WO2010106612A1 - Vehicle - Google Patents

Vehicle Download PDF

Info

Publication number
WO2010106612A1
WO2010106612A1 PCT/JP2009/055001 JP2009055001W WO2010106612A1 WO 2010106612 A1 WO2010106612 A1 WO 2010106612A1 JP 2009055001 W JP2009055001 W JP 2009055001W WO 2010106612 A1 WO2010106612 A1 WO 2010106612A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
gas
vehicle
carbon dioxide
main tank
Prior art date
Application number
PCT/JP2009/055001
Other languages
French (fr)
Japanese (ja)
Inventor
恭一 丹下
新 村上
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/055001 priority Critical patent/WO2010106612A1/en
Publication of WO2010106612A1 publication Critical patent/WO2010106612A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/15Pneumatic energy storages, e.g. pressure air tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a vehicle configured to drive an engine by the pressure of carbon dioxide gas.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2005-306191
  • a vehicle in which an air motor is driven by compressed air is known.
  • the prior art vehicle includes a tank for storing air compressed by an air compressor. When the vehicle travels, compressed air is supplied from the tank to the air motor to operate the air motor.
  • the vehicle is driven by compressed air stored in a tank.
  • compressed air stored in a tank.
  • the cruising distance of the vehicle is limited according to the stored amount of compressed air, and there is a problem that a sufficient cruising distance cannot be obtained.
  • the present invention has been made in order to solve the above-described problems.
  • the present invention can drive a power engine by the gas pressure while efficiently storing carbon dioxide, and can provide liquid air or liquid nitrogen.
  • An object of the present invention is to provide a vehicle capable of extending the cruising distance with a simple structure as compared with the vehicle.
  • the first invention is a main tank for storing carbon dioxide at a temperature of room temperature or higher and a pressure of 7 MPa or higher.
  • a power engine that is driven by the pressure of carbon dioxide gas supplied from the main tank and outputs power for running; It is characterized by providing.
  • the second invention is configured to include a sub-tank that stores the carbon dioxide in the normal temperature and high pressure state in order to supply carbon dioxide gas to the in-vehicle device.
  • the third invention is configured to include a regenerative brake compressor that compresses used carbon dioxide gas using regenerative energy when braking the vehicle.
  • a fourth invention is a regenerative brake compressor that compresses used carbon dioxide gas using regenerative energy when braking a vehicle, Switching means for switching the storage destination of carbon dioxide compressed by the regenerative brake compressor to either the main tank or the sub tank; It is set as the structure provided with.
  • CO 2 has a characteristic of being liquefied at room temperature when it becomes a high pressure of 7 MPa or more. Therefore, CO 2 liquefied at room temperature and high pressure can be stored in the main tank, and the power engine can be driven by this CO 2 gas. For this reason, even if it does not use refrigeration equipment etc., a large amount of energy can be efficiently stored with a small tank volume, and a decrease in the storage amount due to boil-off can be suppressed. Therefore, for example, compared with the case where compressed air, liquid air, liquid nitrogen or the like is stored in the tank, the cruising distance of the vehicle can be greatly extended with a simple structure.
  • the sub tank can store, for example, liquid CO 2 for operating an in-vehicle device such as an air conditioner in a normal temperature and high pressure state.
  • an in-vehicle device such as an air conditioner in a normal temperature and high pressure state.
  • the sub-tank side CO 2 can be freely supplied to the in-vehicle device without considering the remaining amount of CO 2 stored in the main tank, thereby smoothly moving the power engine and the in-vehicle device, respectively. Can be operated. If the sub-tank side CO 2 is supplied to the main tank or the power engine as necessary, the sub-tank can be used as a spare tank for the main tank, and the reliability of the vehicle can be improved.
  • the regenerative brake compressor recovers kinetic energy that is wasted when the vehicle is braked as regenerative energy and efficiently recompresses the used CO 2 gas by the regenerative energy. it can. This increases the utilization efficiency of the CO 2 gas, it is possible to promote energy saving of the vehicle.
  • the regenerative brake compressor can efficiently recompress the used CO 2 gas by utilizing the braking operation of the vehicle, and thereby has the same effect as the third aspect of the invention.
  • the switching means can switch the storage destination of the CO 2 gas recompressed by the compressor to either the main tank or the sub tank. Therefore, for example, if a configuration in which recompressed gas is replenished to a tank in which the remaining CO 2 is reduced, replenishment can be performed at a suitable timing for a plurality of tanks.
  • the recompressed CO 2 gas becomes high temperature, for example, if the storage destination of the recompressed gas is switched according to the temperature state of each tank, the temperatures of the main tank and the sub tank are required for each tank. Therefore, the temperature of the tank can be controlled.
  • Embodiment 1 of this invention is a whole block diagram for demonstrating the system configuration
  • FIG. 1 is an overall configuration diagram for explaining a system configuration of a vehicle in Embodiment 1 of the present invention.
  • a vehicle of the present embodiment storage and carbon dioxide (CO 2) power engine 10 driven by the pressure of the gas, in a state in which liquefied CO 2 to be supplied to the power engine 10
  • the main tank 12 is provided.
  • the power engine 10 includes a piston that reciprocates in a cylinder, for example, as in a gasoline engine, and the piston is connected to a crankshaft.
  • a piston that reciprocates in a cylinder, for example, as in a gasoline engine
  • the piston is connected to a crankshaft.
  • high-pressure CO 2 gas supplied from the main tank 12 is supplied to and discharged from the cylinder.
  • the piston reciprocates to rotationally drive the crankshaft, and power for running the vehicle is output.
  • the main tank 12 is made of, for example, steel or silica-based FRP resin, and is formed as a lightweight pressure-resistant tank.
  • the volume of the main tank 12 is set to about 30 to 70 L (liter), for example.
  • the main tank 12 stores CO 2 whose pressure has been increased to at least 7 MPa or more, preferably about 8 to 10 MPa, and the temperature is kept at about room temperature.
  • CO 2 has a property of being liquefied even at a temperature of room temperature or higher when in a high pressure state of 7 MPa or higher.
  • the main tank 12 stores CO 2 liquefied in such a normal temperature and high pressure state (that is, a temperature maintained at a temperature equal to or higher than the normal temperature and a pressure maintained at a pressure of 7 MPa or higher).
  • a normal temperature and high pressure state that is, a temperature maintained at a temperature equal to or higher than the normal temperature and a pressure maintained at a pressure of 7 MPa or higher.
  • the main tank 12 is provided with a supply port 14 for supplying CO 2 by an external supply device or the like, and a supply valve 16 for opening and closing the supply port 14.
  • the main tank 12 includes a gas supply pipe 18 that supplies the stored CO 2 to the power engine 10.
  • the gas supply pipe 18 includes a control valve 20 that controls the supply amount of CO 2 , and a regulator 22. And are provided.
  • the regulator 22 adjusts the pressure of the CO 2 gas supplied to the power engine 10. In order to drive the power engine 10 with CO 2 gas, a gas pressure of at least about 5 MPa is required. For this reason, the secondary side pressure of the regulator 22 is set to about 5 MPa, for example.
  • a heat exchanger 24 is provided in the power engine 10 and the gas supply pipe 18.
  • the heat exchanger 24 warms the gas supply pipe 18 with heat generated during operation of the power engine 10.
  • the CO 2 gas supplied from the main tank 12 has a low temperature when vaporized, but the heat exchanger 24 can warm this gas and thermally expand it. As a result, high pressure CO 2 gas can be supplied to the power engine 10 using the waste heat of the power engine 10, and the output and operating efficiency of the power engine 10 can be increased.
  • the sub tank 26 is mounted together with the main tank 12 in the vehicle of the present embodiment.
  • the sub tank 26 is formed as a pressure-resistant tank having a relatively small volume of, for example, about 1 to 10 L, and stores CO 2 liquefied in a normal temperature and high pressure state in the same manner as the main tank 12.
  • the main tank 12, while storing CO 2 to be supplied to power the engine 10, the sub-tank 26 is primarily other vehicle devices (described later of the air conditioner 32, the generator 34, etc.) CO 2 to be supplied to the Are stored.
  • the sub tank 26 is provided with an outflow pipe 28 through which the CO 2 gas flowing out of the tank 26 flows.
  • the outflow pipe 28 is provided with a control valve 30 for controlling the outflow amount of the CO 2 gas.
  • the outflow pipe 28 is provided with an air conditioner 32 that operates using CO 2 in the sub tank 26 and a generator 34.
  • the air conditioner (so-called air conditioner) 32 is configured by, for example, a generally known heat exchanger, etc., and uses a temperature drop when CO 2 released from the sub tank 26 is vaporized to take a vehicle space. Etc. are to be cooled.
  • the generator 34 generates power using the pressure of the CO 2 gas flowing through the outflow pipe 28, and the electric power obtained by the generator 34 is fed to the electric system of the vehicle or mounted on the vehicle. The battery is charged.
  • liquid CO 2 for operating on-vehicle equipment such as the air conditioner 32 and the generator 34 can be stored in the sub tank 26 in a normal temperature and high pressure state, and as in the case of the main tank 12.
  • the CO 2 on the sub tank 26 side can be freely supplied to the in-vehicle device without considering the remaining amount of CO 2 stored in the main tank 12, thereby allowing the power engine 10 and the in-vehicle device to be connected.
  • CO 2 stored in the sub-tank 26 can be supplied to the main tank 12 and the power engine 10 as necessary by a tank connection pipe 50 described later. That is, the sub tank 26 can also be used as a spare tank for the main tank 12, and the reliability of the vehicle can be improved.
  • the system of the present embodiment includes a regenerative brake compressor 36 (hereinafter referred to as a compressor 36) that is linked to a vehicle brake device.
  • the compressor 36 recompresses the used CO 2 gas by utilizing the inertial force of the vehicle during braking, and increases the pressure of the CO 2 gas to about 2 to 5 times.
  • the capacity of the compressor 36 is set to about 1 to 10 L, for example.
  • An outflow pipe 28 of the sub tank 26 is connected to the suction side of the compressor 36.
  • the used CO 2 gas is sucked into the compressor 36 from the outflow pipe 28 in a state where the pressure is reduced to, for example, about 2 to 5 MPa.
  • the outflow pipe 28 is provided with a control valve 38 for controlling the amount of gas sucked by the compressor 36.
  • the main tank 12 is connected to the discharge side of the compressor 36 via a main tank discharge pipe 40, and the sub tank 26 is connected via a sub tank discharge pipe 42.
  • These discharge pipes 40 and 42 are provided with control valves 44 and 46 for controlling the flow rate of CO 2 gas flowing through the respective pipes.
  • CO 2 gas that has become high temperature due to recompression flows through the discharge pipes 40 and 42.
  • at least the sub-tank discharge pipe 42 is provided with a heat exchanger 48 that warms the main tank 12 using the heat of the recompressed gas.
  • regenerative brake compressor 36 According to the regenerative brake compressor 36, kinetic energy that is wasted when the vehicle is braked can be recovered as regenerative energy, and used CO 2 gas can be efficiently recompressed by the regenerative energy. This increases the utilization efficiency of the CO 2 gas, can promote energy saving of the vehicle.
  • a reflux pipe for returning the used CO 2 gas discharged from the power engine 10 to the compressor 36 may be provided. According to this configuration, at least a part of the CO 2 gas used in the power engine 10 can be reused. Thus, CO 2 gas utilization efficiency can be further enhanced, also it is possible to suppress the emissions of CO 2 gas by the power engine 10.
  • control valves 44 and 46 arranged on the discharge side of the compressor 36 constitute the switching means of the present embodiment. That is, the control valves 44 and 46 switch the storage destination of the CO 2 gas recompressed by the compressor 36 to either the main tank 12 or the sub tank 26. As a specific example, the storage destination of the recompressed CO 2 gas is switched according to the following conditions (1) to (3).
  • the recompressed CO 2 gas is basically stored in the main tank 12. This is because the main tank 12 supplies CO 2 gas to the power engine 10, so that the rate of decrease in stored gas is faster than that of the sub tank 26. Therefore, the re-compressed gas preferentially replenished main tank 12, the CO 2 gas for power generation can be stably secured.
  • the recompressed CO 2 gas is at a high temperature of about 80 to 120 ° C., for example. For this reason, the main tank 12 whose temperature is likely to decrease due to gas supply to the power engine 10 can be efficiently warmed by the high-temperature recompressed gas. If a specific example is given, the temperature of the main tank 12 can be raised several degrees C or more. Thereby, the main tank 12 can be easily kept warm even in winter or the like, and the CO 2 gas supplied to the power engine 10 can be kept at a high pressure due to the heat keeping effect.
  • the CO 2 gas stored in the sub tank 26 decreases according to the operating time of the air conditioner 32, the generator 34, and the like.
  • the pressure in the sub tank 26 falls below a reference pressure of about 3 MPa, for example, the storage destination of the CO 2 gas recompressed by the compressor 36 is switched to the sub tank 26.
  • the various in-vehicle devices using the CO 2 gas can be operated stably.
  • the temperature in the sub tank 26 is controlled according to the amount of recompressed gas replenished from the compressor 36. That is, when it is desired to raise the temperature in the sub-tank 26, a high-temperature recompressed gas is supplied to the sub-tank 26. If it is desired to lower the temperature, the recompressed gas supply is stopped. Thereby, the temperature of the gas supplied to the air conditioner 32 can be controlled within a predetermined temperature range, and the air conditioner 32 can be operated stably.
  • Which of the above conditions (1) to (3) is prioritized depends on, for example, the remaining amount of gas in the main tank 12 and the sub tank 26, the temperature state of each of the tanks 12 and 26, the temperature of the gas supplied to the air conditioner 32, etc. Thus, it is determined comprehensively by an ECU described later. In this way, for example, if the recompressed gas is replenished to the tank in which the remaining CO 2 is reduced, the plurality of tanks 12 and 26 can be replenished at an appropriate timing. Further, for example, when the storage destination of the recompressed gas is switched according to the temperature state of each of the tanks 12 and 26, the temperatures of the main tank 12 and the sub tank 26 are maintained at appropriate temperatures required for the respective tanks. The tank temperature can be controlled.
  • a tank connection pipe 50 is provided between the main tank 12 and the sub tank 26.
  • the tank connection pipe 50 is connected between the gas supply pipe 18 and the sub tank discharge pipe 42 and includes a control valve 52.
  • the control valve 52 controls the flow direction and flow rate of the CO 2 gas flowing through the tank connection pipe 50. Therefore, according to this configuration, for example, when the CO 2 gas for generating power is insufficient on the main tank 12 side or when it is determined that the air conditioner 32 is not used in winter, the sub tank is connected by the tank connection pipe 50.
  • the main tank 12 can be supplemented with CO 2 gas from 26. Further, if the CO 2 gas for vehicle apparatus is insufficient in the sub-tank 26 side, it can be supplemented with CO 2 gas from the main tank 12 to the sub-tank 26.
  • the control valves 20, 30, 38, 44, 46, 52 described above are configured by, for example, an electromagnetically driven valve mechanism, and are controlled by a vehicle control ECU (Electronic Control Unit).
  • the ECU can control the flow state of the CO 2 gas in each pipe 18, 28, 38, 50 through these control valves. Further, the ECU distributes the CO 2 gas discharged from the compressor 36 to one of the tanks 12 and 26 according to the above-described conditions (1) to (3) by controlling the control valves 44 and 46. Can do.
  • FIG. 2 is an explanatory diagram showing the stored energy amount of liquefied carbon dioxide in comparison with the stored energy amount of compressed air or liquid air.
  • FIG. 2 is an explanatory diagram showing the stored energy amount of liquefied carbon dioxide in comparison with the stored energy amount of compressed air or liquid air.
  • the amount of stored energy can be sufficiently increased, and the decrease in the stored amount due to boil-off can be suppressed. Therefore, a large amount of energy can be efficiently stored with a small tank volume without using refrigeration equipment or the like. Thereby, compared with the case where compressed air, liquid air, liquid nitrogen, etc. are stored in a tank, for example, the cruising distance of a vehicle can be greatly extended with a simple structure.
  • the present invention is not limited to this.
  • the sub tank 26 may not be mounted, and only the main tank 12 may be mounted.
  • the vehicle of the present invention may be configured such that one or both of the main tank 12 and the sub tank 26 are mounted.
  • the power engine 10 operated by CO 2 gas has been described as an example.
  • the present invention is not limited to this, and for example, a configuration using a hybrid type power engine (engine) that selectively uses CO 2 gas and gasoline according to the situation may be used.

Abstract

Disclosed is a vehicle wherein carbon dioxide is stored efficiently and a power engine is driven with gas pressure of the stored carbon dioxide. A main tank (12) stores CO2 held at a pressure of 7 MPa or more at normal temperature. A vehicle is run by supplying high pressure CO2 gas from the main tank (12) to a power engine (10) and driving the power engine (10). With such an arrangement, CO2 can be stored in the liquefied state and a large quantity of energy can be stored efficiently with a small tank capacity as compared with a case where the tank stores compressed air, liquid air, liquid nitrogen, or the like. Furthermore, cruising distance of a vehicle can be greatly extended through a simple structure because refrigeration equipment is not required and reduction in storage amount due to boil-off can be controlled.

Description

車両vehicle
 本発明は、二酸化炭素ガスの圧力によりエンジンを駆動する構成とした車両に関する。 The present invention relates to a vehicle configured to drive an engine by the pressure of carbon dioxide gas.
 従来技術として、例えば特許文献1(日本特開2005-306191号公報)に開示されているように、例えば圧縮空気によりエアモータを駆動する構成とした車両が知られている。従来技術の車両は、空気圧縮機により圧縮した空気を貯蔵しておくためのタンクを備えている。車両の走行時には、このタンクからエアモータに圧縮空気を供給し、エアモータを作動させる。 As a conventional technique, for example, as disclosed in Patent Document 1 (Japanese Unexamined Patent Publication No. 2005-306191), for example, a vehicle in which an air motor is driven by compressed air is known. The prior art vehicle includes a tank for storing air compressed by an air compressor. When the vehicle travels, compressed air is supplied from the tank to the air motor to operate the air motor.
日本特開2005-306191号公報Japanese Unexamined Patent Publication No. 2005-306191
 ところで、上述した従来技術では、タンクに貯蔵した圧縮空気により車両を駆動する構成としている。しかしながら、圧縮気体をタンクに貯蔵する場合には、タンク内の圧力を出来る限り高めたとしても、気体の貯蔵量を増やすには限界がある。このため、従来技術では、圧縮空気の貯蔵量に応じて車両の航続距離が制限されることになり、十分な航続距離を得ることができないという問題がある。 Incidentally, in the above-described conventional technology, the vehicle is driven by compressed air stored in a tank. However, when storing compressed gas in a tank, there is a limit to increasing the amount of gas stored even if the pressure in the tank is increased as much as possible. For this reason, in the prior art, the cruising distance of the vehicle is limited according to the stored amount of compressed air, and there is a problem that a sufficient cruising distance cannot be obtained.
 また、例えば空気を液化してタンクに貯蔵する構成も考えられるが、この場合には、液体空気を極低温に保持するために、大規模な冷蔵設備を車両に搭載する必要が生じる。また、液体空気をタンクに冷蔵すると、タンク内に熱が侵入することによりボイルオフが生じ、このボイルオフによって液体空気の貯蔵量が減少することになる。これらの問題は、例えば液体窒素をタンクに貯蔵する構成とした場合にも生じるものである。 Also, for example, a configuration in which air is liquefied and stored in a tank is conceivable, but in this case, it is necessary to mount a large-scale refrigeration facility on the vehicle in order to keep the liquid air at a very low temperature. Further, when liquid air is refrigerated in the tank, boil-off occurs due to heat entering the tank, and the amount of liquid air stored is reduced by this boil-off. These problems also occur when, for example, liquid nitrogen is stored in a tank.
 本発明は、上述のような課題を解決するためになされたもので、本発明は、二酸化炭素を効率よく貯蔵しつつ、そのガス圧により動力機関を駆動することができ、液体空気や液体窒素と比較して簡単な構造で航続距離を延ばすことが可能な車両を提供することを目的としている。 The present invention has been made in order to solve the above-described problems. The present invention can drive a power engine by the gas pressure while efficiently storing carbon dioxide, and can provide liquid air or liquid nitrogen. An object of the present invention is to provide a vehicle capable of extending the cruising distance with a simple structure as compared with the vehicle.
 第1の発明は、二酸化炭素を常温以上の温度で、かつ7MPa以上の圧力となる常温高圧状態で貯蔵するメインタンクと、
 前記メインタンクから供給される二酸化炭素ガスの圧力により駆動され、走行するための動力を出力する動力機関と、
 を備えることを特徴とする。
The first invention is a main tank for storing carbon dioxide at a temperature of room temperature or higher and a pressure of 7 MPa or higher.
A power engine that is driven by the pressure of carbon dioxide gas supplied from the main tank and outputs power for running;
It is characterized by providing.
 第2の発明は、二酸化炭素ガスを車載機器に供給するために、前記常温高圧状態の二酸化炭素を貯蔵するサブタンクを備える構成としている。 The second invention is configured to include a sub-tank that stores the carbon dioxide in the normal temperature and high pressure state in order to supply carbon dioxide gas to the in-vehicle device.
 第3の発明は、車両の制動時に回生エネルギを利用して使用済みの二酸化炭素ガスを圧縮する回生ブレーキ用コンプレッサを備える構成としている。 The third invention is configured to include a regenerative brake compressor that compresses used carbon dioxide gas using regenerative energy when braking the vehicle.
 第4の発明は、車両の制動時に回生エネルギを利用して使用済みの二酸化炭素ガスを圧縮する回生ブレーキ用コンプレッサと、
 前記回生ブレーキ用コンプレッサにより圧縮された二酸化炭素の貯蔵先を前記メインタンクと前記サブタンクの何れかに切換える切換手段と、
 を備える構成としている。
A fourth invention is a regenerative brake compressor that compresses used carbon dioxide gas using regenerative energy when braking a vehicle,
Switching means for switching the storage destination of carbon dioxide compressed by the regenerative brake compressor to either the main tank or the sub tank;
It is set as the structure provided with.
 第1の発明によれば、COは7MPa以上の高圧になると、常温で液化する特性がある。よって、メインタンク内には、常温高圧状態で液化したCOを貯蔵することができ、このCOのガスにより動力機関を駆動することができる。このため、冷蔵設備等を使用しなくても、小さなタンク容積で多量のエネルギを効率よく貯蔵することができ、またボイルオフによる貯蔵量の減少を抑制することができる。従って、例えば圧縮空気や液体空気、液体窒素等をタンクに貯蔵する場合と比較して、簡単な構造で車両の航続距離を大きく延ばすことができる。 According to the first invention, CO 2 has a characteristic of being liquefied at room temperature when it becomes a high pressure of 7 MPa or more. Therefore, CO 2 liquefied at room temperature and high pressure can be stored in the main tank, and the power engine can be driven by this CO 2 gas. For this reason, even if it does not use refrigeration equipment etc., a large amount of energy can be efficiently stored with a small tank volume, and a decrease in the storage amount due to boil-off can be suppressed. Therefore, for example, compared with the case where compressed air, liquid air, liquid nitrogen or the like is stored in the tank, the cruising distance of the vehicle can be greatly extended with a simple structure.
 第2の発明によれば、サブタンクには、例えば空調装置等の車載機器を作動させるための液体COを常温高圧状態で貯蔵することができ、これによりメインタンクの場合と同様の作用効果を得ることができる。また、メインタンクに貯蔵されたCOの残量に配慮することなく、サブタンク側のCOを車載機器に対して自由に供給することができ、これにより動力機関と車載機器とをそれぞれ円滑に作動させることができる。また、サブタンク側のCOを必要に応じてメインタンクや動力機関に供給する構成とすれば、サブタンクをメインタンクの予備タンクとして使用することもでき、車両の信頼性を向上させることができる。 According to the second invention, the sub tank can store, for example, liquid CO 2 for operating an in-vehicle device such as an air conditioner in a normal temperature and high pressure state. Obtainable. In addition, the sub-tank side CO 2 can be freely supplied to the in-vehicle device without considering the remaining amount of CO 2 stored in the main tank, thereby smoothly moving the power engine and the in-vehicle device, respectively. Can be operated. If the sub-tank side CO 2 is supplied to the main tank or the power engine as necessary, the sub-tank can be used as a spare tank for the main tank, and the reliability of the vehicle can be improved.
 第3の発明によれば、回生ブレーキ用コンプレッサは、車両の制動時に無駄に消費される運動エネルギを回生エネルギとして回収し、この回生エネルギにより使用済みのCOガスを効率よく再圧縮することができる。これにより、COガスの利用効率を高め、車両の省エネルギ化を促進することができる。 According to the third aspect of the invention, the regenerative brake compressor recovers kinetic energy that is wasted when the vehicle is braked as regenerative energy and efficiently recompresses the used CO 2 gas by the regenerative energy. it can. This increases the utilization efficiency of the CO 2 gas, it is possible to promote energy saving of the vehicle.
 第4の発明によれば、回生ブレーキ用コンプレッサは、車両の制動動作を利用して使用済みのCOガスを効率よく再圧縮することができ、これにより第3の発明と同様の作用効果を得ることができる。また、切換手段は、前記コンプレッサにより再圧縮されたCOガスの貯蔵先を、メインタンクとサブタンクの何れかに切換えることができる。従って、例えばCOが残り少なくなったタンクに再圧縮ガスを補充する構成とすれば、複数のタンクに対して適切なタイミングで補充を行うことができる。また、再圧縮されたCOガスは高温となるので、例えば各タンクの温度状態に応じて再圧縮ガスの貯蔵先を切換える構成とすれば、メインタンクとサブタンクの温度をそれぞれのタンクに要求される適切な温度に保持することができ、タンクの温度制御を行うことができる。 According to the fourth aspect of the invention, the regenerative brake compressor can efficiently recompress the used CO 2 gas by utilizing the braking operation of the vehicle, and thereby has the same effect as the third aspect of the invention. Obtainable. The switching means can switch the storage destination of the CO 2 gas recompressed by the compressor to either the main tank or the sub tank. Therefore, for example, if a configuration in which recompressed gas is replenished to a tank in which the remaining CO 2 is reduced, replenishment can be performed at a suitable timing for a plurality of tanks. Further, since the recompressed CO 2 gas becomes high temperature, for example, if the storage destination of the recompressed gas is switched according to the temperature state of each tank, the temperatures of the main tank and the sub tank are required for each tank. Therefore, the temperature of the tank can be controlled.
本発明の実施の形態1において、車両のシステム構成を説明するための全体構成図である。In Embodiment 1 of this invention, it is a whole block diagram for demonstrating the system configuration | structure of a vehicle. 液化二酸化炭素の貯蔵エネルギ量を、圧縮空気や液体空気の貯蔵エネルギ量と比較して示す説明図である。It is explanatory drawing which compares the stored energy amount of liquefied carbon dioxide with the stored energy amount of compressed air or liquid air.
符号の説明Explanation of symbols
10 動力機関
12 メインタンク
14 補給口
16 補給バルブ
18 ガス供給配管
20,30,38,52 制御弁
22 レギュレータ
24,48 熱交換器
26 サブタンク
28 流出配管
32 空調装置(車載機器)
34 発電機(車載機器)
36 回生ブレーキ用コンプレッサ
40,42 吐出配管
44,46 制御弁(切換手段)
50 タンク接続配管
DESCRIPTION OF SYMBOLS 10 Power engine 12 Main tank 14 Supply port 16 Supply valve 18 Gas supply piping 20, 30, 38, 52 Control valve 22 Regulator 24, 48 Heat exchanger 26 Sub tank 28 Outflow piping 32 Air conditioner (vehicle equipment)
34 Generator (on-vehicle equipment)
36 Regenerative brake compressor 40, 42 Discharge piping 44, 46 Control valve (switching means)
50 Tank connection piping
実施の形態1.
[実施の形態1の構成]
 以下、図1を参照しつつ、本発明の実施の形態1について説明する。図1は、本発明の実施の形態1において、車両のシステム構成を説明するための全体構成図である。図1に示すように、本実施の形態の車両は、二酸化炭素(CO)ガスの圧力により駆動される動力機関10と、この動力機関10に供給するためのCOを液化した状態で貯蔵するメインタンク12とを備えている。
Embodiment 1 FIG.
[Configuration of Embodiment 1]
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 is an overall configuration diagram for explaining a system configuration of a vehicle in Embodiment 1 of the present invention. As shown in FIG. 1, a vehicle of the present embodiment, storage and carbon dioxide (CO 2) power engine 10 driven by the pressure of the gas, in a state in which liquefied CO 2 to be supplied to the power engine 10 The main tank 12 is provided.
 動力機関10は、例えばガソリンエンジン等とほぼ同様に、シリンダ内で往復動するピストンを備えており、このピストンはクランク軸に連結されている。そして、動力機関10の作動時には、メインタンク12から供給される高圧のCOガスがシリンダに対して給排される。これにより、ピストンが往復動してクランク軸を回転駆動し、車両を走行させるための動力が出力される。 The power engine 10 includes a piston that reciprocates in a cylinder, for example, as in a gasoline engine, and the piston is connected to a crankshaft. When the power engine 10 is operated, high-pressure CO 2 gas supplied from the main tank 12 is supplied to and discharged from the cylinder. As a result, the piston reciprocates to rotationally drive the crankshaft, and power for running the vehicle is output.
 メインタンク12は、例えばスチールまたはシリカ系のFRP樹脂等からなり、軽量な耐圧型のタンクとして形成されている。メインタンク12の容積は、例えば30~70L(リットル)程に設定されている。そして、メインタンク12内には、少なくとも7MPa以上、好ましくは8~10MPa程度に昇圧されたCOが貯蔵されており、その温度は室温程度に保持されている。 The main tank 12 is made of, for example, steel or silica-based FRP resin, and is formed as a lightweight pressure-resistant tank. The volume of the main tank 12 is set to about 30 to 70 L (liter), for example. The main tank 12 stores CO 2 whose pressure has been increased to at least 7 MPa or more, preferably about 8 to 10 MPa, and the temperature is kept at about room temperature.
 ここで、COは、7MPa以上の高圧状態になると、常温以上の温度でも液化する特性を有している。メインタンク12内には、このような常温高圧状態(即ち、常温以上の温度に保持され、かつ7MPa以上の圧力に保持された状態)で液化したCOが貯蔵されている。このように、COを常温高圧状態で液化すれば、簡単な設備と小さなタンク容量でも、多量のCOを効率よく貯蔵することができる。また、メインタンク12には、外部の補給装置等によりCOを補給するための補給口14と、この補給口14を開,閉する補給バルブ16とが設けられている。 Here, CO 2 has a property of being liquefied even at a temperature of room temperature or higher when in a high pressure state of 7 MPa or higher. The main tank 12 stores CO 2 liquefied in such a normal temperature and high pressure state (that is, a temperature maintained at a temperature equal to or higher than the normal temperature and a pressure maintained at a pressure of 7 MPa or higher). Thus, if CO 2 is liquefied at room temperature and high pressure, a large amount of CO 2 can be efficiently stored even with simple equipment and a small tank capacity. Further, the main tank 12 is provided with a supply port 14 for supplying CO 2 by an external supply device or the like, and a supply valve 16 for opening and closing the supply port 14.
 さらに、メインタンク12は、貯蔵したCOを動力機関10に供給するガス供給配管18を備えており、このガス供給配管18には、COの供給量を制御する制御弁20と、レギュレータ22とが設けられている。レギュレータ22は、動力機関10に供給されるCOガスの圧力を調整する。動力機関10をCOガスにより駆動するためには、少なくとも5MPa程度のガス圧が必要とされる。このため、レギュレータ22の2次側圧力は、例えば5MPa程度に設定されている。 Further, the main tank 12 includes a gas supply pipe 18 that supplies the stored CO 2 to the power engine 10. The gas supply pipe 18 includes a control valve 20 that controls the supply amount of CO 2 , and a regulator 22. And are provided. The regulator 22 adjusts the pressure of the CO 2 gas supplied to the power engine 10. In order to drive the power engine 10 with CO 2 gas, a gas pressure of at least about 5 MPa is required. For this reason, the secondary side pressure of the regulator 22 is set to about 5 MPa, for example.
 また、動力機関10とガス供給配管18には、熱交換器24が設けられている。熱交換器24は、動力機関10の作動時に発生した熱によりガス供給配管18を暖めるものである。メインタンク12から供給されたCOガスは気化するときに低温となるが、熱交換器24は、このガスを暖めて熱膨張させることができる。これにより、動力機関10の廃熱を利用して高い圧力のCOガスを動力機関10に供給することができ、動力機関10の出力や運転効率を高めることができる。 Further, a heat exchanger 24 is provided in the power engine 10 and the gas supply pipe 18. The heat exchanger 24 warms the gas supply pipe 18 with heat generated during operation of the power engine 10. The CO 2 gas supplied from the main tank 12 has a low temperature when vaporized, but the heat exchanger 24 can warm this gas and thermally expand it. As a result, high pressure CO 2 gas can be supplied to the power engine 10 using the waste heat of the power engine 10, and the output and operating efficiency of the power engine 10 can be increased.
 一方、本実施の形態の車両には、メインタンク12と共にサブタンク26が搭載されている。サブタンク26は、例えば1~10L程度の比較的小さな容積をもつ耐圧型のタンクとして形成され、その内部には、メインタンク12と同様に、常温高圧状態で液化したCOが貯蔵されている。メインタンク12は、動力機関10に供給するためのCOを貯蔵するのに対し、サブタンク26は、主として他の車載機器(後述の空調装置32、発電機34等)に供給するためのCOを貯蔵している。 On the other hand, the sub tank 26 is mounted together with the main tank 12 in the vehicle of the present embodiment. The sub tank 26 is formed as a pressure-resistant tank having a relatively small volume of, for example, about 1 to 10 L, and stores CO 2 liquefied in a normal temperature and high pressure state in the same manner as the main tank 12. The main tank 12, while storing CO 2 to be supplied to power the engine 10, the sub-tank 26 is primarily other vehicle devices (described later of the air conditioner 32, the generator 34, etc.) CO 2 to be supplied to the Are stored.
 サブタンク26は、当該タンク26から流出したCOガスが流れる流出配管28を備えており、この流出配管28には、COガスの流出量を制御する制御弁30が設けられている。また、流出配管28には、サブタンク26内のCOを用いて作動する空調装置32と発電機34とが設けられている。空調装置(所謂エアー・コンディショナー)32は、例えば一般的に公知な熱交換器等によって構成されており、サブタンク26から放出されたCOが気化するときの温度低下を利用して車両の乗車スペース等を冷房するものである。また、発電機34は、流出配管28を流れるCOガスの圧力を利用して発電を行うもので、発電機34により得られた電力は、車両の電気系統に給電されるか、または車載のバッテリ等に充電される。 The sub tank 26 is provided with an outflow pipe 28 through which the CO 2 gas flowing out of the tank 26 flows. The outflow pipe 28 is provided with a control valve 30 for controlling the outflow amount of the CO 2 gas. In addition, the outflow pipe 28 is provided with an air conditioner 32 that operates using CO 2 in the sub tank 26 and a generator 34. The air conditioner (so-called air conditioner) 32 is configured by, for example, a generally known heat exchanger, etc., and uses a temperature drop when CO 2 released from the sub tank 26 is vaporized to take a vehicle space. Etc. are to be cooled. The generator 34 generates power using the pressure of the CO 2 gas flowing through the outflow pipe 28, and the electric power obtained by the generator 34 is fed to the electric system of the vehicle or mounted on the vehicle. The battery is charged.
 この構成によれば、サブタンク26には、空調装置32、発電機34等の車載機器を作動させるための液体COを常温高圧状態で貯蔵することができ、これによりメインタンク12の場合と同様の作用効果を得ることができる。また、メインタンク12に貯蔵されたCOの残量に配慮することなく、サブタンク26側のCOを車載機器に対して自由に供給することができ、これにより動力機関10と車載機器とをそれぞれ円滑に作動させることができる。また、後述のタンク接続配管50等により、サブタンク26に貯蔵されたCOを必要に応じてメインタンク12や動力機関10に供給することができる。即ち、サブタンク26をメインタンク12の予備タンクとして使用することもでき、車両の信頼性を向上させることができる。 According to this configuration, liquid CO 2 for operating on-vehicle equipment such as the air conditioner 32 and the generator 34 can be stored in the sub tank 26 in a normal temperature and high pressure state, and as in the case of the main tank 12. The effect of this can be obtained. Further, the CO 2 on the sub tank 26 side can be freely supplied to the in-vehicle device without considering the remaining amount of CO 2 stored in the main tank 12, thereby allowing the power engine 10 and the in-vehicle device to be connected. Each can be operated smoothly. Further, CO 2 stored in the sub-tank 26 can be supplied to the main tank 12 and the power engine 10 as necessary by a tank connection pipe 50 described later. That is, the sub tank 26 can also be used as a spare tank for the main tank 12, and the reliability of the vehicle can be improved.
 さらに、本実施の形態のシステムは、車両のブレーキ装置と連動する回生ブレーキ用コンプレッサ36(以下、コンプレッサ36と称す)を備えている。コンプレッサ36は、制動時に車両の慣性力を利用して使用済みのCOガスを再圧縮し、COガスの圧力を2~5倍程度に昇圧するものである。コンプレッサ36の容量は、例えば1~10L程度に設定されている。コンプレッサ36の吸込側には、サブタンク26の流出配管28が接続されている。使用済みのCOガスは、例えば2~5MPa程度に圧力が低下した状態で、流出配管28からコンプレッサ36に吸込まれる。流出配管28には、コンプレッサ36によるガスの吸込量を制御する制御弁38が設けられている。 Furthermore, the system of the present embodiment includes a regenerative brake compressor 36 (hereinafter referred to as a compressor 36) that is linked to a vehicle brake device. The compressor 36 recompresses the used CO 2 gas by utilizing the inertial force of the vehicle during braking, and increases the pressure of the CO 2 gas to about 2 to 5 times. The capacity of the compressor 36 is set to about 1 to 10 L, for example. An outflow pipe 28 of the sub tank 26 is connected to the suction side of the compressor 36. The used CO 2 gas is sucked into the compressor 36 from the outflow pipe 28 in a state where the pressure is reduced to, for example, about 2 to 5 MPa. The outflow pipe 28 is provided with a control valve 38 for controlling the amount of gas sucked by the compressor 36.
 一方、コンプレッサ36の吐出側には、メインタンク用吐出配管40を介してメインタンク12が接続されると共に、サブタンク用吐出配管42を介してサブタンク26が接続されている。これらの吐出配管40,42には、それぞれの配管を流れるCOガスの流量を制御する制御弁44,46が設けられている。また、吐出配管40,42には、再圧縮により高温となったCOガスが流通する。このため、少なくともサブタンク用吐出配管42には、再圧縮ガスの熱を利用してメインタンク12を暖める熱交換器48が設けられている。 On the other hand, the main tank 12 is connected to the discharge side of the compressor 36 via a main tank discharge pipe 40, and the sub tank 26 is connected via a sub tank discharge pipe 42. These discharge pipes 40 and 42 are provided with control valves 44 and 46 for controlling the flow rate of CO 2 gas flowing through the respective pipes. In addition, CO 2 gas that has become high temperature due to recompression flows through the discharge pipes 40 and 42. For this reason, at least the sub-tank discharge pipe 42 is provided with a heat exchanger 48 that warms the main tank 12 using the heat of the recompressed gas.
 回生ブレーキ用コンプレッサ36によれば、車両の制動時に無駄に消費される運動エネルギを回生エネルギとして回収し、この回生エネルギにより使用済みのCOガスを効率よく再圧縮することができる。これにより、COガスの利用効率を高め、車両の省エネルギ化を促進することができる。なお、図1には記載していないが、本発明では、動力機関10から排出された使用済みのCOガスをコンプレッサ36に還流させる還流配管を設けてもよい。この構成によれば、動力機関10で使用したCOガスの少なくとも一部を、再使用することができる。これにより、COガスの利用効率をさらに高めることができ、また動力機関10によるCOガスの排出量を抑えることができる。 According to the regenerative brake compressor 36, kinetic energy that is wasted when the vehicle is braked can be recovered as regenerative energy, and used CO 2 gas can be efficiently recompressed by the regenerative energy. This increases the utilization efficiency of the CO 2 gas, can promote energy saving of the vehicle. Although not shown in FIG. 1, in the present invention, a reflux pipe for returning the used CO 2 gas discharged from the power engine 10 to the compressor 36 may be provided. According to this configuration, at least a part of the CO 2 gas used in the power engine 10 can be reused. Thus, CO 2 gas utilization efficiency can be further enhanced, also it is possible to suppress the emissions of CO 2 gas by the power engine 10.
 また、コンプレッサ36の吐出側に配置された2つの制御弁44,46は、本実施の形態の切換手段を構成している。即ち、制御弁44,46は、コンプレッサ36により再圧縮されたCOガスの貯蔵先をメインタンク12とサブタンク26の何れかに切換えるものである。具体例を挙げれば、再圧縮されたCOガスの貯蔵先は、以下の条件(1)~(3)に応じて切換えられる。 Further, the two control valves 44 and 46 arranged on the discharge side of the compressor 36 constitute the switching means of the present embodiment. That is, the control valves 44 and 46 switch the storage destination of the CO 2 gas recompressed by the compressor 36 to either the main tank 12 or the sub tank 26. As a specific example, the storage destination of the recompressed CO 2 gas is switched according to the following conditions (1) to (3).
(1)再圧縮されたCOガスは、基本的にメインタンク12に貯蔵される。何故なら、メインタンク12は、動力機関10にCOガスを供給するので、サブタンク26よりも貯蔵ガスの減少速度が速い。従って、再圧縮ガスをメインタンク12に優先的に補充し、動力発生用のCOガスを安定的に確保することができる。また、再圧縮されたCOガスは、例えば80~120℃程度の高温になっている。このため、動力機関10へのガス供給により温度が低下し易いメインタンク12を、高温の再圧縮ガスにより効率よく暖めることができる。具体例を挙げれば、メインタンク12の温度を数℃以上高めることができる。これにより、冬季等でもメインタンク12を容易に保温することができ、この保温効果により動力機関10に供給するCOガスを高い圧力に保持することができる。 (1) The recompressed CO 2 gas is basically stored in the main tank 12. This is because the main tank 12 supplies CO 2 gas to the power engine 10, so that the rate of decrease in stored gas is faster than that of the sub tank 26. Therefore, the re-compressed gas preferentially replenished main tank 12, the CO 2 gas for power generation can be stably secured. The recompressed CO 2 gas is at a high temperature of about 80 to 120 ° C., for example. For this reason, the main tank 12 whose temperature is likely to decrease due to gas supply to the power engine 10 can be efficiently warmed by the high-temperature recompressed gas. If a specific example is given, the temperature of the main tank 12 can be raised several degrees C or more. Thereby, the main tank 12 can be easily kept warm even in winter or the like, and the CO 2 gas supplied to the power engine 10 can be kept at a high pressure due to the heat keeping effect.
(2)サブタンク26に貯蔵されたCOガスは、空調装置32、発電機34等の作動時間に応じて減少する。そして、サブタンク26内の圧力が例えば3MPa程度の基準圧よりも低下した場合には、コンプレッサ36により再圧縮されたCOガスの貯蔵先がサブタンク26に切換えられる。これにより、COガスを用いる各種の車載機器を安定的に作動させることができる。 (2) The CO 2 gas stored in the sub tank 26 decreases according to the operating time of the air conditioner 32, the generator 34, and the like. When the pressure in the sub tank 26 falls below a reference pressure of about 3 MPa, for example, the storage destination of the CO 2 gas recompressed by the compressor 36 is switched to the sub tank 26. Thus, the various in-vehicle devices using the CO 2 gas can be operated stably.
(3)空調装置32を効率よく作動させるためには、サブタンク26から空調装置32に供給されるCOガスの温度を、所定の温度範囲内で安定させることが好ましい。このため、サブタンク26内の温度は、コンプレッサ36から補給される再圧縮ガスの量に応じて制御される。即ち、サブタンク26内の温度を上昇させたい場合には、高温の再圧縮ガスをサブタンク26に補給する。また、この温度を低下させたい場合には、再圧縮ガスの補給を停止する。これにより、空調装置32に供給するガスの温度を所定の温度範囲内に制御することができ、空調装置32を安定的に作動させることができる。 (3) In order to operate the air conditioner 32 efficiently, it is preferable to stabilize the temperature of the CO 2 gas supplied from the sub tank 26 to the air conditioner 32 within a predetermined temperature range. For this reason, the temperature in the sub tank 26 is controlled according to the amount of recompressed gas replenished from the compressor 36. That is, when it is desired to raise the temperature in the sub-tank 26, a high-temperature recompressed gas is supplied to the sub-tank 26. If it is desired to lower the temperature, the recompressed gas supply is stopped. Thereby, the temperature of the gas supplied to the air conditioner 32 can be controlled within a predetermined temperature range, and the air conditioner 32 can be operated stably.
 上述した条件(1)~(3)の何れを優先するかは、例えばメインタンク12とサブタンク26のガス残量、各タンク12,26の温度状態、空調装置32への供給ガス温度等に応じて、後述のECUにより総合的に決定される。このように、例えばCOが残り少なくなったタンクに再圧縮ガスを補充する構成とすれば、複数のタンク12,26に対して適切なタイミングで補充を行うことができる。また、例えば各タンク12,26の温度状態に応じて再圧縮ガスの貯蔵先を切換える構成とすれば、メインタンク12とサブタンク26の温度をそれぞれのタンクに要求される適切な温度に保持することができ、タンクの温度制御を行うことができる。 Which of the above conditions (1) to (3) is prioritized depends on, for example, the remaining amount of gas in the main tank 12 and the sub tank 26, the temperature state of each of the tanks 12 and 26, the temperature of the gas supplied to the air conditioner 32, etc. Thus, it is determined comprehensively by an ECU described later. In this way, for example, if the recompressed gas is replenished to the tank in which the remaining CO 2 is reduced, the plurality of tanks 12 and 26 can be replenished at an appropriate timing. Further, for example, when the storage destination of the recompressed gas is switched according to the temperature state of each of the tanks 12 and 26, the temperatures of the main tank 12 and the sub tank 26 are maintained at appropriate temperatures required for the respective tanks. The tank temperature can be controlled.
 ところで、動力機関10の出力状態や車載機器の使用状態等によっては、メインタンク12とサブタンク26との間でCOガスの残量に大きな差異が生じることがある。即ち、一方のタンクではCOガスの貯蔵量が過剰となっているのに対し、他方のタンクでは貯蔵量が不足している場合などである。このような場合を考慮して、メインタンク12とサブタンク26との間にはタンク接続配管50が設けられている。具体例を挙げれば、タンク接続配管50は、ガス供給配管18とサブタンク用吐出配管42との間に接続されており、制御弁52を備えている。 By the way, depending on the output state of the power engine 10, the use state of the on-vehicle equipment, and the like, there may be a large difference in the remaining amount of CO 2 gas between the main tank 12 and the sub tank 26. That is, the storage amount of CO 2 gas is excessive in one tank while the storage amount is insufficient in the other tank. Considering such a case, a tank connection pipe 50 is provided between the main tank 12 and the sub tank 26. As a specific example, the tank connection pipe 50 is connected between the gas supply pipe 18 and the sub tank discharge pipe 42 and includes a control valve 52.
 制御弁52は、タンク接続配管50を流れるCOガスの流通方向及び流量を制御するものである。従って、この構成によれば、例えばメインタンク12側で動力発生用のCOガスが不足した場合や、冬季等に空調装置32を使用しないと判断される場合には、タンク接続配管50によりサブタンク26からメインタンク12にCOガスを補給することができる。また、サブタンク26側で車載機器用のCOガスが不足した場合には、メインタンク12からサブタンク26にCOガスを補給することができる。 The control valve 52 controls the flow direction and flow rate of the CO 2 gas flowing through the tank connection pipe 50. Therefore, according to this configuration, for example, when the CO 2 gas for generating power is insufficient on the main tank 12 side or when it is determined that the air conditioner 32 is not used in winter, the sub tank is connected by the tank connection pipe 50. The main tank 12 can be supplemented with CO 2 gas from 26. Further, if the CO 2 gas for vehicle apparatus is insufficient in the sub-tank 26 side, it can be supplemented with CO 2 gas from the main tank 12 to the sub-tank 26.
 また、前述した制御弁20,30,38,44,46,52は、例えば電磁駆動式の弁機構によって構成されており、車両制御用のECU(Electronic Control Unit)により制御される。ECUは、これらの制御弁を介して各配管18,28,38,50におけるCOガスの流通状態を制御することができる。また、ECUは、制御弁44,46を制御することにより、コンプレッサ36から吐出されるCOガスを、前述した条件(1)~(3)に応じてタンク12,26の何れかに振り分けることができる。 The control valves 20, 30, 38, 44, 46, 52 described above are configured by, for example, an electromagnetically driven valve mechanism, and are controlled by a vehicle control ECU (Electronic Control Unit). The ECU can control the flow state of the CO 2 gas in each pipe 18, 28, 38, 50 through these control valves. Further, the ECU distributes the CO 2 gas discharged from the compressor 36 to one of the tanks 12 and 26 according to the above-described conditions (1) to (3) by controlling the control valves 44 and 46. Can do.
 次に、図2を参照して、COを液化した状態で貯蔵した場合の利点について説明する。図2は、液化二酸化炭素の貯蔵エネルギ量を、圧縮空気や液体空気の貯蔵エネルギ量と比較して示す説明図である。この図に示すように、室温で空気を圧縮した場合には、仮に20MPa程度の高い圧縮圧であっても、比較的少量のエネルギしか貯蔵することができない。また、例えば-150℃程度の極低温状態で空気を液化した場合には、貯蔵エネルギ量が増大するものの、ボイルオフによる貯蔵量の減少が顕著となり、実用的な貯蔵が困難である。また、極低温を保持するためには、高性能の車載冷蔵設備が必要となる。これらの問題は、液体窒素を貯蔵する場合にも共通するものである。 Next, with reference to FIG. 2, the advantages of when stored in a state in which liquefied CO 2 will be described. FIG. 2 is an explanatory diagram showing the stored energy amount of liquefied carbon dioxide in comparison with the stored energy amount of compressed air or liquid air. As shown in this figure, when air is compressed at room temperature, only a relatively small amount of energy can be stored even at a high compression pressure of about 20 MPa. For example, when air is liquefied at an extremely low temperature of about −150 ° C., the amount of stored energy increases, but the amount of stored amount decreases due to boil-off, making practical storage difficult. Moreover, in order to hold | maintain cryogenic temperature, a highly efficient vehicle-mounted refrigeration equipment is needed. These problems are common when storing liquid nitrogen.
 これに対し、本実施の形態では、常温高圧状態で液化したCOを貯蔵するので、貯蔵エネルギ量を十分に増大させることができ、またボイルオフによる貯蔵量の減少を抑制することができる。従って、冷蔵設備等を使用しなくても、小さなタンク容積で多量のエネルギを効率よく貯蔵することができる。これにより、例えば圧縮空気や液体空気、液体窒素等をタンクに貯蔵する場合と比較して、簡単な構造で車両の航続距離を大きく延ばすことができる。 On the other hand, in the present embodiment, since CO 2 liquefied at room temperature and high pressure is stored, the amount of stored energy can be sufficiently increased, and the decrease in the stored amount due to boil-off can be suppressed. Therefore, a large amount of energy can be efficiently stored with a small tank volume without using refrigeration equipment or the like. Thereby, compared with the case where compressed air, liquid air, liquid nitrogen, etc. are stored in a tank, for example, the cruising distance of a vehicle can be greatly extended with a simple structure.
 なお、前記実施の形態では、メインタンク12とサブタンク26を1つずつ搭載する場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えばサブタンク26を搭載せず、メインタンク12だけを搭載する構成としてもよい。また、本発明の車両は、メインタンク12とサブタンク26の何れか一方または両方を、2つ以上搭載する構成としてもよい。 In the above embodiment, the case where the main tank 12 and the sub tank 26 are mounted one by one has been described as an example. However, the present invention is not limited to this. For example, the sub tank 26 may not be mounted, and only the main tank 12 may be mounted. In addition, the vehicle of the present invention may be configured such that one or both of the main tank 12 and the sub tank 26 are mounted.
 また、実施の形態では、COガスにより作動する動力機関10を例に挙げて説明した。しかし、本発明はこれに限らず、例えば状況に応じてCOガスとガソリンとを使い分けるハイブリッド型の動力機関(エンジン)を用いる構成としてもよい。 Further, in the embodiment, the power engine 10 operated by CO 2 gas has been described as an example. However, the present invention is not limited to this, and for example, a configuration using a hybrid type power engine (engine) that selectively uses CO 2 gas and gasoline according to the situation may be used.

