JPH07186711A - Hydrogen fuel automobile - Google Patents

Hydrogen fuel automobile

Info

Publication number
JPH07186711A
JPH07186711A JP5348142A JP34814293A JPH07186711A JP H07186711 A JPH07186711 A JP H07186711A JP 5348142 A JP5348142 A JP 5348142A JP 34814293 A JP34814293 A JP 34814293A JP H07186711 A JPH07186711 A JP H07186711A
Authority
JP
Japan
Prior art keywords
hydrogen
built
heat
tank
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5348142A
Other languages
Japanese (ja)
Other versions
JP3312161B2 (en
Inventor
Hiroyuki Mitsui
宏之 三井
Hiroshi Aoki
博史 青木
Hideto Kubo
秀人 久保
Masayoshi Miura
正芳 三浦
Nobuo Fujita
信雄 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc, Toyoda Automatic Loom Works Ltd filed Critical Toyota Motor Corp
Priority to JP34814293A priority Critical patent/JP3312161B2/en
Priority to US08/286,191 priority patent/US5678410A/en
Publication of JPH07186711A publication Critical patent/JPH07186711A/en
Application granted granted Critical
Publication of JP3312161B2 publication Critical patent/JP3312161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3202Cooling devices using evaporation, i.e. not including a compressor, e.g. involving fuel or water evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To favorably regulate hydrogen by additionally providing a heat exchanging device different from a cooling device so as to effectively utilize reaction heat of hydrogen storage alloy for the cooling device, and interposing a hydrogen compressor on a hydrogen flow passage connecting together a MH- built-in tank and a hydrogen consuming part. CONSTITUTION:In a hydrogen fuel automobile 1, hydrogen 81 is supplied from a MH-built-in tank 10 receiving hydrogen storage allay to a hydrogen consuming part 11 generating power driving a vehicle. A cooling device 20 is provided with a condenser 21 condensing compressed refrigerant 82 and an evaporator 22 evaporating expanded refrigerant 82. Fourther, a heat exchanging device 30 is formed with a part of a thermal medium flow passage 33 in the MH-built- in tank 10. In such constitution, a first heat exchanger 31 arranged in the MH- built-in tank 10 and a second heat exchanger 32 arranged on a passage 41 of air 85 cooled by the cooling device 20 are arranged in the heat exchanging device 30. A hydrogen compressor 13 is interposed on a hydrogen flow passage 12 connecting together the MH-built-in tank 10 and the hydrogen consuming part 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水素燃料自動車に関する
ものであり,特に冷房装置作動時における走行距離の低
下が少ない,エネルギー利用効率の良好な水素燃料自動
車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen-fueled vehicle, and more particularly to a hydrogen-fueled vehicle which has a small decrease in traveling distance when the air conditioner is operating and has good energy utilization efficiency.

【0002】[0002]

【従来技術】水素燃料自動車の燃料(水素)供給源とし
て水素吸蔵合金(MH)を用いたシステムが提案されて
いる。そして,その動力源として,燃料電池を用いる電
気式のもの(特開昭51−4714号公報,特開昭51
−4715号公報,特開昭51−4716号公報な
ど),及び水素エンジンを用いるもの(特開平4−36
8228号公報,実開平4−122209号公報など)
がある。
2. Description of the Related Art A system using a hydrogen storage alloy (MH) as a fuel (hydrogen) supply source for a hydrogen-fueled automobile has been proposed. An electric power source using a fuel cell is used as the power source (Japanese Patent Laid-Open Nos. 51-4714 and 51
No. -4715, Japanese Patent Laid-Open No. 51-4716, etc.) and one using a hydrogen engine (Japanese Patent Laid-Open No. 4-36).
8228, Japanese Utility Model Publication No. 4-122209, etc.)
There is.

【0003】上記いずれの場合においても,水素吸蔵合
金を加熱することにより,水素ガスを放出させるもので
ある。この水素吸蔵合金の加熱は,動力源の排熱などを
利用して行なわれている。そして,燃料電池を用いる前
者の場合における車室の冷房装置は,ガソリン等を用い
る従来の自動車と同様に,冷媒にフロンを用いた蒸気圧
縮式ヒートポンプを用いるのが一般的である。
In any of the above cases, hydrogen gas is released by heating the hydrogen storage alloy. The heating of the hydrogen storage alloy is performed by utilizing the exhaust heat of the power source. In the former case of using a fuel cell, a vehicle interior air conditioner generally uses a vapor compression heat pump using chlorofluorocarbon as a refrigerant, as in a conventional automobile using gasoline or the like.

【0004】一方,水素エンジンを用いる後者の場合に
は,水素吸蔵合金の水素吸蔵あるいは放出に伴う反応熱
を冷暖房に用いることが提案されている(上記公報参
照)。そして,冷房の場合には,水素吸蔵合金から水素
を放出させるための熱源として,車室内の空気を用い,
これによって車室内の空気を冷却する。
On the other hand, in the latter case of using a hydrogen engine, it has been proposed to use the heat of reaction associated with hydrogen storage or release of the hydrogen storage alloy for cooling and heating (see the above publication). In the case of cooling, the air in the passenger compartment is used as a heat source for releasing hydrogen from the hydrogen storage alloy,
This cools the air in the passenger compartment.

【0005】[0005]

【解決しようとする課題】しかしながら,従来の水素燃
料自動車には次のような問題点がある。第1の問題点
は,冷房装置として,蒸気圧縮式ヒートポンプを用いる
もの(以下「フロン式エアコン」という)は,所望の冷
房出力を得るためにヒートポンプで消費される動力が大
きく,水素燃料自動車の走行距離を大幅に低下させると
いう問題である。
[Problems to be Solved] However, the conventional hydrogen fueled vehicle has the following problems. The first problem is that the one using a vapor compression heat pump as a cooling device (hereinafter referred to as “CFC type air conditioner”) consumes a large amount of power in the heat pump to obtain a desired cooling output. The problem is that the mileage is greatly reduced.

【0006】一方,車室内の空気を熱源として水素吸蔵
合金の反応熱を冷房装置に利用する後者の場合には,車
両を駆動する動力源で必要な水素量と,冷房に必要な水
素量とが必ずしも対応しないため,冷房熱負荷に対応し
て的確に冷房を行なうことができないという第2の問題
点がある。
On the other hand, in the latter case where the reaction heat of the hydrogen-absorbing alloy is used for the cooling device by using the air in the passenger compartment as the heat source, the amount of hydrogen required for the power source for driving the vehicle and the amount of hydrogen required for cooling are However, there is a second problem that it is not possible to accurately perform cooling in response to the cooling heat load.

【0007】第3の問題点は,動力負荷変動に対応する
敏速な水素供給が困難なことである。即ち,水素吸蔵合
金の放出水素量は温度に依存しており,温度を急速に精
度よく変化させることは困難であるから,水素供給圧力
や水素流量を高速かつ精度よく調整することは,極めて
困難である。
The third problem is that it is difficult to supply hydrogen rapidly in response to power load fluctuations. That is, the amount of hydrogen released from the hydrogen storage alloy depends on the temperature, and it is difficult to rapidly and accurately change the temperature. Therefore, it is extremely difficult to adjust the hydrogen supply pressure and the hydrogen flow rate with high speed and accuracy. Is.

【0008】本発明は,かかる従来の問題点に鑑みて,
エネルギーの利用効率が高く,冷房負荷要求に対して柔
軟に対応することができる冷房装置を有すると共に,要
求される動力負荷の変動に対しても敏速に追従できる水
素燃料自動車を提供しようとするものである。
In view of the above conventional problems, the present invention is
The present invention aims to provide a hydrogen-fueled vehicle that has a high efficiency of energy use, has a cooling device capable of flexibly responding to a cooling load demand, and can promptly follow a change in a required power load. Is.

【0009】[0009]

【課題の解決手段】本発明は,車両を駆動する動力を発
生させる水素消費部と,該水素消費部に水素を供給する
ための水素吸蔵合金を収容するMH内蔵タンクと,圧縮
された冷媒ガスを凝縮するコンデンサ及び膨張した冷媒
液を蒸発するエバポレータを有する冷房装置と,上記M
H内蔵タンク内に熱媒体流路の一部を形成する熱交換装
置とを有する水素燃料自動車であって,上記熱交換装置
は,MH内蔵タンク内に配設した第1熱交換器と,上記
冷房装置によって冷却される被冷却空気の通路又は冷房
装置のコンデンサを冷却する冷却空気の通路の少なくと
も一方に配設した第2熱交換器とを有しており,上記M
H内蔵タンクと水素消費部とを結ぶ水素流路には,水素
圧送機を有していることを特徴とする水素燃料自動車に
ある。
According to the present invention, there is provided a hydrogen consuming portion for generating power for driving a vehicle, an MH built-in tank containing a hydrogen storage alloy for supplying hydrogen to the hydrogen consuming portion, and a compressed refrigerant gas. A condenser for condensing the air and an evaporator for evaporating the expanded refrigerant liquid;
A hydrogen-fueled vehicle having a heat exchange device for forming a part of a heat medium passage in an H built-in tank, wherein the heat exchange device comprises a first heat exchanger arranged in an MH built-in tank, and A second heat exchanger disposed in at least one of a passage for cooled air cooled by the cooling device or a passage for cooling air for cooling the condenser of the cooling device.
A hydrogen fueled vehicle is characterized by having a hydrogen pump in the hydrogen flow path connecting the H built-in tank and the hydrogen consuming section.

【0010】また,本発明は,車両を駆動する動力を発
生させる水素消費部と,該水素消費部に水素を供給する
ための水素吸蔵合金を収容するMH内蔵タンクと,圧縮
された冷媒ガスを凝縮するコンデンサ及び膨張した冷媒
液を蒸発するエバポレータを有する冷房装置と,上記M
H内蔵タンク内に熱媒体流路の一部を形成する熱交換装
置とを有する水素燃料自動車であって,上記熱交換装置
は,MH内蔵タンク内に配設した第1熱交換器と,上記
冷房装置のコンデンサを流通する冷媒と上記熱媒体とを
熱交換可能に,コンデンサの入口側又は出口側の少なく
とも一方に配設した第2熱交換器とを有しており,上記
MH内蔵タンクと水素消費部とを結ぶ水素流路には,水
素圧送機を有していることを特徴とする水素燃料自動車
にある。
Further, according to the present invention, a hydrogen consuming portion for generating power for driving a vehicle, a MH built-in tank for storing a hydrogen storage alloy for supplying hydrogen to the hydrogen consuming portion, and a compressed refrigerant gas are provided. A cooling device having a condenser for condensing and an evaporator for evaporating the expanded refrigerant liquid;
A hydrogen-fueled vehicle having a heat exchange device for forming a part of a heat medium passage in an H built-in tank, wherein the heat exchange device comprises a first heat exchanger arranged in an MH built-in tank, and A second heat exchanger disposed at at least one of an inlet side and an outlet side of the condenser, capable of exchanging heat between the refrigerant flowing through the condenser of the air conditioner and the heat medium; A hydrogen-fueled vehicle is characterized by having a hydrogen pump in the hydrogen flow path that connects the hydrogen consuming section.

【0011】本発明において最も注目すべきことの第1
点は,MH内蔵タンク内に設けた第1熱交換器と,冷房
装置の空気通路又は冷媒通路に配設した第2熱交換器と
を有する熱交換装置を有することである。第2熱交換器
を冷房装置の空気通路に配設する場合は,冷房装置によ
って冷却される被冷却空気の通路又は冷房装置のコンデ
ンサを冷却する冷却空気の通路の少なくとも一方に配設
する。また,第2熱交換器を冷房装置の冷媒通路に配設
する場合は,コンデンサを流通する冷媒と上記熱媒体と
の間で熱交換可能なように,コンデンサの入口側又は出
口側の少なくとも一方に配設する。
The first thing to note most in the present invention
The point is to have a heat exchange device having a first heat exchanger provided in the MH built-in tank and a second heat exchanger provided in the air passage or the refrigerant passage of the cooling device. When the second heat exchanger is arranged in the air passage of the cooling device, it is arranged in at least one of the passage of the cooled air cooled by the cooling device and the passage of the cooling air for cooling the condenser of the cooling device. When the second heat exchanger is arranged in the refrigerant passage of the cooling device, at least one of the inlet side and the outlet side of the condenser is arranged so that heat can be exchanged between the refrigerant flowing through the condenser and the heat medium. To be installed.

【0012】最も注目すべきことの第2点は,MH内蔵
タンクと水素消費部とを結ぶ水素流路に水素圧送機を配
設したことである。上記水素圧送機はMH内蔵タンクの
水素を水素消費部に圧送するものであり,コンプレッ
サ,送風機,ポンプなどである。なお,上記において水
素消費部とは,水素燃料自動車において水素を消費する
部材であり,燃料電池や水素エンジンなどである。
The second point to be most noticed is that the hydrogen pump is arranged in the hydrogen flow path connecting the MH built-in tank and the hydrogen consuming section. The hydrogen pump is a compressor, a blower, a pump, etc., which pumps the hydrogen in the MH built-in tank to the hydrogen consuming section. In the above description, the hydrogen consuming unit is a member that consumes hydrogen in a hydrogen-fueled automobile, such as a fuel cell or a hydrogen engine.

【0013】なお,MH内蔵タンクと水素燃料自動車と
を結ぶ水素流路には,水素圧送機と並列にバイパス流路
を設け,該バイパス流路に流量を調整する制御弁を挿入
することが好ましい。上記のようなバイパス流路を設け
ることにより,水素圧送機を用いず水素圧送が可能とな
り,水素圧送機で消費される動力を節減することができ
るからである。
It should be noted that it is preferable that a bypass passage be provided in parallel with the hydrogen pump and a control valve for adjusting the flow rate be inserted in the hydrogen passage connecting the tank with built-in MH and the hydrogen fueled vehicle. . By providing the bypass flow path as described above, it is possible to perform hydrogen pressure feeding without using a hydrogen pressure feeding device, and it is possible to reduce the power consumed by the hydrogen pressure feeding device.

【0014】即ち,水素吸蔵合金の平衡圧力が水素消費
部の作動圧力より高い場合には,水素圧送機を用いず圧
力差による水素供給が可能となり,水素圧送機の可動時
間を短くできるから,エネルギーの有効利用となる。更
に,小流量の水素供給については,制御弁を用いてきめ
細かく調整できるという利点がある。
That is, when the equilibrium pressure of the hydrogen storage alloy is higher than the operating pressure of the hydrogen consuming portion, hydrogen can be supplied by the pressure difference without using the hydrogen pump, and the operating time of the hydrogen pump can be shortened. Effective use of energy. Furthermore, there is an advantage that the control valve can be used to finely adjust the supply of hydrogen at a small flow rate.

【0015】[0015]

【作用及び効果】本発明の水素燃料自動車においては,
冷房装置と別個の熱交換装置を設けてあり,これによっ
て水素吸蔵合金の反応熱を冷房装置に有効利用すること
ができる。即ち,水素放出に伴う水素吸蔵合金の冷熱
は,第1熱交換器によって熱交換装置の冷媒に伝達さ
れ,この冷媒に伝達された冷熱は,第2熱交換器によっ
て冷房装置の冷媒又は冷房装置の被冷却空気もしくは冷
房装置のコンデンサを冷却する空気に伝達される。
[Operation and effect] In the hydrogen fueled vehicle of the present invention,
A heat exchange device separate from the cooling device is provided, which allows the reaction heat of the hydrogen storage alloy to be effectively used for the cooling device. That is, the cold heat of the hydrogen storage alloy due to hydrogen release is transferred to the refrigerant of the heat exchange device by the first heat exchanger, and the cold heat transferred to this refrigerant is the refrigerant of the air conditioner or the cooling device of the second heat exchanger. Of the cooled air or the air for cooling the condenser of the cooling device.

【0016】冷房装置の被冷却空気を冷却すれば,その
分だけ冷房装置が負担する冷房動力を節減することとな
る。またコンデンサを冷却する空気を冷却するかあるい
はコンデンサを流通する冷媒を冷却すればコンデンサの
放熱量を低減することができ,その結果,冷房装置の動
力を節減することができる。その結果,冷房装置のエネ
ルギー消費が低減され,省エネルギーとなる。
If the air to be cooled in the cooling device is cooled, the cooling power that the cooling device bears can be saved accordingly. Further, by cooling the air for cooling the condenser or cooling the refrigerant flowing through the condenser, the heat radiation amount of the condenser can be reduced, and as a result, the power of the cooling device can be saved. As a result, the energy consumption of the cooling device is reduced, and energy is saved.

【0017】また,冷房装置は独自の動力源を有してお
り,トータルの冷房出力は,上記熱交換装置の出力によ
ってのみ左右されることなく独自に決めることができる
から,所望の強度の冷房出力を得ることができる。即
ち,熱交換装置の反応熱は冷房装置の補助動力源として
有効利用されると共に,冷房装置の快適度を低下させず
運転することができる。
Further, the cooling device has its own power source, and the total cooling output can be determined independently without being influenced only by the output of the heat exchanging device. Therefore, the cooling device having a desired strength can be obtained. You can get the output. That is, the reaction heat of the heat exchange device is effectively used as an auxiliary power source for the cooling device, and the cooling device can be operated without lowering the comfort level.

【0018】また,本発明の水素燃料自動車は,MH内
蔵タンクと水素燃料自動車との間に水素圧送機を設けて
ある。そして,水素圧送機を作動させて水素消費部に供
給する水素流量及び水素供給圧力を高速かつ精度よく調
整することができる。即ち,水素吸蔵合金の温度を変化
させ,その結果放出される水素量を変化させる従来方法
によっては,要求負荷の急変等に対して充分な応答性と
制御精度が得られないが,本発明によればこれを大幅に
改善することができる。
Further, the hydrogen-fueled automobile of the present invention is provided with a hydrogen pumping machine between the MH built-in tank and the hydrogen-fueled automobile. Then, the hydrogen pump can be operated to adjust the hydrogen flow rate and the hydrogen supply pressure to be supplied to the hydrogen consuming portion at high speed and with high accuracy. That is, the conventional method of changing the temperature of the hydrogen storage alloy and changing the amount of hydrogen released as a result cannot provide sufficient responsiveness and control accuracy for a sudden change in the required load. This can be greatly improved.

【0019】上記のように,本発明によれば,エネルギ
ーの利用効率が高く,冷房負荷要求に対して柔軟に対応
できる冷房装置を有すると共に,要求される動力負荷の
変動に対して敏速に追従できる水素燃料自動車を提供す
ることができる。
As described above, according to the present invention, there is provided a cooling device having high energy utilization efficiency and capable of flexibly responding to the cooling load demand, and promptly following the fluctuation of the required power load. It is possible to provide a hydrogen-fueled automobile that can.

【0020】[0020]

【実施例】【Example】

実施例1 本発明の実施例にかかる水素燃料自動車につき,図1〜
図2を用いて説明する。本例は,図1に示すように,車
両を駆動する動力を発生させる水素消費部11と,水素
消費部11に水素81を供給するための水素吸蔵合金を
収容するMH内蔵タンク10と,圧縮された冷媒82を
凝縮するコンデンサ21及び膨張した冷媒82を蒸発す
るエバポレータ22を有する冷房装置20と,MH内蔵
タンク10内に熱媒体流路33の一部を形成する熱交換
装置30とを有する水素燃料自動車1である。
Example 1 A hydrogen fueled vehicle according to an example of the present invention is shown in FIGS.
This will be described with reference to FIG. In this example, as shown in FIG. 1, a hydrogen consuming unit 11 that generates power for driving a vehicle, a MH built-in tank 10 that contains a hydrogen storage alloy for supplying hydrogen 81 to the hydrogen consuming unit 11, and a compression unit A cooling device 20 having a condenser 21 for condensing the cooled refrigerant 82 and an evaporator 22 for evaporating the expanded refrigerant 82, and a heat exchange device 30 for forming a part of the heat medium passage 33 in the MH built-in tank 10. It is a hydrogen-fueled automobile 1.

【0021】上記熱交換装置30は,MH内蔵タンク1
0内に配設した第1熱交換器31と,冷房装置20で冷
却される被冷却空気85の通路41に配設した第2熱交
換器32とを有している。そして,MH内蔵タンク10
と水素消費部11とを結ぶ水素流路12には,水素圧送
機13を介装してある。また,上記水素流路12には,
水素圧送機13と並列にバイパス流路14が設けられて
おり,該バイパス流路14には,流量を調整する制御弁
15が挿入されている。
The heat exchange device 30 includes the tank 1 with built-in MH.
It has the 1st heat exchanger 31 arrange | positioned in 0, and the 2nd heat exchanger 32 arrange | positioned in the passage 41 of the to-be-cooled air 85 cooled by the cooling device 20. And the tank 10 with built-in MH
A hydrogen pump 13 is provided in a hydrogen flow path 12 that connects the hydrogen consuming unit 11 and the hydrogen consuming unit 11. Also, in the hydrogen flow path 12,
A bypass passage 14 is provided in parallel with the hydrogen pump 13, and a control valve 15 for adjusting the flow rate is inserted in the bypass passage 14.

【0022】以下それぞれについて説明する。本例にお
ける水素消費部11は燃料電池111であり,図1に示
すように,電気配線40を介して車両の駆動モータ41
及び冷房装置20のコンプレッサ23に電力を供給す
る。また,補助電源装置として,燃料電池111で不足
する電力を供給すると共に燃料電池111の余剰電力を
吸収する二次電池42が配設されている。
Each of these will be described below. The hydrogen consuming unit 11 in the present example is a fuel cell 111, and as shown in FIG.
Also, electric power is supplied to the compressor 23 of the cooling device 20. Further, as an auxiliary power supply device, a secondary battery 42 that supplies electric power that is insufficient in the fuel cell 111 and absorbs surplus electric power of the fuel cell 111 is provided.

【0023】燃料電池111は,水素流路12を介して
MH内蔵タンク10から水素81の供給を受け,また通
気口から空気87を取入れる。水素流路12は,そのメ
イン流路120に水素圧送機13としての圧縮機を有
し,バイパス流路14には制御弁15を有している。
The fuel cell 111 receives the supply of hydrogen 81 from the MH built-in tank 10 through the hydrogen flow path 12, and also takes in the air 87 from the ventilation port. The hydrogen flow passage 12 has a compressor as the hydrogen pump 13 in the main flow passage 120, and a control valve 15 in the bypass flow passage 14.

