for superconducting magnet

Country Status (1)

Country Link
JP (1) JP4567220B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038832A (en) * 2003-07-01 2005-02-10 Sumitomo Electric Ind Ltd Boil-off gas treatment system
CN111361427B (en) * 2020-04-01 2024-03-15 江苏国富氢能技术装备股份有限公司 Superconductive magnetic levitation train based on liquid hydrogen energy supply and cooling

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716763A (en) * 1980-07-04 1982-01-28 Mitsubishi Electric Corp Cryogenic refrigerating plant
JPS5720485A (en) * 1980-07-11 1982-02-02 Mitsubishi Electric Corp Cryogenic refrigerating plant
JPH0536526A (en) * 1991-07-31 1993-02-12 Hitachi Ltd Method for cooling forced cooling conductor
JPH065421A (en) * 1992-06-23 1994-01-14 Toshiba Corp Superconducting magnet device
JPH06253410A (en) * 1993-02-25 1994-09-09 Toshiba Corp Superconducting propulsion apparatus
JPH06283769A (en) * 1993-03-26 1994-10-07 Railway Technical Res Inst Superconducting magnet refrigerating system
JPH10135526A (en) * 1996-10-30 1998-05-22 Aisin Seiki Co Ltd Very low temperature cooling device
JP2000092627A (en) * 1998-09-09 2000-03-31 Railway Technical Res Inst Linear motor car mounting liquid hydrogen cooled superconducting magnet combined with fuel battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716763A (en) * 1980-07-04 1982-01-28 Mitsubishi Electric Corp Cryogenic refrigerating plant
JPS5720485A (en) * 1980-07-11 1982-02-02 Mitsubishi Electric Corp Cryogenic refrigerating plant
JPH0536526A (en) * 1991-07-31 1993-02-12 Hitachi Ltd Method for cooling forced cooling conductor
JPH065421A (en) * 1992-06-23 1994-01-14 Toshiba Corp Superconducting magnet device
JPH06253410A (en) * 1993-02-25 1994-09-09 Toshiba Corp Superconducting propulsion apparatus
JPH06283769A (en) * 1993-03-26 1994-10-07 Railway Technical Res Inst Superconducting magnet refrigerating system
JPH10135526A (en) * 1996-10-30 1998-05-22 Aisin Seiki Co Ltd Very low temperature cooling device
JP2000092627A (en) * 1998-09-09 2000-03-31 Railway Technical Res Inst Linear motor car mounting liquid hydrogen cooled superconducting magnet combined with fuel battery

Also Published As

Publication number Publication date
JP2002272060A (en) 2002-09-20

Similar Documents

Publication Publication Date Title
EP1826051B1 (en) Hydrogen tank cooling device and cooling method in hydrogen fuel automobile, and hydrogen fuel automobile
EP1613903B1 (en) Energy recovery system
EP2679421B1 (en) Vehicle air conditioning system
EP2694303B1 (en) Cooling apparatus
JP4932525B2 (en) Hydrogen station
US20100192602A1 (en) Absorption cooling system and cooling method
WO2014013670A1 (en) Heat management system for vehicle
JP6098121B2 (en) Cooling system
JP2007215311A (en) In-wheel motor cooling device, its cooling method, and vehicle with the cooling device
KR20190056081A (en) A System for Controlling a Refrigerator Vehicle by a Structure a Refrigerator Vehicle by Supplying a Power of a Battery
JP2011068348A (en) Vehicle inside temperature control method of electric motor vehicle and air-conditioning system
JPH07186711A (en) Hydrogen fuel automobile
JP4567220B2 (en) Liquid hydrogen cooling system for superconducting magnet
JP2010144995A (en) Refrigerating system utilizing exhaust heat
WO2010106612A1 (en) Vehicle
JP2014020675A (en) Refrigeration cycle device for cell temperature adjustment
CN109466274A (en) A kind of heat management system for electric car
JP2009121390A (en) Rankine cycle system
JP2003034131A (en) Cool storage system for vehicular air conditioning
CN209381734U (en) A kind of heat management system for electric car
JP2000092627A (en) Linear motor car mounting liquid hydrogen cooled superconducting magnet combined with fuel battery
JP2007040390A (en) Cooling system of fuel tank and fuel consuming portion system
GB2383839A (en) A liquified gaseous fuel powered vehicle and air conditioner.
CN110230536A (en) A kind of power generation and air conditioning dual-purpose unit based on small-sized internal combustion mechanomotive force
JP2007051623A (en) Cooling device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100805

R150 Certificate of patent or registration of utility model

Ref document number: 4567220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees