JP2010144995A - Refrigerating system utilizing exhaust heat - Google Patents

Refrigerating system utilizing exhaust heat Download PDF

Info

Publication number
JP2010144995A
JP2010144995A JP2008322228A JP2008322228A JP2010144995A JP 2010144995 A JP2010144995 A JP 2010144995A JP 2008322228 A JP2008322228 A JP 2008322228A JP 2008322228 A JP2008322228 A JP 2008322228A JP 2010144995 A JP2010144995 A JP 2010144995A
Authority
JP
Japan
Prior art keywords
steam
heat
utilization
supplied
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008322228A
Other languages
Japanese (ja)
Inventor
Norihiro Fukuda
憲弘 福田
Tadahachi Goshima
忠八 五島
Yoshiyuki Ono
芳幸 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008322228A priority Critical patent/JP2010144995A/en
Publication of JP2010144995A publication Critical patent/JP2010144995A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating system utilizing exhaust heat capable of operating refrigerating equipment with high energy efficiency by effectively using the excess steam of wide fluctuation in flow rate. <P>SOLUTION: The refrigerating system includes an economizer 2 producing steam by utilizing exhaust heat from an engine 1, a power generating device 8 generating power by rotating a steam turbine 7 by supplying the steam from the economizer 2, and a compression type refrigerating machine 15 driving a compressor by the generated power and producing cold heat, further includes the other steam utilizing device 10 to which a part of the steam supplied to the steam turbine 7 is supplied, and the other steam utilizing device 10 has fluctuation in the use of the steam. The refrigerating system further includes an absorption type refrigerating machine 11 including a regenerator to which the excess steam 23 is supplied from the other steam utilizing device 10 to be heated thereby, and a heat exchanger 12 for pre-cooling the cooling water 27 supplied to the compression type refrigerating machine 15, by the cold heat produced by the absorption type refrigerating machine 11. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、排ガス発生源からの排熱を利用して蒸気を生成し、該蒸気の排熱を用いて発電を行うとともに蒸気の一部を他の蒸気利用設備に供給して使用するシステムにて、前記発電した電力を用いて冷凍機を駆動して冷熱を発生させる排熱利用冷凍システムに関する。   The present invention provides a system for generating steam using exhaust heat from an exhaust gas generation source, generating electric power using the exhaust heat of the steam, and supplying a part of the steam to other steam using facilities for use. The present invention also relates to a waste heat utilization refrigeration system that generates cold by driving a refrigerator using the generated electric power.

従来、内燃機関から排出される排ガスの排熱を利用して動力、温熱又は冷熱を取り出すことにより効率的なエネルギ利用を促進するようにしたコジェネレーションシステムが広く用いられている。例えば冷凍コンテナ船や各種工場設備等のように、内燃機関を備えるとともに冷凍設備を備える場合、内燃機関で発生した排ガスの排熱を用いて冷凍設備を稼動する排熱利用冷凍システムがある。
例えば、特許文献1(特開2004−69276号公報)や特許文献1(特開2003−207224号公報)に冷凍設備を備えたコジェネレーションシステムが開示されている。
2. Description of the Related Art Conventionally, a cogeneration system that promotes efficient energy utilization by taking out power, warm heat, or cold energy using exhaust heat of exhaust gas discharged from an internal combustion engine has been widely used. For example, when a refrigeration facility is provided in addition to an internal combustion engine such as a refrigerated container ship or various factory facilities, there is a waste heat utilization refrigeration system that operates the refrigeration facility using exhaust heat of exhaust gas generated by the internal combustion engine.
For example, Patent Document 1 (Japanese Patent Laid-Open No. 2004-69276) and Patent Document 1 (Japanese Patent Laid-Open No. 2003-207224) disclose a cogeneration system including a refrigeration facility.

図5に、従来の排熱利用冷凍システムの一例として、冷凍コンテナ船に該システムを適用した場合の概略構成図を示す。冷凍コンテナ船に搭載されたメインエンジン1にて発生した排ガスはエコノマイザ2に導入され、該エコノマイザ2にて給水Aを加熱して蒸気が生成される。この蒸気は主として蒸気タービン7に送給され、該蒸気タービン7を蒸気により蒸気タービン7を回転して発電機8を駆動させ、発電する。ここで発電した電力は、貨物室16等を冷却する圧縮式冷凍機15に供給され、該圧縮式冷凍機15の圧縮機を駆動する電力に用いられる。蒸気タービン7から排出される蒸気は復水器9にて復水されて給水Aに送られる。   FIG. 5 shows a schematic configuration diagram when the system is applied to a refrigeration container ship as an example of a conventional exhaust heat utilization refrigeration system. The exhaust gas generated by the main engine 1 mounted on the refrigerated container ship is introduced into the economizer 2, and the water supply A is heated by the economizer 2 to generate steam. This steam is mainly supplied to the steam turbine 7, and the steam turbine 7 is rotated by the steam to drive the generator 8 to generate electricity. The electric power generated here is supplied to the compression refrigerator 15 that cools the cargo compartment 16 and the like, and is used as electric power for driving the compressor of the compression refrigerator 15. The steam discharged from the steam turbine 7 is condensed by the condenser 9 and sent to the feed water A.

冷凍コンテナ船には、冷暖房や温水生成器等のように、蒸気タービン7とは他の船内蒸気利用設備10が設けられている。そこで、エコノマイザ2で生成した蒸気の一部をこれら他の船内蒸気利用設備10にも供給している。しかしながら、他の船内蒸気利用設備10は、時間帯や状況等に応じて蒸気使用量の変動が大きいのが実状である。従って、他の船内蒸気利用設備10に用いられない余剰蒸気は一定量ではないため、この余剰蒸気は復水器で復水して給水Aに利用していた。   The refrigerated container ship is provided with in-steam steam utilization equipment 10 other than the steam turbine 7, such as an air conditioner and a hot water generator. Therefore, a part of the steam generated by the economizer 2 is also supplied to these other onboard steam utilization facilities 10. However, as for the other on-board steam utilization equipment 10, the actual situation is that the amount of steam used varies greatly depending on the time zone and the situation. Accordingly, the surplus steam that is not used in the other in-steam steam utilization facility 10 is not a constant amount, and therefore this surplus steam is condensed by the condenser and used for the feed water A.

特開2004−69276号公報JP 2004-69276 A 特開2003−207224号公報JP 2003-207224 A

ところが、図5に示すように他の蒸気利用設備からの余剰蒸気を復水して給水に用いてしまうと、蒸気の有する熱エネルギを無駄に捨てていることになり、エネルギ効率の低下を招いてしまう。しかしながら、他の蒸気利用設備は蒸気タービンのように蒸気使用量に変動が大きいため、安定的な利用は困難である。
また、近年、例えばコンテナ船においては大型化が進んでおり、冷却能力の大容量化が求められているが、その結果所要電力も大きくなり、発電システムを大型化しなくてはならなくなっている。しかし、発電システムを大型化することは貨物室等の被冷却設備の縮小に繋がるため、むやみに大きくすることができいないという問題があった。
However, as shown in FIG. 5, if the surplus steam from another steam utilization facility is condensed and used for water supply, the thermal energy of the steam is wasted, leading to a decrease in energy efficiency. I will. However, other steam utilization facilities, like a steam turbine, have a large variation in the amount of steam used, so that stable utilization is difficult.
In recent years, for example, container ships have been increased in size and demanded to increase the cooling capacity, but as a result, the required power has increased and the power generation system has to be increased in size. However, increasing the size of the power generation system leads to a reduction in equipment to be cooled, such as cargo compartments, and thus there is a problem that it cannot be increased unnecessarily.

従って、本発明は上記従来技術の問題点に鑑み、流量の変動が大きい余剰蒸気を効果的に用いて、冷凍設備をエネルギ効率よく稼動することを可能とした排熱利用冷凍システムを提供することを目的とする。   Therefore, in view of the above-described problems of the prior art, the present invention provides an exhaust heat utilization refrigeration system that can operate refrigeration equipment in an energy efficient manner by effectively using surplus steam with a large flow rate fluctuation. With the goal.

そこで、本発明はかかる課題を解決するために、排熱発生源からの排熱を利用して蒸気を生成するエコノマイザと、該エコノマイザにて生成した蒸気が供給され蒸気タービンを回転して発電を行う発電装置と、前記発電装置にて発電した電力により圧縮機を駆動し冷熱を生成する圧縮式冷凍機とを備えるとともに、前記蒸気タービンに供給される蒸気の一部が分岐されて供給される他の蒸気利用装置を備えた排熱利用冷凍システムにおいて、
前記他の蒸気利用装置は蒸気使用量に変動があり、該他の蒸気利用装置からの余剰蒸気が供給されこの供給された余剰蒸気により加熱される再生器を備えた吸収式冷凍機と、
前記吸収式冷凍機で生成した冷熱により前記圧縮式冷凍機に供給される冷却水を予冷する熱交換器と、を設けたことを特徴とする。
Therefore, in order to solve such a problem, the present invention provides an economizer that generates steam using exhaust heat from an exhaust heat generation source, and supplies steam generated by the economizer to rotate a steam turbine to generate power. A power generation device to perform, and a compression type refrigerator that drives a compressor with electric power generated by the power generation device to generate cold heat, and a part of the steam supplied to the steam turbine is branched and supplied In the exhaust heat utilization refrigeration system equipped with other steam utilization devices,
The other steam utilization device has a variation in the amount of steam used, and an absorption refrigerator having a regenerator supplied with surplus steam from the other steam utilization device and heated by the supplied surplus steam;
And a heat exchanger for precooling the cooling water supplied to the compression refrigerator by the cold generated by the absorption refrigerator.

本発明によれば、圧縮式冷凍機の前段に吸収式冷凍機を直列に配置し、吸収式冷凍機で生成した冷熱により圧縮式冷凍機に供給される冷却水を予冷することにより、圧縮式冷凍機の使用電力を削減することが可能となる。
また、流量変動の大きい余剰蒸気を有効活用することができ、システム全体のエネルギ効率を向上させることが可能となる。
According to the present invention, an absorption refrigerator is arranged in series before the compression refrigerator, and the cooling water supplied to the compression refrigerator is pre-cooled by the cold generated by the absorption refrigerator. It is possible to reduce the power consumption of the refrigerator.
Further, surplus steam having a large flow rate fluctuation can be effectively used, and the energy efficiency of the entire system can be improved.

また、前記余剰蒸気の流量を測定する蒸気流量測定手段と、該蒸気流量測定手段にて測定された余剰蒸気流量に基づいて前記圧縮式冷凍機の圧縮機の回転数を制御する制御装置と、を設けたことを特徴とする。
上記したように、余剰蒸気の流量は変動が大きいため、吸収式冷凍機で生成される冷熱量にも変動が生じ、余剰蒸気の流量によって圧縮式冷凍機に供給される予冷後の冷却水の温度も変わってくる。従って、制御装置により余剰蒸気の流量に基づいて圧縮式冷凍機が備える圧縮機の回転数を制御することによって、圧縮式冷凍機の冷却能力を一定に維持することが可能となる。
A steam flow measuring means for measuring the flow rate of the surplus steam; and a control device for controlling the number of revolutions of the compressor of the compression type refrigerator based on the surplus steam flow measured by the steam flow measuring means; Is provided.
As described above, since the flow rate of surplus steam varies greatly, the amount of cold heat generated by the absorption chiller also varies, and the cooling water after pre-cooling supplied to the compression chiller by the flow rate of surplus steam is generated. The temperature will also change. Therefore, the cooling capacity of the compression refrigerator can be maintained constant by controlling the rotation speed of the compressor included in the compression refrigerator based on the flow rate of excess steam by the control device.

さらに、前記吸収式冷凍機の前段に蓄熱式熱交換器を設けたことを特徴とする。
このように、蓄熱式熱交換器を設けることにより、余剰蒸気の流量変動による冷却能力の変動の平準化を図ることができ、圧縮式冷凍機の運転制御を簡素化することが可能となる。
Furthermore, a heat storage heat exchanger is provided in the preceding stage of the absorption refrigerator.
As described above, by providing the heat storage type heat exchanger, it is possible to level the fluctuation of the cooling capacity due to the fluctuation of the flow rate of the surplus steam, and it is possible to simplify the operation control of the compression type refrigerator.

さらにまた、前記熱交換器を蓄熱式熱交換器としたことを特徴とする。
このように、前記熱交換器の代替として蓄熱式熱交換器を設けることにより、新たに熱交換器を設置することなく、剰蒸気の流量変動による冷却能力の変動の平準化を図ることができ、圧縮式冷凍機の運転制御を簡素化することが可能となる。
Furthermore, the heat exchanger is a regenerative heat exchanger.
Thus, by providing a regenerative heat exchanger as an alternative to the heat exchanger, it is possible to level the fluctuations in the cooling capacity due to fluctuations in the surplus steam flow without installing a new heat exchanger. It becomes possible to simplify the operation control of the compression refrigerator.

また、前記蓄熱式熱交換器を並列に複数設けるとともに、各蓄熱式熱交換器への冷媒の供給量を制御するバルブを夫々設け、
前記余剰蒸気の流量を測定する蒸気流量測定手段と、該蒸気流量測定手段にて測定された余剰蒸気流量に基づいて前記バルブを開閉制御し前記蓄熱式熱交換器の稼動数を制御する制御装置と、を設けることを特徴とする。
このように、余剰蒸気の流量に応じて蓄熱式熱交換器の稼動数を増減することによって、大型の蓄熱式熱交換器を設置することなく余剰蒸気の変動に応じた制御が可能となる。
また、上記した排熱利用冷凍システムが冷凍コンテナ船に搭載されたシステムであって、前記他の蒸気利用装置が、船内の貨物庫を含む船内蒸気利用装置であり、前記圧縮式冷凍機で生成された冷熱により前記船内蒸気利用装置を冷却することが好ましい。
In addition, a plurality of the heat storage heat exchangers are provided in parallel, and a valve for controlling the amount of refrigerant supplied to each heat storage heat exchanger is provided,
Steam flow measuring means for measuring the flow rate of the surplus steam, and a control device for controlling the number of operations of the regenerative heat exchanger by controlling the opening and closing of the valve based on the surplus steam flow measured by the steam flow measuring means. And is provided.
In this way, by increasing or decreasing the number of operation of the regenerative heat exchanger according to the flow rate of surplus steam, it becomes possible to perform control according to fluctuations in surplus steam without installing a large-scale regenerative heat exchanger.
Further, the above-described exhaust heat utilization refrigeration system is a system mounted on a refrigeration container ship, and the other steam utilization device is an inboard steam utilization device including an on-board cargo warehouse, and is generated by the compression refrigerator. Preferably, the in-steam steam utilization device is cooled by the generated cold heat.

以上記載のごとく本発明によれば、圧縮式冷凍機の前段に吸収式冷凍機を直列に配置し、吸収式冷凍機で生成した冷熱により圧縮式冷凍機に供給される冷却水を予冷することにより、圧縮式冷凍機の使用電力を削減することが可能となる。
また、流量変動の大きい余剰蒸気を有効活用することができ、システム全体のエネルギ効率を向上させることが可能となる。
さらにまた、蓄熱式熱交換器を設けることにより、余剰蒸気の流量変動による冷却能力の変動の平準化を図ることができ、圧縮式冷凍機の運転制御を簡素化することが可能となる。
As described above, according to the present invention, the absorption chiller is arranged in series before the compression chiller, and the cooling water supplied to the compression chiller is pre-cooled by the cold generated by the absorption chiller. As a result, it is possible to reduce the power consumption of the compression refrigerator.
Further, surplus steam having a large flow rate fluctuation can be effectively used, and the energy efficiency of the entire system can be improved.
Furthermore, by providing a heat storage type heat exchanger, it is possible to level the fluctuations in the cooling capacity due to fluctuations in the flow rate of surplus steam, and it is possible to simplify the operation control of the compression type refrigerator.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
本実施形態では、排ガス発生源からの排熱を利用して蒸気を生成し、該蒸気の排熱を用いて発電した電力により冷凍機を駆動するとともに、蒸気の一部を
他の蒸気利用設備に供給して使用する排熱利用冷凍システム全般に適用されるものであるが、以下には一例として本システムを冷凍コンテナ船に適用した場合につき説明する。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
In the present embodiment, steam is generated using exhaust heat from the exhaust gas generation source, the refrigerator is driven by the electric power generated using the exhaust heat of the steam, and a part of the steam is used for other steam utilization facilities. The present invention is applied to all refrigeration systems using exhaust heat that are supplied to and used as an example. Hereinafter, a case where the present system is applied to a refrigeration container ship will be described as an example.

(実施形態1)
図1は、本発明の実施形態1に係る排熱利用冷凍システムの概略構成図である。
冷凍コンテナ船には、船を駆動するメインエンジン1が搭載されており、該メインエンジン1から排出される排ガスを利用して蒸気を生成するエコノマイザ2が設けられている。該エコノマイザ2は、給水22が供給される蒸気ドラム6を備え、該蒸気ドラム6からまず熱交換器5に給水22が導入されて加熱され、水と蒸気の混合流体が蒸気ドラム6に戻された後、蒸気のみが熱交換器5に導入されて加熱され、飽和蒸気(以下、蒸気と略称する)が生成される。この蒸気は主として蒸気タービン7に送られる。エコノマイザ2にて冷却された排ガスは所定の排ガス処理を経て煙突3より排出される。
蒸気タービン7は、エコノマイザ2にて生成された蒸気により回転され、該蒸気タービン7に連結して配設された発電機8を駆動する。発電機8で発電した電力は後述する圧縮式冷凍機15に給電される。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of a waste heat utilization refrigeration system according to Embodiment 1 of the present invention.
A refrigerated container ship is equipped with a main engine 1 that drives the ship, and an economizer 2 that generates steam using exhaust gas discharged from the main engine 1 is provided. The economizer 2 includes a steam drum 6 to which feed water 22 is supplied. The feed water 22 is first introduced from the steam drum 6 into the heat exchanger 5 and heated, and a mixed fluid of water and steam is returned to the steam drum 6. After that, only steam is introduced into the heat exchanger 5 and heated to generate saturated steam (hereinafter abbreviated as steam). This steam is mainly sent to the steam turbine 7. The exhaust gas cooled by the economizer 2 is discharged from the chimney 3 through a predetermined exhaust gas treatment.
The steam turbine 7 is rotated by the steam generated by the economizer 2, and drives a generator 8 that is connected to the steam turbine 7. The electric power generated by the generator 8 is fed to a compression refrigerator 15 described later.

圧縮式冷凍機15は、不図示の圧縮機と、凝縮器と、膨張弁等の減圧装置と、蒸発器とを備えた周知の装置である。該圧縮式冷凍機15には上記した機器により形成される冷媒サイクルを有しており、蒸発器にて生成される冷熱30を貨物室16に供給して該貨物室30の冷却を行うようになっている。また、該圧縮式冷凍機15は、冷却水27が供給されて圧縮機又は凝縮器の冷却を行い、冷却後の排水29が排出される構成を備えている。この冷却水27には、海水を用いることが好ましい。さらに上記したように、圧縮式冷凍機15が備える圧縮機は、発電機8で発電した電力により駆動される。   The compression refrigerator 15 is a well-known device including a compressor (not shown), a condenser, a decompression device such as an expansion valve, and an evaporator. The compression refrigerator 15 has a refrigerant cycle formed by the above-described equipment, and cools the cargo chamber 30 by supplying cold heat 30 generated by the evaporator to the cargo chamber 16. It has become. The compression refrigerator 15 has a configuration in which cooling water 27 is supplied to cool the compressor or the condenser, and the drainage 29 after cooling is discharged. The cooling water 27 is preferably seawater. Further, as described above, the compressor included in the compression refrigerator 15 is driven by the electric power generated by the generator 8.

エコノマイザ2で生成した蒸気の一部22は、船内蒸気利用設備10に供給される。該船内蒸気利用設備10は、例えば船内の冷暖房装置、温水生成装置等のように、蒸気タービン7以外の他の蒸気利用設備10である。また、該船内蒸気利用設備10は時間帯や状況等により蒸気使用量が変動するものである。
そこで、船内蒸気利用設備10で使用されなかった余剰蒸気23は、吸収式冷凍機11に供給される。
A portion 22 of the steam generated by the economizer 2 is supplied to the ship steam utilization facility 10. The in-steam steam utilization facility 10 is a steam utilization facility 10 other than the steam turbine 7, such as an in-air cooling / heating device, a hot water generation device, and the like. Further, the in-vessel steam utilization facility 10 varies in the amount of steam used depending on the time zone and the situation.
Therefore, the surplus steam 23 that has not been used in the inboard steam utilization facility 10 is supplied to the absorption refrigerator 11.

吸収式冷凍機11は、再生器と、凝縮器と、蒸発器と、吸収器とを備える周知の装置である。具体的には、該吸収式冷凍機11は、冷媒を含む吸収液を加熱して吸収液から冷媒を気化させて分離する再生器と、この再生器によって分離した気化冷媒を冷却して凝縮液化させる凝縮器と、この凝縮器で凝縮した液化冷媒を、熱運搬用熱媒体が通過する蒸発用熱交換器の表面に滴下させ、低圧雰囲気で蒸発させる蒸発器と、冷却用熱媒体が通過する吸収用熱交換器が前記蒸発用熱交換器と隣接して配置され、前記再生器で濃度上昇した高濃度吸収液を前記吸収用熱交換器の表面に滴下して、吸収熱を奪いながら前記蒸発器で蒸発した気化冷媒を吸収液に吸収させる吸収器と、から構成される。
該吸収式冷凍機11の再生器を加熱する熱源として、前記余剰蒸気23が用いられる。
The absorption refrigerator 11 is a known device including a regenerator, a condenser, an evaporator, and an absorber. Specifically, the absorption refrigerator 11 heats an absorption liquid containing a refrigerant to vaporize and separate the refrigerant from the absorption liquid, and cools the vaporized refrigerant separated by the regenerator to condense and liquefy the refrigerant. The condenser to be condensed, the liquefied refrigerant condensed in the condenser to be dropped on the surface of the evaporation heat exchanger through which the heat transfer heat medium passes, and the evaporator to be evaporated in a low-pressure atmosphere and the cooling heat medium pass An absorption heat exchanger is disposed adjacent to the evaporation heat exchanger, and a high-concentration absorption liquid whose concentration has been increased by the regenerator is dropped on the surface of the absorption heat exchanger to remove the absorption heat. And an absorber that causes the absorbing liquid to absorb the vaporized refrigerant evaporated in the evaporator.
The surplus steam 23 is used as a heat source for heating the regenerator of the absorption refrigerator 11.

さらに前記吸収式冷凍機11で生成した冷熱により圧縮式冷凍機15の冷却水27を予冷する熱交換器12を備える。熱交換器12は、低温側には吸収式冷凍機11の蒸発器で冷却された冷媒が通流するとともに、高温側には圧縮式冷凍機15に供給される冷却水27が通流し、これらの間で熱交換が行われて冷却水27が予冷される。   Furthermore, the heat exchanger 12 which pre-cools the cooling water 27 of the compression refrigerator 15 with the cold heat produced | generated with the said absorption refrigerator 11 is provided. In the heat exchanger 12, the refrigerant cooled by the evaporator of the absorption chiller 11 flows on the low temperature side, and the cooling water 27 supplied to the compression chiller 15 flows on the high temperature side. Heat exchange is performed between the two and the cooling water 27 is precooled.

このように本実施形態によれば、圧縮式冷凍機15の前段に吸収式冷凍機11を直列に配置し、吸収式冷凍機15で生成した冷熱により圧縮式冷凍機15に供給される冷却水27を予冷することにより、圧縮式冷凍機の使用電力を削減することが可能となる。また、流量変動の大きい余剰蒸気を有効活用することができ、システム全体のエネルギ効率を向上させることが可能となる。   As described above, according to the present embodiment, the absorption chiller 11 is arranged in series before the compression chiller 15, and the cooling water supplied to the compression chiller 15 by the cold generated by the absorption chiller 15. By pre-cooling 27, it is possible to reduce the power used by the compression refrigerator. Further, surplus steam having a large flow rate fluctuation can be effectively used, and the energy efficiency of the entire system can be improved.

また、本実施形態を応用させた構成として、船内蒸気利用設備10の余剰蒸気23の流量を測定する蒸気流量測定手段41と、該蒸気流量測定手段41にて測定した余剰蒸気流量に基づいて前記圧縮式冷凍機15の圧縮機の回転数を制御する制御装置42と、を設けることが好ましい。
上記したように、余剰蒸気23の流量は変動が大きいため、吸収式冷凍機11で生成される冷熱量にも変動が生じ、余剰蒸気23の流量によって圧縮式冷凍機15に供給される予冷後の冷却水27の温度も変わってくる。従って、制御装置42により、余剰蒸気23の流量に基づいて圧縮式冷凍機15が備える圧縮機の回転数を制御することによって、貨物室16の冷却能力を一定に維持することが可能となる。
Further, as a configuration to which the present embodiment is applied, the steam flow measuring means 41 for measuring the flow rate of the surplus steam 23 of the in-vessel steam utilization facility 10 and the surplus steam flow measured by the steam flow measuring means 41 are used. It is preferable to provide a control device 42 that controls the rotational speed of the compressor of the compression refrigerator 15.
As described above, since the flow rate of the surplus steam 23 varies greatly, the amount of cold heat generated by the absorption refrigerator 11 also varies, and after the precooling supplied to the compression refrigerator 15 by the flow rate of the surplus steam 23. The temperature of the cooling water 27 also changes. Therefore, the control device 42 can maintain the cooling capacity of the cargo compartment 16 at a constant level by controlling the rotational speed of the compressor included in the compression refrigerator 15 based on the flow rate of the surplus steam 23.

(実施形態2−1)
以下の実施形態2−1乃至実施形態2−3は、上記した実施形態1の構成に蓄熱手段を加えた構成となっている。尚、実施形態2−1乃至実施形態2−3において、実施形態1と同一の構成についてはその詳細な説明を省略する。
(Embodiment 2-1)
Embodiments 2-1 to 2-3 below have a configuration in which heat storage means is added to the configuration of the first embodiment described above. In Embodiments 2-1 to 2-3, detailed description of the same configurations as those in Embodiment 1 is omitted.

図2は、本発明の実施形態2−1に係る排熱利用冷凍システムの概略構成図である。
本システムは、吸収式冷凍機11の前段に、蓄熱式熱交換器45を備えた構成となっている。該蓄熱式熱交換器45は、高温側に船内蒸気利用設備10の余剰蒸気23が通流し、低温側に吸収式冷凍機11の再生器を加熱する熱媒が通流し、余剰蒸気23により熱媒を加熱する構成を備える。該蓄熱式熱交換器45は、蓄熱体を装填したケーシングを備え、該ケーシングの一端から他端へ余剰蒸気23を流して蓄熱体を加熱した後、他端から一端に熱媒を流し、蓄熱体に蓄熱された熱により熱媒を加熱するようになっている。蓄熱体には、潜熱蓄熱体、顕熱蓄熱体等から適宜選択して用いられるが、好適には熱容量が大であるセラミック体等が用いられる。
FIG. 2 is a schematic configuration diagram of the exhaust heat utilization refrigeration system according to Embodiment 2-1 of the present invention.
This system has a configuration in which a regenerative heat exchanger 45 is provided upstream of the absorption chiller 11. In the regenerative heat exchanger 45, the surplus steam 23 of the in-vessel steam utilization facility 10 flows to the high temperature side, and the heat medium for heating the regenerator of the absorption refrigeration machine 11 flows to the low temperature side. A structure for heating the medium is provided. The heat storage heat exchanger 45 includes a casing loaded with a heat storage body, and after flowing the surplus steam 23 from one end of the casing to the other end to heat the heat storage body, the heat medium is flowed from the other end to one end to store the heat storage. The heat medium is heated by the heat stored in the body. The heat storage body is appropriately selected from a latent heat storage body, a sensible heat storage body, and the like, and a ceramic body having a large heat capacity is preferably used.

上記したように、余剰蒸気23の流量は船内蒸気需要により時々刻々と変化するため、圧縮式冷凍機15の冷却温度が急激に変動することがあるが、本実施形態のごとく蓄熱式熱交換器45を設けることにより、負荷変動の平準化を図ることができ、圧縮式冷凍機15の運転制御を簡素化することが可能となる。   As described above, the flow rate of the surplus steam 23 changes from moment to moment due to in-vessel steam demand, so the cooling temperature of the compression refrigerator 15 may fluctuate abruptly. However, as in this embodiment, a regenerative heat exchanger By providing 45, load fluctuations can be leveled, and the operation control of the compression refrigerator 15 can be simplified.

(実施形態2−2)
図3は、本発明の実施形態2−2に係る排熱利用冷凍システムの概略構成図である。
本構成は、吸収式冷凍機11の後段に、蓄熱式熱交換器46を備えた構成となっている。即ち、実施形態1に示した熱交換器12を蓄熱式熱交換器46に代替したものである。該蓄熱式熱交換器46は、低温側に吸収式冷凍機11の蒸発器で冷却された冷媒が通流するとともに、高温側には圧縮式冷凍機15に供給される冷却水27が通流し、これらの間で熱交換が行われて冷却水27が予冷される。該蓄熱式熱交換器46は、蓄熱体を装填したケーシングを備え、該ケーシングの一端から他端へ吸収式冷凍機11の冷媒を流して蓄熱体を冷却した後、他端から一端に冷却水27を流し、蓄熱体に蓄熱された冷熱により冷却水27を冷却するようになっている。蓄熱体には、潜熱蓄熱体、顕熱蓄熱体等から適宜選択して用いられるが、好適には水等が用いられる。
本実施形態のごとく蓄熱式熱交換器46を設けることにより、余剰蒸気23の流量変動による冷却能力の変動の平準化を図ることができ、圧縮式冷凍機15の運転制御を簡素化することが可能となる。
(Embodiment 2-2)
FIG. 3 is a schematic configuration diagram of the exhaust heat utilization refrigeration system according to Embodiment 2-2 of the present invention.
In this configuration, a heat storage heat exchanger 46 is provided in the subsequent stage of the absorption refrigerator 11. That is, the heat exchanger 12 shown in Embodiment 1 is replaced with a heat storage heat exchanger 46. In the heat storage heat exchanger 46, the refrigerant cooled by the evaporator of the absorption chiller 11 flows to the low temperature side, and the cooling water 27 supplied to the compression chiller 15 flows to the high temperature side. Heat exchange is performed between these, and the cooling water 27 is pre-cooled. The heat storage heat exchanger 46 includes a casing loaded with a heat storage body, and after cooling the heat storage body by flowing the refrigerant of the absorption refrigeration machine 11 from one end to the other end of the casing, The cooling water 27 is cooled by the cold energy stored in the heat storage body. The heat storage body is appropriately selected from a latent heat storage body, a sensible heat storage body, and the like, and water or the like is preferably used.
By providing the heat storage type heat exchanger 46 as in the present embodiment, it is possible to level the fluctuation of the cooling capacity due to the fluctuation of the flow rate of the surplus steam 23 and to simplify the operation control of the compression refrigerator 15. It becomes possible.

(実施形態2−3)
図4は、本発明の実施形態2−3に係る排熱利用冷凍システムの概略構成図である。本実施形態2−3は、上記した実施形態2−2、2−3に適用可能な構成であるが、ここでは一例として実施形態2−2に適用した構成につき説明する。
本構成は、吸収式冷凍機11の前段に、複数の蓄熱式熱交換器45a、45b、45cを並列に配設した構成を有している。図中には3基の蓄熱式熱交換器を並列配置した構成を示しているが、その数は限定されない。
(Embodiment 2-3)
FIG. 4 is a schematic configuration diagram of an exhaust heat utilization refrigeration system according to Embodiment 2-3 of the present invention. The present embodiment 2-3 is a configuration applicable to the above-described embodiments 2-2 and 2-3. Here, the configuration applied to the embodiment 2-2 will be described as an example.
This configuration has a configuration in which a plurality of regenerative heat exchangers 45 a, 45 b, 45 c are arranged in parallel in the front stage of the absorption refrigerator 11. Although the figure shows a configuration in which three heat storage heat exchangers are arranged in parallel, the number is not limited.

蓄熱式熱交換器のうち2基の蓄熱式熱交換器45b、45cには、余剰蒸気23が供給される流路上にバルブ47b、47cが、吸収式冷凍機11の熱媒が供給される流路上にバルブ48b、48cが設けられており、これにより蓄熱式熱交換器45a〜45cの稼動数を制御可能となっている。
また、余剰蒸気23の流量を測定する蒸気流量測定手段41と、該蒸気流量測定手段41にて測定された余剰蒸気流量に基づいてバルブ47b、47c、48b、48cを開閉制御し、蓄熱式熱交換器45a〜45cの稼動数を制御する制御装置42とを備える。
Among the heat storage type heat exchangers, the two heat storage type heat exchangers 45b and 45c have valves 47b and 47c on the flow path to which the surplus steam 23 is supplied, and the flow through which the heat medium of the absorption refrigerator 11 is supplied. Valves 48b and 48c are provided on the road so that the number of operating heat storage heat exchangers 45a to 45c can be controlled.
Further, the steam flow measuring means 41 for measuring the flow rate of the surplus steam 23, and the valves 47b, 47c, 48b, 48c are controlled to open and close based on the surplus steam flow measured by the steam flow measuring means 41, and the heat storage type heat And a control device 42 that controls the number of operating the exchangers 45a to 45c.

本構成において、蒸気流量測定手段41にて測定された余剰蒸気23の流量が大きい場合には、制御装置42にてバルブ47b、47c、48b、48cを開に制御し、蓄熱式熱交換器45a〜45cの全て稼動させる。一方、蒸気流量測定手段41にて測定された余剰蒸気23の流量が少ない場合には、制御装置42にてバルブ47b、47c、48b、48cを全て閉、或いは、バルブ47bとバルブ48b又はバルブ47cとバルブ48cの何れか一方の組み合わせのみを閉に制御し、蓄熱式熱交換器45a〜45cの稼動数を減らす。
このように、余剰蒸気23の流量に応じて蓄熱式熱交換器45a〜45cの稼動数を増減することによって、大型の蓄熱式熱交換器を設置することなく余剰蒸気の変動に応じた制御が可能となる。
In this configuration, when the flow rate of the surplus steam 23 measured by the steam flow rate measuring means 41 is large, the control device 42 controls the valves 47b, 47c, 48b, 48c to be opened, and the regenerative heat exchanger 45a. All of ~ 45c are activated. On the other hand, when the flow rate of the surplus steam 23 measured by the steam flow rate measuring means 41 is small, all the valves 47b, 47c, 48b and 48c are closed by the control device 42, or the valves 47b and 48b or 47c are closed. Only one of the combination of the valve 48c and the valve 48c is controlled to be closed to reduce the number of operating the heat storage type heat exchangers 45a to 45c.
As described above, by controlling the number of operation of the heat storage heat exchangers 45a to 45c in accordance with the flow rate of the surplus steam 23, the control according to the fluctuation of the surplus steam can be performed without installing a large heat storage heat exchanger. It becomes possible.

