JP4565807B2 - Protease for measuring glycated protein - Google Patents

Protease for measuring glycated protein Download PDF

Info

Publication number
JP4565807B2
JP4565807B2 JP2003013234A JP2003013234A JP4565807B2 JP 4565807 B2 JP4565807 B2 JP 4565807B2 JP 2003013234 A JP2003013234 A JP 2003013234A JP 2003013234 A JP2003013234 A JP 2003013234A JP 4565807 B2 JP4565807 B2 JP 4565807B2
Authority
JP
Japan
Prior art keywords
protease
glycated
ketoamine
reagent
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003013234A
Other languages
Japanese (ja)
Other versions
JP2004222570A (en
Inventor
卓司 高妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Pharma Corp
Original Assignee
Asahi Kasei Pharma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Pharma Corp filed Critical Asahi Kasei Pharma Corp
Priority to JP2003013234A priority Critical patent/JP4565807B2/en
Publication of JP2004222570A publication Critical patent/JP2004222570A/en
Application granted granted Critical
Publication of JP4565807B2 publication Critical patent/JP4565807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、糖化タンパク質を酵素を用いて測定する場合に使用される、有用なプロテアーゼに関する。より詳細には、糖化ヘモグロビン、糖化アルブミンのごとき糖化タンパク質の定量に有効なプロテアーゼ、それを用いた試薬及び測定方法に関するものである。本発明は臨床検査の分野において有用である。
【0002】
【従来の技術】
近年、糖尿病患者は爆発的に増加しており、糖化ヘモグロビン(以下、ヘモグロビンA1C又はHbA1Cという)、グリコアルブミン、フルクトサミン、1.5アンヒドログルシトールなどの血糖コントロールマーカー測定の需要が増加している。なかでもタンパク質中の糖化タンパク質割合で示されるHbA1C、グリコアルブミンは、個人差が少なく、タンパク質濃度の影響を受けないことから、多用されている。HbA1C、グリコアルブミンはこれまで高速液体クロマトグラフ法(HPLC法)や免疫法で測定されてきたが、最近、大量検体を迅速に処理することが可能であり、かつ正確な酵素法が開発されてきた(特許文献1、2等)。また、本発明者らも正確に糖化タンパク質を測定する目的で、プロテアーゼのグロブリン成分への作用を選択的に阻害する方法(特許文献3)、糖化タンパク質割合の測定方法(特許文献4)を開発してきた。
【0003】
酵素を用いた測定方法は、安価で正確に測定できる方法であるが、限られた時間内に反応を終了させるには大量のプロテアーゼを作用させる。しかしながら市販のプロテアーゼは大量に作用させた場合に、プロテアーゼに含まれる物質が原因と考えられるブランクがつくことから問題が多かった。そこで本発明者らはカタラーゼを用いたブランク上昇の回避方法を開発してきた。しかしながらこの方法はあくまで対処療法であり、ブランクの原因解明はなされておらず、プロテアーゼを高濃度に使用した場合にはやはりブランクが生じる問題は回避できなかった。
【0004】
【特許文献】
【特許文献1】
特開平6-46846号公報
【特許文献2】
特開平5-192193号公報
【特許文献3】
特開2001-54398号公報
【特許文献4】
特開2001-20449号公報
【0005】
【発明が解決しようとする課題】
上記したようにプロテアーゼを大量に使用するとプロテアーゼのブランクが問題となる。本発明の課題は糖化タンパク質を測定するにあたり、糖化タンパク質をプロテアーゼを用いて測定する場合に、高濃度に使用してもブランクのつかないプロテアーゼ、それを用いた測定方法及び測定試薬を提供することにある。さらに具体的には臨床生化学検査における有用なプロテアーゼ、それを用いた糖化タンパク質の測定方法及び測定試薬を提供することにある。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明者は、プロテアーゼ中に存在するブランク上昇物質の特定を試み、その除去方法を検討した。
【0007】
本発明者らは鋭意検討した結果、プロテアーゼ中のブランクを上昇させる物質はプロテアーゼに含まれる色及び糖化アミノ酸を初めとするケトアミンであることをつきとめた。そこで本発明者は透析や塩析、クロマトグラフィー、ケトアミンオキシダーゼ処理等により効果的にケトアミンを除去できること、また色については活性炭処理により効果的に除去できることを見出し本発明の完成するに至った。
【0008】
すなわち、本発明は、
1)10000U/mlのプロテアーゼ溶液中のケトアミン含有量が0.0〜2.0μmol/Lである及び/又は、500〜700nmの吸光度が0〜20mAbsであるプロテアーゼ。
2)プロテアーゼに不純物として存在するケトアミン及び/又は着色物質の含量を減少せしめた、10000U/mlのプロテアーゼ溶液中のケトアミン含有量が0.0〜2.0μmol/L及び/又は500〜700nmの吸光度が0〜20mAbsであるプロテアーゼ。
3)ケトアミン含量の減少を、プロテアーゼ溶液を硫安で沈澱させ、沈殿物を透析して行う上記2)に記載のプロテアーゼ。
4)着色物質含量の減少を、プロテアーゼ溶液を活性炭処理し、通過液を透析して行う上記2)に記載のプロテアーゼ。
5)バチルス属由来上記1)〜4)のいずれかのプロテアーゼ。
6)10000U/mlのプロテアーゼ溶液中のプロテアーゼ溶液中のケトアミン含有量が0.0〜2.0μmol/Lである及び/又は、500〜700nmの吸光度が0〜20mAbsであるプロテアーゼを用いることを特徴とする糖化タンパク質の測定方法。
7)プロテアーゼがバチルス属由来のものである上記6)の方法。
8)糖化タンパク質が糖化ヘモグロビン若しくは糖化アルブミンである上記6)または7)の方法。
9)10000U/mlのプロテアーゼ溶液中のケトアミン含有量が0.0〜2.0μmol/Lである及び/又は、500〜700nmの吸光度が0〜20mAbsであるプロテアーゼを含むことを特徴とする糖化タンパク質測定用試薬。
10)プロテアーゼがバチルス属由来のものである上記9)の試薬。
11)糖化タンパク質が糖化ヘモグロビン若しくは糖化アルブミンである上記9)又は10)の試薬。
に関する。
さらに詳しくは、臨床生化学検査における糖化蛋白質の測定に有用なプロテアーゼ、それを用いる測定方法及び測定試薬に関する。
【0009】
以下本発明の構成及び好ましい形態について更に詳しく説明する。
本発明におけるケトアミンとはメイラード反応により生じるアマドリ化合物のことを指し、糖とアミノ基を有する化合物の反応生成物であれば良く、例えば糖化アミノ酸、糖化エタノールアミン等が挙げられる。
【0010】
本発明に使用しうるプロテアーゼとしては、臨床検査に使用できるものであればいかなる種類プロテアーゼを用いても良い。特に糖化タンパク質を測定する場合には、被検液に含まれる糖化蛋白質に有効に作用し、かつ当該蛋白質由来の糖化アミノ酸及び/若しくは糖化ペプチドを有効に生成するものであればいかなるものを用いても良いが、例えばトリプシン(Trypsin)、キモトリプシン(Chymotrypsin)等の動物由来のプロテアーゼ、パパイン(Papain)、ブロメライン(Bromelain)等の植物由来のプロテアーゼ、微生物由来のプロテアーゼ等が挙げられる。
【0011】
微生物由来のプロテアーゼの例としては、ズブチリシン(Subtilisin)等に代表されるバチルス(Bacillus)属由来プロテアーゼ、プロテアーゼタイプ-XIII(シグマ社製)等に代表されるアスペルギルス(Aspergillus)由来プロテアーゼ、PD酵素(キッコーマン社製)等に代表されるペニシリウム(Penicillium)由来プロテアーゼ、プロナーゼ(Pronase)等に代表されるストレプトマイセス(Streptomyces)由来プロテアーゼ、エンドプロテイナーゼLys-c(シグマ社製)等に代表されるリソバクター(Lysobacter)由来プロテアーゼ、プロテイナーゼA(ProteinaseA;シグマ社製) 等に代表される酵母(Yeast)由来プロテアーゼ、プロテイナーゼK(Proteinase K;シグマ社製)等に代表されるトリチラチウム(Tritirachium)由来プロテアーゼ、アミノペプチダーゼT(AminopeptidaseT;ベーリンガー・マンハイム社製)等に代表されるサーマス(Thermus)由来プロテアーゼ、エンドプロテイナーゼAsp-N(EndoproteinaseAsp-N;和光純薬社製)等に代表されるシュードモナス(Pseudomonus)由来、リジルエンドペプチダーゼ(Lysylendopeputidase和光純薬社製)等に代表されるアクロモバクター(Achromobacter)由来プロテアーゼが挙げられる。これらの具体的な例は1例に過ぎず、なんら限定されるものではない。
【0012】
本発明に用いることの出来るプロテアーゼの活性測定法はカゼインフォリン法を用いた。活性の定義は、1分間−37℃において1μgのチロシンに相当する発色を1Uとした。
【0013】
本発明に使用しうるプロテアーゼのケトアミンの含有量としては、含有量が少ないものが好ましく、例えば10000U/mlのプロテアーゼ水溶液中のケトアミン含有量が0.0〜2.0μmol/Lであれば良く、0.0〜1.0μmol/Lが好ましい。プロテアーゼからのケトアミンの除去は各種クロマトグラム、塩析、透析等で除去することが可能であるが、特に硫安沈殿、透析が効果的である。
【0014】
また本発明に使用しうるプロテアーゼの色は、極力無いものが好ましいが、例えば10000U/mlのプロテアーゼ水溶液の500〜700nmの吸光度が0〜20mAbsであれば良く、0〜10mAbsが好ましい。プロテアーゼからの色の除去は各種クロマトグラム、塩析、透析、活性炭処理等で除去することが可能であるが、特に活性炭処理が効果的である。
尚、ケトアミン含有量、色調共に低いものが最も好ましい。
【0015】
本発明の測定対象である糖化タンパク質としては、例えば糖化アルブミンまたは糖化ヘモグロビンが挙げられるが、測定対象となる糖化蛋白質は何らこれらに限定されるものではなく、何れの糖化タンパク質を測定しても良い。
【0016】
本発明を用いて糖化タンパク質を測定する場合のプロテアーゼの濃度としては0.1U〜1MU/mlの濃度で使用すれば良く、好ましくは1U〜500KU/ml、最も好ましくは5U〜100KU/mlであるがこれ以外の量を用いても良い。
【0017】
本発明のプロテアーゼを用いて糖化タンパク質を測定するには、糖化タンパク質をプロテアーゼを用いて断片化し糖化アミノ酸を生成させ、糖化アミノ酸に作用する酵素をもちいて、糖化アミノ酸を測定すればよい。糖化アミノ酸に作用する酵素としてはデヒドロゲナーゼ、キナーゼ、オキシダーゼが知られているが、オキシダーゼが最も良く知られており使用しやすい。
【0018】
本発明に使用しうるケトアミンオキシダーゼとしては糖化アミノ酸及び/または糖化ペプチドに良好に作用し、過酸化水素を生成するケトアミンオキシダーゼであればいかなる酵素を用いても良いが、糖化アルブミンを測定対象とする場合には、εアミノ基が糖化されたε糖化アミノ酸若しくはペプチドに作用する酵素が好ましく、糖化ヘモグロビンを測定対象とする場合には、αアミノ基が糖化されたα糖化アミノ酸若しくはペプチドに作用する酵素が好ましい。
【0019】
εアミノ基が糖化された糖化アミノ酸に作用する酵素の例としては、ギベレラ(Gibberella)属、アスペルギルス(Aspergillus )属、カンジダ(Candida)属、ペニシリウム(Penicillium )属、フサリウム(Fusarium)属、アクレモニウム(Acremonium)属又はデバリオマイゼス(Debaryomyces)属由来のケトアミンオキシダーゼ等が挙げられる。
【0020】
αアミノ基が糖化された糖化アミノ酸若しくはペプチドに作用する酵素の例としては、上記アミノ基が糖化された糖化アミノ酸に作用する酵素及びコリネバクテリウム(Corynebacterium)由来の酵素が挙げられる。
また、αアミノ基が糖化された糖化アミノ酸若しくはペプチドに特異的に作用し、実質的にεアミノ基が糖化された糖化アミノ酸には作用しない酵素としてはコリネバクテリウム(Corynebacterium)由来の酵素が知られている。一方εアミノ基が糖化された糖化アミノ酸若しくはペプチドに特異的に作用し、実質的にαアミノ基が糖化された糖化アミノ酸には作用しない酵素としては遺伝子操作フルクトサミンオキシダーゼ(FODVII;旭化成社製;PCT/JP02/0072)が知られている。
【0021】
さらに、αアミノ基及びεアミノ基が糖化された糖化アミノ酸若しくはペプチドに作用し、プロテアーゼと共存させた状態でも充分な活性を有する酵素の例としては、遺伝子組み替え型フルクトサミンオキシダーゼ(FODII;旭化成社製)が挙げられる。
【0022】
糖化アミノ酸に作用する酵素の活性は特開2001-20449号公報(糖化タンパク質割合測定方法)記載の方法にて測定し、37℃−1 分間に1μmolの過酸化水素を生成する酵素量を1Uと定義した。
【0023】
本発明を用いて糖化タンパク質を測定する場合のケトアミンに作用する酵素の濃度としては0.01U〜1KU/mlの濃度で使用すれば良く、好ましくは0.1U〜500U/ml、最も好ましくは0.5U〜200U/mlであるがこれ以外の量を用いても良い。
【0024】
かくして本発明のプロテアーゼを用いて被検液中の糖化タンパク質を測定する場合には、一定量の被検液0.1〜1000μl程度に、プロテアーゼ含有試薬1μl〜10ml程度を、例えば37℃にて1〜500分程度反応させ、次いでケトアミンに作用する酵素を含有する試薬1μl〜10ml程度を、例えば37℃にて1〜500分程度反応反応させ、レートアッセイを行う場合には、反応開始後一定時間後の2点間の数分ないし数十分間、例えば3分後と4分後の1分間、または3分後と8分後の5分間における変化した補酵素、溶存酸素、過酸化水素若しくはその他生成物の量を直接または間接的に前記の方法で測定すれば良く、エンドポイントアッセイの場合には反応開始後一定時間後の変化した補酵素、溶存酸素、過酸化水素若しくはその他生成物の量を同様に測定すれば良い。この場合既知濃度の糖化蛋白質を用いて測定した場合の吸光度等の変化と比較すれば被検液中の糖化蛋白質の量を求めることができる。
【0025】
また、本発明に使用しうる糖化タンパク質測定試薬としては、本発明のプロテアーゼを含有するものとして調整すれば良く、例えば液状品及び液状品の凍結物あるいは凍結乾燥品として提供できる。さらに例えば界面活性剤、塩類、緩衝剤、pH調製剤や防腐剤などを適宜選択して添加しても良い。
また本発明を、電極等を用いた、例えば過酸化水素の定量に応用することも可能である。
【0026】
妨害物質の消去系を組み込む場合、例えば遊離のケトアミンを消去した後に糖化タンパク質を測定する場合は、第一試薬にケトアミンオキシダーゼ含有試薬を用い、第二試薬にプロテアーゼ及びカップラーを処方すれば良い。アスコルビン酸、過酸化水素の消去系を組み込む場合には、第一試薬のケトアミンオキシダーゼ含有試薬に例えばアスコルビン酸オキシダーゼ、パーオキシダーゼ等を処方すれば良い。
【0027】
【発明の実施の形態】
ついで、本発明の実施例を詳しく述べるが、本発明は何らこれにより限定されるものではない。
実施例1
1)プロテアーゼの色の除去
市販のバチルス属由来のプロテアーゼ(アルカラーゼ 2.4L;NOVO社製; 2.4AU/g;アンソン/ヘモグロビン法)1Lを、活性炭カラム(2L)に通し、UV280をモニターしタンパク質分画を取得した。タンパク質分画を10mM Tris緩衝液pH7.5に対して冷蔵にて透析、透析液は3回交換し、凍結乾燥し、脱色プロテアーゼを得た。
【0028】
2)プロテアーゼ中のケトアミンの除去
市販のバチルス属由来のプロテアーゼ(アルカラーゼ 2.4L;NOVO社製; 2.4AU/g;アンソン/ヘモグロビン法)1Lを、40%飽和硫安で処理し、沈殿を蒸留水に溶解する。溶解した溶液を10mM Tris緩衝液 pH7.5に透析、濃縮する。再度同じ操作を繰り返し、凍結乾燥しケトアミン除去プロテアーゼを取得した。
【0029】
3)市販のバチルス属由来プロテアーゼ(アルカラーゼ 2.4L;NOVO社製; 2.4AU/g;アンソン/ヘモグロビン法)1Lを、活性炭カラムに通し、タンパク分画を取得、10mM Tris緩衝液 pH7.5に対して冷蔵にて透析(透析液は3回交換)した。これに2)と同じ操作を行い、脱色、脱ケトアミンプロテアーゼを得た。
それぞれのプロテアーゼの性能評価結果を表1に示す。色調は550nmの吸光度の測定で、ケトアミン含有量及び試薬ブランクの測定は以下の試薬及び操作にて行った。
【0030】
【表1】
プロテアーゼの色及びケトアミンの除去(プロテアーゼ10KU/ml溶液中の濃度)

Figure 0004565807
【0031】
<ケトアミン測定試薬>
50mM Tris 緩衝液 pH7.5 (和光純薬社製)
0.02% 4アミノアンチピリン (和光純薬社製)
0.02% TOOS (和光純薬社製)
5U/ml ケトアミンオキシダーゼ (旭化成社製)
5U/ml パーオキシダーゼ (シグマ社製)
【0032】
<ケトアミン測定法>
上記ケトアミン測定試薬1mlを37℃にインキュベートし、試料20μlを加え反応を37℃5分間行った。反応終了後1%SDS 1mlを添加し反応を停止し555nmを測光(A0)した。一方、試料の代わりに蒸留水を用いてブランクの吸光度を測定し、ブランク引きの試料の感度(A-ブランクA)を求めた。別途ケトアミン標準品(糖化Zリジン;ハシバらの方法により合成、精製した。HashibaH, J.Agric. Food Chem.24:70,1976)で検量線を作成し、ケトアミン濃度を算出した。
【0033】
<プロテアーゼの色の測定>
プロテアーゼ凍結乾燥品の活性を測定し、10KU/mlになるように溶解し550nmの吸光度を測定した。
【0034】
<糖化タンパク質測定試薬>
<プロテアーゼ含有試薬>
150mM トリス緩衝液 (和光純薬社製)pH7.5
2500U/ml バチルス属由来プロテアーゼ(実施例1のプロテアーゼ)
5mM 4-アミノアンチピリン (和光純薬社製)
20U/ml パーオキシダーゼ (シグマ社製)
<ケトアミンオキシダーゼ含有試薬>
30mM トリス緩衝液 (和光純薬社製)pH7.5
10U/ml ケトアミンオキシダーゼII (KAODII;旭化成社製)
1.3mM TOOS (同人化学研究所社製)
【0035】
<糖化タンパク質測定法>
上記プロテアーゼ含有試薬180μlおよび血清、血漿、全血等の血液試料9μlをセルに分注し37℃-5分間インキュベーションし555nmを測光(A0)した。続いてケトアミンオキシダーゼ含有試料180μlを添加し37℃-5分間インキュベーションし555nmを測光し(A1)、試料の吸光度変化(ΔA=A1-A0)を求めた。一方、試料の代わりに蒸留水を用いて試料ブランク(ブランクΔA=A1ブランク-A0ブランク)を測定し、ブランク引きの試料の感度(ΔA-ブランクΔA)を求めた。
【0036】
プロテアーゼの精製の結果を表1し示す。表1の様に色を除く場合、活性炭処理が有効であり、ケトアミンを除く場合は硫安処理が有効であった。
【0037】
実施例2
<プロテアーゼ中の色及びケトアミン濃度の試薬ブランクに及ぼす影響>
実施例1の精製プロテアーゼを適宜混合してプロテアーゼ中の色及びケトアミン濃度の試薬ブランクに及ぼす影響を調べた。色の検討を行う場合は2)硫安処理のものと3)の活性炭処理+硫安処理のものを活性値で一定比率で混合し、その混合プロテアーゼを用いて試薬ブランクを測定した。また、ケトアミン濃度の検討を行う場合は1)活性炭処理のものと3)の活性炭処理+硫安処理のものを活性値で一定比率で混合し、その混合プロテアーゼを用いて試薬ブランクを測定した。試薬の調整方法、操作法は実施例1に同じ。また、それぞれの混合プロテアーゼの色及びケトアミン含有量は、実施例1と同じ方法で測定した。結果を図1、図2に示す。
【0038】
図1から分かるようにプロテアーゼ中の色は試薬ブランクに影響を与える。一方本糖化タンパク質測定試薬に於ける健常者血清の吸光度は約50mAbsであるから、再現性よく測定するには、ブランクをその半分の25mAbs以下に押さえると良いことが我々の検討では分かっている。よって再現性良く測定を行うための10000U/ml中のプロテアーゼ溶液中の色は500nm〜700nmの吸収が0〜20mAbsであれば良い。ちなみにプロテアーゼの500nm〜700nmの吸収は、特別青色がついていない限り、一般的に小さくほぼ一定である。
【0039】
また、図2から分かるようにプロテアーゼ中のケトアミンは試薬ブランクに驚くほど影響を与える。色と同じように試薬ブランクを25mAbs以下に設定すると、10000U/mlのプロテアーゼ溶液中のケトアミン濃度は2μmol/L以下であればよいことになる。ちなみにこの評価は10000U/mlと非常に高濃度にプロテアーゼを溶解した場合の結果であり、1U/mlの濃度ならば2pmol/L以下となり通常とても測れる濃度ではない。このように考えられないほど低濃度のケトアミンが実際の糖化タンパク質の測定に試薬ブランクとして影響を与えることが判明した。これは新しい知見である。
【0040】
実施例3
<本発明のプロテアーゼを用いた糖化アルブミンの測定>
実施例1の3)のプロテアーゼを用いて、実施例1の糖化タンパク質測定試薬を作成し、試料中の糖化アルブミンを測定した。測定感度から糖化アルブミン濃度への換算は市販の糖化アルブミンキャリブレーター(旭化成社製)を用いて行った。また別途アルブミン試薬(アルブミンII-HAテストワコー;和光純薬社製)にてアルブミンを測定し、測定値は糖化アルブミン割合として算出した。
【0041】
<HPLC法>
グリコアルブミン計(GAA-2000;アークレイ社製)使用
<試料> 健常者血清5検体、患者血清5検体
<反応手順>
糖化タンパク測定試薬の操作法は実施例1に同じ。アルブミンの測定はアルブミン測定キット(アルブミンII-HAテストワコー; 和光純薬社製)の用法用量に従って測定した。その結果を図3に示す。
図3から分かるように、本発明のプロテアーゼを用いて正確に糖化アルブミンを測定できることが明らかであった。
【0042】
実施例4
<本発明のプロテアーゼを用いた糖化ヘモグロビンの測定>
本実施例1と同じ方法でストレプトマイセス属由来プロテアーゼ(プロテアーゼタイプXIV;シグマ社製)を精製し使用した。
<R1;プロテアーゼ試薬>
150mM トリス緩衝液 (和光純薬社製)pH7.5
4000U/ml ストレプトマイセス属由来プロテアーゼ(プロテアーゼタイプXIV ;シグマ社製)
【0043】
<R2;発色試薬>
150mM トリス緩衝液 (和光純薬社製)pH8.0
5mM 4-アミノアンチピリン (和光純薬社製)
0.12% TOOS (同人化学研究所社製)
24U/ml ケトアミンオキシダーゼII(旭化成社製)
20U/ml POD (シグマ社製)
【0044】
<試料> 市販ヘモグロビン(シグマ社製)50mg/ml
HbA1C値はHbA1c測定装置(アークレイ社製)にて測定した。
<反応手順>
上記R1試薬0.9mlおよび試料90μlを混合し、37℃-2時間反応させた。分子量1万カットの膜で濾過し、ろ液をプロテアーゼ反応溶液とした。プロテアーゼ反応溶液189μlをセルに分注し555nmを測光した(A0)。続いてR2試薬180μlを添加し37℃-5分間インキュベーションし555nmを測光した(A1)。ブランクの測定は、試料に蒸留水を用いてブランクの吸光度変化(ブランクΔA=A1ブランク-A0ブランク)を測定した。また試料に検体及び糖化ヘモグロビン値既知の試料を用いて感度(感度ΔA=(A1-A0)-ブランクΔA)を求め、糖化ヘモグロビン濃度を算出した。さらに糖化ヘモグロビン濃度をヘモグロビン濃度で除し、糖化ヘモグロビン値を算出した。その結果を図4に示す。
図4から分かるように、HPLC法と酵素法の値が一致し、正確にグリコヘモグロビンを測定していることが明白であった。
【0045】
【図面の簡単な説明】
【図1】 実施例2に基づくプロテアーゼ中のケトアミン含有量と試薬ブランクとの関係を示す。
【図2】 実施例2のに基づくプロテアーゼ中の色と試薬ブランクとの関係を示す。
【図3】 実施例3の酵素法とHPLC法による血清の糖化アルブミン測定値の相関を示す。
【図4】 実施例4の酵素法とHPLC法による糖化ヘモグロビンの測定の相関を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a useful protease used when glycated protein is measured using an enzyme. More specifically, the present invention relates to a protease effective for quantification of glycated proteins such as glycated hemoglobin and glycated albumin, a reagent using the same, and a measuring method. The present invention is useful in the field of clinical testing.
[0002]
[Prior art]
In recent years, the number of diabetic patients has increased explosively, and the demand for measuring blood glucose control markers such as glycated hemoglobin (hereinafter referred to as hemoglobin A1C or HbA1C), glycoalbumin, fructosamine, 1.5 anhydroglucitol is increasing. Among them, HbA1C and glycoalbumin, which are indicated by the ratio of glycated protein in proteins, are widely used because there are few individual differences and they are not affected by protein concentration. HbA1C and glycoalbumin have been measured by high-performance liquid chromatography (HPLC method) and immunological methods, but recently, a large amount of specimens can be processed quickly and an accurate enzyme method has been developed. (Patent Documents 1, 2, etc.). In addition, the present inventors also developed a method for selectively inhibiting the action of protease on the globulin component (Patent Document 3) and a method for measuring the ratio of glycated protein (Patent Document 4) for the purpose of accurately measuring glycated protein. I have done it.
[0003]
A measurement method using an enzyme is a method that can be measured accurately at low cost, but a large amount of protease is allowed to act in order to complete the reaction within a limited time. However, when commercial proteases are used in large quantities, there are many problems because blanks that are thought to be caused by substances contained in the proteases are formed. Therefore, the present inventors have developed a method for avoiding blank elevation using catalase. However, this method is only a coping therapy, the cause of the blank has not been elucidated, and the problem of blank formation cannot be avoided when protease is used at a high concentration.
[0004]
[Patent Literature]
[Patent Document 1]
JP-A-6-46846 [Patent Document 2]
Japanese Patent Laid-Open No. 5-192193 [Patent Document 3]
JP 2001-54398 A [Patent Document 4]
JP-A-2001-20449 [0005]
[Problems to be solved by the invention]
As described above, when a large amount of protease is used, a blank of the protease becomes a problem. An object of the present invention is to provide a protease that does not have a blank even if it is used at a high concentration when measuring a glycated protein using a protease, and a measuring method and a measuring reagent using the same. It is in. More specifically, an object of the present invention is to provide a useful protease in clinical biochemical tests, a method for measuring glycated protein using the same, and a measuring reagent.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present inventor tried to identify a blank ascending substance present in a protease and examined a method for removing it.
[0007]
As a result of intensive studies, the present inventors have found that substances that increase the blank in protease are ketoamines including color and glycated amino acids contained in protease. Accordingly, the present inventor has found that ketoamine can be effectively removed by dialysis, salting out, chromatography, ketoamine oxidase treatment, and the like, and that the color can be removed effectively by activated carbon treatment, and the present invention has been completed.
[0008]
That is, the present invention
1) A protease in which the ketoamine content in a 10000 U / ml protease solution is 0.0 to 2.0 μmol / L and / or the absorbance at 500 to 700 nm is 0 to 20 mAbs.
2) The ketoamine content in a 10000 U / ml protease solution with a reduced content of ketoamine and / or coloring substances present as impurities in the protease is 0.0 to 2.0 μmol / L and / or the absorbance at 500 to 700 nm is 0 to Protease that is 20 mAbs.
3) The protease according to 2) above, wherein the ketoamine content is reduced by precipitating the protease solution with ammonium sulfate and dialyzing the precipitate.
4) The protease according to 2) above, wherein the coloring substance content is reduced by treating the protease solution with activated carbon and dialyzing the passing solution.
5) The protease according to any one of 1) to 4) derived from the genus Bacillus.
6) Saccharification characterized by using a protease in which the ketoamine content in the protease solution in a protease solution of 10,000 U / ml is 0.0 to 2.0 μmol / L and / or the absorbance at 500 to 700 nm is 0 to 20 mAbs. Protein measurement method.
7) The method according to 6) above, wherein the protease is derived from the genus Bacillus.
8) The method according to 6) or 7) above, wherein the glycated protein is glycated hemoglobin or glycated albumin.
9) A reagent for measuring glycated protein, comprising a protease having a ketoamine content of 0.0 to 2.0 μmol / L in a 10000 U / ml protease solution and / or an absorbance of 0 to 20 mAbs at 500 to 700 nm. .
10) The reagent according to 9) above, wherein the protease is derived from the genus Bacillus.
11) The reagent according to 9) or 10) above, wherein the glycated protein is glycated hemoglobin or glycated albumin.
About.
More specifically, the present invention relates to a protease useful for measurement of glycated protein in clinical biochemical tests, a measurement method using the same, and a measurement reagent.
[0009]
Hereinafter, the configuration and preferred embodiments of the present invention will be described in more detail.
The ketoamine in the present invention refers to an Amadori compound produced by Maillard reaction, and may be a reaction product of a compound having a sugar and an amino group, and examples thereof include glycated amino acid and glycated ethanolamine.
[0010]
As the protease that can be used in the present invention, any kind of protease may be used as long as it can be used for clinical examination. In particular, when measuring a glycated protein, any substance can be used as long as it effectively acts on a glycated protein contained in a test solution and effectively produces a glycated amino acid and / or a glycated peptide derived from the protein. However, examples include proteases derived from animals such as trypsin and chymotrypsin, plant-derived proteases such as papain and bromelain, and proteases derived from microorganisms.
[0011]
Examples of proteases derived from microorganisms include proteases derived from the genus Bacillus represented by Subtilisin and the like, proteases derived from Aspergillus represented by protease type-XIII (manufactured by Sigma), PD enzyme ( Penicillium-derived protease typified by Kikkoman Corp.), Streptomyces-derived protease typified by pronase, etc., Lysobacter typified by endoproteinase Lys-c (manufactured by Sigma), etc. (Lysobacter) -derived protease, proteinase A (Proteinase A; manufactured by Sigma), etc. Yeast-derived protease, proteinase K (Proteinase K; manufactured by Sigma), etc., a protease derived from Tritirachium (Tritirachium), amino Peptidase T (AminopeptidaseT; manufactured by Boehringer Mannheim) Thermus-derived proteases typified by Pseudomonus, lysyl endopeptidase (Lysylendopeputidase made by Wako Pure Chemicals), etc. And a protease derived from Achromobacter. These specific examples are merely examples and are not limited in any way.
[0012]
The caseinfoline method was used as a method for measuring the activity of protease that can be used in the present invention. The definition of activity was defined as 1 U for color development corresponding to 1 μg of tyrosine at −37 ° C. for 1 minute.
[0013]
The content of the ketoamine of the protease that can be used in the present invention is preferably a low content, for example, the ketoamine content in a 10000 U / ml protease aqueous solution may be 0.0 to 2.0 μmol / L, and may be 0.0 to 1.0. μmol / L is preferred. Ketoamine can be removed from the protease by various chromatograms, salting out, dialysis and the like, but ammonium sulfate precipitation and dialysis are particularly effective.
[0014]
In addition, the color of the protease that can be used in the present invention is preferably as little as possible. For example, the absorbance at 500 to 700 nm of a 10000 U / ml protease aqueous solution may be 0 to 20 mAbs, and preferably 0 to 10 mAbs. The removal of the color from the protease can be carried out by various chromatograms, salting out, dialysis, activated carbon treatment, etc., but activated carbon treatment is particularly effective.
It is most preferable that the ketoamine content and color tone are low.
[0015]
Examples of the glycated protein to be measured in the present invention include glycated albumin or glycated hemoglobin, but the glycated protein to be measured is not limited to these, and any glycated protein may be measured. .
[0016]
When measuring glycated protein using the present invention, the protease concentration may be 0.1 U to 1 MU / ml, preferably 1 U to 500 KU / ml, and most preferably 5 U to 100 KU / ml. Other amounts may be used.
[0017]
In order to measure a glycated protein using the protease of the present invention, a glycated protein is fragmented using a protease to produce a glycated amino acid, and the glycated amino acid is measured using an enzyme that acts on the glycated amino acid. Dehydrogenases, kinases, and oxidases are known as enzymes that act on glycated amino acids, but oxidases are the best known and easy to use.
[0018]
As the ketoamine oxidase that can be used in the present invention, any enzyme may be used as long as it is a ketoamine oxidase that works well on glycated amino acids and / or glycated peptides and generates hydrogen peroxide. In this case, an enzyme that acts on an ε-glycosylated amino acid or peptide in which the ε-amino group is glycated is preferable. When glycated hemoglobin is a measurement target, it acts on an glycated amino acid or peptide in which the α-amino group is glycated An enzyme is preferred.
[0019]
Examples of enzymes that act on glycated amino acids in which the ε-amino group is glycated include the genus Gibberella, Aspergillus, Candida, Penicillium, Fusarium, and Acremonium And ketoamine oxidase derived from the genus (Acremonium) or the genus Debaryomyces.
[0020]
Examples of enzymes that act on glycated amino acids or peptides in which the α-amino group is glycated include enzymes that act on glycated amino acids in which the amino group is glycated and enzymes derived from Corynebacterium.
In addition, an enzyme derived from Corynebacterium is known as an enzyme that specifically acts on a glycated amino acid or peptide in which the α-amino group is glycated but does not substantially act on a glycated amino acid in which the ε-amino group is glycated. It has been. On the other hand, as an enzyme that specifically acts on a glycated amino acid or peptide in which ε-amino group is glycated but does not substantially act on glycated amino acid in which α-amino group is glycated, genetically engineered fructosamine oxidase (FODVII; manufactured by Asahi Kasei Corporation; PCT / JP02 / 0072) is known.
[0021]
Furthermore, as an example of an enzyme that acts on a glycated amino acid or peptide in which α-amino group and ε-amino group are saccharified and has sufficient activity even in the coexistence with protease, genetically modified fructosamine oxidase (FODII; manufactured by Asahi Kasei Co., Ltd.) ).
[0022]
The activity of the enzyme acting on the glycated amino acid was measured by the method described in JP-A-2001-20449 (Glycated protein ratio measuring method), and the amount of enzyme that generates 1 μmol of hydrogen peroxide per minute at 37 ° C. Defined.
[0023]
The enzyme acting on ketoamine when measuring glycated protein using the present invention may be used at a concentration of 0.01 U to 1 KU / ml, preferably 0.1 U to 500 U / ml, most preferably 0.5 U to 200 U / ml but other amounts may be used.
[0024]
Thus, when measuring the glycated protein in the test solution using the protease of the present invention, about 1 μl to 10 ml of protease-containing reagent is added to a fixed amount of test solution of about 0.1 to 1000 μl, for example, 1 to 1 at 37 ° C. When reacting for about 500 minutes and then reacting with 1 to 10 ml of a reagent containing an enzyme that acts on ketoamine for about 1 to 500 minutes at 37 ° C. Changed coenzyme, dissolved oxygen, hydrogen peroxide, etc. for a few minutes to a few tens of minutes, for example 1 minute after 3 and 4 minutes, or 5 minutes after 3 and 8 minutes The amount of product may be measured directly or indirectly by the above method. In the case of an endpoint assay, the amount of coenzyme, dissolved oxygen, hydrogen peroxide or other products changed after a certain period of time after the start of the reaction. May be measured in the same manner. In this case, the amount of glycated protein in the test solution can be determined by comparing with changes in absorbance or the like when measured using a glycated protein at a known concentration.
[0025]
The reagent for measuring glycated protein that can be used in the present invention may be prepared as containing the protease of the present invention. For example, it can be provided as a liquid product, a frozen liquid product, or a freeze-dried product. Further, for example, surfactants, salts, buffers, pH adjusters, preservatives and the like may be appropriately selected and added.
The present invention can also be applied to, for example, determination of hydrogen peroxide using an electrode or the like.
[0026]
When an interfering substance elimination system is incorporated, for example, when glycated protein is measured after elimination of free ketoamine, a ketoamine oxidase-containing reagent is used as the first reagent and a protease and coupler are prescribed as the second reagent. In the case of incorporating an ascorbic acid or hydrogen peroxide elimination system, for example, ascorbic acid oxidase, peroxidase or the like may be formulated in the first reagent ketoamine oxidase-containing reagent.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Next, examples of the present invention will be described in detail, but the present invention is not limited thereto.
Example 1
1) Removal of protease color 1L of commercially available Bacillus-derived protease (Alcalase 2.4L; NOVO; 2.4AU / g; Anson / Hemoglobin method) is passed through an activated carbon column (2L), and UV280 is monitored to measure protein content. The picture was acquired. The protein fraction was dialyzed against 10 mM Tris buffer pH 7.5 by refrigeration, the dialysate was exchanged three times, and lyophilized to obtain a decolorizing protease.
[0028]
2) Removal of ketoamine in protease 1L of commercially available Bacillus-derived protease (Alcalase 2.4L; NOVO; 2.4AU / g; Anson / Hemoglobin method) is treated with 40% saturated ammonium sulfate, and the precipitate is added to distilled water. Dissolve. The dissolved solution is dialyzed and concentrated to 10 mM Tris buffer pH 7.5. The same operation was repeated again and freeze-dried to obtain a ketoamine-removed protease.
[0029]
3) 1 L of commercially available Bacillus derived protease (Alcalase 2.4 L; NOVO; 2.4 AU / g; Anson / Hemoglobin method) is passed through an activated carbon column to obtain a protein fraction, and 10 mM Tris buffer pH 7.5 And dialyzed with refrigeration (dialysate was changed three times). The same operation as 2) was performed to obtain decolorized and deketoamine protease.
The performance evaluation results of each protease are shown in Table 1. The color tone was measured for absorbance at 550 nm, and the ketoamine content and reagent blank were measured using the following reagents and procedures.
[0030]
[Table 1]
Removal of protease color and ketoamine (concentration in protease 10KU / ml solution)
Figure 0004565807
[0031]
<Reagent for measuring ketoamine>
50 mM Tris buffer pH 7.5 (Wako Pure Chemical Industries, Ltd.)
0.02% 4-aminoantipyrine (manufactured by Wako Pure Chemical Industries, Ltd.)
0.02% TOOS (Wako Pure Chemical Industries)
5U / ml ketoamine oxidase (Asahi Kasei)
5U / ml peroxidase (Sigma)
[0032]
<Ketoamine measurement method>
1 ml of the ketoamine measurement reagent was incubated at 37 ° C., 20 μl of the sample was added, and the reaction was carried out at 37 ° C. for 5 minutes. After completion of the reaction, 1 ml of 1% SDS was added to stop the reaction, and photometry (A0) was performed at 555 nm. On the other hand, the absorbance of the blank was measured using distilled water instead of the sample, and the sensitivity of the blanked sample (A-blank A) was determined. Separately, a calibration curve was prepared with a standard ketoamine (glycated Z lysine; synthesized and purified by the method of Hashiba et al. Hashiba H, J. Agric. Food Chem. 24:70, 1976), and the ketoamine concentration was calculated.
[0033]
<Measurement of protease color>
The activity of the freeze-dried protease product was measured, dissolved to 10 KU / ml, and the absorbance at 550 nm was measured.
[0034]
<Glycated protein measurement reagent>
<Protease-containing reagent>
150 mM Tris buffer (Wako Pure Chemical Industries, Ltd.) pH 7.5
2500 U / ml protease derived from Bacillus (protease of Example 1)
5 mM 4-aminoantipyrine (manufactured by Wako Pure Chemical Industries, Ltd.)
20U / ml peroxidase (Sigma)
<Reagent containing ketoamine oxidase>
30mM Tris buffer (Wako Pure Chemical Industries, Ltd.) pH7.5
10U / ml ketoamine oxidase II (KAODII; manufactured by Asahi Kasei)
1.3 mM TOOS (manufactured by Doujin Chemical Laboratory)
[0035]
<Method for measuring glycated protein>
180 μl of the above protease-containing reagent and 9 μl of a blood sample such as serum, plasma, whole blood, etc. were dispensed into a cell, incubated at 37 ° C. for 5 minutes, and photometrically measured at 555 nm (A0). Subsequently, 180 μl of ketoamine oxidase-containing sample was added, incubated at 37 ° C. for 5 minutes, and 555 nm was measured (A1) to determine the change in absorbance of the sample (ΔA = A1-A0). On the other hand, a sample blank (blank ΔA = A1 blank-A0 blank) was measured using distilled water instead of the sample, and the sensitivity of the blanking sample (ΔA-blank ΔA) was determined.
[0036]
Table 1 shows the results of protease purification. When the color was removed as shown in Table 1, activated carbon treatment was effective, and when ketoamine was removed, ammonium sulfate treatment was effective.
[0037]
Example 2
<Effect of color and ketoamine concentration in protease on reagent blank>
The purified protease of Example 1 was mixed as appropriate, and the effect of the color and ketoamine concentration in the protease on the reagent blank was examined. When examining the color, 2) ammonium sulfate-treated and 3) activated charcoal-treated + ammonium sulfate-treated were mixed at a constant ratio in terms of activity values, and a reagent blank was measured using the mixed protease. When examining the ketoamine concentration, 1) the activated carbon-treated one and 3) the activated carbon-treated and ammonium sulfate-treated one were mixed at a constant ratio with their activity values, and the reagent blank was measured using the mixed protease. The reagent adjustment method and operation method are the same as in Example 1. Further, the color and ketoamine content of each mixed protease were measured by the same method as in Example 1. The results are shown in FIGS.
[0038]
As can be seen from FIG. 1, the color in the protease affects the reagent blank. On the other hand, since the absorbance of the serum of a healthy subject in this glycated protein measurement reagent is about 50 mAbs, it has been found from our examination that it is better to suppress the blank to less than 25 mAbs, which is half of that, in order to measure with good reproducibility. Therefore, the color in the protease solution in 10000 U / ml for measurement with good reproducibility may be an absorption at 500 nm to 700 nm of 0 to 20 mAbs. Incidentally, the absorption of proteases at 500 nm to 700 nm is generally small and almost constant unless a special blue color is attached.
[0039]
Also, as can be seen from FIG. 2, the ketoamine in the protease has a surprising effect on the reagent blank. As with the color, if the reagent blank is set to 25 mAbs or less, the ketoamine concentration in the 10000 U / ml protease solution should be 2 μmol / L or less. By the way, this evaluation is the result when the protease is dissolved at a very high concentration of 10000 U / ml. If the concentration is 1 U / ml, it is 2 pmol / L or less, which is not a very measurable concentration. Thus, it was found that an unconventionally low concentration of ketoamine affects the actual measurement of glycated protein as a reagent blank. This is a new finding.
[0040]
Example 3
<Measurement of glycated albumin using protease of the present invention>
Using the protease of 3) of Example 1, the glycated protein measurement reagent of Example 1 was prepared, and glycated albumin in the sample was measured. Conversion from the measurement sensitivity to the glycated albumin concentration was performed using a commercially available glycated albumin calibrator (manufactured by Asahi Kasei Corporation). Separately, albumin was measured with an albumin reagent (albumin II-HA test Wako; manufactured by Wako Pure Chemical Industries, Ltd.), and the measured value was calculated as the ratio of glycated albumin.
[0041]
<HPLC method>
Glycoalbumin meter (GAA-2000; manufactured by Arkray) <Sample> 5 healthy serum samples, 5 patient serum samples <Reaction procedure>
The operating method of the glycated protein measuring reagent is the same as in Example 1. Albumin was measured according to the dosage of an albumin measurement kit (Albumin II-HA Test Wako; manufactured by Wako Pure Chemical Industries, Ltd.). The result is shown in FIG.
As can be seen from FIG. 3, it was clear that glycated albumin could be accurately measured using the protease of the present invention.
[0042]
Example 4
<Measurement of glycated hemoglobin using the protease of the present invention>
A Streptomyces-derived protease (protease type XIV; manufactured by Sigma) was purified and used in the same manner as in Example 1.
<R1; Protease reagent>
150 mM Tris buffer (Wako Pure Chemical Industries, Ltd.) pH 7.5
4000 U / ml protease from the genus Streptomyces (protease type XIV; manufactured by Sigma)
[0043]
<R2: Coloring reagent>
150 mM Tris buffer (Wako Pure Chemical Industries, Ltd.) pH 8.0
5 mM 4-aminoantipyrine (manufactured by Wako Pure Chemical Industries, Ltd.)
0.12% TOOS (manufactured by Doujin Chemical Laboratory)
24U / ml ketoamine oxidase II (Asahi Kasei Corporation)
20U / ml POD (Sigma)
[0044]
<Sample> Commercial hemoglobin (Sigma) 50mg / ml
The HbA1C value was measured with an HbA1c measuring device (Arkray).
<Reaction procedure>
0.9 ml of the above R1 reagent and 90 μl of the sample were mixed and reacted at 37 ° C. for 2 hours. The solution was filtered through a membrane having a molecular weight of 10,000, and the filtrate was used as a protease reaction solution. 189 μl of protease reaction solution was dispensed into a cell, and 555 nm was measured (A0). Subsequently, 180 μl of R2 reagent was added and incubated at 37 ° C. for 5 minutes, and 555 nm was measured (A1). The blank was measured by measuring the absorbance change of the blank (blank ΔA = A1 blank-A0 blank) using distilled water as a sample. Moreover, the sensitivity (sensitivity ΔA = (A1-A0) −blank ΔA) was obtained using a specimen and a sample with a known glycated hemoglobin value as a sample, and the glycated hemoglobin concentration was calculated. Furthermore, the glycated hemoglobin concentration was divided by the hemoglobin concentration to calculate a glycated hemoglobin value. The result is shown in FIG.
As can be seen from FIG. 4, it was clear that the values of the HPLC method and the enzymatic method coincided and that glycated hemoglobin was accurately measured.
[0045]
[Brief description of the drawings]
FIG. 1 shows the relationship between ketoamine content in a protease based on Example 2 and a reagent blank.
FIG. 2 shows the relationship between the color in the protease based on Example 2 and the reagent blank.
FIG. 3 shows the correlation between the measured values of serum glycated albumin by the enzyme method of Example 3 and the HPLC method.
FIG. 4 shows the correlation between the measurement of glycated hemoglobin by the enzymatic method of Example 4 and the HPLC method.

Claims (10)

プロテアーゼによって断片化された糖化アミノ酸又は糖化ペプチドにケトアミンオキシダーゼを作用させることによる糖化タンパク質の測定方法において、以下のプロテアーゼを用いることを特徴とする糖化タンパク質の測定方法。
プロテアーゼ;10000U/mlのプロテアーゼ溶液中のケトアミン含有量が0.0〜2.0μmol/Lであるプロテアーゼ。
In the measuring method of glycated protein by making ketoamine oxidase act on the glycated amino acid or glycated peptide fragmented by protease, the measuring method of the glycated protein characterized by using the following protease.
Protease: Protease whose ketoamine content in a protease solution of 10,000 U / ml is 0.0 to 2.0 μmol / L.
プロテアーゼによって断片化された糖化アミノ酸又は糖化ペプチドにケトアミンオキシダーゼを作用させることによる糖化タンパク質の測定方法において、以下のプロテアーゼを用いることを特徴とする糖化タンパク質の測定方法。
プロテアーゼ;10000U/mlのプロテアーゼ溶液中のケトアミン含有量が0.0〜2.0μmol/Lであり、かつ、500〜700nmの吸光度が0〜20mAbsであるプロテアーゼ。
In the measuring method of glycated protein by making ketoamine oxidase act on the glycated amino acid or glycated peptide fragmented by protease, the measuring method of the glycated protein characterized by using the following protease.
Protease: Protease having a ketoamine content in a protease solution of 10,000 U / ml of 0.0 to 2.0 μmol / L and an absorbance of 500 to 700 nm of 0 to 20 mAbs.
プロテアーゼによって断片化された糖化アミノ酸又は糖化ペプチドにケトアミンオキシダーゼを作用させることによる糖化タンパク質の測定方法において、以下のA,Bの工程により以下のCのプロテアーゼを調整し、該プロテアーゼを用いることを特徴とする糖化蛋白質の測定方法;In a method for measuring a glycated protein by allowing ketoamine oxidase to act on a glycated amino acid or a glycated peptide fragmented by a protease, the following C and C proteases are prepared by the following steps A and B, and the protease is used: A method for measuring a characteristic glycated protein;
工程A)活性炭処理によりプロテアーゼから色を除去する工程Process A) Process of removing color from protease by activated carbon treatment
工程B)硫安沈殿処理によりプロテアーゼからケトアミンを除去する工程Step B) Step of removing ketoamine from protease by ammonium sulfate precipitation treatment
プロテアーゼC)10000U/mlのプロテアーゼ溶液中のケトアミン含有量が0.0〜2.0μmol/Lであり、かつ、500〜700nmの吸光度が0〜20mAbsであるプロテアーゼ。Protease C) Protease whose ketoamine content in a protease solution of 10,000 U / ml is 0.0 to 2.0 μmol / L and whose absorbance at 500 to 700 nm is 0 to 20 mAbs.
プロテアーゼがバチルス属由来のものである請求項1〜3のいずれかに記載の方法。The method according to any one of claims 1 to 3, wherein the protease is derived from the genus Bacillus. 糖化タンパク質が糖化ヘモグロビン若しくは糖化アルブミンである請求項1〜のいずれかに記載の方法。The method according to any one of claims 1 to 4 , wherein the glycated protein is glycated hemoglobin or glycated albumin. プロテアーゼとケトアミンオキシダーゼを含み、プロテアーゼによって断片化された糖化アミノ酸又は糖化ペプチドにケトアミンオキシダーゼを作用させることによって糖化タンパク質を測定する糖化タンパク質測定試薬において、プロテアーゼが以下のプロテアーゼであることを特徴とする糖化タンパク質測定用試薬。
プロテアーゼ;10000U/mlのプロテアーゼ溶液中のケトアミン含有量が0.0〜2.0μmol/Lであるプロテアーゼ。
A glycated protein measurement reagent that comprises a protease and ketoamine oxidase and that measures glycated protein by allowing ketoamine oxidase to act on a glycated amino acid or glycated peptide fragmented by the protease, wherein the protease is the following protease: Reagent for measuring glycated protein.
Protease: Protease whose ketoamine content in a protease solution of 10,000 U / ml is 0.0 to 2.0 μmol / L.
プロテアーゼとケトアミンオキシダーゼを含み、プロテアーゼによって断片化された糖化アミノ酸又は糖化ペプチドにケトアミンオキシダーゼを作用させることによって糖化タンパク質を測定する糖化タンパク質測定試薬において、プロテアーゼが以下のプロテアーゼであることを特徴とする糖化タンパク質測定用試薬。
プロテアーゼ;10000U/mlのプロテアーゼ溶液中のケトアミン含有量が0.0〜2.0μmol/Lであり、かつ、500〜700nmの吸光度が0〜20mAbsであるプロテアーゼ。
A glycated protein measurement reagent that comprises a protease and ketoamine oxidase and that measures glycated protein by allowing ketoamine oxidase to act on a glycated amino acid or glycated peptide fragmented by the protease, wherein the protease is the following protease: Reagent for measuring glycated protein.
Protease: Protease having a ketoamine content in a protease solution of 10,000 U / ml of 0.0 to 2.0 μmol / L and an absorbance of 500 to 700 nm of 0 to 20 mAbs.
プロテアーゼとケトアミンオキシダーゼを含み、プロテアーゼによって断片化された糖化アミノ酸又は糖化ペプチドにケトアミンオキシダーゼを作用させることによって糖化タンパク質を測定する糖化タンパク質測定試薬において、以下のA,Bの工程により以下のCのプロテアーゼを調整し、該プロテアーゼを用いることを特徴とする糖化蛋白質の測定用試薬。
工程A)活性炭処理によりプロテアーゼから色を除去する工程
工程B)硫安沈殿処理によりプロテアーゼからケトアミンを除去する工程
プロテアーゼC)10000U/mlのプロテアーゼ溶液中のケトアミン含有量が0.0〜2.0μmol/Lであり、かつ、500〜700nmの吸光度が0〜20mAbsであるプロテアーゼ。
In a glycated protein measurement reagent that comprises a protease and ketoamine oxidase and measures glycated protein by allowing ketoamine oxidase to act on a glycated amino acid or glycated peptide fragmented by protease, the following C and C A reagent for measuring glycated protein, characterized in that the protease is prepared and the protease is used .
Process A) Process of removing color from protease by activated carbon treatment
Step B) Step of removing ketoamine from protease by ammonium sulfate precipitation treatment
Protease C) Protease having a ketoamine content in a protease solution of 10,000 U / ml of 0.0 to 2.0 μmol / L and an absorbance of 500 to 700 nm of 0 to 20 mAbs.
プロテアーゼがバチルス属由来のものである請求項6〜8のいずれかに記載の試薬。The reagent according to any one of claims 6 to 8, wherein the protease is derived from the genus Bacillus. 糖化タンパク質が糖化ヘモグロビン若しくは糖化アルブミンである請求項のいずれかに記載の試薬。The reagent according to any one of claims 6 to 9 , wherein the glycated protein is glycated hemoglobin or glycated albumin.
JP2003013234A 2003-01-22 2003-01-22 Protease for measuring glycated protein Expired - Lifetime JP4565807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003013234A JP4565807B2 (en) 2003-01-22 2003-01-22 Protease for measuring glycated protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003013234A JP4565807B2 (en) 2003-01-22 2003-01-22 Protease for measuring glycated protein

Publications (2)

Publication Number Publication Date
JP2004222570A JP2004222570A (en) 2004-08-12
JP4565807B2 true JP4565807B2 (en) 2010-10-20

Family

ID=32901617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003013234A Expired - Lifetime JP4565807B2 (en) 2003-01-22 2003-01-22 Protease for measuring glycated protein

Country Status (1)

Country Link
JP (1) JP4565807B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002371A1 (en) 2019-07-01 2021-01-07 旭化成ファーマ株式会社 Glycosylated protein assay reagent containing protease stabilizer increasing redox potential of ferrocyanide, method for assaying glycosylated protein, method for preserving glycosylated protein assay reagent, and method for stabilizing glycosylated protein assay reagent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8507223B2 (en) 2005-07-19 2013-08-13 Kikkoman Corporation Method for quantitative determination of glycated protein and kit for quantitative determination of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997013872A1 (en) * 1995-10-12 1997-04-17 Kyoto Daiichi Kagaku Co., Ltd. Method and assaying amodori compounds
JPH10508475A (en) * 1994-11-08 1998-08-25 ノボ ノルディスク アクティーゼルスカブ Tripeptidyl aminopeptidase
JP2001204495A (en) * 2000-01-28 2001-07-31 Asahi Kasei Corp Method for assaying proportion of saccharified protein
WO2002061119A1 (en) * 2001-01-31 2002-08-08 Asahi Kasei Kabushiki Kaisha Compositions for assaying glycoprotein
JP2004208986A (en) * 2002-12-26 2004-07-29 Chubu Sangyo Kk Rail for pachinko game machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9116315D0 (en) * 1991-07-29 1991-09-11 Genzyme Ltd Assay

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508475A (en) * 1994-11-08 1998-08-25 ノボ ノルディスク アクティーゼルスカブ Tripeptidyl aminopeptidase
WO1997013872A1 (en) * 1995-10-12 1997-04-17 Kyoto Daiichi Kagaku Co., Ltd. Method and assaying amodori compounds
JP2001204495A (en) * 2000-01-28 2001-07-31 Asahi Kasei Corp Method for assaying proportion of saccharified protein
WO2002061119A1 (en) * 2001-01-31 2002-08-08 Asahi Kasei Kabushiki Kaisha Compositions for assaying glycoprotein
JP2004208986A (en) * 2002-12-26 2004-07-29 Chubu Sangyo Kk Rail for pachinko game machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002371A1 (en) 2019-07-01 2021-01-07 旭化成ファーマ株式会社 Glycosylated protein assay reagent containing protease stabilizer increasing redox potential of ferrocyanide, method for assaying glycosylated protein, method for preserving glycosylated protein assay reagent, and method for stabilizing glycosylated protein assay reagent

Also Published As

Publication number Publication date
JP2004222570A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
EP1223224B1 (en) Method of assaying glycoprotein
EP2248909B1 (en) Compositions for assaying glycoprotein
EP1555325B1 (en) Novel fructosyl peptide oxidase and utilization thereof
US20100291623A1 (en) Process for producing alpha-glycosylated dipeptide and method of assaying alpha-glycosylated dipeptide
ES2363228T3 (en) GLICOSILATED PROTEIN TEST PROCEDURE.
JP4061348B2 (en) Enzymatic measurement method of glycated protein
EP2843050A1 (en) Modified amadoriase capable of acting on fructosyl hexapeptide
US20080241880A1 (en) Methods and compositions for determination of glycated proteins
JPH08154672A (en) Fructosylaminoacid oxidase and its production
JP3668801B2 (en) New enzyme
JPWO2006120976A1 (en) Protein cleavage method and use thereof
EP1914315B1 (en) Method for determination of glycosylated protein and determination kit
JP2000333696A (en) Measurement of glycosylated amine
JP4565807B2 (en) Protease for measuring glycated protein
JP3934498B2 (en) Quantitative method and reagent using protease-containing reagent
JP2004344052A (en) Protease for hemoglobin a1c assay
JP4014088B2 (en) Method for eliminating glycated amino acids
JP4622820B2 (en) Method and apparatus for analyzing glycated protein
JP2005261383A (en) Calibration method
JP4260542B2 (en) Method for measuring ketoamine in polymer
CN100379875C (en) Process for producing a-glycosylated dipeptide and method of assaying a-glycosylated dipeptide
JP2006149230A (en) Method for determining ratio of glycated protein
Stalikas et al. Flow injection determination of glutamate in human serum and rat brain samples with immobilized glutamate oxidase and glutamate dehydrogenase reactors
JPH02234700A (en) Enzymic determination of protein of living body

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031001

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090114

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090309

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100317

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100803

R150 Certificate of patent or registration of utility model

Ref document number: 4565807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term