【0024】そして,MH内蔵タンク10には図示しな
い水素吸蔵合金が収容されており,水素吸蔵合金は減圧
操作によって水素を放出し,吸熱反応が発生する。また
冷房装置20は,フロンを冷媒82とするフロン式エア
コンである。その冷媒流路25には,図1に示すよう
に,コンデンサ21,冷媒を圧縮するコンプレッサ2
3,エバポレータ22,冷媒82を膨張させる膨張弁2
4が配設されている。
A hydrogen storage alloy (not shown) is housed in the MH built-in tank 10, and the hydrogen storage alloy releases hydrogen by depressurizing operation to generate an endothermic reaction. The cooling device 20 is a CFC type air conditioner using CFC as the refrigerant 82. As shown in FIG. 1, the refrigerant passage 25 includes a condenser 21 and a compressor 2 for compressing the refrigerant.
3, evaporator 22, expansion valve 2 for expanding the refrigerant 82
4 are provided.

【0025】エバポレータ22は,車室空気(被冷却空
気85)の通路41を形成するダクトに装着されてお
り,図示しない送風機によって送出される被冷却空気8
5を冷却する。また,コンデンサ21は,エバポレータ
22及びコンプレッサ23において得た冷媒82の熱
を,冷却空気86に伝達する。冷却空気86は図示しな
い送風機によって送出されている。
The evaporator 22 is attached to a duct forming a passage 41 for air in the passenger compartment (cooled air 85), and the cooled air 8 sent by a blower (not shown) is supplied.
Cool 5 Further, the condenser 21 transfers the heat of the refrigerant 82 obtained in the evaporator 22 and the compressor 23 to the cooling air 86. The cooling air 86 is blown by a blower (not shown).

【0026】そして,熱交換装置30は,その熱媒体流
路33に第1熱交換器31と,第2熱交換器32とを有
している。第1熱交換器31はMH内蔵タンク10内に
配設されており,水素吸蔵合金の水素放出に必要な熱エ
ネルギーを供給し,同時に熱媒体83はこれによって冷
却される。
The heat exchange device 30 has a first heat exchanger 31 and a second heat exchanger 32 in the heat medium passage 33. The first heat exchanger 31 is arranged in the MH built-in tank 10 and supplies the heat energy necessary for releasing hydrogen from the hydrogen storage alloy, and at the same time, the heat medium 83 is cooled.

【0027】一方,第2熱交換器32は,被冷却空気8
5の通路41である前記ダクト内に配設されており,第
1熱交換器31において冷却された上記熱媒体83の冷
熱によって被冷却空気85を冷却する。上記,熱媒体8
3は図示しないポンプによって熱媒体流路33を循環す
る。
On the other hand, the second heat exchanger 32 has the cooled air 8
5, the cooling air 85 is cooled by the cold heat of the heat medium 83 cooled in the first heat exchanger 31. Above, heat medium 8
3 is circulated in the heat medium flow path 33 by a pump (not shown).

【0028】そして,上記通路41には,上記第2熱交
換器32に流入する空気流量と前記エバポレータ22へ
流入する空気流量とを最適に分配するダンパ43が設け
られている。また,自動車の走行状態及び二次電流容量
などの情報を入力し,電気負荷変動に対応して水素圧送
機13,制御弁15,コンプレッサ23などを制御する
コントロールユニット(図示せず)が設けられている。
The passage 41 is provided with a damper 43 for optimally distributing the flow rate of air flowing into the second heat exchanger 32 and the flow rate of air flowing into the evaporator 22. In addition, a control unit (not shown) is provided for inputting information such as the running state of the automobile and the secondary current capacity and controlling the hydrogen pressure transmitter 13, the control valve 15, the compressor 23, etc. in response to electric load fluctuations. ing.

【0029】次に,本例のシステムの一般的な運転方法
について説明する。最初に自動車の走行全般にわたって
基本的な制御方法について述べる。はじめに,アクセル
の踏込み量あるいは車速などの車両走行状態,現在の燃
料電池111の発電量や二次電池42の容量などをコン
トロールユニットに入力する。そして,車両の走行に必
要な所要動力,及びその他の電気消費機器の動作に必要
な電力量(以下補機動力という)を算出し,車両の走行
に必要な電力量P0を求める。
Next, a general operation method of the system of this example will be described. First, a basic control method will be described over the entire traveling of the automobile. First, the vehicle running state such as the accelerator depression amount or the vehicle speed, the current power generation amount of the fuel cell 111 and the capacity of the secondary battery 42 are input to the control unit. Then, the required power required for traveling of the vehicle and the amount of electric power required for the operation of other electric power consuming devices (hereinafter referred to as auxiliary machinery power) are calculated to obtain the amount of electric power P 0 required for traveling of the vehicle.

【0030】そこで,現在の燃料電池111の発電量P
が,上記必要電力量P0 より少なく,且つその最高出力
m に達していない場合は,水素圧送機13の吐出圧あ
るいは吐出量を増加させることにより,燃料電池111
の発電量Pを制御する。
Therefore, the current power generation amount P of the fuel cell 111 is
Is less than the required power amount P 0 and has not reached the maximum output P m , the discharge pressure or discharge amount of the hydrogen pump 13 is increased to increase the fuel cell 111.
The power generation amount P of is controlled.

【0031】一方,必要電力量P0 が燃料電池111の
最高出力Pm より多い場合には,二次電池42より不足
分を放電する。また,燃料電池111の発電量Pが必要
電力量P0 より多い場合は,水素圧送機13の吐出圧あ
るいは吐出量を減少させるか,二次電池42の容量が設
定値より減少している場合には二次電池42に充電を行
なう。
On the other hand, when the required power amount P 0 is larger than the maximum output P m of the fuel cell 111, the shortage is discharged from the secondary battery 42. When the power generation amount P of the fuel cell 111 is larger than the required power amount P 0 , the discharge pressure or discharge amount of the hydrogen pump 13 is reduced, or the capacity of the secondary battery 42 is smaller than the set value. First, the secondary battery 42 is charged.

【0032】また,車両の停止状態においては,二次電
池42の容量が設定値より減少している場合には,燃料
電池111の発電を継続して二次電池42を充電する。
なお,二次電池42容量の設定値に対する減少量が少な
い場合には,燃料電池111の運転を停止しても良い。
Further, when the capacity of the secondary battery 42 is smaller than the set value when the vehicle is stopped, the power generation of the fuel cell 111 is continued to charge the secondary battery 42.
When the amount of decrease in the capacity of the secondary battery 42 with respect to the set value is small, the operation of the fuel cell 111 may be stopped.

【0033】次に,車室内の冷房運転のプロセスについ
て説明する。車室内の冷房は,通常のフロン式冷房装置
20に加えて,水素吸蔵合金(MH)からの水素放出に
伴う吸熱反応を利用した熱交換装置30の冷房システム
を併用することによって行なわれる。
Next, the process of cooling the vehicle interior will be described. Cooling of the vehicle compartment is performed by using a cooling system of a heat exchange device 30 that utilizes an endothermic reaction associated with hydrogen release from a hydrogen storage alloy (MH) in addition to a normal CFC type cooling device 20.

【0034】基本的な制御方法は,車室内の空調条件な
どをコントロールユニットに入力し,例えば車室内の温
度を一定に制御するように設定した場合には,目標温度
と車室内温度を比較し,車室内温度が目標値になるよう
に各部材を制御する。例えば,車室内へ送気する風量を
増減したり,フロン式冷房装置20のフロンコンプレッ
サ23の回転数あるいは圧力を制御し,車室内へ送気す
る空気85と熱交換するエバポレータ22の吸熱量を増
減させる。
The basic control method is to input the air conditioning conditions in the passenger compartment into the control unit, and, for example, when the temperature in the passenger compartment is set to be controlled to be constant, the target temperature and the passenger compartment temperature are compared. Control each member so that the vehicle interior temperature reaches the target value. For example, by increasing or decreasing the amount of air blown into the passenger compartment, controlling the number of revolutions or pressure of the freon compressor 23 of the freon type cooling device 20, the amount of heat absorbed by the evaporator 22 that exchanges heat with the air 85 sent to the passenger compartment is set. Increase or decrease.

【0035】あるいは,車室内へ送気する空気85と熱
交換を行なう第2熱交換器32の熱媒体83の流量を増
減させる。そして,必要に応じエバポレータ22及び第
2熱交換器32に流入する空気量をダンパ43により分
配制御する。
Alternatively, the flow rate of the heat medium 83 of the second heat exchanger 32, which exchanges heat with the air 85 sent to the passenger compartment, is increased or decreased. Then, if necessary, the damper 43 controls distribution of the amount of air flowing into the evaporator 22 and the second heat exchanger 32.

【0036】前記のようにして燃料電池111の発電量
が決定されると,必要とする水素流量が決まるから,こ
れに基づいて,MH内蔵タンク10からの水素燃料の供
給量を制御する。この場合,通常の水素供給は,水素圧
送機13を最適制御することにより実現する。しかしな
がら,水素吸蔵合金の平衡圧力が,燃料電池111の作
動圧より高い場合などは,水素圧送機13を駆動せずバ
イパス流路14及び制御弁15により必要水素流量を供
給することができる。
When the power generation amount of the fuel cell 111 is determined as described above, the required hydrogen flow rate is determined. Therefore, the hydrogen fuel supply amount from the MH built-in tank 10 is controlled based on this. In this case, normal hydrogen supply is realized by optimally controlling the hydrogen pump 13. However, when the equilibrium pressure of the hydrogen storage alloy is higher than the operating pressure of the fuel cell 111, the required flow rate of hydrogen can be supplied by the bypass passage 14 and the control valve 15 without driving the hydrogen pump 13.

【0037】その結果,MH内蔵タンク10の水素放出
量は,前記の必要水素流量となり,それに伴う吸熱量は
上記必要水素流量により決定される。このようにして,
第2熱交換器32による冷房可能な熱量が明らかとな
る。そして,この値と車室内の冷房に必要な熱量と比較
し,第2熱交換器32で受け持つ冷房割合に応じて,流
入空気量85をダンパ43により分配制御する。
As a result, the amount of hydrogen released from the MH built-in tank 10 becomes the above-mentioned required hydrogen flow rate, and the heat absorption amount accompanying it is determined by the above required hydrogen flow rate. In this way,
The amount of heat that can be cooled by the second heat exchanger 32 becomes clear. Then, this value is compared with the amount of heat required for cooling the vehicle interior, and the inflow air amount 85 is distributed and controlled by the damper 43 in accordance with the cooling ratio that the second heat exchanger 32 takes charge of.

【0038】次に本例のシステムの効果について述べ
る。本例においては,燃料電池111の発電量Pにより
フロン式冷房装置20の冷房熱負荷低減割合が異なって
くるが,燃料電池111の発電が停止されない限りは,
冷房装置20の冷房熱負荷の一部あるいは全部を水素吸
蔵合金の吸熱反応を利用した熱交換装置30の冷房シス
テムで受け持つことが可能である。従って冷房装置20
のエネルギー消費は,低減される。
Next, the effect of the system of this example will be described. In this example, the cooling heat load reduction rate of the CFC type cooling device 20 varies depending on the power generation amount P of the fuel cell 111, but unless the power generation of the fuel cell 111 is stopped,
A part or all of the cooling heat load of the cooling device 20 can be handled by the cooling system of the heat exchange device 30 utilizing the endothermic reaction of the hydrogen storage alloy. Therefore, the cooling device 20
Energy consumption is reduced.

【0039】次に,本例のシステムについて,40km
/h定速走行をさせた場合のテスト結果について,従来
システムと比較して説明する。実施例に記載の構成にお
いて,MH内蔵タンク10内にMmNi系の水素吸蔵合
金を100kg充填し,燃料電池111は最高出力10
kWの燃料電池を用い,二次電池42は15kWhの電
池容量を持つ鉛蓄電池を用い,乗員を含む車両総重量
1.6トンの車両に対するテスト結果を説明する。
Next, regarding the system of this example, 40 km
/ H Test results when running at a constant speed will be described in comparison with a conventional system. In the configuration described in the embodiment, 100 kg of MmNi-based hydrogen storage alloy is filled in the MH built-in tank 10 and the fuel cell 111 has a maximum output of 10
A test result will be described for a vehicle having a total weight of 1.6 tons including an occupant, using a kW fuel cell and a secondary battery 42 having a battery capacity of 15 kWh.

【0040】40km/h定速走行するのに必要な電力
(所要動力+補機動力)は本例の場合約6.7kWとな
り,消費水素量では約66リットル/minとなる。本
例で使用した水素吸蔵合金の場合,上記水素吸蔵合金か
らの水素放出により得られる吸熱量は約1.45kWと
なるが,本例では第2熱交換器32で冷房可能な熱量を
約1.2kWとして,ダンパ43の分配制御を行ない,
第2熱交換器32への流入空気量は全体の約22%とし
た。
The electric power (required power + auxiliary power) required to run at a constant speed of 40 km / h is about 6.7 kW in this example, and the amount of hydrogen consumed is about 66 liters / min. In the case of the hydrogen storage alloy used in this example, the heat absorption amount obtained by releasing hydrogen from the hydrogen storage alloy is about 1.45 kW, but in this example, the heat amount that can be cooled by the second heat exchanger 32 is about 1 .2 kW, the distribution control of the damper 43 is performed,
The amount of air flowing into the second heat exchanger 32 was about 22% of the whole.

【0041】外気温度35℃の条件で外気を車室内に導
入して冷房を行なった場合の消費動力を図2に示す。カ
ーブ61が従来装置,カーブ62が本例である。図2か
ら明らかなように,冷房に必要な消費動力は,従来技術
では約3.2kWであるのに対し,本例によれば約2.
6kWとなり,20%程度の消費動力低減が実現でき,
約12%だけ自動車の走行距離延長が可能となった。な
お,本例においては冷房性能の低下はなく,車室内温度
の変化などは従来装置と同様であった。
FIG. 2 shows the power consumption in the case where the outside air is introduced into the vehicle interior for cooling under the condition that the outside air temperature is 35 ° C. A curve 61 is a conventional device, and a curve 62 is this example. As is clear from FIG. 2, the power consumption required for cooling is about 3.2 kW in the prior art, whereas it is about 2.
6kW, power consumption reduction of about 20% can be realized,
It is possible to extend the mileage of a car by about 12%. In this example, the cooling performance did not deteriorate, and changes in the vehicle interior temperature were similar to those of the conventional device.

【0042】上記結果から明らかなように,本例のシス
テムにより自動車の走行に必要な水素供給を行なうとと
もに,水素吸蔵合金から得られる冷熱を車室内の冷房に
有効利用することにより,通常のフロン式冷房装置20
の消費動力を大幅に低減でき,自動車の走行距離が延長
されるという効果を得ることができる。なお,効果の割
合については本例に限定されるものではなく,走行条件
や使用する合金材料及び制御方法(例えばダンパによる
分配量など)などにより変化する。
As is clear from the above results, the system of the present example supplies hydrogen required for running the automobile and effectively uses the cold heat obtained from the hydrogen storage alloy for cooling the interior of the vehicle. Air conditioner 20
The power consumption of can be greatly reduced, and the effect of extending the mileage of the automobile can be obtained. The ratio of the effect is not limited to this example, but changes depending on the running conditions, the alloy material used and the control method (for example, the distribution amount by the damper).

【0043】また,本例は,水素圧送機13を用いて燃
料電池111に供給する水素流量を高速に調整すること
ができるから燃料電池111の出力は動力の負荷変動に
対して迅速に応答することが可能である。上記のよう
に,本例によれば,エネルギーの利用効率が高く,また
冷房負荷要求に対して柔軟に対応することのできる冷房
装置を有すると共に,動力負荷の変動に対して敏速に追
従できる水素燃料自動車を提供することができる。
Further, in this embodiment, the flow rate of hydrogen supplied to the fuel cell 111 can be adjusted at high speed by using the hydrogen pump 13, so that the output of the fuel cell 111 responds quickly to the load change of the power. It is possible. As described above, according to the present example, the energy utilization efficiency is high, and the cooling device capable of flexibly responding to the cooling load demand is provided, and the hydrogen capable of promptly following the fluctuation of the power load is also provided. A fuel vehicle can be provided.

【0044】実施例2 本例は,図3に示すように,実施例1において,熱交換
装置30の第2熱交換器32を,冷房装置20のコンデ
ンサ21を冷却する冷却空気86の通路に配設したもう
1つの実施例である。即ち,第2熱交換器32は,コン
デンサ21の上流に近接して設けられており,コンデン
サ21の冷却空気86は,第2熱交換器32により冷却
された後にコンデンサ21と熱交換を行なう。
Embodiment 2 In this embodiment, as shown in FIG. 3, in Embodiment 1, the second heat exchanger 32 of the heat exchange device 30 is connected to the passage of the cooling air 86 for cooling the condenser 21 of the cooling device 20. It is another embodiment provided. That is, the second heat exchanger 32 is provided near the upstream of the condenser 21, and the cooling air 86 of the condenser 21 exchanges heat with the condenser 21 after being cooled by the second heat exchanger 32.

【0045】そのため,コンデンサ21の能力が向上
し,冷房装置20に供給する動力を低減することができ
る。これによる省エネルギーの効果について,実験例に
基づいて,次に述べる。本例の構成の車両を車速40k
m/hで定速走行させ,且つ燃料電池111の発電量を
最高出力である約10.5kWに設定した場合につい
て,評価結果を説明する。なお,走行に必要な所要動力
は,実施例1で述べたように,おおむね7kW程度であ
り,余剰電力については二次電池への充電を行なった。
Therefore, the capacity of the condenser 21 is improved and the power supplied to the cooling device 20 can be reduced. The effect of energy saving by this will be described below based on experimental examples. A vehicle with the structure of this example is driven at a vehicle speed of 40 k
Evaluation results will be described for the case where the vehicle is traveling at a constant speed of m / h and the power generation amount of the fuel cell 111 is set to about 10.5 kW which is the maximum output. The required power required for traveling was about 7 kW as described in Example 1, and the secondary battery was charged with the surplus power.

【0046】また,燃料電池111の発電量を最高出力
で運転するのに必要な消費水素量は,約140リットル
/minである。図4に,実施例1と同様に外気温度3
5℃の条件で外気導入による冷房を行なった場合の消費
動力を,従来装置の消費動力と比較して示す。カーブ6
3が従来装置,カーブ64が本例である。図4から明ら
かなように,従来装置に比べ本実施例は約12%の消費
動力低減が実現でき,実施例1同様に走行距離の延長が
可能となる。
Further, the amount of hydrogen consumption required to operate the fuel cell 111 at the maximum power output is about 140 liters / min. In FIG. 4, as in the first embodiment, the outside air temperature 3
The power consumption when cooling by introducing the outside air under the condition of 5 ° C. is shown in comparison with the power consumption of the conventional device. Curve 6
3 is a conventional device, and curve 64 is this example. As is clear from FIG. 4, the power consumption of this embodiment can be reduced by about 12% as compared with the conventional device, and the traveling distance can be extended as in the first embodiment.

【0047】以上記述したように,実施例1と異なりフ
ロン式エアコンの放熱側であるコンデンサ21の放熱負
荷を低減することによっても,フロン式冷房装置20の
消費動力を低減でき,自動車の走行距離が延長される。
As described above, unlike the first embodiment, by reducing the heat radiation load of the condenser 21, which is the heat radiation side of the Freon type air conditioner, the power consumption of the Freon type air conditioner 20 can be reduced and the traveling distance of the vehicle can be reduced. Is extended.

【0048】更に,本例ではコンデンサ21の放熱負荷
低減方法として,熱交換装置30の第2熱交換器32
を,冷却空気86の通路に配設したが,第2熱交換器3
2をコンデンサ21を流通する冷媒82と熱交換可能に
配設することもでき,コンデンサ21の放熱負荷を低減
でき,前記同様の効果が得られる。図5にコンデンサ2
1の入口冷媒側に第2熱交換器32を配設した例を,図
6にコンデンサ21の出口冷媒側に配設した例を示す。
その他については,実施例1と同様である。
Further, in this example, the second heat exchanger 32 of the heat exchange device 30 is used as a method for reducing the heat radiation load of the condenser 21.
Is disposed in the passage of the cooling air 86, but the second heat exchanger 3
2 can be arranged so as to be able to exchange heat with the refrigerant 82 flowing through the capacitor 21, and the heat radiation load of the capacitor 21 can be reduced, and the same effect as described above can be obtained. Capacitor 2 in Figure 5
An example in which the second heat exchanger 32 is arranged on the inlet refrigerant side of No. 1 is shown in FIG.
Others are the same as those in the first embodiment.

【0049】なお,実施例1と実施例2における第2熱
交換器32の両者を,それぞれ冷房装置20によって冷
却される被冷却空気の通路41と,冷房装置20のコン
デンサ21を冷却する冷却空気86の通路との両方に配
設することができ,実用上優れた作用効果を奏する。ま
た,実施例2同様コンデンサ21の放熱負荷低減方法と
して,コンデンサ21を流通する冷媒82と熱交換可能
に第2熱交換器32を配設してもよい。
In both the first heat exchanger 32 and the second heat exchanger 32 of the first and second embodiments, the passage 41 of the cooled air cooled by the cooling device 20 and the cooling air for cooling the condenser 21 of the cooling device 20 are used. It can be arranged in both the passage and the passage of 86, and has a practically excellent effect. Further, as in the case of the second embodiment, as a method of reducing the heat radiation load of the condenser 21, the second heat exchanger 32 may be disposed so as to be capable of exchanging heat with the refrigerant 82 flowing through the condenser 21.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の水素燃料自動車のシステム構成図。FIG. 1 is a system configuration diagram of a hydrogen fuel vehicle according to a first embodiment.

【図2】実施例1の水素燃料自動車と従来装置との消費
動力の比較図。
FIG. 2 is a comparison diagram of power consumption between the hydrogen-fueled vehicle of Example 1 and a conventional device.

【図3】実施例2の水素燃料自動車のシステム構成図。FIG. 3 is a system configuration diagram of a hydrogen fuel vehicle according to a second embodiment.

【図4】実施例2の水素燃料自動車と従来装置の消費動
力の比較図。
FIG. 4 is a comparison diagram of power consumption of a hydrogen-fueled automobile of Example 2 and a conventional device.

【図5】実施例2において付記した他の水素燃料自動車
の例のシステム構成図。
FIG. 5 is a system configuration diagram of an example of another hydrogen-fueled vehicle described in Example 2.

【図6】実施例2において付記したもう1つの水素燃料
自動車の例のシステム構成図。
FIG. 6 is a system configuration diagram of another example of a hydrogen fuel vehicle described in Example 2.

【符号の説明】[Explanation of symbols]

1...水素燃料自動車, 10...MH内蔵タンク, 11...水素消費部, 12...水素流路, 13...水素圧送機, 14...バイパス流路, 15...制御弁, 20...冷房装置, 21...コンデンサ, 30...熱交換装置, 31...第1熱交換器, 32...第2熱交換器, 41...空気通路, 85,86...空気, 1. . . Hydrogen fueled vehicles, 10. . . MH built-in tank, 11. . . Hydrogen consumption unit, 12. . . Hydrogen flow path, 13. . . Hydrogen pump, 14. . . Bypass channel, 15. . . Control valve, 20. . . Air conditioner, 21. . . Capacitor, 30. . . Heat exchange device, 31. . . First heat exchanger, 32. . . Second heat exchanger, 41. . . Air passage, 85, 86. . . air,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三井 宏之 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 青木 博史 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 久保 秀人 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 (72)発明者 三浦 正芳 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 (72)発明者 藤田 信雄 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroyuki Mitsui Hiroyuki Mitsui, Nagakute-cho, Aichi-gun, Aichi Prefecture No. 41 Yokomichi 1 Central Road, Toyota Central Research Institute Co., Ltd. (72) Hiroshi Aoki Nagakute, Nagakute-cho, Aichi-gun, Aichi Prefecture 1st 41st of the Yokomichi, Toyota Central Research Institute Co., Ltd. (72) Hideto Kubo, 2-chome, Toyota-cho, Kariya city, Aichi prefecture Toyota Industries Corporation (72) Inventor Masayoshi Miura, Kariya city, Aichi prefecture 2-1-1 Toyota-cho, Toyota Industries Corp. (72) Inventor Nobuo Fujita 1- Toyota Town, Toyota-shi, Aichi Toyota Automobile Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 車両を駆動する動力を発生させる水素消
費部と,該水素消費部に水素を供給するための水素吸蔵
合金を収容するMH内蔵タンクと,圧縮された冷媒ガス
を凝縮するコンデンサ及び膨張した冷媒液を蒸発するエ
バポレータを有する冷房装置と,上記MH内蔵タンク内
に熱媒体流路の一部を形成する熱交換装置とを有する水
素燃料自動車であって,上記熱交換装置は,MH内蔵タ
ンク内に配設した第1熱交換器と,上記冷房装置によっ
て冷却される被冷却空気の通路又は冷房装置のコンデン
サを冷却する冷却空気の通路の少なくとも一方に配設し
た第2熱交換器とを有しており,上記MH内蔵タンクと
水素消費部とを結ぶ水素流路には,水素圧送機を有して
いることを特徴とする水素燃料自動車。
1. A hydrogen consuming unit for generating power for driving a vehicle, a MH built-in tank for accommodating a hydrogen storage alloy for supplying hydrogen to the hydrogen consuming unit, a condenser for condensing a compressed refrigerant gas, and A hydrogen fuel vehicle having a cooling device having an evaporator for evaporating the expanded refrigerant liquid, and a heat exchange device forming a part of a heat medium passage in the MH built-in tank, wherein the heat exchange device is MH A first heat exchanger arranged in a built-in tank, and a second heat exchanger arranged in at least one of a passage for cooled air cooled by the cooling device or a passage for cooling air for cooling a condenser of the cooling device. A hydrogen-fueled vehicle having a hydrogen pumping machine in the hydrogen flow path connecting the tank with built-in MH and the hydrogen consuming part.
【請求項2】 請求項1において,上記熱交換装置は,
MH内蔵タンク内に配設した第1熱交換器と,上記冷房
装置のコンデンサを流通する冷媒と上記熱媒体とを熱交
換可能に,コンデンサの入口側又は出口側の少なくとも
一方に配設した第2熱交換器とを有することを特徴とす
る水素燃料自動車。
2. The heat exchange device according to claim 1,
A first heat exchanger arranged in the MH built-in tank, and a refrigerant arranged in at least one of the inlet side and the outlet side of the condenser for heat exchange between the refrigerant flowing through the condenser of the cooling device and the heat medium. A hydrogen fueled vehicle having two heat exchangers.
JP34814293A 1993-08-06 1993-12-24 Hydrogen fueled vehicles Expired - Fee Related JP3312161B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP34814293A JP3312161B2 (en) 1993-12-24 1993-12-24 Hydrogen fueled vehicles
US08/286,191 US5678410A (en) 1993-08-06 1994-08-05 Combined system of fuel cell and air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34814293A JP3312161B2 (en) 1993-12-24 1993-12-24 Hydrogen fueled vehicles

Publications (2)

Publication Number Publication Date
JPH07186711A true JPH07186711A (en) 1995-07-25
JP3312161B2 JP3312161B2 (en) 2002-08-05

Family

ID=18395033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34814293A Expired - Fee Related JP3312161B2 (en) 1993-08-06 1993-12-24 Hydrogen fueled vehicles

Country Status (1)

Country Link
JP (1) JP3312161B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001018635A (en) * 1999-06-02 2001-01-23 Valeo Klimasyst Gmbh Independent type air conditioner for automobile
JP2005044551A (en) * 2003-07-24 2005-02-17 Toyota Motor Corp Cooling system and vehicle equipped with cooling system
WO2006054642A1 (en) * 2004-11-18 2006-05-26 Kabushiki Kaisha Toyota Jidoshokki Hydrogen tank cooling device and cooling method in hydrogen fuel automobile, and hydrogen fuel automobile
KR100644263B1 (en) * 2000-11-16 2006-11-10 한라공조주식회사 Air conditioning unit for electric cars with hydrogen cells
KR100747304B1 (en) * 2005-10-07 2007-08-07 현대자동차주식회사 Air-conditioning apparatus for an hybrid vihicle
JP2012017922A (en) * 2010-07-08 2012-01-26 Denso Corp Fuel supply system
WO2014160458A1 (en) * 2013-03-13 2014-10-02 Bergstrom, Inc. Air conditioning system utilizing thermal capacity from expansion of compressed fluid
US9487063B2 (en) 2002-04-29 2016-11-08 Bergstrom, Inc. Vehicle air conditioning and heating system providing engine on and engine off operation
US9694651B2 (en) 2002-04-29 2017-07-04 Bergstrom, Inc. Vehicle air conditioning and heating system providing engine on and off operation
US9783024B2 (en) 2015-03-09 2017-10-10 Bergstrom Inc. System and method for remotely managing climate control systems of a fleet of vehicles
US9796239B2 (en) 2013-03-13 2017-10-24 Bergstrom Inc. Air conditioning system utilizing heat recovery ventilation for fresh air supply and climate control
US9874384B2 (en) 2016-01-13 2018-01-23 Bergstrom, Inc. Refrigeration system with superheating, sub-cooling and refrigerant charge level control
US10006684B2 (en) 2015-12-10 2018-06-26 Bergstrom, Inc. Air conditioning system for use in vehicle
US10081226B2 (en) 2016-08-22 2018-09-25 Bergstrom Inc. Parallel compressors climate system
US10245916B2 (en) 2013-11-04 2019-04-02 Bergstrom, Inc. Low profile air conditioning system
US10369863B2 (en) 2016-09-30 2019-08-06 Bergstrom, Inc. Refrigerant liquid-gas separator with electronics cooling
US10562372B2 (en) 2016-09-02 2020-02-18 Bergstrom, Inc. Systems and methods for starting-up a vehicular air-conditioning system
US10589598B2 (en) 2016-03-09 2020-03-17 Bergstrom, Inc. Integrated condenser and compressor system
US10675948B2 (en) 2016-09-29 2020-06-09 Bergstrom, Inc. Systems and methods for controlling a vehicle HVAC system
US10724772B2 (en) 2016-09-30 2020-07-28 Bergstrom, Inc. Refrigerant liquid-gas separator having an integrated check valve
EP3772126A1 (en) * 2019-08-02 2021-02-03 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH System and method for thermal management of high temperature systems
US11420496B2 (en) 2018-04-02 2022-08-23 Bergstrom, Inc. Integrated vehicular system for conditioning air and heating water
US11448441B2 (en) 2017-07-27 2022-09-20 Bergstrom, Inc. Refrigerant system for cooling electronics

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001018635A (en) * 1999-06-02 2001-01-23 Valeo Klimasyst Gmbh Independent type air conditioner for automobile
KR100644263B1 (en) * 2000-11-16 2006-11-10 한라공조주식회사 Air conditioning unit for electric cars with hydrogen cells
US9487063B2 (en) 2002-04-29 2016-11-08 Bergstrom, Inc. Vehicle air conditioning and heating system providing engine on and engine off operation
US9694651B2 (en) 2002-04-29 2017-07-04 Bergstrom, Inc. Vehicle air conditioning and heating system providing engine on and off operation
JP4590833B2 (en) * 2003-07-24 2010-12-01 トヨタ自動車株式会社 Mobile body with cooling system
JP2005044551A (en) * 2003-07-24 2005-02-17 Toyota Motor Corp Cooling system and vehicle equipped with cooling system
JP4542414B2 (en) * 2004-11-18 2010-09-15 株式会社豊田自動織機 Hydrogen tank cooling system for hydrogen fuel vehicle
JP2006142924A (en) * 2004-11-18 2006-06-08 Toyota Industries Corp Hydrogen tank cooling device of hydrogen fuel automobile
US7921662B2 (en) 2004-11-18 2011-04-12 Kabushiki Kaisha Toyota Jidoshokki Hydrogen tank cooling device and cooling method in hydrogen fuel automobile, and hydrogen fuel automobile
WO2006054642A1 (en) * 2004-11-18 2006-05-26 Kabushiki Kaisha Toyota Jidoshokki Hydrogen tank cooling device and cooling method in hydrogen fuel automobile, and hydrogen fuel automobile
KR100747304B1 (en) * 2005-10-07 2007-08-07 현대자동차주식회사 Air-conditioning apparatus for an hybrid vihicle
JP2012017922A (en) * 2010-07-08 2012-01-26 Denso Corp Fuel supply system
WO2014160458A1 (en) * 2013-03-13 2014-10-02 Bergstrom, Inc. Air conditioning system utilizing thermal capacity from expansion of compressed fluid
CN105531130A (en) * 2013-03-13 2016-04-27 博格思众公司 Air conditioning system utilizing thermal capacity from expansion of compressed fluid
US10414243B2 (en) 2013-03-13 2019-09-17 Bergstrom, Inc. Vehicular ventilation module for use with a vehicular HVAC system
US9796239B2 (en) 2013-03-13 2017-10-24 Bergstrom Inc. Air conditioning system utilizing heat recovery ventilation for fresh air supply and climate control
US9840130B2 (en) 2013-03-13 2017-12-12 Bergstrom Inc. Air conditioning system utilizing thermal capacity from expansion of compressed fluid
US10245916B2 (en) 2013-11-04 2019-04-02 Bergstrom, Inc. Low profile air conditioning system
US11780292B2 (en) 2015-03-09 2023-10-10 Bergstrom, Inc. Graphical user interfaces for remotely managing climate control systems of a fleet of vehicles
US10967709B2 (en) 2015-03-09 2021-04-06 Bergstrom, Inc. Graphical user interfaces for remotely managing climate control systems of a fleet of vehicles
US9783024B2 (en) 2015-03-09 2017-10-10 Bergstrom Inc. System and method for remotely managing climate control systems of a fleet of vehicles
US10427496B2 (en) 2015-03-09 2019-10-01 Bergstrom, Inc. System and method for remotely managing climate control systems of a fleet of vehicles
US10006684B2 (en) 2015-12-10 2018-06-26 Bergstrom, Inc. Air conditioning system for use in vehicle
US9874384B2 (en) 2016-01-13 2018-01-23 Bergstrom, Inc. Refrigeration system with superheating, sub-cooling and refrigerant charge level control
US10527332B2 (en) 2016-01-13 2020-01-07 Bergstrom, Inc. Refrigeration system with superheating, sub-cooling and refrigerant charge level control
US10589598B2 (en) 2016-03-09 2020-03-17 Bergstrom, Inc. Integrated condenser and compressor system
US10703173B2 (en) 2016-08-22 2020-07-07 Bergstrom, Inc. Multi-compressor climate system
US10081226B2 (en) 2016-08-22 2018-09-25 Bergstrom Inc. Parallel compressors climate system
US11479086B2 (en) 2016-08-22 2022-10-25 Bergstrom, Inc. Multi-compressor climate system
US10562372B2 (en) 2016-09-02 2020-02-18 Bergstrom, Inc. Systems and methods for starting-up a vehicular air-conditioning system
US10675948B2 (en) 2016-09-29 2020-06-09 Bergstrom, Inc. Systems and methods for controlling a vehicle HVAC system
US11241939B2 (en) 2016-09-29 2022-02-08 Bergstrom, Inc. Systems and methods for controlling a vehicle HVAC system
US11712946B2 (en) 2016-09-29 2023-08-01 Bergstrom, Inc. Systems and methods for controlling a vehicle HVAC system
US10724772B2 (en) 2016-09-30 2020-07-28 Bergstrom, Inc. Refrigerant liquid-gas separator having an integrated check valve
US10369863B2 (en) 2016-09-30 2019-08-06 Bergstrom, Inc. Refrigerant liquid-gas separator with electronics cooling
US11512883B2 (en) 2016-09-30 2022-11-29 Bergstrom, Inc. Refrigerant liquid-gas separator
US11448441B2 (en) 2017-07-27 2022-09-20 Bergstrom, Inc. Refrigerant system for cooling electronics
US11919364B2 (en) 2018-04-02 2024-03-05 Bergstrom, Inc. Integrated vehicular system for conditioning air and heating water
US11420496B2 (en) 2018-04-02 2022-08-23 Bergstrom, Inc. Integrated vehicular system for conditioning air and heating water
EP3772126A1 (en) * 2019-08-02 2021-02-03 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH System and method for thermal management of high temperature systems
US11289717B2 (en) 2019-08-02 2022-03-29 Helmholtz-Zentrum Hereon Gmbh System and method for heat management of high-temperature systems

Also Published As

Publication number Publication date
JP3312161B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
JP3312161B2 (en) Hydrogen fueled vehicles
CN116001513A (en) Thermal management system and electric automobile
JP4590833B2 (en) Mobile body with cooling system
JP4542414B2 (en) Hydrogen tank cooling system for hydrogen fuel vehicle
EP2694303B1 (en) Cooling apparatus
CN101522447A (en) Air conditioning control system
CN111276768A (en) Temperature control device and control method thereof, and electric automobile
JP2021195115A (en) Vehicular heat pump system
JP2021195116A (en) Vehicular heat pump system
CN110293817B (en) Electric vehicle heat pump air conditioning system and defrosting method thereof
CN113237249B (en) Heat pump system, energy-saving control method of heat pump system and vehicle
JPH0799057A (en) Combining system of fuel cell and cooling equipment
JP2011012773A (en) Gas supply device
KR20220040794A (en) Heat pump system for vehicle
CN111890866A (en) Integrated heat pump management system for pure electric vehicle and pure electric vehicle
CN206186730U (en) Two energy storage air conditioner of electric automobile energy memory of heat -pump type
KR20220082430A (en) Heat pump system for vehicle
CN111169327B (en) Electric automobile whole-vehicle integrated thermal management system based on phase-change material
KR20240005340A (en) Heat pump system for vehicle
CN115503560A (en) Vehicle-mounted liquid hydrogen fuel cell cold energy utilization system
JPH05260612A (en) Electric road vehicle
CN209381734U (en) A kind of heat management system for electric car
CN111546853A (en) Automobile air conditioning system with energy storage type vehicle-mounted life electrical appliance function
CN212499788U (en) Integrated heat pump management system for pure electric vehicle and pure electric vehicle
CN114407950B (en) Hydrogen internal combustion power vehicle and method based on high-pressure hydrogen expansion work and waste heat utilization

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees