JP2000059918A - Automobile - Google Patents

Automobile

Info

Publication number
JP2000059918A
JP2000059918A JP10227832A JP22783298A JP2000059918A JP 2000059918 A JP2000059918 A JP 2000059918A JP 10227832 A JP10227832 A JP 10227832A JP 22783298 A JP22783298 A JP 22783298A JP 2000059918 A JP2000059918 A JP 2000059918A
Authority
JP
Japan
Prior art keywords
heat
cold
battery
vehicle
automobile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10227832A
Other languages
Japanese (ja)
Inventor
Toshiya Doi
俊哉 土井
Jinichi Imahashi
甚一 今橋
Masashi Yamaga
賢史 山賀
Yuichi Kamo
友一 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10227832A priority Critical patent/JP2000059918A/en
Publication of JP2000059918A publication Critical patent/JP2000059918A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/12Dynamic electric regenerative braking for vehicles propelled by dc motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an automobile with high energy efficiency, by converting kinetic energy at the time of braking the automobile into another type of energy and storing it, using both of a storage mechanism and a cold storage mechanism. SOLUTION: At the time of braking an automobile, a motor serves as a generator to convert kinetic energy into electric energy, and charge electric power into a battery 9 through a current/voltage control mechanism 4. A cooler 10 is operated by surplus current to generate cold and store it in a cold storage device 11. Otherwise, a heater 13 is operated by surplus current to generate heat and store it in a heat storage device 14. The cold stored in the cold storage device 11 can be used by a cold/heat dissipation device 12 for indoor cooling and a cold/heat dissipation device 7 for battery cooling to control the temperature of a battery 9. The heat stored in the heat storage device 14 can be used mainly by a radiator 15 for indoor heating and a radiator 8 for battery heating to control battery temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池エネルギーを
用いて駆動力の全て及び一部を得る自動車,列車等の移
動体に関するものであり、エネルギー効率を高めるため
のシステムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moving body such as an automobile or a train for obtaining all or a part of driving force by using battery energy, and to a system for improving energy efficiency.

【0002】[0002]

【従来の技術】従来、バッテリーとモーターで駆動力を
得る電気自動車においては、自動車の制動時には自動車
の運動エネルギーで発電機を回して発電し、その電気を
バッテリーに充電することでエネルギー効率を高めてい
た。しかしながら、バッテリーの充電受け入れ性能・容
量以上の電気エネルギーは、熱にして外部に捨てていた
(例えば、バッテリーが満充電の時に電気自動車が下り
坂を走行中の場合等)。また、内燃機関とモーターとバ
ッテリーを備えるハイブリッド車においては自動車の制
動時には自動車の運動エネルギーで発電機を回して発電
し、その電気をバッテリーに充電することでエネルギー
効率を高めていた。しかしながら、バッテリーの充電受
け入れ性能・容量以上の電気エネルギーは、熱にして外
部に捨てていた(例えば、バッテリーが満充電の時に電
気自動車が下り坂を走行中の場合等)。
2. Description of the Related Art Conventionally, in an electric vehicle which obtains a driving force by a battery and a motor, when the vehicle is braked, the generator is turned by the kinetic energy of the vehicle to generate electric power, and the electric power is charged into the battery to increase energy efficiency. I was However, electric energy higher than the charge receiving performance and capacity of the battery is discarded outside by heating (for example, when the electric vehicle is traveling downhill when the battery is fully charged). Further, in a hybrid vehicle having an internal combustion engine, a motor and a battery, the energy efficiency is increased by turning a generator with the kinetic energy of the vehicle to generate power when braking the vehicle and charging the battery with the electricity. However, electric energy higher than the charge receiving performance and capacity of the battery is discarded outside by heating (for example, when the electric vehicle is traveling downhill when the battery is fully charged).

【0003】また、燃料電池とバッテリーとモーターを
備える燃料電池自動車においては自動車の運動エネルギ
ーを他のエネルギーに変換する機構を備えていないた
め、制動時の運動エネルギーを回収することはできなか
った。
Further, a fuel cell vehicle equipped with a fuel cell, a battery, and a motor does not have a mechanism for converting kinetic energy of the vehicle into other energy, so that kinetic energy during braking cannot be recovered.

【0004】例えば、特開平6−319203 号公報では、エ
ネルギー回収装置付き電気自動車として、電気ブレーキ
によって発生する電気エネルギーを蓄電池に充電する機
構を備えた電気自動車において、電気ブレーキ中に発生
した電気エネルギーによって蓄電池が損傷を受けなよう
に、蓄電池の受け入れ性能以上の電流は熱として外部に
放出する機構となっている。
For example, Japanese Patent Application Laid-Open No. 6-319203 discloses an electric vehicle with an energy recovery device, which is provided with a mechanism for charging a storage battery with electric energy generated by an electric brake. In order to prevent the storage battery from being damaged by the current, a current exceeding the capacity of the storage battery is released to the outside as heat.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術では、電
気自動車及びハイブリット車では、バッテリーの充電受
け入れ性能・容量以上のエネルギーを回収することがで
きないため、エネルギー効率が良くなかった。また、燃
料電池車においても、エネルギー回生の手段を持たない
ためエネルギー効率が良くかった。
In the above prior art, energy efficiency is not good in electric vehicles and hybrid vehicles because it is not possible to recover more energy than the battery's charge receiving performance and capacity. In addition, the fuel cell vehicle does not have a means for regenerating energy, and thus has a high energy efficiency.

【0006】そこで、本発明では自動車の制動時の運動
エネルギーを別の形のエネルギーに変換し、貯蔵するこ
とで、エネルギー効率の高い自動車を提供することを目
的とする。
Accordingly, an object of the present invention is to provide an automobile having high energy efficiency by converting kinetic energy during braking of the automobile into another form of energy and storing it.

【0007】[0007]

【課題を解決するための手段】上記目的は、蓄熱機構と
蓄冷熱機構を同時に備えることによって達成できる。そ
の際、個別に制御可能な熱生成機構と冷熱生成機構を備
えるとより効果的である。上記の蓄熱機構,蓄冷熱機
構,熱生成機構,冷熱生成機構をより効果的に制御する
ために、当該自動車がその時刻に制動を掛けているか否
かを検出する制動機構、とその時刻でのバッテリーの容
量検出機構と、その時刻において当該自動車としては熱
を必要とするのか或いは冷熱を必要とするのかを判定す
る温度判定機構と、それらのデータを評価して適切な運
用を行う為の判定・指示を行う制御機構を備えるとより
効果的である。
The above object can be achieved by simultaneously providing a heat storage mechanism and a cold storage heat mechanism. In this case, it is more effective to provide a heat generation mechanism and a cold heat generation mechanism that can be individually controlled. In order to more effectively control the heat storage mechanism, the cold storage heat mechanism, the heat generation mechanism, and the cold heat generation mechanism, a braking mechanism for detecting whether or not the vehicle is braking at the time, and a braking mechanism at the time. A battery capacity detection mechanism, a temperature determination mechanism that determines whether the vehicle needs heat or cold at that time, and a determination to evaluate those data and perform appropriate operation -It is more effective to provide a control mechanism for giving instructions.

【0008】また、燃料電池を搭載した電気自動車にお
いては、水の電気分解によって酸素と水素を作る機構、
及びそれらの酸素,水素を貯蔵する機構を備えることに
よっても、上記の方法と同様に、高効率な自動車を作製
できる。
In an electric vehicle equipped with a fuel cell, a mechanism for producing oxygen and hydrogen by electrolysis of water,
Also, by providing a mechanism for storing these oxygen and hydrogen, a high-efficiency automobile can be manufactured similarly to the above method.

【0009】バッテリーとモーターで駆動力を得る電気
自動車においては、室内温度を下げたい場合にはクーラ
ーを動かし、室内温度を上げたい場合にはヒーターを動
かす必要があるが、エネルギー源は何れもバッテリーか
らの電気である。また、バッテリーを適切な温度範囲に
保つ為に、バッテリーの加熱機構と冷熱機構が必要であ
るが、これらのエネルギー源もバッテリーからの電気で
ある。
In an electric vehicle that obtains driving power from a battery and a motor, it is necessary to move a cooler to lower the room temperature and to move a heater to raise the room temperature. From electricity. Also, in order to keep the battery in an appropriate temperature range, a heating mechanism and a cooling mechanism for the battery are required, and these energy sources are also electricity from the battery.

【0010】ところで、電気自動車においては、制動時
にモーター或いは発電機を回収して電気を発生し、それ
をバッテリーに充電することによって、運転の効率化を
図っている。しかしながら、発電した電流が大きすぎる
場合には全電流をバッテリーに充電することができない
ため、発電した電流の一部は熱に変換して、車外に捨て
るしかなかった。また、バッテリーが満充電になった後
は、発生する電気は全て熱に換えて車外に捨てるしかな
かった。従って、エネルギー効率の観点からは、非常に
長い下り坂にさしかかる可能性を常に考慮して、バッテ
リーの充電量は満充電に対して常に一定レベル以下に保
つ様なシステムが好ましい(例えば、充電スタンドで充
電する際には満充電の80%までしか充電しない等)。
しかしながら、電気自動車に必要とされるバッテリーの
重量は重く、また価格も高いので、バッテリーを余裕を
持って使うようなことは経済的でない。
In an electric vehicle, a motor or a generator is collected during braking to generate electricity, and the battery is charged to improve the driving efficiency. However, if the generated current is too large, the entire current cannot be charged to the battery, so a part of the generated current has to be converted into heat and discarded outside the vehicle. After the battery was fully charged, all the generated electricity had to be replaced with heat and discarded outside the vehicle. Therefore, from the viewpoint of energy efficiency, a system that always keeps the charged amount of the battery at a certain level or less with respect to a full charge in consideration of the possibility of approaching a very long downhill is preferable (for example, a charging stand). When charging with, only charge up to 80% of full charge, etc.).
However, since the weight and cost of the battery required for the electric vehicle are high, it is not economical to use the battery with a margin.

【0011】ところで、上述のように電気自動車では
熱、或いは冷熱を必要とするので、この系統に熱を貯蔵
する機構及び冷熱を貯蔵する機構を付加することで、バ
ッテリーに回収できずに熱として従来は捨てていた電気
エネルギーを有効に回収することができる。当該電気自
動車が熱を必要としている場合には、ヒーターに回生電
流を流して熱を発生し、その熱を貯蔵しておき、必要な
ときに熱を取り出すことによって回生エネルギーをより
有効に活用できる。また、当該電気自動車が冷熱を必要
としている場合には、クーラーに回生電流を流して冷熱
を発生し、その冷熱を貯蔵しておき、必要なときに冷熱
を取り出すことによって回生エネルギーをより有効に活
用できる。本発明によれば、熱及び冷熱の発生,分配系
統に、新たに貯蔵部分を付加するだけで済むので、僅か
なコスト増で、より効果的なエネルギー回生が可能とな
る。
[0011] By the way, as described above, electric vehicles require heat or cold, so by adding a mechanism for storing heat and a mechanism for storing cold to this system, the battery cannot be recovered and cannot be recovered as heat. Conventionally, electric energy that has been discarded can be effectively recovered. When the electric vehicle requires heat, a regenerative current is supplied to the heater to generate heat, the heat is stored, and the heat is taken out when necessary, so that the regenerative energy can be more effectively utilized. . In addition, when the electric vehicle requires cold heat, a regenerative current is supplied to a cooler to generate cold heat, the cold heat is stored, and the cold heat is taken out when necessary, thereby making the regenerative energy more effective. Can be used. According to the present invention, it is only necessary to newly add a storage portion to the generation and distribution system of heat and cold, so that more effective energy regeneration can be achieved with a slight increase in cost.

【0012】尚、熱および冷熱の分配手段として、水が
用いられる場合、本発明による方法では熱および冷熱の
分配系統の途中に小さなタンクを設けるだけで済むの
で、非常に好ましい。
[0012] When water is used as the means for distributing heat and cold, it is highly preferable that the method according to the present invention requires only a small tank in the middle of the heat and cold distribution system.

【0013】内燃機関とモーターとバッテリーを備える
ハイブリッド車においても、本発明の原理,作用,効果
は上述の電気自動車の場合と基本的に同じである。しか
しながら、ハイブリッド車ではバッテリーの容量が電気
自動車に比べてかなり小さいので、有効に回収できる回
生電気エネルギー量はかなり小さくなるので、本発明の
効果は大きい。しかしながら内燃機関を併用するため、
回生した電気エネルギーを熱に変換して貯蔵しておくメ
リットは少なく、回生した電気エネルギーの大部分は冷
熱として貯蔵されることが好ましい。そしてこの貯蔵さ
れた冷熱は、夏期においては室内の冷却に特に有効に利
用できる。また、内燃機関の冷却水の冷却に効果的に利
用することができる(冷却水の冷却ファンの電気を節約
できる)。本発明の特徴の一つは、蓄冷熱装置と蓄熱装
置の2個の装置を有している点である。
The principle, operation and effect of the present invention in a hybrid vehicle having an internal combustion engine, a motor and a battery are basically the same as those in the above-described electric vehicle. However, since the capacity of a battery in a hybrid vehicle is considerably smaller than that of an electric vehicle, the amount of regenerative electric energy that can be effectively recovered is considerably small, and the effect of the present invention is great. However, to use an internal combustion engine together,
The merit of converting regenerated electric energy into heat and storing it is small, and it is preferable that most of the regenerated electric energy be stored as cold heat. The stored cold heat can be used particularly effectively for cooling the room in summer. Further, it can be effectively used for cooling the cooling water of the internal combustion engine (the electricity of the cooling water cooling fan can be saved). One of the features of the present invention is that it has two devices, a cold storage device and a heat storage device.

【0014】一つの蓄熱装置に温熱と冷熱の両方を貯蔵
させることも考えられるが、車室内熱交換機に冷房機能
と同時に暖房機能を持たせると、これは単純な冷房機能
のみの役割を担うクーラーに比べて複雑な機構となるた
めに、コスト高になる。
It is conceivable to store both hot and cold heat in a single heat storage device. However, if a heat exchanger is provided with a cooling function at the same time as a cooling function, this is a cooler having only a simple cooling function. The cost is higher because the mechanism is more complicated than in the case of.

【0015】後述の本発明の実施例のように、温熱と冷
熱を貯蔵する装置を個別に具備しているため、温熱と冷
熱の取り出しは、非常にシンプルに行え、全体の機構を
単純にでき、結果として低コストである。
As in the embodiments of the present invention described later, since the apparatus for storing hot and cold heat is separately provided, the hot and cold heat can be taken out very simply and the whole mechanism can be simplified. , Resulting in low cost.

【0016】燃料電池を搭載した燃料電池自動車におい
ても、本発明の原理,作用,効果は上述の電気自動車の
場合と基本的に同じである。しかしながら、燃料電池自
動車ではバッテリーの容量が電気自動車,ハイブリッド
車に比べてかなり小さいので、有効に回収できる回生電
気エネルギー量は更に小さくなるので、本発明の効果は
大きい。しかしながら燃料電池から常に熱が発生されて
いるので、回生した電気エネルギーを熱に変換して貯蔵
しておくメリットは少なく、回生した電気エネルギーの
大部分は冷熱として貯蔵されることが好ましい。そして
この貯蔵された冷熱は、夏期においては室内の冷却に特
に有効に利用できる。また、燃料電池の冷却水の冷却に
効果的に利用することができる(冷却水の冷却ファンの
電気を節約できる)。
The principle, operation, and effects of the present invention in a fuel cell vehicle equipped with a fuel cell are basically the same as those in the above-described electric vehicle. However, in a fuel cell vehicle, the capacity of the battery is considerably smaller than that of an electric vehicle or a hybrid vehicle, so that the amount of regenerative electric energy that can be effectively recovered is further reduced, and the effect of the present invention is great. However, since heat is constantly generated from the fuel cell, there is little merit in converting regenerated electric energy into heat and storing it. Most of the regenerated electric energy is preferably stored as cold heat. The stored cold heat can be used particularly effectively for cooling the room in summer. Further, it can be effectively used for cooling the cooling water of the fuel cell (the electricity of the cooling fan of the cooling water can be saved).

【0017】また、燃料電池を搭載した燃料電池自動車
においては、制動時の回生電気エネルギーを冷熱ではな
く、水素と酸素の形で貯蔵することも有効である。回生
電気エネルギーで水の電気分解を行い、水素と酸素を発
生させ、その水素は燃料である水素を供給するラインに
送り込み、酸素は燃料電池に供給する空気に混ぜること
によって、制動時の運動エネルギーを有効に回収するこ
とができる。
In a fuel cell vehicle equipped with a fuel cell, it is also effective to store regenerative electric energy during braking in the form of hydrogen and oxygen instead of cold heat. Water is electrolyzed by regenerative electric energy to generate hydrogen and oxygen, and the hydrogen is sent to a line that supplies hydrogen as fuel, and oxygen is mixed with air supplied to the fuel cell to provide kinetic energy during braking. Can be effectively collected.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施例を説明す
る。
Embodiments of the present invention will be described below.

【0019】[実施例1]図1に、本発明による蓄熱機
構及び蓄冷熱機構を備えた電気自動車の温度制御システ
ム周辺の構成概略図を示す。
Embodiment 1 FIG. 1 is a schematic diagram showing a configuration around a temperature control system of an electric vehicle having a heat storage mechanism and a cold storage heat mechanism according to the present invention.

【0020】図1において、当該電気自動車の駆動力は
モーター兼発電機3によって発生され、その駆動力は駆
動輪1に伝えられる。自動車の加速時及び定常走行時に
は、モーター兼発電機3はバッテリー9からの電力を電
流・電圧制御機構4を通して供給され、動力を発生す
る。自動車の制動時には、モーター兼発電機3は発電機
として働いて、自動車の運動エネルギーを電気エネルギ
ーに変換し、その電力は電力を電流・電圧制御機構4を
通してバッテリーに充電される。この際、モーター兼発
電機3の発生する電流がバッテリー9の受け入れ能力を
超える場合には、その超過分の電流でクーラー10を運
転して冷熱を発生し、その冷熱を蓄冷熱装置11に貯蔵
する、或いはその超過分の電流でヒーター13を運転し
て熱を発生し、その熱を蓄熱装置14に貯蔵する。
In FIG. 1, the driving force of the electric vehicle is generated by a motor / generator 3, and the driving force is transmitted to driving wheels 1. During acceleration and steady running of the vehicle, the motor / generator 3 is supplied with electric power from the battery 9 through the current / voltage control mechanism 4 to generate power. During braking of the vehicle, the motor / generator 3 works as a generator to convert the kinetic energy of the vehicle into electric energy, and the power is charged to the battery through the current / voltage control mechanism 4. At this time, if the current generated by the motor / generator 3 exceeds the capacity of the battery 9, the cooler 10 is operated with the excess current to generate cold heat, and the cold heat is stored in the cold storage device 11. Alternatively, the heater 13 is operated with the excess current to generate heat, and the heat is stored in the heat storage device 14.

【0021】蓄冷熱装置11に貯蔵された冷熱は室内冷
房を必要とする際には、主として室内冷房用放冷熱器1
2で有効に利用され、またバッテリーの温度をコントロ
ールするための電池冷却用放冷熱器7でも利用できる。
蓄熱装置14に貯蔵された熱は室内暖房を必要とする際
には、主として室内暖房用放熱器15で有効に利用さ
れ、またバッテリーの温度をコントロールするための電
池加熱用放熱器8でも利用できる。電池冷却用放冷熱器
7及び電池加熱用放熱器8にはそれぞれにファン5及び
6が付属しており、バッテリー9に冷風、もしくは温風
を送ることでバッテリー9の温度を適切な範囲にコント
ロールする。
When the cooling energy stored in the regenerative heat storage device 11 requires indoor cooling, it is mainly used for the indoor cooling and cooling radiator 1.
2 can be used effectively, and can also be used in a battery cooling / cooling heater 7 for controlling the temperature of the battery.
The heat stored in the heat storage device 14 is effectively used mainly by the room heating radiator 15 when room heating is required, and can also be used by the battery heating radiator 8 for controlling the temperature of the battery. . Fans 5 and 6 are attached to the battery cooling radiator 7 and battery heating radiator 8, respectively, and the temperature of the battery 9 is controlled to an appropriate range by sending cool air or hot air to the battery 9. I do.

【0022】バッテリー9として容量を20kWh,最
大出力60kWの鉛蓄電池を使用して本発明による電気
自動車を作製した。8月初旬に室内冷房を使用した状態
で山岳地の実車走行試験を10回行った結果、1回の充
電での走行距離の平均は147kmであった。2月初旬に室
内暖房を使用した状態で山岳地の実車走行試験を10回
行った結果、1回の充電での走行距離は平均は131km
であった。
An electric vehicle according to the present invention was manufactured using a lead-acid battery having a capacity of 20 kWh and a maximum output of 60 kW as the battery 9. In early August, 10 vehicle tests were performed in a mountainous area using indoor air conditioning, and the average running distance per charge was 147 km. In early February, 10 tests were conducted on a mountainous area using indoor heating with indoor heating. The average mileage per charge was 131 km.
Met.

【0023】[比較例1]実施例1で作製した電気自動
車から、蓄冷熱装置11と蓄熱装置14を取り外して、
実施例1と同様の走行試験を行った。8月初旬に室内冷
房を使用した状態で山岳地の実車走行試験を10回行っ
た結果、1回の充電での走行距離の平均は132kmであ
った。2月初旬に室内暖房を使用した状態で山岳地の実
車走行試験を10回行った結果、1回の充電での走行距
離の平均は110kmであった。
Comparative Example 1 The regenerative heat storage device 11 and the regenerative heat storage device 14 were removed from the electric vehicle manufactured in Example 1,
The same running test as in Example 1 was performed. In early August, the vehicle was run in a mountainous area ten times with indoor air conditioning, and the average running distance per charge was 132 km. In early February, the vehicle was run 10 times in a mountainous area with indoor heating, and as a result, the average running distance per charge was 110 km.

【0024】実施例1と比較例1より、本発明による電
気自動車では走行距離が10〜15%増すことが分か
る。
From Example 1 and Comparative Example 1, it can be seen that the traveling distance of the electric vehicle according to the present invention is increased by 10 to 15%.

【0025】[実施例2]図2に、本発明による蓄熱機
構及び蓄冷熱機構を備えた、内燃機関とモーターとバッ
テリーを備えるハイブリッド車の温度制御システム周辺
の構成概略図を示す。
[Embodiment 2] FIG. 2 is a schematic diagram showing a configuration around a temperature control system of a hybrid vehicle having an internal combustion engine, a motor and a battery, provided with a heat storage mechanism and a cold storage heat mechanism according to the present invention.

【0026】図2において、当該ハイブリッド車の駆動
力はエンジン17及びモーター兼発電機3によって発生
され、その駆動力は駆動力合成装置を兼ねる変速機16
を通して駆動輪1に伝えられる。本実施例で作製したハ
イブリッド車においては、エンジン17とモーター兼発
電機3はパラレルに配置した。エンジン17はなるべく
一定の出力を保ち、走行に必要な駆動力の変動分は、モ
ーターで担うように制御する。バッテリー9からの電力
を電流・電圧制御機構4を通して供給し、モーター兼発
電機3で動力を発生する。自動車の制動時には、モータ
ー兼発電機3は発電機として働いて、自動車の運動エネ
ルギーを電気エネルギーに変換し、その電力は電力を電
流・電圧制御機構4を通してバッテリー9に充電され
る。この際、モーター兼発電機3の発生する電流がバッ
テリー9の受け入れ能力を超える場合には、その超過分
の電流でクーラー10を運転して冷熱を発生し、その冷
熱を蓄冷熱装置11に貯蔵する。
In FIG. 2, the driving force of the hybrid vehicle is generated by an engine 17 and a motor / generator 3, and the driving force is transmitted by a transmission 16 also serving as a driving force synthesizing device.
To the drive wheels 1 through In the hybrid vehicle manufactured in this example, the engine 17 and the motor / generator 3 were arranged in parallel. The engine 17 maintains a constant output as much as possible, and controls the motor so that the fluctuation of the driving force required for traveling is carried by the motor. Electric power from the battery 9 is supplied through the current / voltage control mechanism 4, and power is generated by the motor / generator 3. When braking the vehicle, the motor / generator 3 functions as a generator to convert the kinetic energy of the vehicle into electric energy, and the electric power is charged to the battery 9 through the current / voltage control mechanism 4. At this time, if the current generated by the motor / generator 3 exceeds the capacity of the battery 9, the cooler 10 is operated with the excess current to generate cold heat, and the cold heat is stored in the cold storage device 11. I do.

【0027】蓄冷熱装置11に貯蔵された冷熱は室内冷
房を必要とする際には、主として室内冷房用放冷熱器1
2で有効に利用され、またバッテリーの温度をコントロ
ールするための電池冷却用放冷熱器7でも利用できる。
また、室内冷房を必要としない場合には、蓄冷熱装置1
1に貯蔵された冷熱をエンジンを冷却するための冷却水
を冷却するために使用することができる。通常のハイブ
リッド車においては、エンジンの冷却水はラジエーター
19とファン18によって冷却されるが、本発明ではこ
の冷却水系統の途中に蓄冷熱装置11を配置している。
When the cooling energy stored in the regenerative heat storage device 11 requires indoor cooling, it is mainly used for the indoor cooling / cooling radiator 1.
2 can be used effectively, and can also be used in a battery cooling / cooling heater 7 for controlling the temperature of the battery.
When indoor cooling is not required, the cold storage heat device 1
The cold stored in 1 can be used to cool the cooling water for cooling the engine. In a normal hybrid vehicle, the cooling water of the engine is cooled by a radiator 19 and a fan 18. In the present invention, the cold storage heat device 11 is arranged in the middle of the cooling water system.

【0028】バッテリー9として容量を3kWh,最大
出力30kWの鉛蓄電池を使用して本発明による電気自
動車を作製した。搭載ガソリンを10リットルとして、
8月初旬に室内冷房を使用した状態で山岳地の実車走行
試験を10回行った結果、1回の走行距離の平均は20
3kmであった。2月初旬に室内暖房を使用した状態で山
岳地の実車走行試験を10回行った結果、1回の走行距
離の平均は205kmであった。
An electric vehicle according to the present invention was manufactured using a lead-acid battery having a capacity of 3 kWh and a maximum output of 30 kW as the battery 9. Assuming that the onboard gasoline is 10 liters,
In early August, 10 vehicle tests were performed in a mountainous area using indoor air-conditioning, and the average running distance was 20 times.
It was 3 km. In early February, the vehicle was tested on a mountainous area 10 times with indoor heating in use. As a result, the average of the mileage per run was 205 km.

