JPH0536526A - Method for cooling forced cooling conductor - Google Patents
Method for cooling forced cooling conductorInfo
- Publication number
- JPH0536526A JPH0536526A JP3191498A JP19149891A JPH0536526A JP H0536526 A JPH0536526 A JP H0536526A JP 3191498 A JP3191498 A JP 3191498A JP 19149891 A JP19149891 A JP 19149891A JP H0536526 A JPH0536526 A JP H0536526A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- cooling
- superconducting
- conductor
- forced cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、強制(中空)冷却型超
電導導体を用いた、核融合炉,加速器,送電線をはじ
め、超電導装置等に使用される強制(中空)冷却型超電
導導体冷却方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a forced (hollow) cooling type superconducting conductor cooling system using a forced (hollow) cooling type superconducting conductor, such as a fusion reactor, an accelerator, a transmission line, or a superconducting device. Regarding the method.
【0002】[0002]
【従来の技術】超電導導体を用いた超電導装置を冷却す
る方法は、直接、冷媒中に浸漬する直接浸漬冷却法と超
電導導体の中空部分に極低温冷媒を強制的に流して冷却
する強制冷却法がある。浸漬冷却法の場合は、コイル外
表面全体から多量の冷媒で冷却することができるために
コイルの安定性は向上する。核融合炉,加速器,送電線
等のようにコイルが大型になるとこのコイルを挿入する
大型のクライオスタットとコイルを、直接、冷却する多
量の極低温冷媒が一度に必要になり、冷媒の確保と冷媒
の蒸発量等で液化機および回収系が大型になり維持管理
が困難になる。一方、強制(中空)冷却型超電導導体の
場合、超電導導体自身が冷媒通路を保持しており、極
く、小量の冷媒を連続的に流すことにより冷却が可能に
なる大きな特徴がある。しかし、強制(中空)冷却型超
電導導体を使用すると断面積が大きくなり電流密度が低
下する欠点と冷媒が流れにくくなる欠点がある。この問
題を軽減するために、安定化材に超電導線材を埋め込ん
で中空部分を完全に空洞、且つ、大きくし冷媒の流れを
良くする方法もある。しかし、この方法は、超電導線を
間接的に冷却する方法になり冷却効率を低下させて応答
性が低下する欠点が生じる。また、超電導導体の製作構
造が複雑で製造コストが高く、さらに、超電導を取り扱
う上で最も重要なコイルの電流密度が低下する大きい欠
点がある。この欠点を改善するために超電導体で占積率
を増やし、超電導導体を冷媒が浸漬冷却ができる高電流
密度構造の超電導導体を製作する傾向にある。しかし、
初期冷却時は、圧力損失が高くなり冷媒流量が流れにく
くなり、予冷に長時間を必要とする別の欠点が生まれ
る。さらに、使用中にクエンチを起こすと、蒸発したガ
スは爆発的に増加する。例えば、4.2K の液体ヘリウ
ムで七百倍にも膨張し、冷媒の通路は圧力上昇によりほ
とんどの冷媒は排除され大電流の発熱エネルギにより場
合によっては溶断する可能性が十分考えられる。この欠
点を改善する方法が多数提案されている。特願昭59−24
4484号明細書によれば、強制(中空)冷却型超電導導体
に並行させた中空冷却管路を取付け、入り口側の圧損を
少なくする方法が提案されている。しかし、超電導導体
と並行に取り付けたままコイルを製作すると、コイル自
身の電流密度が低下する大きな欠点が生じる。また、コ
イルの外装側だけに冷却管を巻付ける方法も提案されて
いるがコイル本体内部に冷却熱が伝わりにくくなる欠点
が生じる。更に、極低温冷媒、例えば、液体ヘリウムを
減圧して超臨界圧ヘリウムに変えて使用する方法等が特
公平2−50565号公報にある。しかし、強制(中空)冷却
型超電導導体の入り口側では、実際に冷媒を送り出すた
めに加圧を加える必要があり、この超臨界圧ヘリウムの
性質をそのまま確保して使用することは極めて困難とな
る。この理由は、送り込むために圧力を加える必要が生
じる。すなわち、冷媒通路内に入った冷媒は、熱交換に
より蒸発ガスとなり、冷媒自身の圧力が上昇し超臨界ヘ
リウムの性質をそのまま保持しているとは考えられな
い。さらに、この冷媒を連続的に作り出す装置は大型で
温度調節をする圧力調整が複雑となり、装置自身の維持
管理が困難となる多くの問題等が発生する。2. Description of the Related Art A method for cooling a superconducting device using a superconducting conductor is a direct immersion cooling method in which a superconducting conductor is directly immersed in a refrigerant, or a forced cooling method in which a cryogenic refrigerant is forced to flow into a hollow portion of the superconducting conductor for cooling. There is. In the case of the immersion cooling method, the stability of the coil is improved because the entire outer surface of the coil can be cooled with a large amount of refrigerant. When a coil becomes large, such as in a fusion reactor, accelerator, or transmission line, a large amount of cryogenic refrigerant that directly cools the large cryostat and the coil into which this coil is inserted is needed at one time. The liquefier and the recovery system become large due to the amount of evaporation, etc., and maintenance becomes difficult. On the other hand, in the case of the forced (hollow) cooling type superconducting conductor, the superconducting conductor itself has a refrigerant passage, and has a great feature that cooling can be performed by continuously flowing a very small amount of refrigerant. However, when the forced (hollow) cooling type superconducting conductor is used, there are disadvantages that the cross-sectional area becomes large and the current density decreases and that the refrigerant does not flow easily. In order to alleviate this problem, there is also a method of embedding a superconducting wire in a stabilizing material so that the hollow portion is completely hollow and enlarged to improve the flow of the refrigerant. However, this method is a method of indirectly cooling the superconducting wire, which causes a drawback that cooling efficiency is lowered and responsiveness is lowered. Further, the manufacturing structure of the superconducting conductor is complicated, the manufacturing cost is high, and further, the current density of the coil, which is the most important factor in handling the superconducting conductor, is lowered. In order to improve this drawback, there is a tendency to increase the space factor of the superconductor and to manufacture a superconductor having a high current density structure in which the refrigerant can be immersed and cooled in the superconductor. But,
During the initial cooling, the pressure loss becomes high, the flow rate of the refrigerant becomes difficult to flow, and another drawback that a long time is required for precooling occurs. Further, when quenching occurs during use, the vaporized gas explosively increases. For example, it is considered that the liquid helium of 4.2K expands seven hundred times, and most of the refrigerant is removed by the pressure increase in the refrigerant passage, and the heat energy of a large current may cause the refrigerant to melt. Many methods have been proposed to remedy this drawback. Japanese Patent Application Sho 59-24
According to the specification of 4484, a method is proposed in which a hollow cooling pipe line is provided in parallel with a forced (hollow) cooling type superconducting conductor to reduce pressure loss on the inlet side. However, if the coil is manufactured while it is attached in parallel with the superconducting conductor, there is a big drawback that the current density of the coil itself is lowered. Further, a method of winding a cooling pipe only on the exterior side of the coil has been proposed, but there is a drawback in that cooling heat is less likely to be transmitted to the inside of the coil body. Further, Japanese Patent Publication No. 2-50565 discloses a method in which a cryogenic refrigerant, for example, liquid helium is depressurized and converted into supercritical pressure helium for use. However, on the inlet side of the forced (hollow) cooling type superconducting conductor, it is necessary to apply pressure to actually send out the refrigerant, and it is extremely difficult to secure the properties of this supercritical pressure helium and use it. . The reason for this is that it requires the application of pressure to deliver. That is, it is unlikely that the refrigerant having entered the refrigerant passage becomes evaporative gas due to heat exchange, the pressure of the refrigerant itself increases, and the property of supercritical helium is maintained as it is. Further, the device for continuously producing this refrigerant has a large size, and pressure adjustment for temperature control is complicated, which causes many problems such that maintenance of the device itself becomes difficult.
【0003】[0003]
【発明が解決しようとする課題】本発明の目的は、強制
(中空)冷却型超電導導体の冷却方法に係り、中空内部
の出口側を減圧することにより冷媒の通りを良くするこ
とと、冷媒の性質を向上させて冷却効率を良くし、超電
導の安定性を向上する方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention relates to a method for cooling a forced (hollow) cooling type superconducting conductor, in which the outlet side of the hollow interior is decompressed to improve the passage of the refrigerant. It is an object of the present invention to provide a method of improving properties, improving cooling efficiency, and improving stability of superconductivity.
【0004】本発明の目的は冷媒の性質を変えて通りや
すくすることにより効率良く冷却することがでるように
すること、さらに、冷却時間を短縮しコイルの安定性を
向上させることにある。本発明の他の目的は装置が小型
簡便で取り扱いやすく経済的にすることにある。An object of the present invention is to enable efficient cooling by changing the properties of the refrigerant so that the refrigerant can easily pass therethrough, and further to shorten the cooling time and improve the stability of the coil. Another object of the present invention is to make the apparatus small, simple, easy to handle and economical.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に強制(中空)冷却型超電導導体の中空内部の出口を減
圧機を用いて減圧し、中空内部入り口からの冷媒を引き
込みやすくしたものである。また、中空内部を冷媒が通
りやすくするために連続的に減圧可能にしたものであ
る。さらに、冷媒(液体ヘリウム4.2k が蒸発すると
七百倍以上にもなるために減圧機を並列回路にして余裕
をもって中空内部を常に減圧できる構造にしたものであ
る。In order to achieve the above object, the outlet inside the hollow of a forced (hollow) cooling type superconducting conductor is decompressed by using a decompressor so that the refrigerant can be easily drawn in from the inlet inside the hollow. is there. Further, in order to make it easier for the refrigerant to pass through the hollow interior, the pressure can be continuously reduced. Further, since the refrigerant (liquid helium 4.2k evaporates more than 700 times), the decompressor is arranged in a parallel circuit so that the hollow interior can be decompressed at all times with a margin.
【0006】[0006]
【作用】強制(中空)冷却型超電導導体の冷却は、出口
側を減圧して入り口から引き込まれた冷媒は、減圧効果
により冷却特性を向上させた状態で超電導導体を連続的
に冷却する。この冷媒は、コイルを冷却する冷媒の温度
差によって連続的に蒸発を繰り返す。この多量の蒸発ガ
スを連続的に回収する構造で、中空内部の圧力を、常
に、減圧状態に保つ減圧調節を可能にして、冷媒が連続
的に強制的に流れ込み冷却するように動作する。それに
よって、強制(中空)冷却型超電導導体の冷却時間は、
極端に短縮され効率良い運転とクエンチ等により急激に
多量の蒸発ガス量が増えても常に連続して強制的に減圧
回収することにより、冷媒が途中でガス圧上昇等により
排除されて止まることが起こらない。すなわち、超電導
線の冷却を常に連続的に安全に効率良く冷却するように
作用する。In the cooling of the forced (hollow) cooling type superconducting conductor, the refrigerant is depressurized on the outlet side and drawn into the inlet to continuously cool the superconducting conductor in a state where the cooling characteristic is improved by the depressurizing effect. The refrigerant continuously evaporates due to the temperature difference of the refrigerant that cools the coil. This structure continuously collects a large amount of evaporative gas, and enables the pressure inside the hollow to be constantly reduced so that the refrigerant can be forcibly continuously flown and cooled. As a result, the cooling time of the forced (hollow) cooling type superconducting conductor is
Even if the amount of vaporized gas increases rapidly due to extremely shortened and efficient operation and quenching, etc., the refrigerant may be removed and stopped due to a rise in gas pressure during the process, etc., by continuously and continuously forcibly reducing the pressure. It won't happen. That is, the superconducting wire is cooled continuously and safely and efficiently.
【0007】[0007]
【実施例】以下、本発明の実施例を図1により説明す
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.
【0008】まず、今回製作した超電導コイルは、超電
導導体3中空断面積が50mm2 で超電導線31断面積
0.785mm2の線を三本撚り合わせ、さらにそれを三本
撚り合わせ、この九本の束をさらに四本束ねてステンレ
スパイプに入れ矩形に引き抜き成型導体を完成した。こ
の成型加工は、冷媒が通る隙間と超電導線31自身がコ
イル成型にダメイジを受けない考慮と励磁電流と磁場に
より超電導線31が動き、特性が低下するのを防止する
対策をした構造である。超電導導体3をボビン内径15
0mm外径175mm40ターン長さ約23.5m を巻いた
強制中空冷却型超電導コイル30を製作した。このコイ
ル30を真空容器3Aに入れて冷却を行った。このコイ
ル30を液体窒素11,液体ヘリウム22,超臨界ヘリ
ウム5Aを用いて冷却試験と励磁試験を行なった。ま
ず、液体窒素とガス状の混合体を、入り口圧力5kg/cm
2 で挿入し出口側を開放にして行なった。このとき最初
だけガスが数秒間出口から吹き出た。しかし、その後、
次第に蒸発ガスの流れがとだえてしまった。次にコイル
全体を十分に常温まで加温した後、4.2K 液体ヘリウ
ム液を、直接、0.3kg/cm2の加圧を加えて圧送した。
その結果、最初はガス状の気体が出口から放出した。そ
の後、液体窒素を挿入した時と同様の結果となった。し
かし、加圧力を0.1kg/cm2以下に低くすると加圧力の
高い時よりも多少出口からの蒸発ガスはスムースに排出
された。また、このコイル30を常温まで加温して超臨
界ヘリウム液化装置5Aを用いて冷却を行なった。循環
ガス圧力5atm,循環ガス流量3.5g/s,冷媒温度3
〜5K、冷却能力100ワットの装置を用いて行なっ
た。最初数秒間はガス状の気体が出口から吹き出たがそ
の後は、ほとんど出なくなった。そのかわり入り口の圧
力が徐々に上昇し冷凍機が停止してしまった。このよう
に、冷媒温度と冷却される超電導導体3の温度の差が大
きいと、冷媒が気化しその体積が(4.2K、1atmの液
体ヘリウムが常温まで気化すると体積が約七百倍)約七
百倍以上に増加するために、連続的に冷却が繰り返され
ると冷媒通路内の圧力が爆発的に上昇して、冷媒の通路
を遮断した状態を造りだす。すなわち、入り口側からの
加圧で冷媒を流し込んで超電導線3を冷却する方法は、
加圧力が高いほど熱交換が早く進みガス体積が急激に増
え内圧が上昇して冷媒が通りにくくなる。また、冷媒温
度が低いほどガス化した場合の体積が増加し、内圧が急
激にあがり超電導線3を冷却するのが困難となることが
確認できた。[0008] First, this time the fabricated superconducting coils, superconducting conductor 3 hollow cross-sectional area of the line of superconducting wire 31 cross-sectional area 0.785 mm 2 three twisted at 50 mm 2, further it three twisted, present the nine Four more bundles were bundled into a stainless pipe and drawn into a rectangle to complete a molded conductor. This forming process has a structure in which the clearance through which the refrigerant passes and the superconducting wire 31 itself is not damaged by coil forming, and measures are taken to prevent the superconducting wire 31 from moving due to the exciting current and the magnetic field to deteriorate the characteristics. Superconducting conductor 3 bobbin inner diameter 15
A forced hollow cooling type superconducting coil 30 having a 0 mm outer diameter of 175 mm and a length of 40 turns and a length of about 23.5 m was manufactured. This coil 30 was placed in the vacuum container 3A and cooled. The coil 30 was subjected to a cooling test and an excitation test using liquid nitrogen 11, liquid helium 22, and supercritical helium 5A. First, the liquid nitrogen and the gaseous mixture are introduced at an inlet pressure of 5 kg / cm.
It was inserted with 2 and the outlet side was opened. At this time, gas was blown out from the outlet for a few seconds only at the beginning. But then
Gradually, the flow of evaporative gas stopped. Next, the entire coil was sufficiently warmed to room temperature, and then 4.2K liquid helium liquid was directly fed under pressure of 0.3 kg / cm 2 .
As a result, initially gaseous gas was released from the outlet. After that, the same result as when liquid nitrogen was inserted was obtained. However, when the applied pressure was lowered to 0.1 kg / cm 2 or less, the evaporative gas from the outlet was discharged more smoothly than when the applied pressure was high. The coil 30 was heated to room temperature and cooled using the supercritical helium liquefier 5A. Circulating gas pressure 5 atm, circulating gas flow rate 3.5 g / s, refrigerant temperature 3
It was carried out using an apparatus having a cooling capacity of 100 watts at -5K. Gaseous gas blew out of the outlet for a few seconds at the beginning, but after that almost disappeared. Instead, the pressure at the entrance gradually increased and the refrigerator stopped. As described above, when the difference between the refrigerant temperature and the temperature of the superconducting conductor 3 to be cooled is large, the refrigerant is vaporized and its volume is increased (about 700 times the volume when liquid helium of 4.2 K and 1 atm is vaporized to room temperature). Since it increases more than seven hundred times, the pressure in the refrigerant passage explosively rises when the cooling is repeated continuously, creating a state in which the refrigerant passage is blocked. That is, the method of cooling the superconducting wire 3 by pouring the refrigerant under pressure from the inlet side is
The higher the pressurizing force, the faster the heat exchange proceeds, the gas volume increases rapidly, the internal pressure rises, and it becomes difficult for the refrigerant to pass. It was also confirmed that the lower the temperature of the refrigerant, the larger the volume when gasified, and the sudden rise in the internal pressure, making it difficult to cool the superconducting wire 3.
【0009】そこで、冷却方法を検討した結果、この装
置を考案することができた。Then, as a result of studying the cooling method, it was possible to devise this device.
【0010】この装置は、経済的にコイルを冷却するた
めに冷媒を(例えば、液体酸素,液体窒素,液体水素,
液体ヘリウム,超臨界ヘリウム等)を切り替えて使用で
きる構造にしている。まず、貯槽1Aの容器冷媒11
は、移送管で連結されて自動開閉弁(以下バルブと称
す)バルブB11の開閉により超電導コイル30の冷媒
通路へ入り圧力調整自動開閉弁(以下バルブと称す)バ
ルブB1〜Bnで圧力調整と冷媒流量の調節を可能にし
て、コイルを冷却する冷媒の通路が貫通する。この状態
で注入口1より加圧ガスを入れバルブB10を開いて液
体窒素を圧送するこができる。熱交換により発生したガ
スは、圧力調整機Cを開放するか、あるいは、自動開閉
弁(以下バルブと称す)バルブB31の開閉によって減
圧調整機(以下減圧機と称す)4Aと連動して冷媒通路
内を減圧し、冷媒の通過によりコイルを冷却し、これに
より発生して蒸発したガスは、減圧機4Aによつてさら
に素早く外部へ放出することができる。また、超電導装
置の構造,超電導体の冷却構造,蒸発ガスの処理等の問
題、あるいは、経済的な運転を行なうために回収し、液
化機5A′で液化して再利用することもできる。自動開
閉弁(以下バルブと称す)バルブB41の開閉により液化
する冷媒を選定することが出来る。回収する冷媒は、減
圧機4A′で回収し液化機へ導き再利用する。また、液
化する工程に入った冷媒は、液化機5Aにより4.2K
の液体ヘリウムの製造か、あるいは超臨界ヘリウムの製
造かに選択できる。4.2K の液体ヘリウムの場合、自
動開閉弁(以下バルブと称す)バルブB52の開閉によ
り貯槽2A容器に貯液され、この液体ヘリウム22は、
自動開閉弁(以下バルブと称す)バルブB21の開閉と
注入口2からの加圧ガスの投入により、液体窒素等で十
分冷却した超電導コイル30へ送り込みバルブB1〜B
nの開閉によりコイルをさらに冷却し、その蒸発した冷
媒は、バルブB31の開閉により、液体窒素同様に、冷
媒の純度等を考慮して減圧機4A、あるいは、4A′で
大気放出するか、あるいは回収して再利用するか選択す
る。また、減圧機4Aおよび4A′は、減圧機を並列に
取り付けて冷媒の冷却熱で支障が起きないように考慮し
てある。液化機5Aで超臨界ヘリウムに製作された液体
は、自動開閉弁(以下バルブと称す)バルブB51の開
閉により、4.2K の液体ヘリウムで十分冷却した超電
導コイル30を液体ヘリウムで冷却した同一の回路で冷
却される。このようにコイルの冷却は、強制冷却導体3
の構造あるいは超電導線3の配置構造,占積率,表面積
比さらに冷媒の温度あるいは性質,性状によりコイルと
の温度差で多量の蒸発ガスが発生する。このガスは、減
圧機4A′で素早く回収して0.8atmまで連続的に減圧
状態を保つことができた。この減圧した状態で入り口側
冷媒を連続的に容易に引き込むことができた。その結
果、僅か45分間で冷却することができた。このコイル
30を励磁した結果、短尺特性値の100%まで一回の
励磁で通電することができた。また、冷媒を減圧する
と、冷媒の性質が変わり冷却特性が大きく向上すること
も確認できた。この内容は、低温工学ハンドブック第3
章、寒材の性質に詳細に記載されている。This device uses a coolant (eg, liquid oxygen, liquid nitrogen, liquid hydrogen,
It has a structure that allows switching between liquid helium, supercritical helium, etc.). First, the container refrigerant 11 in the storage tank 1A
Is connected by a transfer pipe and enters the refrigerant passage of the superconducting coil 30 by opening and closing an automatic opening / closing valve (hereinafter referred to as a valve) valve B11. Pressure adjustment automatic opening / closing valve (hereinafter referred to as a valve) valves B1 to Bn are used for pressure adjustment and refrigerant. A coolant passage is provided which allows the flow rate to be adjusted and cools the coil. In this state, pressurized gas can be introduced from the inlet 1 and the valve B10 can be opened to pump the liquid nitrogen. The gas generated by the heat exchange opens the pressure regulator C, or opens or closes an automatic opening / closing valve (hereinafter referred to as a valve) valve B31 and works in conjunction with a pressure reducing regulator (hereinafter referred to as a pressure reducing device) 4A in a refrigerant passage. The inside is decompressed and the coil is cooled by the passage of the refrigerant, and the gas generated and vaporized thereby can be released to the outside more quickly by the decompressor 4A. Further, it may be recovered for the problems of the structure of the superconducting device, the cooling structure of the superconductor, the treatment of evaporative gas or the like, or for economical operation, and may be liquefied by the liquefier 5A 'and reused. A refrigerant that is liquefied by opening and closing an automatic opening / closing valve (hereinafter referred to as a valve) valve B41 can be selected. The refrigerant to be recovered is recovered by the decompressor 4A 'and guided to the liquefier for reuse. Also, the refrigerant that has entered the liquefying process is 4.2K by the liquefier 5A.
Of liquid helium or supercritical helium. In the case of 4.2K liquid helium, liquid helium 22 is stored in the storage tank 2A container by opening and closing an automatic opening / closing valve (hereinafter referred to as a valve) valve B52.
By opening and closing an automatic opening / closing valve (hereinafter referred to as a valve) valve B21 and supplying a pressurized gas from the inlet 2, the superconducting coil 30 sufficiently cooled by liquid nitrogen or the like is sent to the valves B1 to B1.
The coil is further cooled by opening and closing n, and the evaporated refrigerant is released to the atmosphere by the pressure reducer 4A or 4A 'in consideration of the purity of the refrigerant and the like by liquid nitrogen, by opening and closing the valve B31, or Select whether to collect and reuse. Further, the pressure reducers 4A and 4A 'are attached in parallel so that the cooling heat of the refrigerant does not cause any trouble. The liquid made into supercritical helium by the liquefaction machine 5A is the same as the superconducting coil 30 sufficiently cooled with liquid helium of 4.2K by opening and closing an automatic opening / closing valve (hereinafter referred to as valve) valve B51. Cooled in the circuit. In this way, the coil is cooled by the forced cooling conductor 3
Or the arrangement structure of the superconducting wire 3, the space factor, the surface area ratio, and the temperature or the nature and the property of the refrigerant, a large amount of vaporized gas is generated due to the temperature difference from the coil. This gas was quickly recovered by the decompressor 4A ', and the decompressed state could be continuously maintained up to 0.8 atm. In this depressurized state, the inlet side refrigerant could be easily drawn in continuously. As a result, it could be cooled in only 45 minutes. As a result of exciting the coil 30, it was possible to energize the coil 30 with one excitation up to 100% of the short length characteristic value. It was also confirmed that when the pressure of the refrigerant is reduced, the properties of the refrigerant change and the cooling characteristics are greatly improved. This content is based on Cryogenic Engineering Handbook No. 3
It is described in detail in Chapter, Properties of Cold Wood.
【0011】[0011]
【発明の効果】本発明によれば、冷媒を減圧して使用す
ることによって冷媒の性質を変えることができる。この
効果により冷媒温度がさらに低下して冷却効率が向上
し、特に、強制(中空)冷却型超電導導体の冷却は中空
部分の容積が少ないことと、超電導線に直接冷媒が密着
する浸漬冷却であり、その効果は顕著で、減圧機を小型
にできるし、構造,操作も簡単で確実に温度を制御する
ことができる。さらに、超電導コイルの特性向上と経済
的運転の向上に効果がある。According to the present invention, the properties of the refrigerant can be changed by reducing the pressure of the refrigerant before use. Due to this effect, the refrigerant temperature further decreases and the cooling efficiency improves. Especially, the cooling of the forced (hollow) cooling type superconducting conductor is due to the small volume of the hollow part and the immersion cooling in which the refrigerant directly adheres to the superconducting wire. The effect is remarkable, the decompressor can be downsized, the structure and operation are simple, and the temperature can be surely controlled. Further, it is effective in improving the characteristics of the superconducting coil and improving the economical operation.
【図1】本発明の一実施例の強制冷却導体の冷却装置の
系統図。FIG. 1 is a system diagram of a cooling device for a forced cooling conductor according to an embodiment of the present invention.
【図2】本発明の強制冷却導体の断面図。FIG. 2 is a sectional view of the forced cooling conductor of the present invention.
【図3】従来の超電導導体の形状と冷却構造を示した断
面図。FIG. 3 is a sectional view showing the shape and cooling structure of a conventional superconducting conductor.
1,2…注入口、3…強制(中空)冷却型超電導導体、
11…液体窒素、22…液体ヘリウム、30…超電導コ
イル、31…超電導線、1A,2A…貯槽、3A…真空
断熱容器、4A,4A′…減圧調整機、5A,5A′…
液化装置、B1〜Bn,B31,B32,B33,B5
1,B52…自動開閉弁、C…圧力調整器、3L…冷媒
通路。1, 2 ... inlet, 3 ... forced (hollow) cooling type superconducting conductor,
11 ... Liquid nitrogen, 22 ... Liquid helium, 30 ... Superconducting coil, 31 ... Superconducting wire, 1A, 2A ... Storage tank, 3A ... Vacuum heat insulation container, 4A, 4A '... Decompression regulator, 5A, 5A' ...
Liquefaction device, B1 to Bn, B31, B32, B33, B5
1, B52 ... Automatic on-off valve, C ... Pressure regulator, 3L ... Refrigerant passage.
Claims (11)
体を冷却するための極低温の冷媒と、前記冷媒を前記超
電導導体の内部へ吸い込むための減圧装置で構成された
超電導装置において、前記超電導導体の出口側で減圧し
て極低温冷媒を入り口側から吸い込んで冷却することを
特徴とする強制冷却導体の冷却方法。1. A superconducting device comprising a forced cooling type superconducting conductor, a cryogenic refrigerant for cooling the superconducting conductor, and a pressure reducing device for sucking the refrigerant into the superconducting conductor. A method for cooling a forced cooling conductor, comprising decompressing on the outlet side of a superconducting conductor and sucking a cryogenic refrigerant from the inlet side for cooling.
側で減圧し入り口側を加圧する方法で、冷却する強制冷
却導体の冷却方法。2. The method for cooling a forced cooling conductor according to claim 1, wherein the superconducting conductor is cooled by depressurizing the outlet side and pressurizing the inlet side.
るいは隔層毎に開閉弁と温度センサを出口側に設けて冷
媒の流量を調節する強制冷却導体の冷却方法。3. The method for cooling a forced cooling conductor according to claim 1, wherein an on-off valve and a temperature sensor are provided on the outlet side for each one or each of the superconducting conductors to control the flow rate of the refrigerant.
口側冷媒温度を検知する温度センサと一層あるいは隔層
毎の出口側に開閉弁と前記温度センサを設けて、冷媒の
流量を調節する強制冷却導体の冷却方法。4. The force sensor according to claim 3, wherein a temperature sensor for detecting a refrigerant temperature on an inlet side of the superconducting conductor and an opening / closing valve and the temperature sensor on an outlet side for each one layer or each partition are provided to regulate the flow rate of the refrigerant. Cooling method for cooling conductors.
体を冷却するための極低温の冷媒と、前記冷媒を前記超
電導導体の内部へ吸い込むための減圧装置で構成された
超電導装置において、前記冷媒の種類と前記冷媒の流量
を順次切り替えて冷却することを特徴とする強制冷却導
体の冷却方法。5. A superconducting device comprising a forced cooling type superconducting conductor, a cryogenic refrigerant for cooling the superconducting conductor, and a pressure reducing device for sucking the refrigerant into the superconducting conductor. A method for cooling a forced cooling conductor, characterized in that the type of refrigerant and the flow rate of the refrigerant are sequentially switched to perform cooling.
体を冷却するための極低温の冷媒と、前記冷媒を前記超
電導導体の内部へ吸い込むための減圧装置で構成された
超電導装置において、前記冷媒の種類と前記冷媒の流量
を並列回路で流して冷却することを特徴とする強制冷却
導体の冷却方法。6. A superconducting device comprising a forced cooling type superconducting conductor, a cryogenic refrigerant for cooling the superconducting conductor, and a pressure reducing device for sucking the refrigerant into the superconducting conductor. A method for cooling a forced cooling conductor, characterized in that a type of refrigerant and a flow rate of the refrigerant are flown in a parallel circuit to cool.
電導導体を冷却するための複数の極低温の冷媒と、前記
冷媒を前記超電導導体の内部および外部等へ吸い込むた
めの減圧装置で構成された超電導装置において、減圧機
を冷媒通路毎に複数並列回路で冷媒出口側に接続して入
り口側の圧力,温度のいずれかを検知して、冷媒の種類
と冷媒の通路毎に流量を調節して流し冷却することを特
徴とする強制冷却導体の冷却方法。7. A superconducting multi-row conductor of forced cooling type, a plurality of cryogenic refrigerants for cooling the superconducting conductor, and a pressure reducing device for sucking the refrigerant into the inside and the outside of the superconducting conductor. In this superconducting device, a pressure reducer is connected to the refrigerant outlet side by multiple parallel circuits for each refrigerant passage, and either the pressure or temperature at the inlet side is detected and the flow rate is adjusted for each refrigerant type and each refrigerant passage. A method for cooling a forced cooling conductor, characterized in that the cooling is carried out in a flowing manner.
超電導導体を冷却するための極低温の冷媒と、前記冷媒
を前記超電導導体の冷媒通路へ吸い込むための減圧装置
で構成された超電導装置において、前記冷媒通路毎に減
圧機を複数並列回路にして入り口側の温度,圧力、前記
超電導導体の途中の温度、のいずれかを検知して、前記
冷媒の流量と液化機の製造能率を調整することを特徴と
する強制冷却導体の冷却方法。8. A superconducting device comprising a plurality of rows of forced cooling type superconducting conductors, a cryogenic refrigerant for cooling the superconducting conductors, and a pressure reducing device for sucking the refrigerant into a refrigerant passage of the superconducting conductors. In the device, a plurality of pressure reducers are provided in parallel circuits for each of the refrigerant passages, and the inlet temperature, the pressure, or the temperature in the middle of the superconducting conductor is detected to detect the flow rate of the refrigerant and the manufacturing efficiency of the liquefying machine. A method for cooling a forced cooling conductor, characterized by adjusting.
超電導導体を冷却するための極低温の冷媒と、前記冷媒
を前記超電導導体の冷媒通路へ吸い込むための減圧装置
で構成された超電導装置において、前記冷媒通路毎に減
圧機を複数並列回路にして、異常電圧あるいはパールス
マグネットの発生電圧と連動させて、前記冷媒の流量を
増減する調節もすることを特徴とする強制冷却導体の冷
却方法。9. A superconducting device comprising a plurality of forced cooling type superconducting conductors, a cryogenic refrigerant for cooling the superconducting conductor, and a pressure reducing device for sucking the refrigerant into a refrigerant passage of the superconducting conductor. In the apparatus, a plurality of pressure reducers are provided in parallel circuits for each of the refrigerant passages, and the forced cooling conductor is also controlled to increase or decrease the flow rate of the refrigerant in conjunction with an abnormal voltage or a voltage generated by a Pearl magnet. Method.
記超電導導体を冷却するための複数個の液化装置とこの
装置で製作された数種類の極低温の冷媒と、前記冷媒を
前記超電導導体の冷媒通路へ吸い込むための複数の減圧
装置で構成された超電導装置において、前記冷媒通路毎
に減圧機を複数並列回路にして入り口側の温度,圧力、
前記超電導導体の途中の温度,出口側の温度、いずれか
を検知して前記冷媒の流量と液化機の製造能率を調整す
ることができる中継ヶ所を設けて強制冷却導体の冷却を
行なうことを特徴とする強制冷却導体の冷却方法。10. A forced cooling type of superconducting conductors in a plurality of rows, a plurality of liquefying devices for cooling the superconducting conductors, several kinds of cryogenic refrigerants manufactured by the device, and the superconducting conductors containing the refrigerants. In a superconducting device composed of a plurality of decompression devices for sucking into the refrigerant passage, the decompressor is provided in a plurality of parallel circuits for each of the refrigerant passages, and the temperature and pressure on the inlet side,
A feature is that the forced cooling conductor is cooled by providing a relay point capable of adjusting the flow rate of the refrigerant and the manufacturing efficiency of the liquefier by detecting either the temperature in the middle of the superconducting conductor or the temperature on the outlet side. Cooling method for forced cooling conductor.
記超電導導体を冷却するための複数個の液化装置とこの
装置で製作された数種類の極低温の冷媒と、前記冷媒を
前記超電導導体の前記冷媒の通路へ吸い込むための複数
の減圧装置で構成された超電導装置において、前記冷媒
通路毎に減圧機を複数並列回路にして入り口側の温度,
圧力、前記超電導導体の途中の温度,出口側の温度、い
ずれかを検知して、前記冷媒の流量と液化機の製造能率
を調整することができる中継ヶ所を設けて、冷媒の種類
毎に冷媒の流す方向と流量を調整し強制冷却導体の冷却
を行なうことを特徴とする強制冷却導体の冷却方法。11. A forced cooling type of superconducting conductors in a plurality of rows, a plurality of liquefying devices for cooling the superconducting conductors, several kinds of cryogenic refrigerants manufactured by the device, and the refrigerants in the superconducting conductors. In a superconducting device composed of a plurality of pressure reducing devices for sucking into the passage of the refrigerant, a plurality of pressure reducing devices are formed in parallel circuit for each of the refrigerant passages, and the temperature at the inlet side,
A pressure sensor, a temperature in the middle of the superconducting conductor, or a temperature on the outlet side can be detected to provide a relay point where the flow rate of the refrigerant and the manufacturing efficiency of the liquefier can be adjusted. A method for cooling a forced cooling conductor, characterized in that a forced cooling conductor is cooled by adjusting a flowing direction and a flow rate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3191498A JPH0536526A (en) | 1991-07-31 | 1991-07-31 | Method for cooling forced cooling conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3191498A JPH0536526A (en) | 1991-07-31 | 1991-07-31 | Method for cooling forced cooling conductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0536526A true JPH0536526A (en) | 1993-02-12 |
Family
ID=16275653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3191498A Pending JPH0536526A (en) | 1991-07-31 | 1991-07-31 | Method for cooling forced cooling conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0536526A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995001539A1 (en) * | 1993-07-01 | 1995-01-12 | Apd Cryogenics Inc. | Sealed dewar with separate circulation loop for external cooling at constant pressure |
JP2002272060A (en) * | 2001-03-08 | 2002-09-20 | Railway Technical Res Inst | Liquid hydrogen cooling system for superconducting magnet |
JP2005143166A (en) * | 2003-11-04 | 2005-06-02 | Sumitomo Electric Ind Ltd | Cooling system in superconducting motor vehicle |
JP2013539344A (en) * | 2010-09-22 | 2013-10-17 | シーメンス アクチエンゲゼルシヤフト | Apparatus and method for cooling a superconducting machine |
-
1991
- 1991-07-31 JP JP3191498A patent/JPH0536526A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995001539A1 (en) * | 1993-07-01 | 1995-01-12 | Apd Cryogenics Inc. | Sealed dewar with separate circulation loop for external cooling at constant pressure |
US5402648A (en) * | 1993-07-01 | 1995-04-04 | Apd Cryogenics Inc. | Sealed dewar with separate circulation loop for external cooling at constant pressure |
JP2002272060A (en) * | 2001-03-08 | 2002-09-20 | Railway Technical Res Inst | Liquid hydrogen cooling system for superconducting magnet |
JP4567220B2 (en) * | 2001-03-08 | 2010-10-20 | 財団法人鉄道総合技術研究所 | Liquid hydrogen cooling system for superconducting magnet |
JP2005143166A (en) * | 2003-11-04 | 2005-06-02 | Sumitomo Electric Ind Ltd | Cooling system in superconducting motor vehicle |
JP4507561B2 (en) * | 2003-11-04 | 2010-07-21 | 住友電気工業株式会社 | Cooling system for superconducting motor vehicle |
JP2013539344A (en) * | 2010-09-22 | 2013-10-17 | シーメンス アクチエンゲゼルシヤフト | Apparatus and method for cooling a superconducting machine |
US8948828B2 (en) | 2010-09-22 | 2015-02-03 | Siemens Aktiengesellschaft | Apparatus and method for cooling a super conducting machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4692560A (en) | Forced flow cooling-type superconducting coil apparatus | |
Sheahen | Introduction to high-temperature superconductivity | |
US5787714A (en) | Cooling method and energizing method of superconductor | |
JPS607396B2 (en) | superconducting device | |
JPH0536526A (en) | Method for cooling forced cooling conductor | |
JP6616717B2 (en) | Cryogenic cooling device and cryogenic cooling method | |
JP2009243837A (en) | Very low temperature cooling device | |
JPH10335137A (en) | Cooling method and conducting method for superconductor | |
JPH11233334A (en) | Conduction cooling type superconducting electromagnet | |
JPS6123306A (en) | Cooling device of superconductive coil | |
JPS61179508A (en) | Forced cooling superconductive coil device | |
JPH10275719A (en) | Method for cooling superconductor | |
Oshikiri et al. | 21.1 T superconducting magnet with 50 mm clear bore | |
Masuyama et al. | NbTi split magnet directly cooled by cryocooler | |
JPH07142234A (en) | Apparatus for cooling cryogenic-temperature superconducting coil | |
JP2635165B2 (en) | Forced cooling superconducting coil device | |
JPH04258103A (en) | Cooling device of superconducting coil | |
JP3908975B2 (en) | Cooling device and cooling method | |
US20240093836A1 (en) | Device for transferring liquid helium, with reduced transfer losses | |
Barth et al. | New cryogenic facilities for testing superconducting equipments for the CERN Large Hadron Collider | |
JPS59117281A (en) | Cooling apparatus | |
Wake et al. | 13.4 T generation by superfluid cooling | |
JPS61144081A (en) | Superconducting device | |
JPS5839394B2 (en) | Cryogenic refrigerant generator | |
JPS6216001B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041019 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050610 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20050912 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20050915 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051208 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060120 |