本発明は、排ガス発生源からの排熱を利用して蒸気を生成し、該蒸気の排熱を用いて発電した電力により冷凍機を駆動するとともに、蒸気の一部を他の蒸気利用設備に供給して使用する排熱利用冷凍システムにて、他の蒸気利用設備から排出される流量変動が大きい余剰蒸気を効果的に用いて、冷凍設備をエネルギ効率よく稼動することができるため、冷凍コンテナ船や各種冷凍工場等において幅広く適用可能である。   The present invention generates steam by using exhaust heat from an exhaust gas generation source, drives a refrigerator with electric power generated using the exhaust heat of the steam, and partially uses the steam for other steam utilization equipment. In the refrigeration system using exhaust heat that is supplied and used, the refrigeration equipment can be operated energy-efficiently by using surplus steam that has a large flow rate fluctuation discharged from other steam-use equipment. It can be widely applied to ships and various refrigeration factories.

本発明の実施形態1に係る排熱利用冷凍システムの概略構成図である。It is a schematic block diagram of the exhaust-heat utilization refrigeration system which concerns on Embodiment 1 of this invention. 本発明の実施形態2−1に係る排熱利用冷凍システムの概略構成図である。It is a schematic block diagram of the exhaust-heat utilization refrigeration system which concerns on Embodiment 2-1 of this invention. 本発明の実施形態2−2に係る排熱利用冷凍システムの概略構成図である。It is a schematic block diagram of the exhaust-heat utilization refrigeration system which concerns on Embodiment 2-2 of this invention. 本発明の実施形態2−3に係る排熱利用冷凍システムの概略構成図である。It is a schematic block diagram of the exhaust-heat utilization refrigeration system which concerns on Embodiment 2-3 of this invention. 従来の冷凍コンテナ船に搭載された排熱利用冷凍システムの概略構成図である。It is a schematic block diagram of the waste heat utilization refrigeration system mounted in the conventional refrigeration container ship.

符号の説明Explanation of symbols

1 エンジン
2 エコノマイザ
7 蒸気タービン
8 発電機
9 復水器
10 船内蒸気利用設備
11 吸収式冷凍機
12 熱交換器
15 圧縮式冷凍機
21 排ガス
22 分岐蒸気
23 余剰蒸気
41 蒸気流量測定手段
42 制御装置
45、45a、45b、45c、46 蓄熱式熱交換器
47b、47c、48b、48c バルブ
DESCRIPTION OF SYMBOLS 1 Engine 2 Economizer 7 Steam turbine 8 Generator 9 Condenser 10 Inboard steam utilization equipment 11 Absorption refrigeration machine 12 Heat exchanger 15 Compression refrigeration machine 21 Exhaust gas 22 Branched steam 23 Surplus steam 41 Steam flow measuring means 42 Control device 45 45a, 45b, 45c, 46 Regenerative heat exchanger 47b, 47c, 48b, 48c Valve

Claims (6)

排熱発生源からの排熱を利用して蒸気を生成するエコノマイザと、該エコノマイザにて生成した蒸気が供給され蒸気タービンを回転して発電を行う発電装置と、前記発電装置にて発電した電力により圧縮機を駆動し冷熱を生成する圧縮式冷凍機とを備えるとともに、前記蒸気タービンに供給される蒸気の一部が分岐されて供給される他の蒸気利用装置を備えた排熱利用冷凍システムにおいて、
前記他の蒸気利用装置は蒸気使用量に変動があり、該他の蒸気利用装置からの余剰蒸気が供給されこの供給された余剰蒸気により加熱される再生器を備えた吸収式冷凍機と、
前記吸収式冷凍機で生成した冷熱により前記圧縮式冷凍機に供給される冷却水を予冷する熱交換器と、を設けたことを特徴とする排熱利用冷凍システム。
An economizer that generates steam using exhaust heat from an exhaust heat generation source, a power generation apparatus that is supplied with steam generated by the economizer and rotates a steam turbine to generate power, and electric power generated by the power generation apparatus And a compression type refrigerator that drives the compressor to generate cold heat, and a waste heat utilization refrigeration system comprising another steam utilization device to which a part of the steam supplied to the steam turbine is branched and supplied In
The other steam utilization device has a variation in the amount of steam used, and an absorption refrigerator having a regenerator supplied with surplus steam from the other steam utilization device and heated by the supplied surplus steam;
A waste heat utilization refrigeration system, comprising: a heat exchanger that precools cooling water supplied to the compression chiller by cold generated by the absorption chiller.
前記余剰蒸気の流量を測定する蒸気流量測定手段と、該蒸気流量測定手段にて測定された余剰蒸気流量に基づいて前記圧縮式冷凍機の圧縮機の回転数を制御する制御装置と、を設けたことを特徴とする請求項1記載の排熱利用冷凍システム。   A steam flow measuring means for measuring the flow rate of the surplus steam, and a control device for controlling the number of revolutions of the compressor of the compression type refrigerator based on the surplus steam flow measured by the steam flow measuring means. The exhaust heat utilization refrigeration system according to claim 1. 前記吸収式冷凍機の前段に蓄熱式熱交換器を設けたことを特徴とする請求項1若しくは2記載の排熱利用冷凍システム。   The waste heat utilization refrigeration system according to claim 1 or 2, wherein a heat storage type heat exchanger is provided in front of the absorption chiller. 前記熱交換器を蓄熱式熱交換器としたことを特徴とする請求項1若しくは2記載の排熱利用冷凍システム。   The exhaust heat utilization refrigeration system according to claim 1 or 2, wherein the heat exchanger is a regenerative heat exchanger. 前記蓄熱式熱交換器を並列に複数設けるとともに、各蓄熱式熱交換器への冷媒の供給量を制御するバルブを夫々設け、
前記余剰蒸気の流量を測定する蒸気流量測定手段と、該蒸気流量測定手段にて測定された余剰蒸気流量に基づいて前記バルブを開閉制御し前記蓄熱式熱交換器の稼動数を制御する制御装置と、を設けることを特徴とする請求項3若しくは4記載の排熱利用冷凍システム。
A plurality of the heat storage heat exchangers are provided in parallel, and valves for controlling the amount of refrigerant supplied to each heat storage heat exchanger are provided,
Steam flow measuring means for measuring the flow rate of the surplus steam, and a control device for controlling the number of operations of the regenerative heat exchanger by controlling the opening and closing of the valve based on the surplus steam flow measured by the steam flow measuring means. And a waste heat utilization refrigeration system according to claim 3 or 4.
請求項1乃至5に記載の排熱利用冷凍システムが冷凍コンテナ船に搭載されたシステムであって、前記他の蒸気利用装置が、船内の貨物庫を含む船内蒸気利用装置であり、前記圧縮式冷凍機で生成された冷熱により前記船内蒸気利用装置を冷却するようにしたことを特徴とする排熱利用冷凍システム。   The exhaust heat utilization refrigeration system according to any one of claims 1 to 5 is a system mounted on a refrigeration container ship, wherein the other steam utilization apparatus is an inboard steam utilization apparatus including a cargo warehouse in the ship, and the compression type An exhaust heat utilization refrigeration system, wherein the in-steam steam utilization device is cooled by cold heat generated by a refrigerator.
JP2008322228A 2008-12-18 2008-12-18 Refrigerating system utilizing exhaust heat Withdrawn JP2010144995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008322228A JP2010144995A (en) 2008-12-18 2008-12-18 Refrigerating system utilizing exhaust heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008322228A JP2010144995A (en) 2008-12-18 2008-12-18 Refrigerating system utilizing exhaust heat

Publications (1)

Publication Number Publication Date
JP2010144995A true JP2010144995A (en) 2010-07-01

Family

ID=42565607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008322228A Withdrawn JP2010144995A (en) 2008-12-18 2008-12-18 Refrigerating system utilizing exhaust heat

Country Status (1)

Country Link
JP (1) JP2010144995A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102373975A (en) * 2010-08-25 2012-03-14 益科博能源科技(上海)有限公司 Application system of multistage lithium bromide units
JP2012117697A (en) * 2010-11-29 2012-06-21 Mitsubishi Heavy Ind Ltd Exhaust heat recovery system
KR101188651B1 (en) 2010-08-31 2012-10-08 주식회사 테노바엔비타 Integrated energy recycling system for cogeneration
JP2012214399A (en) * 2011-03-31 2012-11-08 Nippon Shokubai Co Ltd Process for producing ethylene oxide
CN103104305A (en) * 2013-01-21 2013-05-15 中国科学院广州能源研究所 Organic Rankine-Rankine cycle fisher waste heat ice making device
WO2013133174A1 (en) 2012-03-07 2013-09-12 ヤンマー株式会社 Waste heat recovery system for vessel
KR101411513B1 (en) 2013-01-11 2014-06-24 삼성중공업 주식회사 Air conditioning system using economizer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102373975A (en) * 2010-08-25 2012-03-14 益科博能源科技(上海)有限公司 Application system of multistage lithium bromide units
KR101188651B1 (en) 2010-08-31 2012-10-08 주식회사 테노바엔비타 Integrated energy recycling system for cogeneration
JP2012117697A (en) * 2010-11-29 2012-06-21 Mitsubishi Heavy Ind Ltd Exhaust heat recovery system
JP2012214399A (en) * 2011-03-31 2012-11-08 Nippon Shokubai Co Ltd Process for producing ethylene oxide
WO2013133174A1 (en) 2012-03-07 2013-09-12 ヤンマー株式会社 Waste heat recovery system for vessel
JP2013184566A (en) * 2012-03-07 2013-09-19 Yanmar Co Ltd Waste heat recovery system for vessel
KR20140143390A (en) 2012-03-07 2014-12-16 얀마 가부시키가이샤 Waste heat recovery system for vessel
US9598164B2 (en) 2012-03-07 2017-03-21 Yanmar Co., Ltd. Waste heat recovery system for vessel
KR101973231B1 (en) 2012-03-07 2019-04-26 얀마 가부시키가이샤 Waste heat recovery system for vessel
KR101411513B1 (en) 2013-01-11 2014-06-24 삼성중공업 주식회사 Air conditioning system using economizer
CN103104305A (en) * 2013-01-21 2013-05-15 中国科学院广州能源研究所 Organic Rankine-Rankine cycle fisher waste heat ice making device

Similar Documents

Publication Publication Date Title
Liang et al. Investigation of a refrigeration system based on combined supercritical CO2 power and transcritical CO2 refrigeration cycles by waste heat recovery of engine
JP2010144995A (en) Refrigerating system utilizing exhaust heat
JP6408755B2 (en) Ship, cold energy recovery system for ship, and mode switching method of cold energy recovery system
JP5317000B2 (en) Air conditioning system for ships using cold LNG and seawater
JP2512095B2 (en) Cold heat generation method
KR101917508B1 (en) Refrigerant air conditioning system without compression system
JP5873379B2 (en) Steam turbine plant and operation method thereof
JP2001081484A (en) Liquefied-gas evaporation apparatus with cold-heat generation function
JPH1089798A (en) Chemical thermal storage type suction cooler
JP5701026B2 (en) Waste heat recovery system
JP2005291094A (en) Power plant facility using liquefied gas vaporizing device
KR101917505B1 (en) Refrigerant air conditioning system without compression system
KR101917507B1 (en) Refrigerant air conditioning system without compression system
KR100814615B1 (en) Cogeneration system using compression type cycle and absorption type cycle
JP2003028520A (en) Regenerative refrigerating plant
KR20120020842A (en) Combustion air cooling systemm and methods of engine for vessel
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
KR101917506B1 (en) Refrigerant air conditioning system without compression system
JP2005147447A (en) Ammonia-water non-azeotropic mixture medium circulation system
JP4156842B2 (en) Operation method of cold heat generation system and cold heat generation system
KR101775036B1 (en) Hybrid air conditioning system for vessel
BR112020026171A2 (en) multiple cascade cooling system
KR101444169B1 (en) Heat Recovery Apparatus for Ship
JP7146070B2 (en) mobile
JP2006038365A (en) Heat exchange system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120306