【0029】[比較例2]実施例2で作製した電気自動
車から、蓄冷熱装置11を取り外して、実施例2と同様
の走行試験を行った。搭載ガソリンを10リットルとし
て、8月初旬に室内冷房を使用した状態で山岳地の実車
走行試験を10回行った結果、1回の走行距離の平均は
170kmであった。2月初旬に室内暖房を使用した状態
で山岳地の実車走行試験を10回行った結果、1回の走
行距離の平均は197kmであった。実施例2と比較例2
より、本発明による電気自動車では走行距離が4〜19
%増すことが分かる。
[Comparative Example 2] A running test similar to that of Example 2 was performed by removing the regenerative heat storage device 11 from the electric vehicle manufactured in Example 2. Assuming 10 liters of on-board gasoline and using the indoor air conditioner in early August, the vehicle was run 10 times in a mountainous area, and the average running distance was 170 km. In early February, the vehicle was tested on a mountainous area 10 times with indoor heating, and the average running distance was 197 km. Example 2 and Comparative Example 2
Thus, the electric vehicle according to the present invention has a mileage of 4 to 19
% Increase.

【0030】(参考例1)図3に、本発明の参考例によ
る酸素貯蔵タンク及び水素貯蔵タンクを備えた、燃料電
池を搭載した燃料電池自動車のシステム構成概略図を示
す。
(Example 1) FIG. 3 is a schematic diagram showing a system configuration of a fuel cell vehicle equipped with a fuel cell and having an oxygen storage tank and a hydrogen storage tank according to a reference example of the present invention.

【0031】図3において、当該燃料電池自動車の駆動
力はモーター兼発電機3によって発生され、その駆動力
は変速機16を通して駆動輪1に伝えられる。固体高分
子型燃料電池(PEFC)21で発電を行い、電流・電
圧制御機構4を通して電力をモーター兼発電機3に供給
し、動力を発生する。またPEFC21で発生した電力は電流
・電圧制御機構4を通してバッテリー9に充電もしてお
く。本参考例においては、バッテリーの容量を200W
hとしたので、モーターへ供給する電力はすべてPEFC21
で発電した電力でまかなうこととしたが、バッテリーの
容量を大きくすることで、ハイブリッド方式とすること
も可能である。本参考例では、バッテリーは基本的には
始動時の電源として使用し、その他短時間の加速の際に
アシストする程度の働きを受け持っている。
In FIG. 3, the driving force of the fuel cell vehicle is generated by a motor / generator 3, and the driving force is transmitted to the driving wheels 1 through a transmission 16. Electric power is generated by a polymer electrolyte fuel cell (PEFC) 21, and electric power is supplied to a motor / generator 3 through a current / voltage control mechanism 4 to generate motive power. The power generated by the PEFC 21 is also charged in the battery 9 through the current / voltage control mechanism 4. In this reference example, the capacity of the battery is 200 W
h, the power supplied to the motor is all PEFC21
However, it is possible to use a hybrid system by increasing the capacity of the battery. In the present reference example, the battery is basically used as a power source at the time of starting, and has a function of assisting in the case of short-time acceleration.

【0032】PEFC21は水素ボンベ23から水素、そして
空気吸入空気22から車外から取り入れた空気を供給さ
れ、発電を行う。空気吸入装置22からPEFC21に入った
空気は、一部酸素が発電に使用され、PEFCから多量
の水分を受け取り、気水分離器25を通った後、車外に
排出される。気水分離器25で分離された水は冷却水系
統に回され、冷却水タンク26に貯蔵される。本参考例
では、水素ボンベに純水素を充填して使用している。水
素ボンベ23を出た水素ガスはPEFC21で一部発電に使用
された後、コンプレッサで加圧され、再び水素供給ライ
ンに戻される。PEFC21で発電を行うと熱が発生するの
で、PEFC21は冷却水によって適正温度になるように冷却
しなければならない。ポンプ27で加圧された冷却水は
PEFC21を冷却したのち、必要な場合にはラジエーター1
9及びファン18によって冷却される。
The PEFC 21 is supplied with hydrogen from the hydrogen cylinder 23 and air taken in from outside the vehicle from the air intake air 22 to generate power. Part of the air entering the PEFC 21 from the air intake device 22 is used for power generation, receives a large amount of moisture from the PEFC, passes through the steam separator 25, and is discharged outside the vehicle. The water separated by the steam separator 25 is sent to a cooling water system and stored in a cooling water tank 26. In this reference example, a hydrogen cylinder is used after being filled with pure hydrogen. The hydrogen gas exiting the hydrogen cylinder 23 is partially used for power generation by the PEFC 21 and then pressurized by the compressor and returned to the hydrogen supply line again. When power is generated by the PEFC 21, heat is generated, so the PEFC 21 must be cooled to an appropriate temperature with cooling water. The cooling water pressurized by the pump 27
After cooling PEFC21, radiator 1 if necessary
9 and the fan 18.

【0033】燃料電池自動車を制動が掛ける場合、モー
ター兼発電機3を発電機として動作させて、電力を発生
し、この電力を冷却水系統につながれた水電気分解装置
31に供給する。この水電気分解装置30では水の電気
分解を行って酸素及び水素を発生する。この酸素は酸素
貯蔵タンク31に貯蔵され、必要に応じて空気ラインに
供給される。PEFC21の出力は空気中の酸素濃度が高いほ
ど高出力となるので、燃料電池自動車の加速時に酸素を
供給するとより好ましい。また水電気分解装置30で生
成した水素は水素貯蔵タンク32に貯蔵され、必要に応
じて水素ラインに供給される。
When the fuel cell vehicle is braked, the motor / generator 3 is operated as a generator to generate electric power, and this electric power is supplied to the water electrolysis device 31 connected to the cooling water system. The water electrolysis device 30 performs electrolysis of water to generate oxygen and hydrogen. This oxygen is stored in the oxygen storage tank 31 and supplied to the air line as required. Since the output of the PEFC 21 increases as the oxygen concentration in the air increases, it is more preferable to supply oxygen during acceleration of the fuel cell vehicle. The hydrogen generated by the water electrolyzer 30 is stored in a hydrogen storage tank 32 and supplied to a hydrogen line as needed.

【0034】PEFC21の最大出力を50kW、搭載水素を
2500モルとして、8月初旬に室内冷房を使用した状
態で山岳地の実車走行試験を10回行った結果、1回の
走行距離の平均は142kmであった。2月初旬に室内暖
房を使用した状態で山岳地の実車走行試験を10回行っ
た結果、1回の走行距離の平均は137kmであった。 (参考例2)参考例1で作製した燃料電池自動車から、
水電気分解装置30,酸素貯蔵タンク31及び水素貯蔵
タンク32を取り外して、実施例3と同様の走行試験を
行った。搭載水素を2500モルとして、8月初旬に室
内冷房を使用した状態で山岳地の実車走行試験を10回
行った結果、1回の走行距離の平均は113kmであっ
た。2月初旬に室内暖房を使用した状態で山岳地の実車
走行試験を10回行った結果、1回の走行距離の平均は
107kmであった。
The maximum output of PEFC21 was set to 50 kW, and the installed hydrogen was set to 2500 mol. In early August, 10 actual vehicle running tests were performed in a mountainous area using indoor cooling, and as a result, the average running distance for each run was 142 km. Met. In early February, the vehicle was run 10 times in a mountainous area using indoor heating, and as a result, the average of the mileage per run was 137 km. (Reference Example 2) From the fuel cell vehicle manufactured in Reference Example 1,
The same running test as in Example 3 was performed by removing the water electrolysis device 30, the oxygen storage tank 31, and the hydrogen storage tank 32. Assuming that the installed hydrogen is 2500 mol, the vehicle was tested 10 times in a mountainous area in early August using indoor air-conditioning, and as a result, the average of the mileage per run was 113 km. In early February, the vehicle was tested in mountainous areas 10 times with indoor heating, and the average running distance was 107 km.

【0035】参考例1を参考例2と比較すると、燃料電
池自動車では走行距離が26〜28%増すことが分か
る。
Comparing Reference Example 1 with Reference Example 2, it can be seen that the running distance of the fuel cell vehicle increases by 26 to 28%.

【0036】[0036]

【発明の効果】本発明によれば、効率の良い、走行距離
の長い電気自動車,ハイブリッド車,燃料電池電を得る
ことができる。
According to the present invention, it is possible to obtain an electric vehicle, a hybrid vehicle, and a fuel cell which are efficient and have a long running distance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による蓄熱機構及び蓄冷熱機構
を備えた電気自動車の温度制御システム周辺の構成概略
図。
FIG. 1 is a schematic configuration diagram around a temperature control system of an electric vehicle including a heat storage mechanism and a cold storage heat mechanism according to an embodiment of the present invention.

【図2】本発明の実施例による蓄熱機構及び蓄冷熱機構
を備えたハイブリッド車の温度制御システム周辺の構成
概略図。
FIG. 2 is a schematic configuration diagram around a temperature control system of a hybrid vehicle including a heat storage mechanism and a cool storage heat mechanism according to an embodiment of the present invention.

【図3】本発明の参考例による酸素貯蔵タンク及び水素
貯蔵タンクを備えた、燃料電池を搭載した燃料電池自動
車のシステム周辺の構成概略図。
FIG. 3 is a schematic configuration diagram of a fuel cell vehicle equipped with a fuel cell equipped with an oxygen storage tank and a hydrogen storage tank according to a reference example of the present invention.

【符号の説明】[Explanation of symbols]

1…駆動輪、2…機械式ブレーキ、3…モーター兼発電
機、4…電流・電圧制御機構、5,6,18…ファン、
7…電気冷却用放冷熱器、8…電池加熱用放熱器、9…
バッテリー、10…クーラー、11…蓄冷熱装置、12
…室内冷房用放冷熱器、13…ヒーター、14…蓄熱装
置、15…室内暖房用放熱器、16…変速機、17…エ
ンジン、19…ラジエーター、21…固体高分子型燃料
電池(PEFC)、22…空気吸入装置、23…水素ボ
ンベ、24…コンプレッサー、25…気水分離器、26
…冷却水タンク、27…ポンプ、30…水電気分解装
置、31…酸素貯蔵タンク、32…水素貯蔵タンク。
DESCRIPTION OF SYMBOLS 1 ... Drive wheel, 2 ... Mechanical brake, 3 ... Motor / generator, 4 ... Current / voltage control mechanism, 5, 6, 18 ... Fan,
7: Cooling radiator for electric cooling, 8: Heat radiator for battery heating, 9 ...
Battery, 10 ... cooler, 11 ... regenerator, 12
... indoor cooling air cooler, 13 ... heater, 14 ... heat storage device, 15 ... indoor heating radiator, 16 ... transmission, 17 ... engine, 19 ... radiator, 21 ... polymer electrolyte fuel cell (PEFC), 22 ... air suction device, 23 ... hydrogen cylinder, 24 ... compressor, 25 ... steam-water separator, 26
... cooling water tank, 27 ... pump, 30 ... water electrolyzer, 31 ... oxygen storage tank, 32 ... hydrogen storage tank.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B60T 1/10 B60T 1/10 H02J 7/00 H02J 7/00 P (72)発明者 山賀 賢史 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 加茂 友一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5G003 AA07 BA01 CA01 CA11 CC02 DA07 DA17 FA08 5H115 PA11 PG04 PI11 PI16 PI18 PI29 PI30 PO17 PU01 PU23 PU25 QA02 QA04 QI04 SE04 SE06 UI29 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B60T 1/10 B60T 1/10 H02J 7/00 H02J 7/00 P (72) Inventor Takeshi Yamaga Hitachi, Ibaraki 7-1-1, Omika-cho, Hitachi City Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Yuichi Kamo 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in Hitachi Research Laboratory, Hitachi, Ltd. (Reference) 5G003 AA07 BA01 CA01 CA11 CC02 DA07 DA17 FA08 5H115 PA11 PG04 PI11 PI16 PI18 PI29 PI30 PO17 PU01 PU23 PU25 QA02 QA04 QI04 SE04 SE06 UI29

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】電気エネルギーを用いて駆動力の全て及び
一部を得る自動車において、蓄熱機構と蓄冷熱機構の両
方を具備することを特徴とする自動車。
An automobile which obtains all or a part of a driving force by using electric energy, is provided with both a heat storage mechanism and a cold storage heat mechanism.
【請求項2】バッテリーに貯蔵された電気エネルギーを
用いてモーターを動かして動力を得る電気自動車におい
て、蓄熱機構と蓄冷熱機構の両方を具備することを特徴
とする自動車。
2. An electric vehicle which obtains power by operating a motor using electric energy stored in a battery, wherein the electric vehicle has both a heat storage mechanism and a cold storage heat mechanism.
【請求項3】内燃機関とモーターとバッテリーを備える
ハイブリッド機構を有する自動車において、蓄冷熱機構
を具備することを特徴とする自動車。
3. An automobile having a hybrid mechanism including an internal combustion engine, a motor and a battery, wherein the automobile has a regenerative heat storage mechanism.
【請求項4】燃料電池とバッテリーとモーターを備える
自動車において、蓄冷熱機構を具備することを特徴とす
る自動車。
4. An automobile comprising a fuel cell, a battery and a motor, wherein the automobile is provided with a cold storage mechanism.
【請求項5】請求項1ないし4において、該蓄熱機構及
び該冷蓄熱機構が水に蓄熱或いは蓄冷熱することを特徴
とする自動車。
5. An automobile according to claim 1, wherein said heat storage mechanism and said cold heat storage mechanism store heat or cool heat in water.
【請求項6】電気エネルギーを用いて駆動力の全て及び
一部を得る自動車であって、制動の有無を検出する制動
検出部と、その時刻に自動車全体としては熱を必要とす
るか冷熱を必要とするかを判定する温度判定機構と、制
動時の運動エネルギーを熱に変換する熱変換機構と、制
動時の運動エネルギーを冷熱に変換する冷熱変換機構
と、前記熱を貯蔵する熱貯蔵機構と、前記冷熱を貯蔵す
る冷熱貯蔵機構と、それらをコントロールする制御機構
を備えることを特徴とする自動車。
6. A vehicle for obtaining all or a part of a driving force by using electric energy, a braking detection unit for detecting the presence / absence of braking, and whether the whole vehicle needs heat or cold at that time. A temperature determination mechanism for determining whether it is necessary, a heat conversion mechanism for converting kinetic energy during braking to heat, a cold heat conversion mechanism for converting kinetic energy during braking to cold heat, and a heat storage mechanism for storing the heat And a cold storage mechanism for storing the cold heat, and a control mechanism for controlling the cold storage mechanism.
JP10227832A 1998-08-12 1998-08-12 Automobile Pending JP2000059918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10227832A JP2000059918A (en) 1998-08-12 1998-08-12 Automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10227832A JP2000059918A (en) 1998-08-12 1998-08-12 Automobile

Publications (1)

Publication Number Publication Date
JP2000059918A true JP2000059918A (en) 2000-02-25

Family

ID=16867080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10227832A Pending JP2000059918A (en) 1998-08-12 1998-08-12 Automobile

Country Status (1)

Country Link
JP (1) JP2000059918A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291106A (en) * 2001-03-29 2002-10-04 Mitsubishi Motors Corp Battery charger for electric vehicle
JP2005130629A (en) * 2003-10-24 2005-05-19 Toyota Motor Corp Automobile
JP2006059573A (en) * 2004-08-17 2006-03-02 Toyota Motor Corp Fuel cell and air conditioning control system
JP2006347506A (en) * 2005-06-20 2006-12-28 Toyota Motor Corp Energy control device for heating and cooling
JP2008513285A (en) * 2004-09-17 2008-05-01 イートン コーポレーション Clean power system
JP2008265664A (en) * 2007-04-24 2008-11-06 Nippon Yusoki Co Ltd Air-conditioning apparatus of electric vehicle, electric vehicle equipped therewith, and air-conditioning system therefor
KR100878949B1 (en) * 2007-12-05 2009-01-19 현대자동차주식회사 Cooling system for hev and method for controlling the same
JP2009090748A (en) * 2007-10-05 2009-04-30 Toyota Motor Corp Energy recovery device
JP2009274586A (en) * 2008-05-14 2009-11-26 Denso Corp Energy management system for vehicle
JP2009286226A (en) * 2008-05-28 2009-12-10 Denso Corp Air conditioning device for vehicle
JP2010167977A (en) * 2009-01-26 2010-08-05 Toyota Central R&D Labs Inc Secondary battery system and vehicle equipped with the same
JP2011073536A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Thermodynamic cycle system for moving vehicle
JP2011109816A (en) * 2009-11-18 2011-06-02 Hitachi Ltd Control system for electric vehicle and electric vehicle equipped with the same
WO2011142024A1 (en) * 2010-05-14 2011-11-17 トヨタ自動車株式会社 Temperature management system for vehicles
JP2012050299A (en) * 2010-08-30 2012-03-08 Denso Corp Charge-discharge management system for vehicle
WO2012114439A1 (en) * 2011-02-21 2012-08-30 株式会社 日立製作所 Temperature control system of vehicle-mounted battery
JP2012231659A (en) * 2011-04-15 2012-11-22 Hiromitsu Ando Moving body
JP2012530642A (en) * 2009-06-25 2012-12-06 リ−テック・バッテリー・ゲーエムベーハー Vehicle having drive device
JP2012254760A (en) * 2011-06-10 2012-12-27 Toyota Central R&D Labs Inc Vehicle braking energy regenerative device
JP2013115996A (en) * 2011-11-30 2013-06-10 Toyota Central R&D Labs Inc Energy storing unit
CN103492204A (en) * 2011-04-18 2014-01-01 株式会社电装 Vehicle temperature adjusting apparatus, and vehicle-mounted thermal system
WO2014136817A1 (en) * 2013-03-06 2014-09-12 株式会社ミクニ Vehicular warming system
JP2014218135A (en) * 2013-05-07 2014-11-20 株式会社デンソー Temperature control system
CN104943693A (en) * 2014-03-31 2015-09-30 罗伯特·博世有限公司 Method for operating heat accumulator of motor vehicle
KR101620743B1 (en) 2014-09-15 2016-05-12 한온시스템 주식회사 Modular air conditioning system
JP2017114379A (en) * 2015-12-25 2017-06-29 三菱自動車工業株式会社 Energy regenerative system of automobile
CN107054130A (en) * 2017-03-31 2017-08-18 上海蔚来汽车有限公司 The cooling control method and system of energy-storage units
WO2019130703A1 (en) * 2017-12-26 2019-07-04 カルソニックカンセイ株式会社 Energy management system
JP2019527012A (en) * 2016-08-23 2019-09-19 中車青島四方机車車輛股▲フン▼有限公司 Railway traffic braking energy recycling system and hybrid rail traffic
WO2020100846A1 (en) * 2018-11-13 2020-05-22 Nok株式会社 Heat management system
CN112721637A (en) * 2021-02-08 2021-04-30 镇江海姆霍兹传热传动系统有限公司 Electric vehicle and energy recovery system thereof

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291106A (en) * 2001-03-29 2002-10-04 Mitsubishi Motors Corp Battery charger for electric vehicle
JP2005130629A (en) * 2003-10-24 2005-05-19 Toyota Motor Corp Automobile
JP2006059573A (en) * 2004-08-17 2006-03-02 Toyota Motor Corp Fuel cell and air conditioning control system
JP2008513285A (en) * 2004-09-17 2008-05-01 イートン コーポレーション Clean power system
JP4771233B2 (en) * 2004-09-17 2011-09-14 イートン コーポレーション Clean power system
JP2006347506A (en) * 2005-06-20 2006-12-28 Toyota Motor Corp Energy control device for heating and cooling
JP2008265664A (en) * 2007-04-24 2008-11-06 Nippon Yusoki Co Ltd Air-conditioning apparatus of electric vehicle, electric vehicle equipped therewith, and air-conditioning system therefor
JP2009090748A (en) * 2007-10-05 2009-04-30 Toyota Motor Corp Energy recovery device
KR100878949B1 (en) * 2007-12-05 2009-01-19 현대자동차주식회사 Cooling system for hev and method for controlling the same
JP2009274586A (en) * 2008-05-14 2009-11-26 Denso Corp Energy management system for vehicle
JP2009286226A (en) * 2008-05-28 2009-12-10 Denso Corp Air conditioning device for vehicle
JP2010167977A (en) * 2009-01-26 2010-08-05 Toyota Central R&D Labs Inc Secondary battery system and vehicle equipped with the same
US8935023B2 (en) 2009-01-26 2015-01-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Secondary battery system and vehicle having secondary battery system
JP4692643B2 (en) * 2009-01-26 2011-06-01 株式会社豊田中央研究所 Secondary battery system and vehicle equipped with secondary battery system
JP2012530642A (en) * 2009-06-25 2012-12-06 リ−テック・バッテリー・ゲーエムベーハー Vehicle having drive device
JP2011073536A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Thermodynamic cycle system for moving vehicle
JP2011109816A (en) * 2009-11-18 2011-06-02 Hitachi Ltd Control system for electric vehicle and electric vehicle equipped with the same
CN102725157A (en) * 2010-05-14 2012-10-10 丰田自动车株式会社 Temperature management system for vehicles
WO2011142024A1 (en) * 2010-05-14 2011-11-17 トヨタ自動車株式会社 Temperature management system for vehicles
JP5310943B2 (en) * 2010-05-14 2013-10-09 トヨタ自動車株式会社 Vehicle temperature management system
US8725331B2 (en) 2010-08-30 2014-05-13 Denso Corporation Charge-discharge management apparatus and system for vehicle
JP2012050299A (en) * 2010-08-30 2012-03-08 Denso Corp Charge-discharge management system for vehicle
WO2012114439A1 (en) * 2011-02-21 2012-08-30 株式会社 日立製作所 Temperature control system of vehicle-mounted battery
JP5571843B2 (en) * 2011-02-21 2014-08-13 株式会社日立製作所 Automotive battery temperature control system
JP2012231659A (en) * 2011-04-15 2012-11-22 Hiromitsu Ando Moving body
CN103492204A (en) * 2011-04-18 2014-01-01 株式会社电装 Vehicle temperature adjusting apparatus, and vehicle-mounted thermal system
DE112012001744B4 (en) * 2011-04-18 2020-02-20 Denso Corporation Vehicle temperature control device and vehicle thermal system
US9796241B2 (en) 2011-04-18 2017-10-24 Denso Corporation Vehicle temperature control apparatus and in-vehicle thermal system
JP2012254760A (en) * 2011-06-10 2012-12-27 Toyota Central R&D Labs Inc Vehicle braking energy regenerative device
JP2013115996A (en) * 2011-11-30 2013-06-10 Toyota Central R&D Labs Inc Energy storing unit
WO2014136817A1 (en) * 2013-03-06 2014-09-12 株式会社ミクニ Vehicular warming system
JP2014218135A (en) * 2013-05-07 2014-11-20 株式会社デンソー Temperature control system
CN104943693A (en) * 2014-03-31 2015-09-30 罗伯特·博世有限公司 Method for operating heat accumulator of motor vehicle
KR101620743B1 (en) 2014-09-15 2016-05-12 한온시스템 주식회사 Modular air conditioning system
JP2017114379A (en) * 2015-12-25 2017-06-29 三菱自動車工業株式会社 Energy regenerative system of automobile
JP2019527012A (en) * 2016-08-23 2019-09-19 中車青島四方机車車輛股▲フン▼有限公司 Railway traffic braking energy recycling system and hybrid rail traffic
CN107054130A (en) * 2017-03-31 2017-08-18 上海蔚来汽车有限公司 The cooling control method and system of energy-storage units
CN107054130B (en) * 2017-03-31 2019-12-31 上海蔚来汽车有限公司 Cooling control method and system for energy storage unit
JP2019118178A (en) * 2017-12-26 2019-07-18 カルソニックカンセイ株式会社 Energy management system
WO2019130703A1 (en) * 2017-12-26 2019-07-04 カルソニックカンセイ株式会社 Energy management system
US20200406776A1 (en) * 2017-12-26 2020-12-31 Marelli Corporation Energy Management System
WO2020100846A1 (en) * 2018-11-13 2020-05-22 Nok株式会社 Heat management system
CN112721637A (en) * 2021-02-08 2021-04-30 镇江海姆霍兹传热传动系统有限公司 Electric vehicle and energy recovery system thereof

Similar Documents

Publication Publication Date Title
JP2000059918A (en) Automobile
JP3353299B2 (en) Electric car
AU2005270149B2 (en) High temperature battery system for hybrid locomotive and offhighway vehicles
JP2932607B2 (en) Electric car
US8783397B2 (en) Energy management system for a hybrid-electric vehicle
US9975435B2 (en) Device for energy supply of trains
US8037954B2 (en) Electric vehicle and vehicle charging system
JP5409809B2 (en) Vehicle energy management device
US10618399B2 (en) Front-engine extended range electric passenger vehicle
JP2004127747A (en) Fuel cell mounted vehicle
JP2014518803A (en) Hybrid vehicle with multiple energy subsystems
JP2011116331A (en) Air conditioner of electric vehicle and method for controlling the same
CN108749586B (en) Energy recovery system of extended range electric vehicle
KR20110048950A (en) Air-conditioning system of electric vehicle and method for controlling the same
CN104626958A (en) High-power solar intelligent hybrid power automobile
JP6545247B1 (en) Energy management system
JP2004066889A (en) Battery unit mounting structure
CN203902560U (en) Device for comprehensively utilizing heat of fuel cell tramcar
JP2000350308A (en) Hybrid railroad car
CN103231661A (en) Electric vehicle driven by Stirling engine
JPH11113105A (en) Electric car
JP2005312243A (en) Regeneration power control device of moving body
CN103786720A (en) Power cooling control device of hybrid power vehicle
CN204472537U (en) A kind of big-power solar intelligent mixed power automobile
JPH07310637A (en) Internal combustion engine warming-up device for hybrid electric vehicle