Claims (4)

  1.  二酸化炭素を常温以上の温度で、かつ7MPa以上の圧力となる常温高圧状態で貯蔵するメインタンクと、
     前記メインタンクから供給される二酸化炭素ガスの圧力により駆動され、走行するための動力を出力する動力機関と、
     を備えることを特徴とする車両。
    A main tank for storing carbon dioxide at a temperature higher than normal temperature and a pressure higher than normal pressure of 7 MPa;
    A power engine that is driven by the pressure of carbon dioxide gas supplied from the main tank and outputs power for running;
    A vehicle comprising:
  2.  二酸化炭素ガスを車載機器に供給するために、前記常温高圧状態の二酸化炭素を貯蔵するサブタンクを備えてなる請求項1に記載の車両。 2. The vehicle according to claim 1, further comprising a sub-tank that stores the carbon dioxide in the room temperature and high pressure state in order to supply carbon dioxide gas to the in-vehicle device.
  3.  車両の制動時に回生エネルギを利用して使用済みの二酸化炭素ガスを圧縮する回生ブレーキ用コンプレッサを備えてなる請求項1または2に記載の車両。 The vehicle according to claim 1 or 2, further comprising a regenerative brake compressor that compresses used carbon dioxide gas by using regenerative energy when braking the vehicle.
  4.  車両の制動時に回生エネルギを利用して使用済みの二酸化炭素ガスを圧縮する回生ブレーキ用コンプレッサと、
     前記回生ブレーキ用コンプレッサにより圧縮された二酸化炭素の貯蔵先を前記メインタンクと前記サブタンクの何れかに切換える切換手段と、
     を備えてなる請求項2に記載の車両。
    A regenerative brake compressor that compresses used carbon dioxide gas using regenerative energy when braking the vehicle;
    Switching means for switching the storage destination of carbon dioxide compressed by the regenerative brake compressor to either the main tank or the sub tank;
    The vehicle according to claim 2, comprising:
PCT/JP2009/055001 2009-03-16 2009-03-16 Vehicle WO2010106612A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/055001 WO2010106612A1 (en) 2009-03-16 2009-03-16 Vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/055001 WO2010106612A1 (en) 2009-03-16 2009-03-16 Vehicle

Publications (1)

Publication Number Publication Date
WO2010106612A1 true WO2010106612A1 (en) 2010-09-23

Family

ID=42739283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055001 WO2010106612A1 (en) 2009-03-16 2009-03-16 Vehicle

Country Status (1)

Country Link
WO (1) WO2010106612A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383972A (en) * 2011-01-14 2012-03-21 靳北彪 Internal combustion liquid engine
JP2015500758A (en) * 2011-11-28 2015-01-08 ルノー・トラックス Method for controlling a compressed air generation system of a motor vehicle, compressed air generation system and motor vehicle having such a system
CN105922854A (en) * 2016-04-28 2016-09-07 石家庄新华能源环保科技股份有限公司 Vehicle using supercritical carbon dioxide as power
CN105966225A (en) * 2016-05-12 2016-09-28 石家庄新华能源环保科技股份有限公司 Automobile driven by energy supplied through supercritical carbon dioxide
JP2017215036A (en) * 2016-05-30 2017-12-07 学校法人 中央大学 Hydrostatic pressure actuator driving system, hydrostatic pressure actuator driving pressure source, and hydrostatic pressure actuator driving method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189229A (en) * 1989-01-13 1990-07-25 Chen Kun Chan Jimmie Method and apparatus for reproducing vehicle energy
JPH06235562A (en) * 1992-11-27 1994-08-23 Thermo King Corp Method and equipment for adjusting air temperature of air-conditioning space at fixed set temperature
JPH0979008A (en) * 1995-09-08 1997-03-25 Mitsubishi Heavy Ind Ltd Power generating device utilizing liquefied gas
JP2003524105A (en) * 2000-02-22 2003-08-12 ディアマン,ピーター・トーマス Engine driven by liquefied or compressed gas
JP2005171861A (en) * 2003-12-10 2005-06-30 Shiro Adachi Rankine cycle power generation system
JP2005306191A (en) * 2004-04-21 2005-11-04 Tama Tlo Kk Vehicle and power generator
WO2008015820A1 (en) * 2006-08-04 2008-02-07 New Scientific R & D Institute Inc. Internal pressure apparatus of circulation type and power generating system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189229A (en) * 1989-01-13 1990-07-25 Chen Kun Chan Jimmie Method and apparatus for reproducing vehicle energy
JPH06235562A (en) * 1992-11-27 1994-08-23 Thermo King Corp Method and equipment for adjusting air temperature of air-conditioning space at fixed set temperature
JPH0979008A (en) * 1995-09-08 1997-03-25 Mitsubishi Heavy Ind Ltd Power generating device utilizing liquefied gas
JP2003524105A (en) * 2000-02-22 2003-08-12 ディアマン,ピーター・トーマス Engine driven by liquefied or compressed gas
JP2005171861A (en) * 2003-12-10 2005-06-30 Shiro Adachi Rankine cycle power generation system
JP2005306191A (en) * 2004-04-21 2005-11-04 Tama Tlo Kk Vehicle and power generator
WO2008015820A1 (en) * 2006-08-04 2008-02-07 New Scientific R & D Institute Inc. Internal pressure apparatus of circulation type and power generating system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383972A (en) * 2011-01-14 2012-03-21 靳北彪 Internal combustion liquid engine
JP2015500758A (en) * 2011-11-28 2015-01-08 ルノー・トラックス Method for controlling a compressed air generation system of a motor vehicle, compressed air generation system and motor vehicle having such a system
CN105922854A (en) * 2016-04-28 2016-09-07 石家庄新华能源环保科技股份有限公司 Vehicle using supercritical carbon dioxide as power
CN105966225A (en) * 2016-05-12 2016-09-28 石家庄新华能源环保科技股份有限公司 Automobile driven by energy supplied through supercritical carbon dioxide
CN105966225B (en) * 2016-05-12 2021-09-17 石家庄新华能源环保科技股份有限公司 Automobile powered by supercritical carbon dioxide energy
JP2017215036A (en) * 2016-05-30 2017-12-07 学校法人 中央大学 Hydrostatic pressure actuator driving system, hydrostatic pressure actuator driving pressure source, and hydrostatic pressure actuator driving method

Similar Documents

Publication Publication Date Title
JP4542414B2 (en) Hydrogen tank cooling system for hydrogen fuel vehicle
WO2013001824A1 (en) Hydrogen station
US9840130B2 (en) Air conditioning system utilizing thermal capacity from expansion of compressed fluid
EP2913509B1 (en) System and method for supplying hybrid fuel in engine for ship
KR101588173B1 (en) Hydrogen station
CN110182104B (en) Fuel cell automobile auxiliary energy supply system
CN101674966B (en) Two-unit gas-turbine locomotive
JP5839545B2 (en) Hydrogen station
WO2010106612A1 (en) Vehicle
US20140123916A1 (en) Utilizing Locomotive Electrical Locker to Warm Liquid Natural Gas
US9718478B2 (en) Fuel system for consist having daughter locomotive
JP5756356B2 (en) Hydrogen station
JP2009506264A (en) Portable hydrogen fuel supply stand
US20050217281A1 (en) Method for the reliquefaction of gas
US10029799B2 (en) Air conditioning method and system for aircraft
EP1959217A2 (en) Apparatus and method for reliquefying boil-off gas capable of operating with variable refrigeration load
WO2010143951A1 (en) Method and filling installation for filling a hydrogen gas into a vessel
CN108278483B (en) Fuel supply equipment of liquefied natural gas carrier
US20210252940A1 (en) Thermal management arrangement for vehicles and method for operating a thermal management arrangement
US10030610B2 (en) Fuel system for an engine
KR101843745B1 (en) Cooling and heating system for bus vehicle
JP2008064160A (en) Device for and method of filling compressed gaseous hydrogen
JP2016133194A (en) Boil-off gas release preventing controlling method of liquefied natural gas (lng) vehicle
JP2005071830A (en) Hydrogen-fueled automobile
WO2017191676A1 (en) Heat supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP