JP4567169B2 - How to recover precious metals - Google Patents

How to recover precious metals Download PDF

Info

Publication number
JP4567169B2
JP4567169B2 JP2000307234A JP2000307234A JP4567169B2 JP 4567169 B2 JP4567169 B2 JP 4567169B2 JP 2000307234 A JP2000307234 A JP 2000307234A JP 2000307234 A JP2000307234 A JP 2000307234A JP 4567169 B2 JP4567169 B2 JP 4567169B2
Authority
JP
Japan
Prior art keywords
noble metal
precipitate
palladium
acid
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000307234A
Other languages
Japanese (ja)
Other versions
JP2002115015A (en
Inventor
喜代志 鈴木
純一 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Nisso Metallochemical Co Ltd
Original Assignee
Nippon Soda Co Ltd
Nisso Metallochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd, Nisso Metallochemical Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2000307234A priority Critical patent/JP4567169B2/en
Publication of JP2002115015A publication Critical patent/JP2002115015A/en
Application granted granted Critical
Publication of JP4567169B2 publication Critical patent/JP4567169B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Catalysts (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機合成反応などで触媒として使用された貴金属化合物が溶解した有機溶媒から貴金属を回収する方法である。
【0002】
【従来の技術】
白金或はパラジウムなどの貴金属は、多くの場合、無機化合物と混在し或は貴金属の無機化合物として存在しており、斯かる無機状態から貴金属を回収する方法は種々報告されている。 例えば、自動車排気ガス浄化用触媒から貴金属を回収するにあたりアルミニウム、亜鉛、錫、鉛、アンチモンなどの両性金属を水酸化アルカリ水溶液に添加し還元して沈殿し回収する方法が報告されている(特開平7−25878)。
【0003】
一方、有機合成反応で溶媒に溶解して使用された有機溶媒に溶解した貴金属化合物から貴金属を回収する方法として、有機溶媒を留去して釜残を焼却し、無機質状の貴金属化合物を得、更に濃縮している。しかしながら、釜残には多量に有機成分が含まれており燃焼装置が大型化し、又、有機合成反応によっては、斯かる釜残に含まれる挟雑物が異なり、例えば、燐を含む場合、燃焼により、吸湿性の強い燐酸が生成し、その排ガスの処理が複雑になるなどの欠点がある。又、硫黄を含む場合には、亜硫酸ガスが発生し、亜硫酸ガス処理用の排ガス設備が必要となる。
【0004】
【発明が解決しようとする課題】
本願発明は、貴金属化合物の溶解した有機溶媒を燃焼させることなく、直接貴金属を沈殿させて、貴金属化合物が溶解した有機溶媒から貴金属を回収する方法である。
【0005】
【課題を解決するための手段】
本発明は、貴金属化合物が溶解した有機溶媒に卑金属及び鉱酸を添加し貴金属を還元させて沈殿させ、沈殿をろ取することを特徴とする貴金属を回収する方法である。
【0006】
本発明の方法をさらに詳細に示すと、次の通りである。
【0007】
【発明の実施の形態】
本発明における貴金属とは、貴金属が金、銀、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム又は白金であり、貴金属化合物としては、有機酸の貴金属塩、例えば、酪酸パラジウム、酢酸パラジウム、錯体貴金属化合物などが例示される。
有機溶媒としては、これらの貴金属化合物を溶解する有機溶媒があげられ、例えば、脂肪族炭化水素、芳香族炭化水素、エーテル系化合物、アルコール系化合物或はテトラヒドロフラン、ジメチルホルムアミド、アセトニトリルなどの非プロトン性極性溶媒などがあるが、有機合成反応に使用されるものであれば、すべての有機溶媒が本発明の方法に採用することができる。又、これらを反応溶媒として使用した反応混合物から溶媒を除去して得られた釜残である。
具体的には、通常貴金属化合物を触媒とする有機合成反応たとえば、ハロゲン化物とオレフィンのヘック反応、脱アリル反応或は有機金属とハロゲン化物のクロスカップリング反応などから由来する反応混合物及び溶媒を取り除いた蒸留釜の釜残などであり、通常、0.01〜1%の貴金属を含有している。
【0008】
卑金属としては、マグネシウム、アルミニウム、亜鉛、鉄、錫及び鉛、それらを含む合金が採用可能であるが、効果及び経済的な面からは、鉛が好適であり、通常5〜200μの粉末が使用される。使用量は、有機溶媒100重量部に対して、6〜16重量部であるり、これより少量であると貴金属の収率が低く、これを越えても、収率が顕著には上がらない。鉱酸としては、塩酸、硫酸又は硝酸を使用し、通常濃塩酸を使用する。
【0009】
貴金属化合物が溶解した有機溶媒に所定量の卑金属の粉末を混合しながら添加する。その後、貴金属化合物が溶解した有機溶媒と卑金属粉末の混合物に、鉱酸を混合しながら添加する。混合が激しいと温度が上昇し、その後のろ過性が悪くなる。予め鉱酸を添加してその後卑金属の粉末を混合添加することも可能であるが、一度に添加する水素ガスが急激に発生することがあるので注意が必要である。
鉱酸の使用量は、混合物のpHが1以下になるように添加・混合する。通常、有機溶媒1000重量部に対して略300〜500重量部である。添加後の混合は室温で3〜5時間継続するする。pH1を越えると貴金属の収率が低下する傾向がある。還元反応の終点は、水素の発生が終了し、pHが安定(pH0.9〜1)したことにより確認できる。
【0010】
還元反応終了後、中和することなくろ過して、沈殿した貴金属を回収することも可能であるが、設備を耐酸性材料で製造する必要があり、設備費が高くなる。
従って、場合によっては、中和してからろ過を行うのが有利である。
中和は、使用した卑金属の種類によって多少異なり、苛性ソーダ水溶液を添加して行い、pHを3〜5、好ましくは4〜4.5に調整する。例えば、亜鉛を使用した場合pH4〜4.5、アルミニウムを使用した場合pH4〜6、マグネシウムを使用した場合pH4〜6、鉄粉を使用した場合pH3〜5が望ましい。pHがこれらより高くなっても、卑金属が沈殿して回収される貴金属の品位が低下するが貴金属の収率に影響がほとんどなく、差し支えない。
pHの調整された調整液はろ過され沈殿物とろ液に分離される。ろ過は通常の方法が採用でき、ヌッチェ或は遠心分離機が採用できる。
【0011】
得られた沈殿物は、必要に応じて水洗し、回収沈殿物を得る。回収沈殿物には貴金属が乾燥状態に換算して通常10〜30%まで濃縮されている。
得られた回収沈殿物からの貴金属の回収は、通常の種々の方法が採用できる。
例えば、700℃程度で焼成し水分及び残存する有機物を除去し、更に濃縮することができる。
本発明における卑金属の機能は、イオン化傾向の差により有機溶媒中の貴金属を沈殿させるものでなく、塩酸との反応により発生する発生期の活性水素により貴金属化合物が還元されて析出するものと予想される。
【0012】
以下、実施例により本発明を詳細に説明するが、本発明の範囲は実施例に限定されるものではない。
【0013】
【実施例】
実施例1
リン酸エチルエステル62%、酪酸ナトリウム21%、酢酸パラジウム0.3%(PdOとして、0.1%含有)及びその他有機物17%を含有する有機合成反応混合物から蒸留などにより目的化合物及び溶媒を回収した釜残1.0トンに、亜鉛末(平均粒径12μ)100Kgを添加し約4時間攪拌し、更に36%の濃塩酸340Kg(280リットル)を約3時間かけて添加し、更に2時間攪拌した。
更に、20%の苛性ソーダ水溶液を添加し、pH4まで中和し、沈殿物をろ過した。ろ液は1.24トンであった。得られた沈殿物を水0.6トンで洗浄し湿った固形物8.9Kgを得た。含水率55%、パラジウム含有量0.9Kg(乾燥状態でパラジウム含有率22.5%)であった。
更に600℃で30分焼成して3.6Kgの焼成製品3.6Kg(パラジウム0.9Kg、含有率25%)を得た。
【0014】
参考例
実施例1で使用されたと同様の釜残を10.6Kg/時間の速さで燃焼用キルン(直径0.55m×長さ8m)に挿入し、温度750〜800℃で釜残燃焼させた。釜残は、嵩比重の小さな微粉末となった。排ガス配管及びバグフィルターがリン酸の結露により配管に腐食が及びバグフィルターの目詰まりが発生し、燃焼継続不能となった。
【0015】
【発明の効果】
本発明によれば、貴金属化合物が溶解した有機溶媒から貴金属を回収するにあたり、有機物を燃焼する工程を含まずに回収することができる。従って、装置が経済的であり、工業的な生産方法として好適である。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a method for recovering a noble metal from an organic solvent in which a noble metal compound used as a catalyst in an organic synthesis reaction or the like is dissolved.
[0002]
[Prior art]
In many cases, noble metals such as platinum or palladium coexist with inorganic compounds or exist as inorganic compounds of noble metals, and various methods for recovering noble metals from such inorganic states have been reported. For example, when recovering precious metals from automobile exhaust gas purification catalysts, a method has been reported in which amphoteric metals such as aluminum, zinc, tin, lead, and antimony are added to an alkali hydroxide aqueous solution, reduced, precipitated, and recovered (specialty). Kaihei 7-25878).
[0003]
On the other hand, as a method for recovering the noble metal from the noble metal compound dissolved in the organic solvent used by dissolving in the solvent in the organic synthesis reaction, the organic solvent is distilled off and the residue is incinerated to obtain an inorganic noble metal compound, It is further concentrated. However, a large amount of organic components are contained in the residue and the combustion apparatus becomes large, and depending on the organic synthesis reaction, the foreign matter contained in the residue is different. As a result, phosphoric acid having a high hygroscopic property is generated, and the treatment of the exhaust gas is complicated. When sulfur is contained, sulfurous acid gas is generated, and an exhaust gas facility for sulfurous acid gas treatment is required.
[0004]
[Problems to be solved by the invention]
The present invention is a method for recovering a noble metal from an organic solvent in which the noble metal compound is dissolved by directly precipitating the noble metal without burning the organic solvent in which the noble metal compound is dissolved.
[0005]
[Means for Solving the Problems]
The present invention is a method for recovering a noble metal, characterized in that a base metal and a mineral acid are added to an organic solvent in which the noble metal compound is dissolved, the noble metal is reduced and precipitated, and the precipitate is collected by filtration.
[0006]
The method of the present invention will be described in detail as follows.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The noble metal in the present invention is a noble metal is gold, silver, ruthenium, rhodium, palladium, osmium, iridium, or platinum. Is exemplified.
Examples of the organic solvent include organic solvents that dissolve these noble metal compounds. Examples include aliphatic hydrocarbons, aromatic hydrocarbons, ether compounds, alcohol compounds, or aprotic compounds such as tetrahydrofuran, dimethylformamide, and acetonitrile. Although there are polar solvents and the like, all organic solvents can be employed in the method of the present invention as long as they are used in organic synthesis reactions. Moreover, it is the residue of the kettle obtained by removing a solvent from the reaction mixture which used these as a reaction solvent.
Specifically, organic synthesis reactions that are usually catalyzed by precious metal compounds such as Heck reaction of halides and olefins, deallylation reactions or cross-coupling reactions of organic metals and halides are removed. It is usually the residue of a distillation still and contains 0.01 to 1% of noble metal.
[0008]
Magnesium, aluminum, zinc, iron, tin and lead, and alloys containing them can be adopted as the base metal, but lead is preferred from the standpoint of effect and economy, and usually a powder of 5 to 200μ is used. Is done. The amount used is 6 to 16 parts by weight with respect to 100 parts by weight of the organic solvent, and if it is less than this, the yield of the noble metal is low, and even if it exceeds this, the yield does not rise significantly. As the mineral acid, hydrochloric acid, sulfuric acid or nitric acid is used, and concentrated hydrochloric acid is usually used.
[0009]
A predetermined amount of base metal powder is added to the organic solvent in which the noble metal compound is dissolved. Thereafter, the mineral acid is added to the mixture of the organic solvent in which the noble metal compound is dissolved and the base metal powder while mixing. When mixing is intense, the temperature rises and the subsequent filterability deteriorates. It is possible to add a mineral acid in advance and then add and mix a base metal powder, but care must be taken because hydrogen gas to be added at once may be generated rapidly.
The amount of mineral acid used is added and mixed so that the pH of the mixture is 1 or less. Usually, it is about 300-500 weight part with respect to 1000 weight part of organic solvents. Mixing after addition continues at room temperature for 3-5 hours. When the pH exceeds 1, the yield of noble metal tends to decrease. The end point of the reduction reaction can be confirmed by the completion of the generation of hydrogen and the stabilization of the pH (pH 0.9 to 1).
[0010]
After completion of the reduction reaction, it is possible to collect the precipitated noble metal by filtration without neutralization. However, it is necessary to manufacture the equipment with an acid-resistant material, and the equipment cost becomes high.
Therefore, in some cases, it is advantageous to carry out filtration after neutralization.
Neutralization is slightly different depending on the type of base metal used, and is performed by adding a caustic soda aqueous solution to adjust the pH to 3 to 5, preferably 4 to 4.5. For example, pH is preferably 4 to 4.5 when zinc is used, pH 4 to 6 when aluminum is used, pH 4 to 6 when magnesium is used, and pH 3 to 5 when iron powder is used. Even if the pH is higher than these, the quality of the precious metal recovered by precipitation of the base metal is lowered, but the yield of the precious metal is hardly affected.
The adjusted solution with adjusted pH is filtered and separated into a precipitate and a filtrate. A normal method can be employed for filtration, and a Nutsche or a centrifuge can be employed.
[0011]
The obtained precipitate is washed with water as necessary to obtain a recovered precipitate. In the collected precipitate, the precious metal is usually concentrated to 10 to 30% in terms of dry state.
Various ordinary methods can be employed to recover the precious metal from the recovered precipitate obtained.
For example, it can be baked at about 700 ° C. to remove moisture and remaining organic substances, and further concentrated.
The function of the base metal in the present invention is not to precipitate the noble metal in the organic solvent due to the difference in ionization tendency, but is expected to be precipitated by reducing the noble metal compound by active hydrogen in the nascent stage generated by the reaction with hydrochloric acid. The
[0012]
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, the scope of the present invention is not limited to an Example.
[0013]
【Example】
Example 1
The target compound and solvent are recovered by distillation from an organic synthesis reaction mixture containing 62% phosphoric acid ethyl ester, 21% sodium butyrate, 0.3% palladium acetate (containing 0.1% as PdO) and 17% other organic substances. 100 kg of zinc powder (average particle size 12μ) is added to 1.0 ton of the remaining residue and stirred for about 4 hours. Further, 340 kg (280 liters) of 36% concentrated hydrochloric acid is added over about 3 hours, and further 2 hours. Stir.
Further, 20% aqueous sodium hydroxide solution was added to neutralize to pH 4, and the precipitate was filtered. The filtrate was 1.24 tons. The obtained precipitate was washed with 0.6 ton of water to obtain 8.9 kg of wet solid. The water content was 55% and the palladium content was 0.9 kg (the palladium content was 22.5% in the dry state).
Further, it was calcined at 600 ° C. for 30 minutes to obtain 3.6 kg of calcined product of 3.6 kg (palladium 0.9 kg, content 25%).
[0014]
Reference Example The same residue as that used in Example 1 was inserted into a combustion kiln (diameter 0.55 m × length 8 m) at a speed of 10.6 kg / hour, and the residue was burned at a temperature of 750 to 800 ° C. It was. The pot residue became a fine powder with a small bulk specific gravity. The exhaust gas piping and the bag filter were corroded due to the condensation of phosphoric acid and the bag filter was clogged, making it impossible to continue combustion.
[0015]
【The invention's effect】
According to the present invention, when recovering a noble metal from an organic solvent in which the noble metal compound is dissolved, the organic substance can be recovered without including a step of burning. Therefore, the apparatus is economical and suitable as an industrial production method.

Claims (5)

酢酸パラジウムが溶解したリン酸エチルエステルにマグネシウム、アルミニウム、亜鉛、鉄、錫及び鉛から選ばれた卑金属及び鉱酸を添加しパラジウムを還元させて沈殿させ、沈殿をろ取することを特徴とするパラジウムを回収する方法。A base metal and a mineral acid selected from magnesium, aluminum, zinc, iron, tin, and lead are added to phosphoric acid ethyl ester in which palladium acetate is dissolved, palladium is reduced and precipitated, and the precipitate is collected by filtration. A method for recovering palladium . 苛性ソーダ水溶液を添加してpH4〜8に調整した後に沈殿をろ取する請求項1記載の方法。The method according to claim 1, wherein the precipitate is collected by filtration after adjusting the pH to 4 to 8 by adding an aqueous caustic soda solution. 卑金属がアルミニウム、亜鉛、錫又は鉛である請求項1及び又は2記載の方法。The method according to claim 1 or 2, wherein the base metal is aluminum, zinc, tin or lead. 有機溶媒100重量部に対し、卑金属を6〜16重量部添加する請求項記載の方法。The method of Claim 3 which adds 6-16 weight part of base metals with respect to 100 weight part of organic solvents. 鉱酸が塩酸、硫酸又は硝酸である請求項ないし記載の方法。Mineral acid hydrochloride, claims 3 sulfuric acid or nitric acid to 4 A method according.
JP2000307234A 2000-10-06 2000-10-06 How to recover precious metals Expired - Lifetime JP4567169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000307234A JP4567169B2 (en) 2000-10-06 2000-10-06 How to recover precious metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000307234A JP4567169B2 (en) 2000-10-06 2000-10-06 How to recover precious metals

Publications (2)

Publication Number Publication Date
JP2002115015A JP2002115015A (en) 2002-04-19
JP4567169B2 true JP4567169B2 (en) 2010-10-20

Family

ID=18787780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000307234A Expired - Lifetime JP4567169B2 (en) 2000-10-06 2000-10-06 How to recover precious metals

Country Status (1)

Country Link
JP (1) JP4567169B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330419C (en) * 2005-05-19 2007-08-08 湖北省化学研究院 Method for regenerating urea dehydrogenation noble metal catalyst
KR101162561B1 (en) 2009-09-10 2012-07-05 한국지질자원연구원 A Method for Recovering Tin and Silver from Lead Free Solder Ball Using Metal Solvent
JP5907792B2 (en) * 2012-04-04 2016-04-26 アサヒプリテック株式会社 Treatment method of osmium waste liquid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134137A (en) * 1979-04-05 1980-10-18 Ube Ind Ltd Palladium recovering method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134137A (en) * 1979-04-05 1980-10-18 Ube Ind Ltd Palladium recovering method

Also Published As

Publication number Publication date
JP2002115015A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP4051110B2 (en) Method for producing iodinated trifluoromethane
EA021662B1 (en) A method for recovering rhenium and other metals from rhenium-bearing materials
JP2007154250A (en) CHLORINATION TREATMENT METHOD FOR Ru AND/OR Rh
WO2015057189A1 (en) Recovery of high purity lead oxide from lead acid battery paste
KR100888040B1 (en) Method of recovering platinum metals from waste catalysts
JP4567169B2 (en) How to recover precious metals
US20140274670A1 (en) Catalytically highly effective precious metal-carboxylate compounds of ir, ru, rh, pd and au
JPH05255713A (en) Preparation of copper powder
JP6264566B2 (en) Method for producing leaching product liquid containing platinum group element
JP5881469B2 (en) Ruthenium recovery method
JP5881502B2 (en) Ruthenium recovery method
JPH07300316A (en) Method for recovery of cobalt and tungsten from reaction solution and method for reuse of them
JP4209438B2 (en) Rh recovery method
CN114308131A (en) Precious metal compound extracted from waste, method thereof and method for synthesizing tetrakis (triphenylphosphine) platinum/palladium
JP2006265677A (en) Method for separating tellurium from rhodium solution
JP4441802B2 (en) Method for producing 2,3-pyridinedicarboxylic acid
JPH05286889A (en) Production of arylacetic acid and its alkali metal salt
JP3862705B2 (en) Palladium aggregating and precipitating agent and palladium separation and recovery method using the same
JPH07224334A (en) Separating and recovering method of copper
JP4250034B2 (en) Method for producing bis (ethylcyclopentadienyl) ruthenium
JP2024020071A (en) Platinum group compound and method for producing the same
JPH08502469A (en) Method for recovering iodine from iodinated organic compound
JP5413588B2 (en) Rhodium reduction method
JP2821564B2 (en) Method for producing quinazolinone derivatives
JP4227701B2 (en) Diethylenetriaminepentaacetic acid ruthenium diammonium salt or hydrate thereof and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100805

R150 Certificate of patent or registration of utility model

Ref document number: 4567169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3