KR100888040B1 - Method of recovering platinum metals from waste catalysts - Google Patents

Method of recovering platinum metals from waste catalysts Download PDF

Info

Publication number
KR100888040B1
KR100888040B1 KR20080073750A KR20080073750A KR100888040B1 KR 100888040 B1 KR100888040 B1 KR 100888040B1 KR 20080073750 A KR20080073750 A KR 20080073750A KR 20080073750 A KR20080073750 A KR 20080073750A KR 100888040 B1 KR100888040 B1 KR 100888040B1
Authority
KR
South Korea
Prior art keywords
platinum group
group metal
recovering
water
spent catalyst
Prior art date
Application number
KR20080073750A
Other languages
Korean (ko)
Inventor
최영기
Original Assignee
주식회사 한국환경사업단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한국환경사업단 filed Critical 주식회사 한국환경사업단
Priority to KR20080073750A priority Critical patent/KR100888040B1/en
Application granted granted Critical
Publication of KR100888040B1 publication Critical patent/KR100888040B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/048Recovery of noble metals from waste materials from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/009General processes for recovering metals or metallic compounds from spent catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A method of recovering platinum metals from spent catalysts is provided to recycle obtained alum or aluminium hydroxide as alumina material by changing refractory alumina into availability alum or aluminium hydroxide. Spent catalyst is mixed with one or more strong bases to 1:1~1:3 based on equivalence ratio and roasts in 400~900°C for ~4 hours. After the roasted material is dissolved in the water, the insolubility platinum based metal separates solid-liquid. The strong base is selected in the group consisting of sodium hydroxide, potassium hydroxide and calcium hydroxide.

Description

폐촉매로부터 백금족 금속을 회수하는 방법{METHOD OF RECOVERING PLATINUM METALS FROM WASTE CATALYSTS}METHOD OF RECOVERING PLATINUM METALS FROM WASTE CATALYSTS}

본 발명은 백금족 금속이 포함된 폐촉매로부터 백금족 금속을 회수하는 방법에 관한 것으로, 보다 상세하게는 폐촉매의 담체 성분을 가용성으로 변환시켜 물에 용해, 분리시켜 백금족 금속을 회수율 높게 회수하는 방법에 관한 것이다.The present invention relates to a method for recovering a platinum group metal from a spent catalyst containing a platinum group metal, and more particularly, to a method for recovering a platinum group metal with high recovery rate by converting the carrier component of the spent catalyst into soluble to dissolve and separate it in water. It is about.

백금(Platinum: Pt), 팔라듐(Palladium: Pd)과 같은 백금족 금속은 녹는점이 높고 비중이 크며, 산ㆍ알칼리에 잘 침식되지 않아 각종 유기화합물 반응에 촉매로 많이 사용된다. 특히 이 백금족 금속은 석유 화학 및 정유 공장에서 액화석유가스(LPG) 제조, 아세틸렌 및 메틸 아세틸렌 수첨 공정, 개질공정 등에서 촉매로 사용된다. Platinum group metals such as Platinum (Pt) and Palladium (Pd) have high melting points, high specific gravity, and are not used to erode acids and alkalis. In particular, this platinum group metal is used as a catalyst in liquefied petroleum gas (LPG) production, acetylene and methyl acetylene hydrogenation processes, reforming processes, etc. in petrochemical and refinery plants.

백금족 금속들이 촉매로 사용될 때에는 알루미늄과 같은 담체에 담지되어 사용되며 약 3~4년 정도 지나면 수명이 다하여 폐기되는데, 백금족 금속은 고가이며 거의 수입에 의존하고 있기 때문에 이를 회수하여 재이용하려는 연구가 진행되고 있다.When platinum group metals are used as catalysts, they are supported on a carrier such as aluminum and used up after about 3-4 years. They are discarded because they are expensive and almost depend on imports. have.

일반적으로 귀금속 폐촉매로부터 백금족 금속을 회수하는 기술은 건식법과 습식법이 있다. In general, there are two techniques for recovering the platinum group metal from the noble metal waste catalyst: dry method and wet method.

건식법은 폐촉매를 고온으로 가열하여 백금족 원소를 용융시켜 이를 담체로부터 회수하는 방법으로 이는 대용량 처리에 적합하다. 이 방법은 초기 투자비가 높고 슬래그가 발생하며 대기오염 물질을 발생하여 대기 오염을 심화시킨다는 단점이 있다. The dry method is a method in which a waste catalyst is heated to a high temperature to melt a platinum group element and recover it from a carrier, which is suitable for large-volume processing. This method has the disadvantage that the initial investment is high, slag is generated, and air pollutants are generated to intensify air pollution.

습식법은 소용량 처리에 적합한 것으로, 이 방법은 슬래그를 발생시키지는 않으나 다량의 강산을 사용함에 따라 다량의 폐산이 발생되며 설비에 제한이 있다는 단점이 있다. The wet method is suitable for small-volume treatment, but this method does not generate slag, but a large amount of waste acid is generated by using a large amount of strong acid, and there is a limitation in the installation.

일반적인 습식법으로는 왕수 또는 염산에 의한 백금족 금속의 직접 침출, 폐촉매의 알루미나를 황산으로 용해하여 불용성 백금족 금속을 농축 회수하는 방법이 있다. 이러한 방법은 담체를 미세하게 분쇄하여야 하고 미세하게 분쇄된 담체는 침출후 고액분리공정에서 에너지 효율을 저하시킨다. 또한 침출후 잔사로 남는 다공성 알루미나 잔사에 백금족 금속 침출액이 흡습되어 일부 백금족 금속이 손실되는 단점이 있다. Common wet methods include direct leaching of platinum group metals by aqua regia or hydrochloric acid, and concentration of recovered insoluble platinum group metals by dissolving alumina of the spent catalyst with sulfuric acid. In this method, the carrier must be finely ground and the finely ground carrier lowers the energy efficiency in the solid-liquid separation process after leaching. In addition, the platinum group metal leach solution is absorbed by the porous alumina residue remaining as a residue after leaching, so that some platinum group metals are lost.

또한 황산암모늄에 폐촉매를 용해시켜 백금족 금속을 회수하는 방법도 있으나, 이 경우 다량의 황산암모늄이 필요하고 폐촉매 용해율도 낮을 뿐만 아니라 다량의 대기오염물질이 발생되는 문제점이 있다. In addition, there is also a method of recovering the platinum group metal by dissolving the spent catalyst in ammonium sulfate, but in this case, a large amount of ammonium sulfate is required and the waste catalyst dissolution rate is low and a large amount of air pollutants are generated.

이에, 본 발명의 발명자는 심혈을 기울여 연구한 결과, 폐촉매를 강산 또는 강염기와 함께 고온에서 배소함으로써 폐촉매의 물에 대한 용해율을 높여 백금족 금속의 회수율을 높일 수 있는 방법을 개발하고 본 발명에 이르렀다. Therefore, the inventors of the present invention devised a careful study, as a result of developing a method for increasing the recovery rate of platinum group metal by increasing the dissolution rate of the waste catalyst in water by roasting the waste catalyst at a high temperature with a strong acid or strong base. Reached.

본 발명의 목적은 폐촉매의 담체를 수용성으로 변환시켜 그 속에 함유된 백금족 금속을 회수율 높게 회수하는 방법을 제공하는 것이다. An object of the present invention is to provide a method for converting a carrier of a spent catalyst to water solubility to recover the platinum group metal contained therein with high recovery rate.

본 발명의 다른 목적은 알루미나 담체 폐촉매를 수용성으로 변환시켜 알루미늄을 재사용할 수 있도록 하는 것이다. Another object of the present invention is to convert the alumina carrier spent catalyst into water soluble so that aluminum can be reused.

본 발명의 또다른 목적은 폐기처분되는 폐촉매의 양을 줄여 환경오염을 방지하기 위한 것이다. It is another object of the present invention to reduce the amount of waste catalyst disposed of to prevent environmental pollution.

본 발명의 폐촉매로부터 백금족 금속을 회수하는 방법은, The method for recovering the platinum group metal from the spent catalyst of the present invention,

백금족 금속이 포함된 폐촉매로부터 백금족 금속을 회수하는 방법에 있어서,In the method for recovering the platinum group metal from the spent catalyst containing the platinum group metal,

상기 폐촉매를 강산 또는 강염기와 400 내지 900℃에서 배소하고, 이 배소물을 물에 용해시킨후 고액분리하는 것을 특징으로 한다. The waste catalyst is roasted at 400 to 900 ° C. with a strong acid or strong base, and the roasted product is dissolved in water and then solid-liquid separated.

또한, 본 발명의 폐촉매로부터 백금족 금속을 회수하는 방법은, In addition, the method for recovering the platinum group metal from the spent catalyst of the present invention,

백금족 금속이 포함된 폐촉매로부터 백금족 금속을 회수하는 방법에 있어서,In the method for recovering the platinum group metal from the spent catalyst containing the platinum group metal,

상기 폐촉매를 강산 또는 강염기와 400 내지 900℃에서 1차 배소하는 단계;Firstly roasting the spent catalyst at 400 to 900 ° C. with a strong acid or strong base;

상기 1차 배소물을 물에 용해시킨후 1차 고액분리하는 단계;Dissolving the first roasted product in water and separating the first solid solution;

고액분리된 여과물에 강염기를 혼합한 후 400 내지 900℃에서 2차 배소하는 단계; 및Mixing the strong base to the solid-liquid separated filtrate and then roasting at 400 to 900 ° C. for two times; And

상기 2차 배소물을 물에 용해시킨후 2차 고액분리하는 단계;를 포함하여 이 루어지는 것을 특징으로 한다. And dissolving the secondary roasted product in water and separating the second solid solution.

본 발명의 폐촉매로부터 백금족 금속을 회수하는 방법을 이용하면, 폐촉매의 담체 성분을 가용성으로 변환시켜 이를 물에 용해시킴으로써 백금족 금속을 회수율 높게 회수할 수 있다. By using the method for recovering the platinum group metal from the spent catalyst of the present invention, the platinum group metal can be recovered with high recovery rate by converting the carrier component of the spent catalyst into soluble and dissolving it in water.

특히, 알루미나 담체 폐촉매를 사용하는 경우 난용성인 알루미나를 가용성인 알럼 및/또는 수산화 알루미늄으로 변환시킴으로써 수득된 알럼 및/또는 수산화 알루미늄을 알루미나 원료로 재활용할 수 있다. In particular, when an alumina carrier spent catalyst is used, the alum and / or aluminum hydroxide obtained by converting poorly soluble alumina into soluble alum and / or aluminum hydroxide can be recycled as an alumina raw material.

또한, 백금족 금속의 농축율이 높아, 대용량 폐촉매 처리에 어려움이 있었던 습식설비를 이용하여 대용량의 폐촉매를 처리할 수 있다. In addition, the high concentration of the platinum group metal, it is possible to treat a large amount of waste catalyst by using a wet equipment that was difficult to process a large capacity waste catalyst.

아울러, 폐기처분되는 폐촉매의 양을 줄여 환경오염을 방지할 수 있다. In addition, it is possible to prevent the environmental pollution by reducing the amount of waste catalyst disposed of.

본 발명의 폐촉매로부터 백금족 금속을 회수하는 방법은, The method for recovering the platinum group metal from the spent catalyst of the present invention,

백금족 금속이 포함된 폐촉매로부터 백금족 금속을 회수하는 방법에 있어서,In the method for recovering the platinum group metal from the spent catalyst containing the platinum group metal,

상기 폐촉매를 강산 또는 강염기와 400 내지 900℃에서 배소하고, 이 배소물을 물에 용해시킨후 고액분리하는 것을 특징으로 한다. The waste catalyst is roasted at 400 to 900 ° C. with a strong acid or strong base, and the roasted product is dissolved in water and then solid-liquid separated.

이어, 본 발명의 폐촉매로부터 백금족 금속을 회수하는 방법을 보다 구체적으로 설명한다. Next, the method for recovering the platinum group metal from the spent catalyst of the present invention will be described in more detail.

본 발명에서 바람직하게 사용되는 폐촉매는 알루미나 담체 폐촉매이다. 따라서 이하 폐촉매로서 알루미나 담체 폐촉매를 예로 들어 설명한다. 그러나 본 발명 에서 백금족 금속이 포함된 폐촉매가 알루미나 담체 폐촉매로 한정되는 것은 아니다. The waste catalyst preferably used in the present invention is an alumina carrier waste catalyst. Therefore, hereinafter, alumina carrier waste catalyst will be described as an example of waste catalyst. However, in the present invention, the waste catalyst containing the platinum group metal is not limited to the alumina carrier waste catalyst.

먼저, 알루미나 담체 폐촉매와 강산 또는 강염기를 400 내지 900℃에서 배소한다. 이때 폐촉매는 분쇄하거나 또는 분쇄하지 않고 사용할 수 있다. 배소온도가 400℃ 미만이면 담체 성분의 변화가 충분히 이루어지지 않아 물에 대한 용해도가 낮고, 배소온도가 900℃를 초과하면 배소에 의한 효과의 향상 없이 경제적이지 못한 문제점이 있다. 보다 바람직한 배소온도는 400 내지 700℃이다. First, the alumina carrier spent catalyst and strong acid or strong base are roasted at 400 to 900 ° C. At this time, the waste catalyst can be used with or without pulverization. If the roasting temperature is less than 400 ℃ does not sufficiently change the carrier component solubility in water is low, if the roasting temperature exceeds 900 ℃ there is a problem that is not economical without improving the effect by roasting. More preferable roasting temperature is 400 to 700 ° C.

또한, 배소는 1 내지 4시간 동안 하는 것이 바람직하다. 배소시간이 1시간 미만이면 알루미나 담체 성분의 변화가 충분히 이루어지지 않아 물에 대한 용해도가 낮고, 배소시간이 4시간을 초과하면 물에 대한 용해도의 증가가 없이 경제적이지 못한 문제점이 있다. In addition, roasting is preferably performed for 1 to 4 hours. If the roasting time is less than 1 hour, the change in the alumina carrier component is not sufficiently made solubility in water is low, if the roasting time is more than 4 hours there is a problem that is not economical without increasing the solubility in water.

본 발명의 폐촉매로부터 백금족 금속을 회수하는 방법에 있어서, 플럭스로서 강산이 사용될 경우, 강산은 염산, 황산 및 질산으로 이루어진 군에서 적어도 하나 이상 선택되는 것을 특징으로 한다. In the method for recovering the platinum group metal from the spent catalyst of the present invention, when a strong acid is used as the flux, the strong acid is selected from the group consisting of hydrochloric acid, sulfuric acid and nitric acid.

또한, 플럭스로서 강염기가 사용될 경우, 강염기는 수산화나트륨, 수산화칼륨 및 수산화칼슘으로 이루어진 군에서 적어도 하나 이상 선택되는 것을 특징으로 한다. In addition, when a strong base is used as the flux, the strong base is characterized in that at least one selected from the group consisting of sodium hydroxide, potassium hydroxide and calcium hydroxide.

본 발명의 폐촉매로부터 백금족 금속을 회수하는 방법에서, 폐촉매와 강산 또는 강염기의 혼합비는 당량비 기준으로 1:1 ~ 1:3인 것을 특징으로 한다. 폐촉매와 강산 또는 강염기의 혼합비가 1:1 이하이면 담체 성분의 변화가 충분히 이루어 지지 않아 배소 효율이 낮고, 폐촉매와 강산 또는 강염기의 혼합비가 1:3을 초과하면 폐산 또는 폐염기 발생량이 많아지는 문제가 있다. In the method for recovering the platinum group metal from the waste catalyst of the present invention, the mixing ratio of the waste catalyst and the strong acid or the strong base is 1: 1 to 1: 3 based on the equivalent ratio. When the mixing ratio of the spent catalyst and strong acid or strong base is 1: 1 or less, the carrier component is not sufficiently changed, so the roasting efficiency is low. When the mixing ratio of the spent catalyst and strong acid or strong base exceeds 1: 3, the amount of waste acid or waste base is generated. There is a problem.

바람직한 폐촉매와 강산 또는 강염기의 혼합비는 당량비 기준으로 1:1.2 ~ 1:1.5이다. 이 혼합비율에서 반응 효율이 좋다. Preferred mixing ratio of the spent catalyst and strong acid or strong base is 1: 1.2 to 1: 1.5 based on the equivalent ratio. The reaction efficiency is good at this mixing ratio.

이어, 배소물을 물에 용해시키고 고액분리한다. 이때, 배소물을 70 내지 90℃에서 용해시키는 것이 바람직하다. 이때 물의 온도가 70℃ 미만이면 담체의 물에 대한 용해도가 낮고, 90℃를 초과하면 용해율 증가없이 경제적이지 못한 문제점이 있다. The roast is then dissolved in water and solid-liquid separated. At this time, it is preferable to dissolve the roasted material at 70 to 90 ° C. At this time, if the temperature of the water is less than 70 ℃ low solubility of the carrier in water, if it exceeds 90 ℃ there is a problem that is not economical without increasing the dissolution rate.

이와 같은 과정을 통하여 폐촉매의 담체는 가용성으로 변환되어 물에 용해되고 백금족 금속은 잔류물로 남게된다. 즉, 플럭스로서 강산을 사용할 경우에는 알루미나 담체의 알루미나 성분이 가용성인 알럼(alum)으로 변환되고, 플럭스로서 강염기를 사용할 경우에는 알루미나 담체의 알루미나 성분이 가용성인 수산화 알루미늄으로 변환되어 이들이 물에 용해됨으로써 백금족 금속과 분리되는 것이다. Through this process, the spent catalyst carrier is converted to soluble so that it is dissolved in water and the platinum group metal remains as a residue. That is, when the strong acid is used as the flux, the alumina component of the alumina carrier is converted into soluble alum, and when the strong base is used as the flux, the alumina component of the alumina carrier is converted to soluble aluminum hydroxide and dissolved in water. It is separated from the platinum group metal.

잔류물로 남은 백금족 금속은 기존의 습식공법 및/또는 용매추출방법으로 최종 회수된다. The remaining platinum group metals are finally recovered by conventional wet and / or solvent extraction methods.

한편, 알루미나 용해액은 수산화 알루미늄 씨드(seed)를 이용하여 수산화 알루미늄으로 침전되어 여과함으로써 수산화 알루미늄을 회수한다. 이 회수된 수산화 알루미늄은 알루미늄으로 재사용가능하다. On the other hand, the alumina dissolving liquid is precipitated with aluminum hydroxide using aluminum hydroxide seed (seed) to recover aluminum hydroxide by filtering. This recovered aluminum hydroxide is reusable as aluminum.

이어, 본 발명의 폐촉매로부터 백금족 금속을 회수하는 다른 방법을 설명한다. Next, another method for recovering the platinum group metal from the spent catalyst of the present invention will be described.

본 발명의 폐촉매로부터 백금족 금속을 회수하는 방법은, The method for recovering the platinum group metal from the spent catalyst of the present invention,

백금족 금속이 포함된 폐촉매로부터 백금족 금속을 회수하는 방법에 있어서,In the method for recovering the platinum group metal from the spent catalyst containing the platinum group metal,

상기 폐촉매를 강산 또는 강염기와 400 내지 900℃에서 1차 배소하는 단계;Firstly roasting the spent catalyst at 400 to 900 ° C. with a strong acid or strong base;

상기 1차 배소물을 물에 용해시킨후 1차 고액분리하는 단계;Dissolving the first roasted product in water and separating the first solid solution;

고액분리된 여과물에 강염기를 혼합한 후 400 내지 900℃에서 2차 배소하는 단계; 및Mixing the strong base to the solid-liquid separated filtrate and then roasting at 400 to 900 ° C. for two times; And

상기 2차 배소물을 물에 용해시킨후 2차 고액분리하는 단계;를 포함하여 이루어지는 것을 특징으로 한다. And dissolving the secondary roasted product in water and separating the second solid solution.

먼저 백금족 금속이 포함된 폐촉매와 강산 또는 강염기를 400 내지 900℃에서 배소한다. 바람직한 배소온도(1차)는 400 내지 600℃이다. 이때 폐촉매는 분쇄없이 사용하는 것이 가능하다. 배소는 1 내지 4시간 동안 하는 것이 바람직하다.First, the waste catalyst containing the platinum group metal and the strong acid or strong base are roasted at 400 to 900 ° C. Preferable roasting temperature (primary) is 400-600 degreeC. At this time, the waste catalyst can be used without grinding. Roasting is preferably carried out for 1 to 4 hours.

이어, 1차 배소물을 물에 용해시킨후 고액분리한다. Subsequently, the first roasted material is dissolved in water and then solid-liquid separated.

이어, 고액분리된 여과물에 강염기를 혼합한 후 400 내지 900℃에서 2차 배소한다. 바람직한 배소온도(2차)는 600 내지 800℃이다. 이때 1차 고액분리 여과물과 강염기의 혼합비는 당량비 기준으로 1:1 ~ 1:3인 것이 바람직하다. 보다 바람직한 1차 고액분리 여과물과 강염기의 혼합비는 1:1.2 ~ 1:1.5이다. Subsequently, the strong base is mixed with the solid-liquid separated filtrate and then secondary roasted at 400 to 900 ° C. Preferred roasting temperature (secondary) is 600 to 800 ° C. In this case, the mixing ratio of the first solid-liquid separation filtrate and the strong base is preferably 1: 1 to 1: 3 based on the equivalent ratio. A more preferable mixing ratio of the primary solid-liquid filtrate and the strong base is from 1: 1.2 to 1: 1.5.

이어, 2차 배소물을 물에 용해시킨후 2차 고액분리한다. 이때, 배소물을 70 내지 90℃에서 용해시키는 것이 바람직하다.Subsequently, the secondary roasted material is dissolved in water and then the second solid solution is separated. At this time, it is preferable to dissolve the roasted material at 70 to 90 ° C.

이와 같은 과정을 통하여 폐촉매의 담체는 가용성으로 변환되어 물에 용해되고 백금족 금속은 잔류물로 남게된다. Through this process, the spent catalyst carrier is converted to soluble so that it is dissolved in water and the platinum group metal remains as a residue.

본 발명에서와 같이, 1차 및 2차, 두 차례의 배소를 시행함으로써 불용성 담체의 가용성화 비율을 높여 폐촉매에 함유된 백금족 금속의 회수율을 높일 수 있다. As in the present invention, the first, second, and two times of roasting may be performed to increase the solubilization rate of the insoluble carrier, thereby increasing the recovery rate of the platinum group metal contained in the spent catalyst.

본 발명의 폐촉매로부터 백금족 금속을 회수하는 다른 방법에서, 강산 및 강염기의 종류, 폐촉매와 강산 또는 강염기의 혼합비 등은 앞서 기술된 것과 동일하게 적용된다. In another method for recovering the platinum group metal from the waste catalyst of the present invention, the type of strong acid and strong base, the mixing ratio of the waste catalyst and the strong acid or strong base, and the like are applied in the same manner as described above.

본 발명에서, 폐촉매가 강산 또는 강염기와 함께 배소과정을 거침으로써 알루미나 담체 폐촉매의 난용성의 알루미나는 수용성의 알럼 및/또는 수산화 알루미늄으로 변환됨으로써 불용성의 백금족 금속과 분리되는 것이다. In the present invention, the waste catalyst undergoes roasting process with a strong acid or strong base so that the poorly soluble alumina of the alumina carrier waste catalyst is converted into an insoluble platinum and / or aluminum hydroxide to be separated from the insoluble platinum group metal.

이하, 하기 실시예를 통하여 본 발명의 폐촉매로부터 백금족 금속을 회수하는 방법을 보다 자세하게 설명한다. Hereinafter, the method for recovering the platinum group metal from the spent catalyst of the present invention will be described in more detail with reference to the following examples.

<실시예 1><Example 1>

정유공장에서 발생한, 백금족이 함유된 알루미나 담체 폐촉매(알파-타입 또는 감마-타입) 100g과 NaOH 120g을 혼합한 뒤 볼밀에 장입하고 분쇄하였다. 폐촉매와 NaOH의 혼합물을 자제도가니에 담고 배소로에 장입하여 400~900℃에서 120분간 배소를 실시하였다. 배소물을 70~90℃의 물에 용해한 후 여과하여 불용성의 잔사, 백금족 농축물을 회수하였다. 배소 온도에 따른 폐촉매의 용해율(%)을 표 1에 나타내었다. 100 g of alumina carrier waste catalyst (alpha-type or gamma-type) containing platinum group generated in a refinery and 120 g of NaOH were mixed, charged in a ball mill, and ground. The mixture of the spent catalyst and NaOH was placed in a porcelain crucible, charged into an roasting furnace, and roasted at 400 to 900 ° C. for 120 minutes. The roasted material was dissolved in water at 70 to 90 ° C., and then filtered to recover an insoluble residue and a platinum group concentrate. The dissolution rate (%) of the spent catalyst according to the roasting temperature is shown in Table 1.

400℃400 ℃ 500℃500 ℃ 600℃600 ℃ 700℃700 ℃ 800℃800 ℃ 900℃900 ℃ 감마-타입Gamma-type 92.4592.45 93.9193.91 95.4895.48 95.0195.01 94.4394.43 80.5880.58 알파-타입Alpha-type 84.9184.91 83.7383.73 88.8788.87 95.5995.59 95.0395.03 58.5958.59

표 1에서 알 수 있는 바와 같이, 폐촉매의 용해율은 약 85~95%임을 알 수 있었다. 알파-타입보다는 감마-타입의 알루미나 폐촉매가 용해 효율이 높은 것으로 나타났다. As can be seen in Table 1, the dissolution rate of the spent catalyst was found to be about 85 ~ 95%. Gamma-type alumina spent catalysts showed higher dissolution efficiency than alpha-type.

<실시예 2><Example 2>

정유공장에서 발생한, 백금족이 함유된 알루미나 담체 폐촉매 10g에 황산 15㎖, 20㎖, 25㎖ 각각을 자제도가니에 넣고 500℃에서 120분간 배소하였다. 25분 동안 식힌후 450rpm으로 2시간 동안 70~90℃의 물에 용해시킨후 고액분리하여 불용해 백금족 농축물을 회수하였다. 투입된 황산량에 따른 알루미나 담체 폐촉매의 용해율(%)을 표 2에 나타내었다. 15 ml, 20 ml and 25 ml of sulfuric acid were placed in a porcelain crucible and then roasted at 500 ° C. for 120 minutes in 10 g of alumina carrier waste catalyst containing platinum group. After cooling for 25 minutes, the solution was dissolved in water at 70-90 ° C. for 2 hours at 450 rpm, and then solid-liquid separated to recover an insoluble platinum group concentrate. Table 2 shows the dissolution rate (%) of the spent alumina carrier catalyst according to the amount of sulfuric acid added.

15㎖15 ml 20㎖20 ml 25㎖25 ml 감마-타입Gamma-type 71.2271.22 73.0073.00 76.7076.70 알파-타입Alpha-type 40.5840.58 47.5747.57 49.7549.75

표 2에서 알 수 있는 바와 같이, 폐촉매의 용해율은 약 40~76%임을 알 수 있었다. As can be seen in Table 2, the dissolution rate of the spent catalyst was found to be about 40 ~ 76%.

<실시예 3><Example 3>

정유공장에서 발생한, 백금족이 함유된 알루미나 담체 폐촉매 100g에 NaOH 120g을 혼합 분쇄 후 400℃에서 2시간 동안 1차 배소를 실시하였다. 상기 1차 배소물을 70~90℃의 물에 용해한 다음 고액분리를 행하였다. 이 불용성 잔사와 NaOH의 비율을 1:1.2로 하여 700℃에서 2시간 동안 2차 배소를 행하였다. 이어 2차 배소물을 70~90℃의 물에 용해하여 여과하여 불용성 백금족 농축물을 회수하였다. 1차 배소 및 2차 배소후 각각의 폐촉매 용해율(%)을 측정하고 표 3에 나타내었다. 100 g of NaOH was mixed with 100 g of the platinum group-containing alumina carrier spent catalyst generated in the refinery and then subjected to primary roasting at 400 ° C. for 2 hours. The primary roasted product was dissolved in water at 70-90 ° C. and then solid-liquid separation was performed. The ratio of this insoluble residue and NaOH was 1: 1.2, and the secondary roasting was performed at 700 ° C. for 2 hours. The secondary roast was then dissolved in water at 70-90 ° C. and filtered to recover the insoluble platinum group concentrate. The spent catalyst dissolution rate (%) after the primary roasting and the secondary roasting was measured and shown in Table 3.

1차배소 용해율(%)Primary roasting rate (%) 2차배소 용해율(%)Secondary roasting dissolution rate (%) 감마-타입Gamma-type 70.4770.47 99.4599.45 알파-타입Alpha-type 68.9768.97 99.3799.37

표 3에서 알 수 있는 바와 같이, 2차 배소후 폐촉매의 용해율이 월등히 증가함을 확인할 수 있었다.As can be seen from Table 3, it was confirmed that the rate of dissolution of the spent catalyst after the secondary roasting is significantly increased.

<실시예 4><Example 4>

정유공장에서 발생한, 백금족이 함유된 알루미나 담체 폐촉매 100g과 진한 황산(98%) 150㎖를 혼합한 후 500℃에서 2시간 동안 1차 배소하였다. 상기 1차 배소물을 70~90℃의 물에 용해한 다음 고액분리를 행하였다. 이 불용성 잔사와 NaOH의 비율을 1:1.5로 하여 700℃에서 3시간 동안 2차 배소하였다. 이어 2차 배소물을 70~90℃의 물에 용해한 다음 고액분리하여 불용성 백금족 농축물을 회수하였다. 1차 배소 및 2차 배소후 각각의 폐촉매 용해율(%)을 측정하고 표 4에 나타내었다. 100 g of alumina carrier waste catalyst containing platinum group and 150 ml of concentrated sulfuric acid (98%) were mixed in a refinery and then roasted at 500 ° C. for 2 hours. The primary roasted product was dissolved in water at 70-90 ° C. and then solid-liquid separation was performed. The ratio of this insoluble residue to NaOH was 1: 1.5, followed by secondary roasting at 700 ° C. for 3 hours. Subsequently, the secondary roast was dissolved in water at 70-90 ° C. and then subjected to solid-liquid separation to recover an insoluble platinum group concentrate. The waste catalyst dissolution rate (%) after the primary roasting and the secondary roasting was measured and shown in Table 4.

1차배소 용해율(%)Primary roasting rate (%) 2차배소 용해율(%)Secondary roasting dissolution rate (%) 감마-타입Gamma-type 71.0071.00 96.4096.40 알파-타입Alpha-type 43.6743.67 95.2295.22

표 4에서 알 수 있는 바와 같이, 2차 배소후 폐촉매의 용해율이 월등히 증가함을 확인할 수 있었다. As can be seen in Table 4, it was confirmed that the rate of dissolution of the spent catalyst after the secondary roasting was significantly increased.

이상에서 본 발명의 구체예가 제시되어 있지만 본 발명이 상기에 한정되는 것은 아니며 본 발명의 기술 사상 범위 내에서 다양하게 변형 가능하고 이러한 변형은 하기한 본 발명의 청구범위에 속한다 할 것이다. Specific embodiments of the present invention have been presented above, but the present invention is not limited to the above, and various modifications can be made within the technical spirit of the present invention, and such modifications will belong to the following claims.

Claims (11)

백금족 금속이 포함된 폐촉매로부터 백금족 금속을 회수하는 방법에 있어서,In the method for recovering the platinum group metal from the spent catalyst containing the platinum group metal, 상기 폐촉매를, 수산화나트륨, 수산화칼륨 및 수산화칼슘으로 이루어진 군에서 적어도 하나 이상 선택되는 강염기와, 당량비 기준으로 1:1 ~ 1:3으로 혼합하여 400 내지 900℃에서 1 내지 4시간 동안 배소하고, 이 배소물을 물에 용해시킨후 고액분리하여 불용성의 백금족 금속을 수득하는 것을 특징으로 하는 폐촉매로부터 백금족 금속을 회수하는 방법. The waste catalyst is mixed with a strong base selected from at least one selected from the group consisting of sodium hydroxide, potassium hydroxide and calcium hydroxide in a ratio of 1: 1 to 1: 3 based on an equivalent ratio, and roasted at 400 to 900 ° C. for 1 to 4 hours, A method for recovering a platinum group metal from a spent catalyst, wherein the roasted product is dissolved in water and then subjected to solid-liquid separation to obtain an insoluble platinum group metal. 삭제delete 청구항 1에 있어서, The method according to claim 1, 상기 배소물을 70 내지 90℃의 물에서 용해시키는 것을 특징으로 하는 폐촉매로부터 백금족 금속을 회수하는 방법. The method for recovering the platinum group metal from the spent catalyst, characterized in that the roasted water is dissolved in water of 70 to 90 ℃. 삭제delete 청구항 1에 있어서, The method according to claim 1, 배소온도는 400 내지 700℃인 것을 특징으로 하는 폐촉매로부터 백금족 금속을 회수하는 방법. The roasting temperature is a method for recovering the platinum group metal from the waste catalyst, characterized in that 400 to 700 ℃. 청구항 1에 있어서, The method according to claim 1, 상기 폐촉매는 알루미나 담체인 것을 특징으로 하는 폐촉매로부터 백금족 금속을 회수하는 방법. The waste catalyst is a method for recovering the platinum group metal from the waste catalyst, characterized in that the alumina carrier. 백금족 금속이 포함된 폐촉매로부터 백금족 금속을 회수하는 방법에 있어서,In the method for recovering the platinum group metal from the spent catalyst containing the platinum group metal, 상기 폐촉매를, 염산, 황산 및 질산으로 이루어진 군에서 적어도 하나 이상 선택되는 강산과, 당량비 기준으로 1:1 ~ 1:3으로 혼합하여 400 내지 900℃에서 1 내지 4시간 동안 배소하고, 이 배소물을 물에 용해시킨후 고액분리하여 불용성의 백금족 금속을 수득하는 것을 특징으로 하는 폐촉매로부터 백금족 금속을 회수하는 방법. The waste catalyst is mixed with at least one strong acid selected from the group consisting of hydrochloric acid, sulfuric acid, and nitric acid in a ratio of 1: 1 to 1: 3 based on an equivalent ratio, and roasted at 400 to 900 ° C. for 1 to 4 hours. A method for recovering a platinum group metal from a waste catalyst characterized by dissolving water in water and then liquid-liquid separation to obtain an insoluble platinum group metal. 백금족 금속이 포함된 폐촉매로부터 백금족 금속을 회수하는 방법에 있어서,In the method for recovering the platinum group metal from the spent catalyst containing the platinum group metal, 상기 폐촉매를, 염산, 황산 및 질산으로 이루어진 군에서 적어도 하나 이상 선택되는 강산, 또는 수산화나트륨, 수산화칼륨 및 수산화칼슘으로 이루어진 군에서 적어도 하나 이상 선택되는 강염기와, 당량비 기준으로 1:1 ~ 1:3으로 혼합하여 400 내지 900℃에서 1 내지 4시간 동안 1차 배소하는 단계;The spent catalyst is a strong acid selected from at least one selected from the group consisting of hydrochloric acid, sulfuric acid and nitric acid, or a strong base selected from the group consisting of sodium hydroxide, potassium hydroxide and calcium hydroxide, and 1: 1 to 1: based on the equivalent ratio. Mixing at 3 and roasting at 400 to 900 ° C. for 1 to 4 hours; 상기 1차 배소물을 물에 용해시킨후 1차 고액분리하여 불용물을 수득하는 단계;Dissolving the first roasted material in water and then separating the first solid to obtain an insoluble matter; 상기 고액분리된 여과 불용물을, 수산화나트륨, 수산화칼륨 및 수산화칼슘으로 이루어진 군에서 적어도 하나 이상 선택되는 강염기와, 당량비 기준으로 1:1 ~ 1:3으로 혼합한 후 400 내지 900℃에서 1 내지 4시간 동안 2차 배소하는 단계; 및The solid-liquid separated filtration insolubles are mixed with at least one strong base selected from the group consisting of sodium hydroxide, potassium hydroxide and calcium hydroxide, 1: 1 to 1: 3 based on the equivalent ratio, and then 1 to 4 at 400 to 900 ° C. Secondary roasting for time; And 상기 2차 배소물을 물에 용해시킨후 2차 고액분리하여 불용성의 백금족 금속을 수득하는 단계;를 포함하여 이루어지는 것을 특징으로 하는 폐촉매로부터 백금족 금속을 회수하는 방법. Dissolving the secondary roasted product in water and then performing secondary solid-liquid separation to obtain an insoluble platinum group metal. The method of recovering a platinum group metal from a spent catalyst comprising: a. 삭제delete 삭제delete 청구항 8에 있어서, The method according to claim 8, 1차 배소온도는 400 내지 600℃이고, 2차 배소온도는 600 내지 800℃인 것을 특징으로 하는 폐촉매로부터 백금족 금속을 회수하는 방법.The primary roasting temperature is 400 to 600 ℃, the secondary roasting temperature is a method for recovering the platinum group metal from the waste catalyst, characterized in that 600 to 800 ℃.
KR20080073750A 2008-07-28 2008-07-28 Method of recovering platinum metals from waste catalysts KR100888040B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20080073750A KR100888040B1 (en) 2008-07-28 2008-07-28 Method of recovering platinum metals from waste catalysts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20080073750A KR100888040B1 (en) 2008-07-28 2008-07-28 Method of recovering platinum metals from waste catalysts

Publications (1)

Publication Number Publication Date
KR100888040B1 true KR100888040B1 (en) 2009-03-10

Family

ID=40698020

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20080073750A KR100888040B1 (en) 2008-07-28 2008-07-28 Method of recovering platinum metals from waste catalysts

Country Status (1)

Country Link
KR (1) KR100888040B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101037324B1 (en) 2009-04-20 2011-05-26 한국지질자원연구원 Recovery method of platinum from spent catalyst contained platinum oxide
KR101114491B1 (en) 2009-09-15 2012-02-24 성일하이텍(주) Method for recovering platinum group element
KR101445252B1 (en) 2013-05-07 2014-09-29 (주)비욘드 pre-treatment method for acquiring gold for cleaning of copper basic material
WO2014178586A1 (en) * 2013-04-29 2014-11-06 한국지질자원연구원 Method for recovering acid and platinum group metal from leaching solution of waste catalyst
CN107841628A (en) * 2017-10-31 2018-03-27 昆明理工大学 A kind of microwave treatment platinum dead catalyst separation aluminium and the method for being enriched with platinum
CN111996379A (en) * 2020-08-27 2020-11-27 江西理工大学 Method for recovering valuable metal from waste SCR denitration catalyst
CN116377239A (en) * 2023-06-06 2023-07-04 矿冶科技集团有限公司 Platinum simple substance extraction method based on waste catalyst raw material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010048255A (en) * 1999-11-26 2001-06-15 곽영훈 Method for recovering platinum and palladium from spent catalysts by sulfation reaction
KR20010107450A (en) * 2000-05-29 2001-12-07 임의신 Recovery method of platinum group metals from spent active carbon catalyst
US6455018B1 (en) * 1993-05-12 2002-09-24 Rhone-Poulenc Chimie Recovery of precious metal and other values from spent compositions/materials
US7067090B2 (en) 2002-10-25 2006-06-27 South Dakota School Of Mines And Technology Recovery of platinum group metals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455018B1 (en) * 1993-05-12 2002-09-24 Rhone-Poulenc Chimie Recovery of precious metal and other values from spent compositions/materials
KR20010048255A (en) * 1999-11-26 2001-06-15 곽영훈 Method for recovering platinum and palladium from spent catalysts by sulfation reaction
KR20010107450A (en) * 2000-05-29 2001-12-07 임의신 Recovery method of platinum group metals from spent active carbon catalyst
US7067090B2 (en) 2002-10-25 2006-06-27 South Dakota School Of Mines And Technology Recovery of platinum group metals

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101037324B1 (en) 2009-04-20 2011-05-26 한국지질자원연구원 Recovery method of platinum from spent catalyst contained platinum oxide
KR101114491B1 (en) 2009-09-15 2012-02-24 성일하이텍(주) Method for recovering platinum group element
WO2014178586A1 (en) * 2013-04-29 2014-11-06 한국지질자원연구원 Method for recovering acid and platinum group metal from leaching solution of waste catalyst
US10190192B2 (en) 2013-04-29 2019-01-29 Korea Institute Of Geoscience And Mineral Resources Method of recovering acid and platinum group metal from leaching solution of spent catalyst
KR101445252B1 (en) 2013-05-07 2014-09-29 (주)비욘드 pre-treatment method for acquiring gold for cleaning of copper basic material
CN107841628A (en) * 2017-10-31 2018-03-27 昆明理工大学 A kind of microwave treatment platinum dead catalyst separation aluminium and the method for being enriched with platinum
CN111996379A (en) * 2020-08-27 2020-11-27 江西理工大学 Method for recovering valuable metal from waste SCR denitration catalyst
CN116377239A (en) * 2023-06-06 2023-07-04 矿冶科技集团有限公司 Platinum simple substance extraction method based on waste catalyst raw material

Similar Documents

Publication Publication Date Title
KR100888040B1 (en) Method of recovering platinum metals from waste catalysts
KR101226946B1 (en) Method for recycling platinum from platinum based catalysts
US20160068929A1 (en) EXTRACTION OF RARE EARTH METALS FROM NdFeB USING SELECTIVE SULFATION ROASTING
JP6780448B2 (en) How to recover high-grade rhodium powder
TW201144451A (en) A method for recovering rhenium and other metals from rhenium-bearing materials
CN109207737B (en) Method for extracting aluminum, silicon oxide and rare earth from waste rare earth polishing powder
CN110643827B (en) Green method for dissolving and extracting gold element
TWI411581B (en) Method for recovering ruthenium from waste containing ruthenium
JP2018145473A (en) Lithium recovery method
JP2007154250A (en) CHLORINATION TREATMENT METHOD FOR Ru AND/OR Rh
JP2007009274A (en) Method for recovering indium
JP2019011518A (en) Lithium recovery method
CN104477948B (en) A kind of method extracting Quilonum Retard from flyash
JP6264566B2 (en) Method for producing leaching product liquid containing platinum group element
CN111004913A (en) Impurity removal and extraction process for neodymium iron boron waste
KR101323754B1 (en) Recovery of acid and platinum group metals from leaching solution of waste catalyst
JP5881502B2 (en) Ruthenium recovery method
JP5881469B2 (en) Ruthenium recovery method
KR102319523B1 (en) Separation and recovery of valuable metals from desulfurized waste catalyst
Borra et al. A brief review on recovery of cerium from glass polishing waste
JP2009215623A (en) Method for recovering indium
CN114107690A (en) Method for extracting noble metal of three-way catalyst
KR20210098577A (en) Method for recovering platinum from spent catalyst and manufacturing method of platinum chloride using the same
JP5315103B2 (en) Method for concentrating and recovering ruthenium
KR20090132672A (en) Technology of reuse on platinum metal from waste catalyst of automobile

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111230

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130121

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee