JPH0799057A - Combining system of fuel cell and cooling equipment - Google Patents

Combining system of fuel cell and cooling equipment

Info

Publication number
JPH0799057A
JPH0799057A JP5265836A JP26583693A JPH0799057A JP H0799057 A JPH0799057 A JP H0799057A JP 5265836 A JP5265836 A JP 5265836A JP 26583693 A JP26583693 A JP 26583693A JP H0799057 A JPH0799057 A JP H0799057A
Authority
JP
Japan
Prior art keywords
fuel cell
heat
hydrogen
output
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5265836A
Other languages
Japanese (ja)
Other versions
JP3512448B2 (en
Inventor
Hiroyuki Mitsui
宏之 三井
Hiroshi Aoki
博史 青木
Hideto Kubo
秀人 久保
Takashi Fuji
敬司 藤
Nobuo Fujita
信雄 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc, Toyoda Automatic Loom Works Ltd filed Critical Toyota Motor Corp
Priority to JP26583693A priority Critical patent/JP3512448B2/en
Priority to US08/286,191 priority patent/US5678410A/en
Publication of JPH0799057A publication Critical patent/JPH0799057A/en
Application granted granted Critical
Publication of JP3512448B2 publication Critical patent/JP3512448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To obtain a combining system of a fuel cell and cooling equipment which has a good utilization factor of energy, a good response to the load variation of the fuel cell, does not use a fluorocarbon, and can be used for an electric vehicle and the like. CONSTITUTION:This combining system 1 is provided with a fuel cell 11 using hydrogen as the fuel, a heat exchanger 21 of cooling equipment 20, a tank 10 having a built-in hydrogen storage alloy (MH) to feed the hydrogen as well as to carry out the heat exchange with a heat medium, a hydrogen compressor 12, and a secondary battery 31. A controller charges and discharges the secondary battery 31 corresponding to the under-and-over output of the fuel cell 11. It is favorable to provide a heat storage tank 25 to the cooling equipment 20. Furthermore, thermoelectric converting means 351 to 355 to absorb an excessive electric power are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,燃料電池へ燃料の水素
を供給すると共に冷房装置を同時に駆動する省エネルギ
ーのコンバインシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy-saving combine system for supplying hydrogen as fuel to a fuel cell and simultaneously driving a cooling device.

【0002】[0002]

【従来技術】水素を燃料とする燃料電池を用いた電気自
動車において,水素の供給源として,水素吸蔵合金を用
いる方法が従来より提案されている。これらは,水素吸
蔵合金を加熱することにより水素ガスを放出させるもの
である。水素吸蔵合金の加熱は,燃料電池の排熱などを
利用する。
2. Description of the Related Art In an electric vehicle using a fuel cell using hydrogen as a fuel, a method of using a hydrogen storage alloy as a hydrogen supply source has been conventionally proposed. These are for releasing hydrogen gas by heating the hydrogen storage alloy. To heat the hydrogen storage alloy, exhaust heat from the fuel cell is used.

【0003】そして,燃料電池の負荷変動に対しては,
水素吸蔵合金を加熱するヒータを設け,ヒータの電流を
増減させるもの(特開昭51−4714号公報),負荷
変動対応用として補強用の水素吸蔵合金を併設するもの
(特開昭51−4715号公報),別個に補強用の水素
ガスタンクを併設するもの(特開昭51−4716号公
報)などが提案されている。一方,車室内の冷房装置
は,内燃機関を搭載した自動車と同様に,熱媒体にフロ
ンを用いた蒸気圧縮式ヒートポンプを用いるものが一般
的である。
Then, with respect to the load fluctuation of the fuel cell,
A heater for heating a hydrogen storage alloy and increasing or decreasing the current of the heater (Japanese Patent Laid-Open No. 51-4714), and one for additionally providing a hydrogen storage alloy for reinforcement to cope with load fluctuation (Japanese Patent Laid-Open No. 51-4715). Japanese Patent Laid-Open Publication No. 51-4716), and one additionally provided with a hydrogen gas tank for reinforcement (Japanese Patent Laid-Open No. 51-4716). On the other hand, as a cooling device in a vehicle compartment, a vapor compression heat pump using chlorofluorocarbon as a heat medium is generally used, as in a vehicle equipped with an internal combustion engine.

【0004】[0004]

【解決しようとする課題】しかしながら,車両駆動用の
燃料電池と冷房装置とを別個に設ける従来の電気自動車
には次のような問題がある。第1は,冷房装置に大量の
エネルギーが消費され自動車の走行距離が短くなるとい
う問題である。冷房装置と燃料電池(含水素供給源)と
はそれぞれが別個にエネルギーを消費し,互いにエネル
ギーを融通し合う補完関係がない。
However, the conventional electric vehicle in which the fuel cell for driving the vehicle and the cooling device are separately provided has the following problems. The first is a problem that a large amount of energy is consumed in the cooling device and the traveling distance of the automobile is shortened. The cooling device and the fuel cell (hydrogen-containing supply source) consume energy separately, and there is no complementary relationship in which energy is exchanged with each other.

【0005】従って,トータルのエネルギー効率が悪
い。例えば,燃料電池の発電に伴う発熱などで水素吸蔵
合金を加熱するため,水素吸蔵合金の水素放出に伴う吸
熱反応を冷房に有効利用できず,別途冷房装置を駆動し
なければならず互いにエネルギーを利用補完し合うこと
がない。その結果,冷房装置に消費される動力が大き
く,電気自動車の走行距離が短くなる。
Therefore, the total energy efficiency is poor. For example, since the hydrogen storage alloy is heated by the heat generated by the power generation of the fuel cell, the endothermic reaction due to the hydrogen release of the hydrogen storage alloy cannot be effectively used for cooling, and the cooling device must be driven separately, and the energy is mutually exchanged. There is no complementary use. As a result, a large amount of power is consumed by the cooling device and the mileage of the electric vehicle is shortened.

【0006】第2は,冷房装置と燃料電池とは独立した
別個のシステムであるから制御装置などの各部材は,そ
れぞれが別個に設けられ構成要素の点数が多いという問
題がある。第3は,水素吸蔵合金を加熱して水素放出を
行なう従来の方法は,負荷変動に対する燃料電池の応答
速度や制御精度が良好ではないという問題がある。
Secondly, since the cooling system and the fuel cell are independent systems, each member such as the control device is provided separately and has a large number of constituent elements. Thirdly, the conventional method of heating the hydrogen storage alloy to release hydrogen has a problem that the response speed of the fuel cell to the load change and the control accuracy are not good.

【0007】即ち,燃料電池の排熱やヒーターなど用い
て水素吸蔵合金の温度を上昇させ,それによって放出水
素量を増加させる方法は,即応性(応答速度)に欠ける
と共に,水素吸蔵合金から放出される供給水素圧力や水
素流量の制御精度が悪い。従って,負荷変動に十分対応
できないことで,二次電池からの放電量を多くする必要
があり,二次電池容量も増大する。第4は,冷房装置の
熱媒体には,フロンが用いられているからオゾン層破壊
などの環境問題上好ましくないという問題である。
That is, a method of increasing the temperature of the hydrogen storage alloy by using exhaust heat of a fuel cell or a heater to increase the amount of released hydrogen is not responsive (response speed) and is released from the hydrogen storage alloy. The control accuracy of the supplied hydrogen pressure and hydrogen flow rate is poor. Therefore, it is necessary to increase the amount of discharge from the secondary battery because the load fluctuation cannot be sufficiently dealt with, and the secondary battery capacity also increases. Fourth, since chlorofluorocarbon is used as the heat medium of the cooling device, it is not preferable in terms of environmental problems such as ozone layer depletion.

【0008】本発明は,かかる従来の問題点に鑑みて,
エネルギー利用効率が良好であると共に,燃料電池の負
荷変動に対する応答性が良好であり,かつフロンなどの
環境破壊物質を用いる必要のない燃料電池と冷房装置の
コンバインシステムを提供しようとするものである。
In view of the above conventional problems, the present invention is
It is intended to provide a combine system of a fuel cell and an air conditioner, which has good energy utilization efficiency, good responsiveness to load fluctuation of the fuel cell, and does not need to use environmentally destructive substances such as CFCs. .

【0009】[0009]

【課題の解決手段】本発明は,電動式のアクチュエータ
に電力を供給する燃料電池と,熱媒体を用いた冷房装置
の熱交換器と,上記燃料電池に対して燃料である水素を
供給すると共に上記冷房装置の熱媒体管路を内部に導入
し熱媒体と熱交換を行なう水素吸蔵合金内蔵タンクと,
燃料電池に上記水素を供給する水素供給管路に介設し水
素を圧送する水素圧送機と,上記燃料電池の出力端子間
に並列接続された二次電池と,上記水素圧送機と二次電
池とを操作してアクチュエータへの供給電力と熱交換器
の冷房出力とを同時に制御するコントローラとを有す
る,燃料電池と冷房装置のコンバインシステムであっ
て,上記コントローラは,燃料電池の出力が過剰な場合
には,上記二次電池を充電し,燃料電池の出力が不足す
る場合には二次電池を放電してアクチュエータの駆動電
力と熱交換器の冷房出力とを同時に制御することを特徴
とする燃料電池と冷房装置のコンバインシステムにあ
る。
The present invention provides a fuel cell for supplying electric power to an electric actuator, a heat exchanger of a cooling device using a heat medium, and hydrogen as a fuel for the fuel cell. A hydrogen storage alloy built-in tank that introduces the heat medium pipe of the cooling device into the inside to exchange heat with the heat medium;
A hydrogen pump for pressure-feeding hydrogen, which is provided in the hydrogen supply line for supplying the hydrogen to the fuel cell, a secondary battery connected in parallel between the output terminals of the fuel cell, the hydrogen pump and the secondary battery Is a combine system of a fuel cell and a cooling device, which has a controller for simultaneously controlling the electric power supplied to the actuator and the cooling output of the heat exchanger by operating and, and the controller has an excessive output of the fuel cell. In this case, the secondary battery is charged, and when the output of the fuel cell is insufficient, the secondary battery is discharged to simultaneously control the drive power of the actuator and the cooling output of the heat exchanger. It is in a combine system of a fuel cell and an air conditioner.

【0010】本発明のコンバインシステムは,燃料電池
と,水素吸蔵合金内蔵タンク(以下「MH内蔵タンク」
という)と,水素圧送機と,燃料電池と並列接続された
二次電池と,熱交換器とを有している。上記燃料電池
は,水素を燃料とするものである。上記熱交換器は,例
えば,ブライン(不凍液)や水などの熱媒体を用いて被
冷却空気との間に熱交換を行ない空気を冷却するもので
ある。
The combine system of the present invention includes a fuel cell and a hydrogen storage alloy built-in tank (hereinafter referred to as "MH built-in tank").
), A hydrogen pump, a secondary battery connected in parallel with the fuel cell, and a heat exchanger. The fuel cell uses hydrogen as fuel. The heat exchanger cools air by exchanging heat with the air to be cooled by using a heat medium such as brine (antifreeze) or water.

【0011】そして上記熱媒体はMH内蔵タンクと熱交
換器との間を循環する。そして,上記MH内蔵タンク
は,水素吸蔵合金を内蔵すると共に熱媒体管路を内部に
導入し上記熱媒体との間に熱交換を行なう。また,上記
水素圧送機は,MH内蔵タンクの水素を燃料電池に対し
て圧送するものであり,送出圧力の高いコンプレッサ
や,送出圧力が比較的低い送風機や,ポンプなどがあ
る。
The heat medium circulates between the MH built-in tank and the heat exchanger. The MH built-in tank contains a hydrogen storage alloy therein and introduces a heat medium pipe therein to perform heat exchange with the heat medium. In addition, the above-mentioned hydrogen pump is for pumping hydrogen in the MH built-in tank to the fuel cell, and includes a compressor having a high delivery pressure, a blower having a relatively low delivery pressure, and a pump.

【0012】一方,燃料電池の出力端子間には,アクチ
ュエータと並列に二次電池が接続されている。上記二次
電池は,コントローラに制御され,放電することにより
アクチュエータに電力を供給することができると共に,
燃料電池又はアクチュエータの放出電力により充電する
ことのできる電池である。
On the other hand, a secondary battery is connected in parallel with the actuator between the output terminals of the fuel cell. The secondary battery can supply power to the actuator by being controlled by the controller and discharging.
It is a battery that can be charged by the electric power emitted from a fuel cell or an actuator.

【0013】コントローラは,水素圧送機と二次電池と
を適宜操作することができる操作手段を有すると共に,
アクチュエータへの供給電力と熱交換器の冷房出力とを
制御するための演算手段を有する制御装置である。そし
て,コントローラは燃料電池の出力が過剰な場合には,
二次電池を充電し,燃料電池の出力が不足する場合には
二次電池を放電する。
The controller has operating means capable of appropriately operating the hydrogen pump and the secondary battery, and
It is a control device having arithmetic means for controlling the electric power supplied to the actuator and the cooling output of the heat exchanger. And if the output of the fuel cell is excessive, the controller
The secondary battery is charged, and when the fuel cell output is insufficient, the secondary battery is discharged.

【0014】なお,上記MH内蔵タンクは,複数個に分
割構成してもよい。MH内蔵タンクを複数個設ければ,
貯蔵水素量をより正確に検出することができると共に熱
容量を小さくできることから冷房装置の立上げをより高
速に行なうことができる。
The MH built-in tank may be divided into a plurality of parts. By providing multiple tanks with built-in MH,
Since the stored hydrogen amount can be detected more accurately and the heat capacity can be reduced, the cooling device can be started up at a higher speed.

【0015】また,上記コンバインシステムは,更にM
H内蔵タンクと熱交換器との間の熱媒体管路に蓄熱槽を
併設し,MH内蔵タンクの冷熱出力が過剰な場合には,
上記蓄熱槽に冷熱を貯え,一方MH内蔵タンクの冷熱出
力が不足する場合には上記蓄熱槽の冷熱を放出するよう
熱交換器を作動させることが好ましい。
Further, the combine system is further provided with M
If a heat storage tank is attached to the heat medium pipe between the H built-in tank and the heat exchanger, and if the cold heat output of the MH built-in tank is excessive,
It is preferable to store cold heat in the heat storage tank, while operating the heat exchanger so as to release the cold heat of the heat storage tank when the cold heat output of the MH built-in tank is insufficient.

【0016】このようにすることにより,MH内蔵タン
クの冷熱出力を平準化することができる。そして安定し
た冷房装置の出力を得ることができる。また,アクチュ
エータに対する供給電力と冷房装置の出力とを制御する
ための操作要素に蓄熱槽が加わることにより制御が容易
となり調整範囲の拡大を図ることができる。
By doing so, the cold heat output of the MH built-in tank can be leveled. And a stable output of the cooling device can be obtained. Further, since the heat storage tank is added to the operation element for controlling the power supplied to the actuator and the output of the cooling device, the control becomes easy and the adjustment range can be expanded.

【0017】また,上記コンバインシステムは,燃料電
池の出力端子間に熱電変換手段を並列接続し,熱電変換
手段に過剰な電力を供給して熱出力を発生させ,発生し
た熱出力によって周辺部材の加熱又は冷却制御を行なう
ことが好ましい。二次電池の容量が一杯になった場合に
は,過剰電力を二次電池に吸収することができない。し
かし熱電変換手段を設ければ,この場合にも過剰電力を
吸収し,その有効利用を図ることができるからである。
Further, in the above combine system, the thermoelectric conversion means is connected in parallel between the output terminals of the fuel cell, excessive power is supplied to the thermoelectric conversion means to generate a heat output, and the generated heat output causes a peripheral member to operate. It is preferable to control heating or cooling. When the capacity of the secondary battery is full, excess power cannot be absorbed by the secondary battery. However, if thermoelectric conversion means is provided, excess power can be absorbed and effective use can be achieved in this case as well.

【0018】即ち,過剰電力を用いて周辺部材に必要な
熱制御を行い,エネルギーの有効利用を図ることができ
る。また,冷房出力を増大させると,燃料電池に過剰電
力が生じるが,過剰電力を二次電池と熱電変換手段の両
方によって吸収可能となる。それ故,冷房の制御パワー
を向上させ,冷房の応答スピードを向上させることがで
きる。
In other words, it is possible to control the heat required for the peripheral members by using the excess power and to effectively use the energy. Further, when the cooling output is increased, excess power is generated in the fuel cell, but the excess power can be absorbed by both the secondary battery and the thermoelectric conversion means. Therefore, the cooling control power can be improved and the cooling response speed can be improved.

【0019】熱電変換手段の熱出力による周辺部材の熱
制御には,例えば,アクチュエータの冷却,蓄熱槽の冷
却,冷房装置の補完出力,燃料電池の冷却などの冷却動
作,又は暖房装置の補完出力などの加熱動作の両方があ
る。そして,上記熱電変換手段には,例えば,電流の方
向により吸熱及び発熱を行なうペルチェ素子,電流の方
向に無関係に発熱する発熱素子などがある。
To control the heat of the peripheral members by the heat output of the thermoelectric conversion means, for example, cooling of the actuator, cooling of the heat storage tank, complementary output of the cooling device, cooling operation such as cooling of the fuel cell, or complementary output of the heating device is performed. There are both heating operations such as. The thermoelectric conversion means includes, for example, a Peltier element that absorbs heat and generates heat depending on the direction of current, and a heating element that generates heat regardless of the direction of current.

【0020】なお,熱電変換手段に供給する余剰電力に
は,燃料電池の過剰出力の他にアクチュエータからの放
出電力(例えばモータからの回生電力)などがある。上
記コンバインシステムを用いる具体例には,例えば電気
自動車があり,この場合アクチュエータは走行駆動用の
モータである。
The surplus electric power supplied to the thermoelectric conversion means includes electric power emitted from the actuator (for example, regenerative electric power from the motor) in addition to the excessive output of the fuel cell. A specific example of using the combine system is, for example, an electric vehicle, in which case the actuator is a motor for driving the vehicle.

【0021】自動車には,冷房装置が必須部材であるか
ら電気自動車に本発明のコンバインシステムは好適であ
る。そして,エネルギー効率を向上することによる走行
距離の増大,及び燃料電池の制御特性の向上による走行
特性の改善が可能である。また,電気自動車の場合に
は,坂道降下時や減速時においてモータからの回生電力
が発生する。
The combine system of the present invention is suitable for an electric vehicle because an air conditioner is an essential member for an automobile. Further, it is possible to increase the traveling distance by improving the energy efficiency and improve the traveling characteristics by improving the control characteristics of the fuel cell. In the case of an electric vehicle, regenerative power from the motor is generated when descending a slope or decelerating.

【0022】そして,この回生電力を有効利用すること
は,省エネルギーとなるばかりでなく走行制御特性の改
善に極めて有効である。それ故,上記回生電力によって
コンバインシステムの二次電池を充電し又は熱電変換手
段に通電することは,省エネルギーと制御性の向上のた
めに好適である。
The effective use of this regenerated electric power is extremely effective not only in saving energy but also in improving the traveling control characteristics. Therefore, charging the secondary battery of the combine system or energizing the thermoelectric conversion means with the regenerated electric power is suitable for energy saving and improvement of controllability.

【0023】なお,前記水素圧送機と並列にバイパス管
路を挿入し,このバイバス管路の流量を調整する制御弁
を設けることが好ましい。上記バイパス管路と制御弁と
を用いることにより,水素吸蔵合金の平衡圧力が燃料電
池の作動圧力より高い場合においては,その圧力差によ
り供給可能となるとともに,燃料電池に対する少流量の
水素供給が容易となるからである。これによって,上記
圧力差により水素供給を行っている間は,水素圧送機を
停止あるいは無負荷運転状態にできるから,水素圧送機
の稼働時間が短くなり,省エネルギーのために好適であ
ると共に,水素圧送機を用いた水素の供給制御の範囲が
拡大する。
It is preferable to insert a bypass line in parallel with the hydrogen pump and to provide a control valve for adjusting the flow rate of the bypass line. By using the bypass line and the control valve, when the equilibrium pressure of the hydrogen storage alloy is higher than the operating pressure of the fuel cell, it becomes possible to supply due to the pressure difference and a small flow rate of hydrogen can be supplied to the fuel cell. Because it will be easier. As a result, the hydrogen pump can be stopped or put into a no-load operation state while hydrogen is being supplied due to the above pressure difference, which shortens the operating time of the hydrogen pump and is suitable for energy saving. The range of hydrogen supply control using a pump is expanded.

【0024】[0024]

【作用及び効果】本発明のコンバインシステムにおいて
は,水素吸蔵合金内蔵タンク(MH内蔵タンク)の水素
は,コントローラにより水素圧送機によって燃料電池に
供給される。そして,上記MH内蔵タンクの内部には,
冷房装置の熱媒体管路が引き込まれており,水素供給に
伴う水素吸蔵合金の水素放出による吸熱作用により熱媒
体を直接冷却する。
In the combine system of the present invention, the hydrogen in the hydrogen storage alloy built-in tank (MH built-in tank) is supplied to the fuel cell by the hydrogen pump by the controller. And inside the tank with built-in MH,
The heat medium pipe of the air conditioner is drawn in, and the heat medium is directly cooled by the endothermic action of hydrogen release of the hydrogen storage alloy accompanying hydrogen supply.

【0025】即ち,水素吸蔵合金の放出水素量を調整す
ることにより,直接的に冷熱を発生させ冷房装置を駆動
する。従って,従来の冷房装置のように熱媒体を圧縮・
膨張させるヒートポンプは不要でありそのための設備と
動力は不要となる。
That is, by adjusting the amount of hydrogen released from the hydrogen storage alloy, cold heat is directly generated to drive the cooling device. Therefore, the heat medium is compressed and compressed like the conventional air conditioner.
There is no need for a heat pump to expand, and no equipment or power is required for that.

【0026】また,水素吸蔵合金から水素を放出させる
ために従来装置ではその目的だけ設けていた水素吸蔵合
金の加熱装置が不要となる。上記のように,冷房装置の
ヒートポンプと水素吸蔵合金の加熱装置が共に不要とな
るから,設備が簡素化され,またエネルギーの利用効率
が大幅に上昇する。
Further, in order to release hydrogen from the hydrogen storage alloy, the heating device for the hydrogen storage alloy, which is provided only for the purpose in the conventional apparatus, is unnecessary. As described above, since the heat pump of the cooling device and the heating device of the hydrogen storage alloy are not required, the equipment is simplified and the energy utilization efficiency is significantly increased.

【0027】従って,電気自動車に本発明のコンバイン
システムを用いれば設備が簡略化すると共に走行距離が
大幅に上昇する。一方,アクチュエータに供給される電
力は,コントローラにより燃料電池の出力と二次電池の
充放電の両供給源によって調整されるから,冷房装置の
出力とは独立にアクチュエータの供給電力を調整するこ
とができる。
Therefore, if the combine system of the present invention is used in an electric vehicle, the equipment is simplified and the traveling distance is greatly increased. On the other hand, the power supplied to the actuator is adjusted by the controller for both the output of the fuel cell and the supply / discharge of the secondary battery, so that the power supplied to the actuator can be adjusted independently of the output of the cooling device. it can.

【0028】即ち,コントローラは燃料電池の出力が不
足する場合には二次電池を放電し,燃料電池の出力が過
剰の場合には二次電池を充電してアクチュエータへの供
給電力を冷房出力とは独立に調整することができる。従
って,冷房装置出力とアクチュエータの駆動電力とは独
立してそれぞれを良好な状態に制御することができる。
That is, the controller discharges the secondary battery when the output of the fuel cell is insufficient, and charges the secondary battery when the output of the fuel cell is excessive to supply the power supplied to the actuator to the cooling output. Can be adjusted independently. Therefore, it is possible to control the output of the cooling device and the drive power of the actuator independently of each other.

【0029】また,燃料電池に対する水素の供給は,水
素圧送機によって水素を直接圧送し,急速に供給水素量
を変えることができるから,燃料電池の出力を高速に精
度良く変えることができる。即ち,従来装置の水素吸蔵
合金を加熱しその結果として放出水素量を変える方法
は,熱行程を介するから応答性と制御精度が良好でない
が,本発明はそのようなことがない。
Further, in supplying hydrogen to the fuel cell, hydrogen can be directly pressure-fed by a hydrogen pump to rapidly change the amount of hydrogen supplied, so that the output of the fuel cell can be changed at high speed and with high accuracy. That is, the method of heating the hydrogen storage alloy of the conventional apparatus and changing the amount of released hydrogen as a result thereof does not have good responsiveness and control accuracy due to the heat stroke, but the present invention does not have such a case.

【0030】そして,冷房装置による熱制御は,応答の
遅いゆるやかな制御であるから冷熱出力の平均値が重要
であり,放出水素量(燃料電池出力)の短時間の変動
は,その制御性に殆ど影響しない。従って,燃料電池の
出力を急変させて高速にアクチュエータを制御しても冷
房装置に悪影響を与えることは少なく,冷房装置とアク
チュエータの両装置を共に良好に制御することができ
る。
Since the heat control by the cooling device is a slow control with slow response, the average value of the cold heat output is important, and the short-term fluctuation of the amount of released hydrogen (fuel cell output) affects the controllability. It has almost no effect. Therefore, even if the output of the fuel cell is suddenly changed to control the actuator at a high speed, the cooling device is not adversely affected, and both the cooling device and the actuator can be controlled well.

【0031】なお,冷房装置に更に蓄熱槽を設けて冷熱
出力の平準化を図り,安定した冷房装置出力を得ること
ができることは前記の通りである。そして,冷房装置の
熱媒体は,圧縮・膨張などの行程が不要であり,直接的
に熱交換可能な流体であればよい。
As described above, a heat storage tank is further provided in the cooling device to equalize the cooling heat output and a stable cooling device output can be obtained. The heat medium of the cooling device need not be a process such as compression / expansion and may be a fluid that can directly exchange heat.

【0032】従って,フロンを用いず,ブライン(不凍
液)や水などを用いることによって良好な冷房特性を得
ることができる。それ故,エコロジーに悪影響を与える
ことのない冷房装置を提供することができる。
Therefore, good cooling characteristics can be obtained by using brine (antifreeze) or water without using CFCs. Therefore, it is possible to provide a cooling device that does not adversely affect the ecology.

【0033】上記のように,本発明によればエネルギー
効率が良好であると共に,燃料電池の負荷変動に対する
応答性が良好であり,かつフロンなどの環境破壊物質を
用いる必要のない,燃料電池と冷房装置のコンバインシ
ステムを提供することができる。
As described above, according to the present invention, a fuel cell which has good energy efficiency, good responsiveness to load fluctuations of the fuel cell, and which does not require the use of environmentally destructive substances such as CFCs is used. A combine system of a cooling device can be provided.

【0034】[0034]

【実施例】【Example】

実施例1 本発明の実施例にかかる電気自動車の燃料電池と冷房装
置のコンバインシステムにつき,図1〜図4を用いて説
明する。本例は,図1に示すように,電動式のアクチュ
エータ30としての走行用モータ301に電力を供給す
る燃料電池11と,熱媒体を用いた冷房装置20の熱交
換器21と,燃料電池11に対して燃料である水素を供
給すると共に冷房装置20の熱媒体管路22を内部に導
入し熱媒体と熱交換を行なう水素吸蔵合金(MH)内蔵
タンク10と,燃料電池11に水素を供給する水素供給
管路13に介設し水素を圧送する水素圧送機12と,上
記燃料電池11の出力端子間に並列接続された二次電池
31と,水素圧送機12と二次電池31を操作してモー
タ301への供給電力と熱交換器21の冷房出力とを同
時に制御するコントローラ40とを有する,燃料電池1
1と冷房装置20のコンバインシステム1である。
Example 1 A combine system of a fuel cell and an air conditioner for an electric vehicle according to an example of the present invention will be described with reference to FIGS. 1 to 4. In this example, as shown in FIG. 1, a fuel cell 11 for supplying electric power to a traveling motor 301 as an electric actuator 30, a heat exchanger 21 of a cooling device 20 using a heat medium, and a fuel cell 11 To the fuel cell 11 and the hydrogen storage alloy (MH) built-in tank 10 that introduces the heat medium conduit 22 of the cooling device 20 into the inside to exchange heat with the heat medium. The hydrogen pump 12 for supplying hydrogen under pressure through the hydrogen supply pipe 13, the secondary battery 31 connected in parallel between the output terminals of the fuel cell 11, and the hydrogen pump 12 and the secondary battery 31 are operated. And a controller 40 that simultaneously controls the power supplied to the motor 301 and the cooling output of the heat exchanger 21.
1 is a combine system 1 of the cooling device 20 and the cooling device 20.

【0035】上記コントローラ40は,燃料電池11の
出力が過剰な場合には,二次電池31を充電し,燃料電
池11の出力が不足する場合には二次電池31を放電し
てモータ301の駆動電力と熱交換器21の冷房出力と
を同時に制御する。
The controller 40 charges the secondary battery 31 when the output of the fuel cell 11 is excessive, and discharges the secondary battery 31 to discharge the secondary battery 31 when the output of the fuel cell 11 is insufficient. The driving power and the cooling output of the heat exchanger 21 are simultaneously controlled.

【0036】また,熱交換器21の熱媒体管路22に
は,蓄熱槽25が併設されており,上記コントローラ
は,上記MH内蔵タンク10からの冷熱出力が過剰な場
合には,上記蓄熱槽25に冷熱を蓄え,一方MH内蔵タ
ンク10からの冷熱出力が不足する場合には,上記蓄熱
槽25の冷熱を放出する。
A heat storage tank 25 is also provided in the heat medium pipe 22 of the heat exchanger 21, and the controller stores the heat storage tank when the cold heat output from the MH built-in tank 10 is excessive. When the cold heat is stored in 25 and the cold heat output from the MH built-in tank 10 is insufficient, the cold heat in the heat storage tank 25 is released.

【0037】そして,上記水素圧送機12は,コンプレ
ッサ121であり,コンプレッサ121と並列にバイパ
ス管路14が挿入されており,バイパス管路14には流
量を調節する制御弁15が設けられている。そして,上
記アクチュエータ30は,電気自動車の走行用モータ3
01である。
The hydrogen pump 12 is a compressor 121, a bypass line 14 is inserted in parallel with the compressor 121, and the bypass line 14 is provided with a control valve 15 for adjusting the flow rate. . The actuator 30 is used as a driving motor 3 for an electric vehicle.
01.

【0038】図1において符号32は,電気配線であ
り,符号401は,コントローラ40の制御線,符号4
1は,コントローラを構成するモータ制御用のDC−D
Cコンバータである。また,コントローラ40は,水素
圧送機12,制御弁15,及び蓄熱槽25と接続されて
おり,それぞれを操作することができる。また,冷房装
置20は,熱媒体を循環させるポンプ(図示略)や,熱
交換器21を介して車室内に冷風を送る送風機(図示
略)を有している。そして,冷房装置20の熱媒体はブ
ライン(不凍液)である。
In FIG. 1, reference numeral 32 is an electric wiring, reference numeral 401 is a control line of the controller 40, reference numeral 4
1 is a DC-D for controlling a motor which constitutes a controller
It is a C converter. Further, the controller 40 is connected to the hydrogen pump 12, the control valve 15, and the heat storage tank 25, and can operate each of them. The cooling device 20 also has a pump (not shown) that circulates the heat medium, and a blower (not shown) that sends cold air into the passenger compartment via the heat exchanger 21. The heat medium of the cooling device 20 is brine (antifreeze liquid).

【0039】次に,本例のコンバインシステムの運転操
作について説明する。最初に走行パターン全般にわたる
基本的な走行制御方法について述べる。まず,アクセル
の踏み込み量あるいは車速などの車両走行状態,現在の
燃料電池11の発電量,二次電池31の容量などをコン
トローラ40に入力し,車両の走行に必要な所要動力及
びその他の電気消費機器の動作に必要な電力量(以下
「補機動力」という)を算出して車両の走行に必要な電
力量を求める。
Next, the operation of the combine system of this embodiment will be described. First, a basic traveling control method for all traveling patterns will be described. First, the vehicle running state such as the accelerator depression amount or the vehicle speed, the current power generation amount of the fuel cell 11, the capacity of the secondary battery 31 and the like are input to the controller 40, and the required power and other electricity consumption required for the vehicle running are input. The amount of electric power required for the operation of the device (hereinafter referred to as "auxiliary equipment power") is calculated to obtain the amount of electric power required for traveling of the vehicle.

【0040】そして,現在の燃料電池11の発電量が必
要電力量より少ない場合は,コンプレッサ121の吐出
圧あるいは吐出量を増加させる。そして,それよりも必
要電力量が多い場合には,二次電池31より不足分を放
電する。
When the current power generation amount of the fuel cell 11 is smaller than the required power amount, the discharge pressure or the discharge amount of the compressor 121 is increased. If the required power amount is larger than that, the shortage is discharged from the secondary battery 31.

【0041】また,燃料電池11の発電が必要電力量よ
り多い場合は,コンプレッサ121の吐出圧あるいは吐
出量を減少させるか,二次電池31の容量が所定の設定
値Sより減少している場合には二次電池31に充電を行
なう。ここで二次電池を充電する場合には,二次電池3
1に対する充電電力を所定の最高値Mとして燃料電池1
1の発電量を決定する。なお,車両の停止状態において
二次電池31の容量が減少している場合には,燃料電池
11の発電を継続するか,容量の減少割合によっては燃
料電池11の運転を停止しても良い。
Further, when the power generation of the fuel cell 11 is larger than the required power amount, the discharge pressure or the discharge amount of the compressor 121 is reduced, or the capacity of the secondary battery 31 is smaller than a predetermined set value S. Then, the secondary battery 31 is charged. When charging the secondary battery here, the secondary battery 3
Fuel cell 1 with charging power for 1 being a predetermined maximum value M
Determine the power generation amount of 1. In addition, when the capacity of the secondary battery 31 is decreasing in the stopped state of the vehicle, the power generation of the fuel cell 11 may be continued or the operation of the fuel cell 11 may be stopped depending on the reduction rate of the capacity.

【0042】一方,車室内の冷房装置20の制御は水素
吸蔵合金からの水素放出に伴う吸熱反応を利用して行
う。その基本的な制御方法は,最初に車室内の空調条件
などをコントローラに入力することから始まる。そして
それが,例えば車室内の温度を一定に制御するような設
定である場合には,目標温度と車室内温度を比較して目
標値になるように車室内へ送気する風量を増減したり,
車室内の空気と熱媒体との熱交換を行なう熱交換器21
を流れる熱媒体の流量を増減させたり,必要に応じ並列
に配設された蓄熱タンク22へ熱媒体移動を制御するこ
とによって行なう。
On the other hand, the control of the cooling device 20 in the vehicle compartment is performed by utilizing the endothermic reaction associated with the release of hydrogen from the hydrogen storage alloy. The basic control method begins by inputting the air conditioning conditions in the vehicle interior to the controller. If it is set to control the temperature inside the vehicle compartment to a constant value, for example, the target temperature is compared with the temperature inside the vehicle compartment to increase or decrease the amount of air blown into the vehicle compartment to reach the target value. ,
Heat exchanger 21 for exchanging heat between the air in the passenger compartment and the heat medium
This is done by increasing or decreasing the flow rate of the heat medium flowing through the heat medium or controlling the movement of the heat medium to the heat storage tanks 22 arranged in parallel as necessary.

【0043】なお,水素吸蔵合金からの水素放出量は,
基本的には燃料電池11の発電量により決定されるか
ら,吸熱反応により得られる冷房出力は,車両の走行条
件などにより過不足が生じる場合がある。この場合,水
素吸蔵合金からの水素放出流量をコントローラ40に入
力し,目標温度を達成するのに必要な熱量(以下「冷房
負荷」という)に対する水素吸蔵合金からの水素放出量
で決定される上記吸熱量の過不足を判断する。
The amount of hydrogen released from the hydrogen storage alloy is
Since it is basically determined by the power generation amount of the fuel cell 11, the cooling output obtained by the endothermic reaction may be excessive or insufficient depending on the running conditions of the vehicle. In this case, the flow rate of hydrogen released from the hydrogen storage alloy is input to the controller 40, and the amount of hydrogen released from the hydrogen storage alloy with respect to the amount of heat required to achieve the target temperature (hereinafter referred to as "cooling load") is determined. Determine whether the heat absorption amount is excessive or insufficient.

【0044】そして吸熱量が不足する場合は前述の蓄熱
槽25から冷熱の供給を行い,過剰な場合には蓄熱槽2
5に冷熱を蓄熱する制御を付加する。さらに,冷房出力
に過不足がある場合には,燃料電池への水素供給量を増
減することで対応し,それに伴う燃料電池発電量の過不
足は,適宜二次電池の充放電量を変化させることで制御
する。
When the heat absorption amount is insufficient, cold heat is supplied from the heat storage tank 25, and when it is excessive, the heat storage tank 2 is supplied.
Control for storing cold heat is added to 5. Further, when there is an excess or deficiency in the cooling output, it is dealt with by increasing or decreasing the hydrogen supply amount to the fuel cell, and the accompanying excess or deficiency of the fuel cell power generation amount appropriately changes the charge and discharge amount of the secondary battery. Control by that.

【0045】次に,本例のコンバインシステム1を用い
た電気自動車の効果について,図2に示す走行パターン
を用いた実験によって説明する。最初に,図2に示す走
行パターンについて説明する。本走行パターンは,停止
状態から車速60km/hまで17秒で加速するモード
81,車速60km/hで定速走行を17秒間行うモー
ド82,停止状態まで28.5秒で減速を行うモード8
3,及び車両を18.5秒間停止状態とするモード84
の4つのモードパターンからなる。
Next, the effect of the electric vehicle using the combine system 1 of this example will be described by an experiment using the traveling pattern shown in FIG. First, the traveling pattern shown in FIG. 2 will be described. This running pattern is a mode 81 in which the vehicle is accelerated from a stopped state to a vehicle speed of 60 km / h in 17 seconds, a mode 82 in which the vehicle is driven at a constant speed for 17 seconds at a vehicle speed of 60 km / h, and a mode 8 in which the vehicle is decelerated in a stopped state in 28.5 seconds.
3 and mode 84 that keeps the vehicle stationary for 18.5 seconds
It consists of four mode patterns.

【0046】次に,その他の実験条件を説明する。MH
内蔵タンク10内にMmNi系の水素吸蔵合金を100
kg充填し,必要な水素を発生する。燃料電池11は最
高出力40kwの燃料電池を用いた。そして,所要動力
と燃料電池11の発電量の過不足を補う二次電池31は
8kwhの電池容量を持つ鉛蓄電池であり,乗員を含む
車両の総重量は2.2トンである。
Next, other experimental conditions will be described. MH
100 MmNi-based hydrogen storage alloy is stored in the built-in tank 10.
Fill with kg to generate the required hydrogen. As the fuel cell 11, a fuel cell with a maximum output of 40 kW was used. The secondary battery 31 that supplements the required power and the power generation amount of the fuel cell 11 is a lead-acid battery having a battery capacity of 8 kwh, and the total weight of the vehicle including the occupant is 2.2 tons.

【0047】次に,図3に上記走行パターンで走行させ
た場合の必要電力(所要動力+補機動力)の推移カーブ
85及び燃料電池11の発電量の推移カーブ86(斜線
部)を示す。図3における空白部87は二次電池31の
放電電力を示し,小さな斜線部88は,二次電池31の
充電電力を示す。加速状態となるモード81では,必要
電力が燃料電池11の最高発電量である40kwとなる
までは水素供給量を増加させ燃料電池11の発電量を制
御し,40kwを越える場合は二次電池31からの放電
により補う(空白部87)。本モード81の場合,11
秒以降は二次電池の放電が必要となり,60km/hに
達する17秒近くまで放電状態が続く。この間の二次電
池31の容量の低下は,約20wh程度である。
Next, FIG. 3 shows a transition curve 85 of the required electric power (required power + auxiliary equipment power) and a transition curve 86 of the power generation amount of the fuel cell 11 (shaded portion) when the vehicle travels in the above traveling pattern. The blank portion 87 in FIG. 3 indicates the discharging power of the secondary battery 31, and the small shaded portion 88 indicates the charging power of the secondary battery 31. In mode 81, which is in the acceleration state, the hydrogen supply amount is increased to control the power generation amount of the fuel cell 11 until the required power reaches the maximum power generation amount of the fuel cell 11, which is 40 kW. It is compensated by the discharge from (blank part 87). In the case of this mode 81, 11
After the second, the secondary battery needs to be discharged, and the discharge state continues until it reaches 60 km / h for nearly 17 seconds. The decrease in the capacity of the secondary battery 31 during this period is about 20 wh.

【0048】次に,60km/h定速走行となるモード
82では,必要電力が10.3kwであるが二次電池3
1への充電が必要となるため,しばらくの間(本実施例
では約4秒間)所定の発電量Mで必要電力以上の発電を
行うことになる。図3は,充電時の設定発電量Mを31
kwとした場合の結果であり,充電時間は設定発電量M
により異なる。
Next, in the mode 82 in which the vehicle runs at a constant speed of 60 km / h, the required power is 10.3 kw, but the secondary battery 3
Since it is necessary to charge the battery pack 1 to 1 for a while (about 4 seconds in the present embodiment), the power generation is performed at a predetermined power generation amount M or more than the required power. FIG. 3 shows that the set power generation amount M during charging is 31
This is the result when kW is set, and the charging time is the set power generation amount M
Depends on

【0049】続いて,減速状態となるモード83では,
本例の場合二次電池31の容量も設定値となっているた
め,燃料電池11の発電量は補機動力分だけとなる。な
お,説明を簡単にするため減速時の回生発電はない状態
として説明したが,回生発電を行うとした場合減速時全
体(34秒から62秒)の平均で約2.6kwが回生可
能である。
Then, in the mode 83 in which the deceleration state is set,
In the case of this example, since the capacity of the secondary battery 31 is also the set value, the power generation amount of the fuel cell 11 is only for the auxiliary machine power. In addition, for the sake of simplicity, the description is made assuming that there is no regenerative power generation during deceleration, but when regenerative power generation is performed, about 2.6 kW can be regenerated on average during the entire deceleration (34 seconds to 62 seconds). .

【0050】この場合,モード82の二次電池31への
充電時の設定発電量Mを小さくするか,あるいは二次電
池31の設定容量Sから回生電力分を除いた電池容量
S′までを充電し,残りを回生電力で充電する。これに
よりさらに水素消費量を低減することができる。車両停
止状態のモード84では,補機動力分を燃料電池11は
発電とする。
In this case, the set power generation amount M at the time of charging the secondary battery 31 in the mode 82 is reduced, or the set capacity S of the secondary battery 31 is charged up to the battery capacity S'excluding regenerative power. Then, recharge the rest with regenerative power. This can further reduce hydrogen consumption. In the mode 84 in which the vehicle is in a stopped state, the fuel cell 11 generates electric power for the auxiliary machine power.

【0051】次に,上記走行モード81〜84における
冷房装置20の運転について説明する。本例の冷房運転
は水素吸蔵合金の水素放出に伴う吸熱反応を利用して行
ない,加速時に最大冷房出力が得られ約12kwとな
る。そして,車両停止状態のモード84まで含めた全サ
イクル平均で約2.5kwの熱出力が得られる。
Next, the operation of the cooling device 20 in the traveling modes 81 to 84 will be described. The cooling operation of this example is performed by utilizing the endothermic reaction associated with the hydrogen release of the hydrogen storage alloy, and the maximum cooling output is obtained at the time of acceleration, which is about 12 kW. Then, a heat output of about 2.5 kW is obtained on average over all cycles including the mode 84 in which the vehicle is stopped.

【0052】なお,上記は,燃料電池11への水素供給
を主体にして二次電池31の容量などを設定したが,冷
房運転を考慮した場合には,二次電池31の容量は前述
の設定値Sの70〜80%程度に設定することができ
る。
In the above description, the capacity of the secondary battery 31 is set by mainly supplying hydrogen to the fuel cell 11. However, when the cooling operation is taken into consideration, the capacity of the secondary battery 31 is set as described above. It can be set to about 70 to 80% of the value S.

【0053】即ち,冷房出力が冷房熱負荷に比べ大幅に
少なく且つ蓄熱槽25内にも冷熱がない場合などに,必
要に応じ燃料電池11への水素供給量を増加させ吸熱量
の不足分を補うように制御する。そして燃料電池11の
発電量の必要電力に対する余剰分を二次電池へ充電す
る。このとき,二次電池31に対する充電時の発電量
は,二次電池の設定容量Sとの関係で最適値に設定す
る。
That is, when the cooling output is significantly smaller than the cooling heat load and there is no cold heat in the heat storage tank 25, the hydrogen supply amount to the fuel cell 11 is increased as necessary to reduce the heat absorption amount. Control to compensate. Then, a surplus of the power generation amount of the fuel cell 11 with respect to the required power is charged into the secondary battery. At this time, the amount of power generation during charging of the secondary battery 31 is set to an optimum value in relation to the set capacity S of the secondary battery.

【0054】次に従来装置と本例との比較を行う。水素
ガスタンク等余分な構成を付加しない従来装置と本例と
を比較する。従来装置の場合には,水素ガスタンク等を
付加しなければ負荷変動に対応して燃料電池の発電量を
追従させることはできない。従って通常行われているよ
うに,燃料電池は一定の発電量とし,必要電力に対する
不足分を二次電池の放電により補うものとして本例と比
較評価する。
Next, the conventional device and this example will be compared. This example is compared with a conventional device that does not have an extra configuration such as a hydrogen gas tank. In the case of the conventional device, the power generation amount of the fuel cell cannot be made to respond to load fluctuations without adding a hydrogen gas tank or the like. Therefore, as is usually done, the fuel cell has a constant amount of power generation, and a comparison with this example is made assuming that the shortfall of the required power is compensated for by the discharge of the secondary battery.

【0055】従来装置は,一定の発電を行う燃料電池の
規模を前述の走行モード81〜84を走行するのに必要
な平均所要動力約9.5kwよりやや高めの10kw規
模とすると,不足分を補う二次電池31は18kwh容
量の電池(最大所要動力との差が大きくなるため容量も
増大する)が必要となる。
In the conventional apparatus, if the scale of the fuel cell for generating a certain amount of power is 10 kw, which is slightly higher than the average required power of about 9.5 kW required for traveling in the above-mentioned traveling modes 81 to 84, the shortage is sufficient. The secondary battery 31 to be supplemented needs a battery of 18 kwh capacity (the capacity also increases because the difference from the maximum required power increases).

【0056】最初に本例と従来装置の電池重量を比較す
る。本例の二次電池31の容量8kwhに比べ,従来装
置は2倍強の二次電池の容量が必要となり,そのため二
次電池の重量が約250kg増加する。一方,従来装置
は燃料電池の出力が低いことにより,本例の燃料電池3
1の重量に比べ約130kg減少できる。しかし前述の
二次電池重量との和である総電池重量は,約120kg
増加することになり,車両重量増加を招くこととなる。
First, the battery weights of this example and the conventional device will be compared. Compared to the capacity of the secondary battery 31 of this example, which is 8 kwh, the conventional device requires twice as much capacity of the secondary battery, which increases the weight of the secondary battery by about 250 kg. On the other hand, in the conventional device, the output of the fuel cell is low.
It can be reduced by about 130 kg compared to the weight of 1. However, the total weight of the batteries, which is the sum of the weight of the above-mentioned secondary batteries, is approximately 120 kg.
This will result in an increase in vehicle weight.

【0057】次に本例と従来装置の水素消費量を比較す
る。本例で前述の走行モードを走行した場合の1サイク
ル当たりの水素消費量と,前述の従来装置を用いた車両
(本例より車両重量大)で同じ走行モードを走行した場
合の水素消費量を図4に示す。走行モードの前半は,本
例の水素消費カーブ890が,必要電力に追従して発電
するため水素消費量が多くなっている。しかし走行モー
ド全体では従来装置の水素消費カーブ891に比べ約5
0リットル(約20%)水素消費量が少なくなってお
り,電気自動車の走行距離延長が可能である。
Next, the hydrogen consumptions of this example and the conventional apparatus will be compared. In this example, the hydrogen consumption per cycle when traveling in the above-mentioned traveling mode and the hydrogen consumption when traveling in the same traveling mode in a vehicle using the above-mentioned conventional device (vehicle weight is larger than in this example) are shown. As shown in FIG. In the first half of the traveling mode, the hydrogen consumption curve 890 of this example follows the required electric power to generate electric power, so that the hydrogen consumption amount is large. However, in the entire driving mode, it is about 5 compared to the hydrogen consumption curve 891 of the conventional device.
The hydrogen consumption of 0 liters (about 20%) is low, and it is possible to extend the mileage of electric vehicles.

【0058】次に,燃料電池11の負荷変動に対する応
答性について述べる。従来装置では,水素吸蔵合金を加
熱することにより放出水素量を変化させていたため.応
答性に問題があったが,本例は,コンプレッサ121に
より,水素供給量を高速に変化せることができるから燃
料電池の負荷応答性が良好である。
Next, the responsiveness of the fuel cell 11 to load changes will be described. In conventional equipment, the amount of hydrogen released was changed by heating the hydrogen storage alloy. Although there was a problem with the responsiveness, in this example, the load responsiveness of the fuel cell is good because the hydrogen supply amount can be changed at high speed by the compressor 121.

【0059】また,コンプレッサ121にはバイパス管
路14を設けて,制御弁15により,水素吸蔵合金の平
衡圧力が燃料電池の作動圧力より高い場合には,コンプ
レッサ121とは別個に圧力差による水素供給が可能と
なり,事実上コンプレッサの稼働時間を短くできること
から,エネルギーの有効利用につながる。さらに,少流
量の水素供給も容易となる。従って,燃料電池の出力制
御精度を高めることができる。
Further, the compressor 121 is provided with the bypass line 14, and when the equilibrium pressure of the hydrogen storage alloy is higher than the operating pressure of the fuel cell by the control valve 15, the hydrogen due to the pressure difference is provided separately from the compressor 121. Supply is possible and the operating time of the compressor can be shortened, which leads to effective use of energy. Furthermore, it becomes easy to supply hydrogen at a small flow rate. Therefore, the output control accuracy of the fuel cell can be improved.

【0060】また,前記のように熱媒体にはフロンを用
いていない。上記のように,本例によれば,エネルギー
の利用効率が良好であると共に,燃料電池の負荷変動に
対する応答性が良好であり,かつフロンなどの環境破壊
物質を用いる必要のない燃料電池と冷房装置のコンバイ
ンシステムを提供する事が出来る。
Further, as described above, no Freon is used as the heat medium. As described above, according to this example, the energy utilization efficiency is good, the responsiveness to the load fluctuation of the fuel cell is good, and the environment is not required to use the environmentally destructive substances such as CFCs and cooling. It is possible to provide a combine system of equipment.

【0061】実施例2 次に車室内の冷房を水素吸蔵合金の吸熱を利用して行う
本例と,車室内の冷房を通常用いられている蒸気圧縮式
ヒートポンプ(以下フロン式)を搭載して行う従来装置
について,60km/h定速走行での冷房性能について
説明する。本例の基本的な構成は実施例1と同じである
が,冷房装置作動による影響を明らかにするため,搭載
した燃料電池11及び二次電池31は,従来装置と同一
の発電量10kwの燃料電池と電池容量18kwhの二
次電池とした。
Example 2 Next, this example is used to cool the vehicle interior by utilizing the heat absorption of a hydrogen storage alloy, and a vapor compression heat pump (hereinafter referred to as CFC type) which is usually used for cooling the vehicle interior is installed. The cooling performance of the conventional device that is operated at a constant speed of 60 km / h will be described. The basic configuration of this example is the same as that of Example 1, but in order to clarify the influence of the operation of the cooling device, the mounted fuel cell 11 and secondary battery 31 are the same as the conventional device with the same power generation amount of 10 kw of fuel. A battery and a secondary battery having a battery capacity of 18 kwh were used.

【0062】上記構成の車両を車速60km/hで定速
走行させ,かつ冷房出力3kw程度を得るのに必要な所
要動力は,本例のコンバインシステムが約10.5kw
であるのに対し従来装置では約12kwとなり,それぞ
れ発電に必要な消費水素量は,本例が約135リットル
/min,従来装置が約190リットル/minとなっ
た。
The combine system of this embodiment has a power requirement of about 10.5 kW, which is required to drive the vehicle having the above structure at a constant speed of 60 km / h and obtain a cooling output of about 3 kW.
In contrast, the conventional device has a hydrogen consumption of about 12 kW, and the hydrogen consumption required for power generation is about 135 liters / min for this example and about 190 liters / min for the conventional device.

【0063】本例の車両は,実施例1の評価結果に記載
したようにMmNi系合金を100kg充填しており,
約20m3 の水素を貯蔵している。従って,60km/
h定速走行での走行距離は,本例が約150kmであ
る。一方,従来装置では約110kmとなり,本例は従
来装置より約36%走行距離が長い。
The vehicle of this example was filled with 100 kg of MmNi alloy as described in the evaluation result of Example 1,
It stores about 20 m 3 of hydrogen. Therefore, 60 km /
In this example, the distance traveled at a constant speed is about 150 km. On the other hand, the conventional device has a traveling distance of about 110 km, and this example has a traveling distance of about 36% longer than the conventional device.

【0064】なお,60km/h定速走行中に得られる
本例の冷房出力は,3kwであった。上記のように本例
のコンバインシステムによれば,定速走行して冷房運転
した場合においても,より走行距離の大きな電気自動車
を提供することができる。
The cooling output of this example obtained during running at a constant speed of 60 km / h was 3 kW. As described above, according to the combine system of the present example, it is possible to provide an electric vehicle having a longer mileage even when the vehicle is running at a constant speed and cooling operation is performed.

【0065】実施例3 本例は,図5に示すように,実施例1又は実施例2にお
いて,燃料電池11の出力端子間に熱電変換手段351
〜355を並列接続すると共に,燃料電池11やモータ
301の排熱を利用した暖房用の熱交換器23を更に設
けたもう1つの実施例である。図5において符号24
は,暖房用の熱媒体管路である。
Example 3 In this example, as shown in FIG. 5, thermoelectric conversion means 351 is provided between the output terminals of the fuel cell 11 in Example 1 or Example 2.
This is another embodiment in which the heat exchangers 23 to 355 are connected in parallel and a heat exchanger 23 for heating utilizing the exhaust heat of the fuel cell 11 and the motor 301 is further provided. In FIG. 5, reference numeral 24
Is a heating medium conduit for heating.

【0066】上記熱電変換手段351〜355は,冷却
用熱電変換手段351〜354と加熱用熱電変換手段3
55とからなる。上記熱電変換手段351〜355は,
燃料電池11の余剰電力又はモータ301の回生電力に
よって励磁され,電力を冷熱又は温熱に変換する。
The thermoelectric conversion means 351 to 355 are the thermoelectric conversion means 351 to 354 for cooling and the thermoelectric conversion means 3 for heating.
55 and. The thermoelectric conversion means 351 to 355,
Excited by the surplus power of the fuel cell 11 or the regenerative power of the motor 301, the power is converted into cold heat or warm heat.

【0067】冷却用熱電変換手段351〜354は,図
5に示すように,モータ301,燃料電池11,蓄熱槽
25を冷却すると共に,冷房装置20の補助冷房として
利用する。一方,加熱用熱電変換手段355は,暖房用
熱交換器23を補助するものとして利用する。
As shown in FIG. 5, the cooling thermoelectric conversion means 351 to 354 cool the motor 301, the fuel cell 11, and the heat storage tank 25, and are used as auxiliary cooling of the cooling device 20. On the other hand, the heating thermoelectric conversion means 355 is used as an auxiliary to the heating heat exchanger 23.

【0068】燃料電池11及びモータ301に余剰又は
回生電力が生じた場合には,二次電池31を充電し,余
剰電力を吸収するが,二次電池31が充電完了した場合
には,実施例1及び実施例2においては,余剰電力を有
効に利用することができない。
When surplus or regenerative electric power is generated in the fuel cell 11 and the motor 301, the secondary battery 31 is charged and the surplus electric power is absorbed, but when the secondary battery 31 is completely charged, In the first and second embodiments, the surplus power cannot be effectively used.

【0069】しかしながら,本例においては,二次電池
31の充電完了状態においても,熱電変換手段351〜
355が余剰電力を吸収し,余剰電力を熱変換すること
により上記のようにエネルギーの有効利用が可能であ
る。従って,燃料である水素の有効利用が可能となり,
車両の走行距離を延ばすことができる。その他について
は,実施例1又は実施例2と同様である。
However, in this example, even when the charging of the secondary battery 31 is completed, the thermoelectric conversion means 351 to
355 absorbs the surplus power and converts the surplus power into heat, so that the energy can be effectively used as described above. Therefore, it becomes possible to effectively use hydrogen as fuel,
The mileage of the vehicle can be extended. Others are the same as those in the first or second embodiment.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の燃料電池と冷房装置のコンバインシ
ステムのシステム構成図。
FIG. 1 is a system configuration diagram of a combine system of a fuel cell and a cooling device according to a first embodiment.

【図2】実施例1の走行実験における走行パターン図。FIG. 2 is a traveling pattern diagram in a traveling experiment of Example 1.

【図3】実施例1の走行実験における必要電力と燃料電
池発電量の変化図。
FIG. 3 is a diagram showing changes in the required power and the fuel cell power generation amount in the running experiment of the first embodiment.

【図4】実施例1の走行実験における水素消費量の変化
図。
FIG. 4 is a diagram showing changes in hydrogen consumption in a running experiment of Example 1.

【図5】実施例3の燃料電池と冷房装置のコンバインシ
ステムのシステム構成図。
FIG. 5 is a system configuration diagram of a combine system of a fuel cell and a cooling device according to a third embodiment.

【符号の説明】[Explanation of symbols]

1...コンバインシステム, 10...水素吸蔵合金(MH)内蔵タンク, 11..燃料電池, 12...水素圧送機, 20...冷房装置, 21...熱交換器, 25...蓄熱槽, 31...二次電池, 251〜355...熱電変換手段, 1. . . Combine system, 10. . . 11. Hydrogen storage alloy (MH) built-in tank, 11. . Fuel cell, 12. . . Hydrogen pump, 20. . . Air conditioner, 21. . . Heat exchanger, 25. . . Heat storage tank, 31. . . Secondary battery, 251 to 355. . . Thermoelectric conversion means,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三井 宏之 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 青木 博史 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 久保 秀人 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 (72)発明者 藤 敬司 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 (72)発明者 藤田 信雄 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroyuki Mitsui Hiroyuki Mitsui, Nagakute-cho, Aichi-gun, Aichi Prefecture No. 41 Yokomichi 1 Central Road, Toyota Central Research Institute Co., Ltd. (72) Hiroshi Aoki Nagakute, Nagakute-cho, Aichi-gun, Aichi Prefecture 1st 41st of Yokoyodo, Toyota Central Research Institute Co., Ltd. (72) Hideto Kubo, 2-chome, Toyota-cho, Kariya city, Aichi prefecture Toyota Industries Corporation (72) Inventor Keiji Fuji, Kariya city, Aichi prefecture 2-1-1 Toyota-cho, Toyota Industries Corp. (72) Inventor Nobuo Fujita 1- Toyota Town, Toyota-shi, Aichi Toyota Automobile Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電動式のアクチュエータに電力を供給す
る燃料電池と,熱媒体を用いる冷房装置の熱交換器と,
上記燃料電池に対して燃料である水素を供給すると共に
上記冷房装置の熱媒体管路を内部に導入し熱媒体と熱交
換を行なう水素吸蔵合金内蔵タンクと,燃料電池に上記
水素を供給する水素供給管路に介設し水素を圧送する水
素圧送機と,上記燃料電池の出力端子間に並列接続され
た二次電池と,上記水素圧送機と二次電池とを操作して
アクチュエータへの供給電力と熱交換器の冷房出力とを
同時に制御するコントローラとを有する,燃料電池と冷
房装置のコンバインシステムであって,上記コントロー
ラは,燃料電池の出力が過剰な場合には,上記二次電池
を充電し,燃料電池の出力が不足する場合には二次電池
を放電してアクチュエータの駆動電力と熱交換器の冷房
出力とを同時に制御することを特徴とする燃料電池と冷
房装置のコンバインシステム。
1. A fuel cell for supplying electric power to an electric actuator, a heat exchanger of a cooling device using a heat medium,
A hydrogen storage alloy built-in tank that supplies hydrogen as fuel to the fuel cell and introduces a heat medium pipe of the cooling device into the inside to exchange heat with the heat medium; Supplying to the actuator by operating the hydrogen pumping machine that is installed in the supply pipeline to pump hydrogen, the secondary battery connected in parallel between the output terminals of the fuel cell, and the hydrogen pumping machine and the secondary battery. What is claimed is: 1. A combine system of a fuel cell and a cooling device, comprising: a controller for controlling electric power and a cooling output of a heat exchanger at the same time, wherein the controller controls the secondary battery when the output of the fuel cell is excessive. When the battery is charged and the output of the fuel cell is insufficient, the secondary battery is discharged to control the driving power of the actuator and the cooling output of the heat exchanger at the same time. System.
【請求項2】 請求項1において,熱交換器の熱媒体管
路には,蓄熱槽が併設されており,上記コントローラ
は,水素吸蔵合金内蔵タンクの冷熱出力が過剰な場合に
は,上記蓄熱槽に冷熱を蓄え,一方水素吸蔵合金内蔵タ
ンクの冷熱出力が不足する場合には,上記蓄熱槽の冷熱
を放出することを特徴とする燃料電池と冷房装置のコン
バインシステム。
2. The heat storage tank according to claim 1, wherein a heat storage tank is provided in parallel with the heat medium pipe of the heat exchanger, and the controller stores the heat storage when the cold heat output of the hydrogen storage alloy built-in tank is excessive. A combine system for a fuel cell and a cooling device, wherein cold heat is stored in the tank, and when the cold heat output of the hydrogen storage alloy built-in tank is insufficient, the cold heat of the heat storage tank is released.
【請求項3】 請求項1又は請求項2において,上記燃
料電池の出力端子間には,熱電変換手段が並列接続され
ており,上記コントローラは,上記熱電変換手段に余剰
な電力を供給して熱出力を発生させ,周辺部材の加熱又
は冷却制御を行なうことを特徴とする燃料電池と冷房装
置のコンバインシステム。
3. The thermoelectric conversion means according to claim 1 or 2, wherein thermoelectric conversion means is connected in parallel between the output terminals of the fuel cell, and the controller supplies surplus electric power to the thermoelectric conversion means. A combine system of a fuel cell and a cooling device, which generates heat output and controls heating or cooling of peripheral members.
JP26583693A 1993-08-06 1993-09-28 Combined fuel cell and cooling system Expired - Fee Related JP3512448B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26583693A JP3512448B2 (en) 1993-09-28 1993-09-28 Combined fuel cell and cooling system
US08/286,191 US5678410A (en) 1993-08-06 1994-08-05 Combined system of fuel cell and air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26583693A JP3512448B2 (en) 1993-09-28 1993-09-28 Combined fuel cell and cooling system

Publications (2)

Publication Number Publication Date
JPH0799057A true JPH0799057A (en) 1995-04-11
JP3512448B2 JP3512448B2 (en) 2004-03-29

Family

ID=17422740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26583693A Expired - Fee Related JP3512448B2 (en) 1993-08-06 1993-09-28 Combined fuel cell and cooling system

Country Status (1)

Country Link
JP (1) JP3512448B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0897825A1 (en) * 1997-07-23 1999-02-24 dbb fuel cell engines GmbH Vehicle with fuel cell
JP2002093443A (en) * 2000-09-11 2002-03-29 Denso Corp Fuel cell system
JP2002164068A (en) * 2000-11-22 2002-06-07 Denso Corp Fuel cell system
KR20030084321A (en) * 2002-04-26 2003-11-01 현대자동차주식회사 System for cooling fuel cell
JP2003317787A (en) * 2002-02-21 2003-11-07 Matsushita Electric Ind Co Ltd Cogeneration vehicle system using fuel cell vehicle and movable body composing system
WO2004114251A1 (en) * 2003-06-20 2004-12-29 Ebara Corporation Traffic signal control system, trffic control system and security car
US6890490B1 (en) 1998-09-25 2005-05-10 Toyota Jidosha Kabushiki Kaisha Hydrogen absorbing tank apparatus
KR100689335B1 (en) * 2000-12-29 2007-03-08 주식회사 엘지이아이 Fuel cell heating and cooling apparatus
JP2007179991A (en) * 2005-12-28 2007-07-12 Equos Research Co Ltd Fuel cell system
JP2007328972A (en) * 2006-06-07 2007-12-20 Toyota Motor Corp Fuel cell system
JP2009071959A (en) * 2007-09-12 2009-04-02 Takasago Thermal Eng Co Ltd Power supply system
JP2010246388A (en) * 2010-05-08 2010-10-28 Equos Research Co Ltd Display of fuel cell vehicle
JP2014220872A (en) * 2013-05-01 2014-11-20 株式会社Nttファシリティーズ Energy supply system, energy transfer system, energy supply method, energy transfer method, and program
CN108599350A (en) * 2018-04-08 2018-09-28 江苏理工学院 A kind of solid oxide fuel cell Recov ery of Energy During Automotive Brake

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0897825A1 (en) * 1997-07-23 1999-02-24 dbb fuel cell engines GmbH Vehicle with fuel cell
US6890490B1 (en) 1998-09-25 2005-05-10 Toyota Jidosha Kabushiki Kaisha Hydrogen absorbing tank apparatus
JP2002093443A (en) * 2000-09-11 2002-03-29 Denso Corp Fuel cell system
JP2002164068A (en) * 2000-11-22 2002-06-07 Denso Corp Fuel cell system
JP4649730B2 (en) * 2000-11-22 2011-03-16 株式会社デンソー Fuel cell system
KR100689335B1 (en) * 2000-12-29 2007-03-08 주식회사 엘지이아이 Fuel cell heating and cooling apparatus
JP2003317787A (en) * 2002-02-21 2003-11-07 Matsushita Electric Ind Co Ltd Cogeneration vehicle system using fuel cell vehicle and movable body composing system
KR20030084321A (en) * 2002-04-26 2003-11-01 현대자동차주식회사 System for cooling fuel cell
WO2004114251A1 (en) * 2003-06-20 2004-12-29 Ebara Corporation Traffic signal control system, trffic control system and security car
JP2007179991A (en) * 2005-12-28 2007-07-12 Equos Research Co Ltd Fuel cell system
JP2007328972A (en) * 2006-06-07 2007-12-20 Toyota Motor Corp Fuel cell system
JP2009071959A (en) * 2007-09-12 2009-04-02 Takasago Thermal Eng Co Ltd Power supply system
JP2010246388A (en) * 2010-05-08 2010-10-28 Equos Research Co Ltd Display of fuel cell vehicle
JP2014220872A (en) * 2013-05-01 2014-11-20 株式会社Nttファシリティーズ Energy supply system, energy transfer system, energy supply method, energy transfer method, and program
CN108599350A (en) * 2018-04-08 2018-09-28 江苏理工学院 A kind of solid oxide fuel cell Recov ery of Energy During Automotive Brake

Also Published As

Publication number Publication date
JP3512448B2 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
JP3312161B2 (en) Hydrogen fueled vehicles
JP3512448B2 (en) Combined fuel cell and cooling system
US6580977B2 (en) High efficiency fuel cell and battery for a hybrid powertrain
CN103481788B (en) Vehicle control system
US5318142A (en) Hybrid drive system
EP1802476B1 (en) Climate control system for vehicle berths and cabs
US8666583B2 (en) Control device for hybrid vehicle
JP4715486B2 (en) Power control device
US7980344B2 (en) Hydrogen station, method of charging hydrogen, and vehicle
US5678410A (en) Combined system of fuel cell and air-conditioning apparatus
US8660733B2 (en) Control device for hybrid vehicle
US20070089442A1 (en) Temperature control system for a vehicle battery
KR20030005408A (en) Car air-conditioning system
JP2001325976A (en) Power supply using fuel cell and chargeable/ dischargeable storage part
US8555640B2 (en) Waste heat auxiliary power unit
CN102574472A (en) Cooling system for electric vehicle
JP2000059918A (en) Automobile
WO2009073708A1 (en) Engine system
US10160443B2 (en) Control system for vehicle
CN109435708B (en) Range-extending electric bus
Park et al. Development of fuel cell hybrid electric vehicle performance simulator
Filipi et al. Fuel cell APU for silent watch and mild electrification of a medium tactical truck
JP2007018851A (en) Boil off-gas treatment device of fuel cell automobile
CN212637082U (en) Automobile air conditioning system with energy storage type vehicle-mounted domestic electric appliance function
JPH11185792A (en) Fuel cell device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040107

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees