JP2004344052A - Protease for hemoglobin a1c assay - Google Patents

Protease for hemoglobin a1c assay Download PDF

Info

Publication number
JP2004344052A
JP2004344052A JP2003143965A JP2003143965A JP2004344052A JP 2004344052 A JP2004344052 A JP 2004344052A JP 2003143965 A JP2003143965 A JP 2003143965A JP 2003143965 A JP2003143965 A JP 2003143965A JP 2004344052 A JP2004344052 A JP 2004344052A
Authority
JP
Japan
Prior art keywords
glycated
protease
hemoglobin
chain
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003143965A
Other languages
Japanese (ja)
Inventor
Takuji Takatsuma
卓司 高妻
Kohei Oda
耕平 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Pharma Corp
Original Assignee
Asahi Kasei Pharma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Pharma Corp filed Critical Asahi Kasei Pharma Corp
Priority to JP2003143965A priority Critical patent/JP2004344052A/en
Publication of JP2004344052A publication Critical patent/JP2004344052A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively obtain a large amount of a reagent for hemoglobin A1c assay, containing a protease for selectively assaying a glycosylated amino acid and/or a glycosylated peptide at β-chain N end of glycosylated hemoglobin, and to provide a method for hemoglobin A1c assay. <P>SOLUTION: Glycosylated hemoglobin is treated with the protease having action on production of a glycosylated amino acid or a glycosylated peptide at β-chain N end greater than action on production of a glycosylated amino acid or a glycosylated peptide at α-chain N end from glycosylated hemoglobin or its fragment, the glycosylated amino acid or the glycosylated peptide at β-chain N end is isolated to determine the formed glycosylated amino acid and/or glycosylated peptide. The reagent for hemoglobin A1c assay contains the protease for selectively assaying the glycosylated amino acid and/or the glycosylated peptide at the β-chain N end of glycosylated hemoglobin. The method for hemoglobin A1c assay is also provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、糖化ヘモグロビン若しくはそのフラグメントからα鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用よりも、β鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用が大きいプロテアーゼを用いたヘモグロビンA1c測定用試薬及び方法に関し、ヘモグロビンA1cの定義であるβ鎖N末端が糖化されたヘモグロビンのみを測定することが出来る試薬及び測定方法に関する。さらに、血液試料中のヘモグロビンA1cを酵素を用いて正確、簡便、迅速に定量する目的に有用な糖化ヘモグロビンの測定試薬及び方法に関する。
【0002】
【従来の技術】
糖尿病の診断及び管理を行う上で糖化蛋白質の測定は非常に重要であり、中でもヘモグロビンA1cは近年の研究により7%以下に値を管理すれば合併症の発症および進展の危険率を優位に低下させることが証明され、臨床の現場では無くてはならない指標として多用されている。ヘモグロビンA1cの定量法としては、通常電気泳動法、イオン交換クロマトグラフィー法、アフィニティクロマトグラフィ法、免疫法及び酵素法が知られている。しかしながら前記電気泳動法、クロマトグラフィー法は高価な専用装置を必要とし、また処理スピードが遅く、多数の検体を処理する臨床検査には適していない。また前記免疫法は分析方法が比較的簡単で時間も短時間で済むことから近年急速に広まってきたが、抗原抗体反応を用いる為に、再現性や共存物質の影響の点で必ずしも精度が良くない点が問題となっている。
【0003】
専用装置が不必要であり、処理スピードが速く、高精度、簡便、安価な定量方法としては酵素法が知られている(特許文献1、2)。ヘモグロビンA1cの定義は、へモグロビンβ鎖N末端のアミノ酸が糖化されたヘモグロビンであるから、酵素を用いてヘモグロビンA1cの測定を行う場合、βN末端のアミノ酸が糖化されたヘモグロビンからN末端の糖化アミノ酸若しくはN末端の糖化アミノ酸を含むペプチドを遊離し定量しなくてはならない。
【0004】
一般的にヘモグロビンの糖化部位はβ鎖アミノ基が約60% 、α鎖アミノ基が約40%糖化されていると考えられている。加えて蛋白質のN末端が糖化を受け、ふさがれている蛋白質はプロテアーゼに対し耐性である。そのようなプロテアーゼ耐性である糖化アミノ酸残基を加水分解できる酵素(特許文献3〜5)及び方法(特許文献6)も知られている。
【0005】
但しこれらの酵素はヘモグロビンにプロテアーゼ作用させ、糖化アミノ酸を遊離する方法であり、ヘモグロビンβ鎖のN末端の糖化アミノ酸のみを測定できるかどうかは記載がない。
【特許文献1】
特開平8−336386号公報
【特許文献2】
WO97/13872
【特許文献3】
特開2001−57897号公報
【特許文献4】
WO00/50579
【特許文献5】
WO00/61732
【特許文献6】
特開2000−300294号公報
【0006】
【発明が解決しようとする課題】
本発明の課題は、糖化ヘモグロビン若しくはそのフラグメントからα鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用よりも、β鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用が大きいプロテアーゼを含有するヘモグロビンA1c測定用試薬及び方法を提供することにあり、臨床生化学検査、特にヘモグロビンA1cの測定に有用なプロテアーゼを用いたヘモグロビンA1cの測定方法、測定用試薬を提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するためには、ヘモグロビン糖化物をα鎖、β鎖に分けこれを基質として、β鎖から選択的にN末端の糖化アミノ酸若しくは糖化アミノ酸を含むペプチドを生成するプロテアーゼを探せばよい。しかしながら、天然に存在するヘモグロビン糖化物の糖化割合は約5%程度と糖化率が低いことから収率が極めて悪かった。さらに、これらの物質を基質として用い、糖化アミノ酸に作用する酵素を用いてプロテアーゼ活性を検出するには、ヘモグロビン本来の真っ赤な色から検出も困難であった。
【0008】
そこで我々は鋭意検討の結果、糖化ヘモグロビンのN末端に存在する糖化ペプチドを合成し、糖化ヘモグロビンからα鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用よりも、糖化ヘモグロビンからβ鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用が大きいプロテアーゼをスクリーニングする方法を考案した。
【0009】
しかしながらこれらの基質を用いて確認した結果、意外にもこれまで糖化ヘモグロビンに作用が確認されているプロテアーゼはほとんどが作用を示さないことから、従来のプロテアーゼは分子内のε位の糖化を測定しているものと思われた。さらに、糖化ヘモグロビンのα位の糖化アミノ酸を切り出す酵素も知られているが、これらの酵素もほとんどが、α鎖とβ鎖のN端の糖化アミノ酸及び/又は糖化ペプチドをどちらも良く切り出すものであった。
【0010】
そこで本発明者らはこれらの合成基質を用い幅広く自然界や市販のプロテアーゼからスクリーニングを行った結果、糖化アミノ酸が糖化バリンである場合には、ブタ肝由来ロイシンアミノペプチダーゼ(Leucine aminopeputidase from porcine kidney)、Pfu N−acetyl Deblocking Aminopeputidase(from Pyrococcus furiosus)、デオキシン1(from Penicillium amagasakinase)、GODO高純度プロテアーゼ(from Bacillus)、プロテアーゼS“アマノ”(from Bacillus)、アミノペプチダーゼM(from Hog kidney)、アミノペプチダーゼT( from Thermus)、乳酸菌(from Lactobacillus)G15(acidophilus)、G30(casei)等に、またα鎖N末端の糖化ペプチドが糖化バリルロイシンであり、β鎖N末端の糖化ペプチドが糖化バリルヒスチジンである場合には、プロテアーゼP“アマノ”(from Aspergillus melleus)、プロテアーゼK“アマノ”(from Aspergillus alkaline proteinase)、プロテイナーゼK(ProteinaseK from Tritirachiumalbum)、ペクチナ−ゼXP−534(from Bacillus)、スミチームMP(from Aspergillus melleus)、プロテアーゼタイプXXIII(from Aspergillus oryzae;プロテアーゼM“アマノ”)等に糖化ヘモグロビン若しくはそのフラグメントからα鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用よりも、β鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用が大きいプロテアーゼの活性があることを見出した。
【0011】
さらに、またこれらのプロテアーゼ反応液にケトアミンオキシダーゼ等の糖化アミノ酸に作用する酵素を作用させることにより再現性良く、精度良くかつ簡便にヘモグロビンA1cが測定できることを見出し本発明の完成に至った。
すなわち、本発明は、
1) 糖化ヘモグロビン若しくはそのフラグメントからα鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用よりも、β鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用が大きいプロテアーゼを含有するヘモグロビンA1c測定用試薬。
【0012】
2) 糖化ヘモグロビン若しくはそのフラグメントからα鎖N末端の糖化アミノ酸又は糖化ペプチドを実質的に生じないプロテアーゼを含有することを特徴とする1)記載の試薬。
【0013】
3) 糖化アミノ酸が糖化バリンであり、プロテアーゼが豚腎臓(porcine kidney)、パイロコッカス(Pyrococcus)、ペニシリウム(Penicillium)、バチルス(Bacillus)、サーマス(Thermus)、乳酸菌(Lactobacillus)由来であることを特徴とする1)及び2)に記載の試薬。
【0014】
4) プロテアーゼがロイシンアミノペプチダーゼ(Leucine aminopeputidase, from porcine kidney)、Pfu N−acetyl Deblocking Aminopeputidase(from Pyrococcus)、デオキシン1(from Penicillium)、GODO高純度プロテアーゼ(from Bacillus)、プロテアーゼS“アマノ”(from Bacillus)、アミノペプチダーゼM(from Hog kidney)、アミノペプチダーゼT(from Thermus)、乳酸菌(from Lactobacillus)G15、G30、であることを特徴とする1)〜3)に記載の試薬。
【0015】
5) α鎖N末端の糖化ペプチドが糖化バリルロイシンであり、β鎖N末端の糖化ペプチドが糖化バリルヒスチジンであり、プロテアーゼがアスペルギルス(Aspergillus)、バチルス(Bacillus)、トリチラチウム(Tritirachium)由来であることを特徴とする1)及び2)に記載の試薬。
【0016】
6) プロテアーゼがプロテアーゼP“アマノ”(from Aspergillus)、プロテアーゼK“アマノ”(alkaline proteinase from Aspergillus)、プロテイナーゼK(ProteinaseK from Tritirachium)、ペクチナ−ゼXP−534(from Bacillus)、スミチームMP(from Aspergillus)、プロテアーゼタイプXXIII(from Aspergillus)であることを特徴とする1)、2)及び5)に記載の試薬。
【0017】
7) 糖化ヘモグロビン若しくはそのフラグメントからα鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用よりも、β鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用が大きいプロテアーゼを用いることを特徴とするヘモグロビンA1cの測定方法。
【0018】
8) 糖化ヘモグロビン若しくはそのフラグメントからα鎖N末端の糖化アミノ酸又は糖化ペプチドを実質的に生じなプロテアーゼを用いることを特徴とする7)記載の方法。
【0019】
また、本発明は、特に血液試料中のヘモグロビンA1cを酵素を用いて正確、簡便、迅速、安価に定量する目的において有用なプロテアーゼ、測定方法、試薬に関する。
【0020】
以下、この発明の構成及び好ましい形態について更に詳しく説明する。
【0021】
<アマドリ化合物>
本発明に於けるアマドリ化合物とは、タンパク質等のアミノ基をもつ化合物とグルコース等のアルデヒド基を持つ化合物がメイラード反応により、生じる下記の一般式(1)−(CO)−CHR−NH−(Rは、水素原子か水酸基を示す)で表されるケトアミン構造を有する化合物のことを指す。アマドリ化合物には糖化ヘモグロビンや糖化アルブミンのような糖化タンパク質やペプチドが糖化された糖化ペプチド等が含まれる。
【0022】
<糖化ヘモグロビン>
ヘモグロビンがメイラード反応により糖化されたアマドリ化合物のことを指し、α鎖及びβ鎖N末端のバリンや分子内のリジンのε位が糖化されていると言われている。糖化ヘモグロビンのフラグメントとはその一部を指し、本発明に於いてはβ鎖N末端の糖化部位を含むペプチドのことを言う。
【0023】
<ヘモグロビンA1c>
糖化ヘモグロビンのうちヘモグロビンβ鎖N末端のバリンが糖化された分子を指し、安定なアマドリ化合物である。ヘモグロビンA1cには、アマドリ転移する前のシッフベースである不安定型ヘモグロビンは含まれない。
本発明に使用しうる、糖化ヘモグロビン若しくはそのフラグメントからα鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用よりも、β鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用が大きいプロテアーゼとは、糖化ヘモグロビン若しくはそのフラグメントのβ鎖N末端糖化部位付近に作用し、N末端の糖化アミノ酸若しくは糖化アミノ酸を含むペプチドを切り出すことが出来るプロテアーゼであり、かつ、糖化ヘモグロビβ鎖若しくはそのフラグメントへの作用が、糖化ヘモグロビンα鎖への作用よりも大きいプロテアーゼであればいかなるプロテアーゼを用いても良い。
【0024】
尚本発明に於ける、糖化ヘモグロビン若しくはそのフラグメントからα鎖N末端の糖化アミノ酸またはペプチドを生じる作用の方が大きいかどうかについては以下の方法で測定できる。
生成物が糖化アミノ酸の場合、後述する合成基質1デオキシフルクトシルバリルヒスチジン及び1デオキシフルクトシルバリルロイシンを基質として、生じる1デオキシフルクトシルバリンをケトアミン構造を認識する酵素を用いて検出することにより測定することができる。
【0025】
一方生成物が糖化ペプチドの場合、後述する合成基質1デオキシフルクトシルバリルヒスチジルパラニトロアニリド及び1デオキシフルクトシルバリルロイシルパラニトロアニリドを基質として、生じるパラニトロアニリンの黄色を405nm付近の吸収を検出することで測定することができる。
糖化アミノ酸若しくは糖化アミノ酸を含むペプチドとは、好ましくは最終的にケトアミン構造を認識する酵素にて検出できる長さの糖化アミノ酸又は糖化ペプチドが好ましく、該糖化アミノ酸若しくは糖化アミノ酸を含むペプチドを生じさせる過程で本発明のプロテアーゼが使用される。
【0026】
好ましいプロテアーゼの例を具体的に以下に挙げるが、これは1例に過ぎない。ブタ肝由来ロイシンアミノペプチダーゼ(Leucine aminopeputidase from porcine kidneyブタ肝由来ロイシンアミノペプチダーゼにはサイトゾル由来のものと、ミクロソーム由来のものが知られているがどちらを用いても良い。)、プロテイナーゼK(ProteinaseK from Tritirachium album)、プロテアーゼタイプXXIII(from Aspergillus)以上シグマ社製、Pfu N−acetyl Deblocking Aminopeputidase(from Pyrococcus furiosus タカラ社製)、デオキシン1(from Penicillium amagasakinase)、ペクチナ−ゼXP−534(from Bacillus)以上ナガセケムテックス社製、プロテアーゼP“アマノ”(from Aspergillus melleus)、プロテアーゼK“アマノ”(alkaline proteinase from Aspergillus)、プロテアーゼS“アマノ”(from Bacillus)以上アマノエンザイム株式会社製、高純度プロテアーゼ(Bacillus属由来中性プロテアーゼ、合同酒精株式会社製)、アミノペプチダーゼM(from Hog kidney PIERCE社製)、乳酸菌(from Lactobacillus)G15(acidophilus、IFO3953)、G30(casei、IFO12521)アミノペプチダーゼT(from Thermus aquaticus YT−1;ATCC25104 和光純薬社製)、スミチームMP(from Aspergillus melleus 新日本化学社製)、等。
【0027】
尚我々はこれらの酵素溶液中に本発明に使用しうる活性を見出したが、コンタミとして混入しているプロテアーゼである可能性もあり、表示されている名称の酵素ではなくとも、表示されている酵素と同じ溶液中に存在し、本発明に使用しうる活性を有しているプロテアーゼであれば使用することが出来る。
糖化ヘモグロビンα鎖またはそのフラグメントへの作用、若しくは糖化ヘモグロビンβ鎖またはそのフラグメントへの作用は、実際に糖化ヘモグロビンのα鎖、若しくはβ鎖またはそのフラグメントをこれらのプロテアーゼにて切断し、HPLC、電気泳動、MASS等の公知の方法で、それぞれの基質から生成する糖化アミノ酸若しくは糖化アミノ酸を含むペプチドを確認すればよい。
【0028】
我々は簡便にこの作用を確認する目的で、糖化ヘモグロビンβ鎖のモデルとして1デオキシフルクトシルバリルヒスチジン(以下FVHと略する。)、1デオキシフルクトシルバリルヒスチジルパラニトロアニリド(以下HVHpNAと略する。)を、糖化ヘモグロビンα鎖のモデルとして1デオキシフルクトシルバリルロイシン(以下FVLと略する。)、1デオキシフルクトシルバリルロイシルパラニトロアニリド(以下HVLpNAと略する。)をハシバらの方法(Hashiba H,J.Agric.Food Chem.24:70,1976)を用いて合成、精製した。FVH,FVLを用いた場合のプロテアーゼ活性の確認は生じたFVを公知のケトアミンオキシダーゼで測定すればよく、pNAを含む基質の場合、pNAの遊離を405nm付近の吸収で測定すればよい。
【0029】
本発明のプロテアーゼは糖化ヘモグロビン若しくはそのフラグメントからα鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用よりも、β鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用が大きいプロテアーゼであるから、前述の方法により、糖化ヘモグロビンα鎖またはそのフラグメントへの作用及び糖化ヘモグロビンβ鎖若しくはそのフラグメントへの作用を確認し、その結果が糖化ヘモグロビンβ鎖若しくはそのフラグメントへの作用が、糖化ヘモグロビンα鎖への作用よりも大きいプロテアーゼであれば良く、好ましくは糖化ヘモグロビンβ鎖若しくはそのフラグメントへの作用が、糖化ヘモグロビンα鎖若しくはそのフラグメントへの作用の2倍以上であり、より好ましくは5倍以上であり、更に好ましくは10倍以上であり、最も好ましくは実質的に糖化ヘモグロビンα鎖若しくはそのフラグメントへ作用しないプロテアーゼである。
【0030】
尚実質的に糖化ヘモグロビンα鎖若しくはそのフラグメントへ作用しないプロテアーゼとは、α鎖に対し、β鎖への作用が通常20倍以上、好ましくは50倍以上であることを言う。
【0031】
本発明に於けるプロテアーゼの活性測定は、カゼイン−フォリン法で行った。活性の単位1Uは37℃、1分間に1μgのチロシンに相当するフォリン試薬の発色を示す酵素量を1Uと定義した。
【0032】
本発明の糖化ヘモグロビン若しくはそのフラグメントからα鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用よりも、β鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用が大きいプロテアーゼを用いた糖化ヘモグロビンの測定方法としては、前記のプロテアーゼを用いてヘモグロビンβ鎖N端の糖化アミノ酸及び/又は糖化ペプチドを選択的に切り出し、除タンパク後糖化アミノ酸、糖化ペプチドの還元能を利用して色素等を発色させて定量しても良く、また好ましくは除タンパクすることなくクロマトグラフィー、抗原抗体反応、酵素反応等の手段を用いて定量しても良く、最も好ましくはケトアミン構造を認識する酵素を用いて定量すれば良い。
【0033】
本発明に使用できるケトアミン構造を認識する酵素としては、前記プロテアーゼの作用により、切り出されたヘモグロビンβ鎖N端の糖化アミノ酸又は糖化アミノ酸を含むペプチドに良好に作用する酵素であれば如何なるものを用いても良いが、ヘモグロビンβ鎖N端の糖化アミノ酸はα位のアミノ基が糖化されたアミノ酸であるから、αアミノ基が糖化されたアミノ酸に特異的に作用し、分子内に存在するεアミノ基が糖化されたアミノ酸には実質的に作用しない酵素が最も好ましい。
【0034】
酵素の種類としてはオキシダーゼ、デヒドロゲナーゼ及びキナーゼ等が挙げられるが、最も良く研究されており、安価に入手できるオキシダーゼが好ましい。また一般にαアミノ基が糖化されたアミノ酸に特異的に作用しεアミノ基が糖化されたアミノ酸には実質的に作用しないオキシダーゼは安定性が悪いことから、安定性の高いαアミノ基及びεアミノ基が糖化された糖化アミノ酸両方に良く作用するオキシダーゼを用いて測定しても良く、さらに安定性が高いεアミノ基が糖化されたアミノ酸に特異的に作用するオキシダーゼを用いてεアミノ基が糖化されたアミノ酸のみを消去し、安定性の高いαアミノ基及びεアミノ基が糖化された糖化アミノ酸両方に良く作用するオキシダーゼを用いてαアミノ基が糖化されたアミノ酸のみを測定しても良い。
【0035】
特異性の点から、最も好ましいケトアミン構造を認識するオキシダーゼの例としては、εアミノ基が糖化されたアミノ酸には作用しないαアミノ基糖化アミノ酸特異的な酵素、例えばフルクトシルアミノ酸オキシダーゼ(FAOD):コリネバクテリウム(Corynebacterium) 属由来(FERM P−8245)があげられるが本酵素は45℃−10分処理で残存活性10%以下と安定性が悪く、実使用には好ましくない。一方αアミノ基及びεアミノ基が糖化された糖化アミノ酸両方に良く作用する酵素であり安定性が高いオキシダーゼとしてはギベレラ(Gibberella)属またはアスペルギルス(Aspergillus) 属(例えばIFO−6365、−4242、−5710等)由来フルクトサミンオキシダーゼ、カンジダ(Candida )属由来フルクトシルアミンデグリカーゼ、ペニシリウム(Penicillium) 属(例えばIFO−4651、−6581、−7905、−5748、−7994、−4897、−5337等)由来フルクトシルアミノ酸分解酵素、フサリウム(Fusarium)属(例えばIFO−4468、−4471、−6384、−7706、−9964、−9971、−31180、−9972 等)由来、アクレモニウム(Acremonium)属由来又はデブリオマイゼス(Debaryomyces)属由来ケトアミンオキシダーゼ等のケトアミン構造を認識する酵素が挙げられ、さらに好ましい例としてはプロテアーゼと共存した状態でも十分な活性を有する、遺伝子組み替えケトアミンオキシダーゼ(旭化成社製)が挙げられる。
【0036】
糖化アミノ酸に作用する酵素の活性は1デオキシフルクトシルZリジン(以下FZLと略す。)若しくは1デオキシフルクトシルバリン(以下FVと略す。FZL、FVともに前記ハシバらの方法に従って合成、精製した。)より、37℃、1分間に1μmolの過酸化水素を生成する酵素量を1Uと定義した。
【0037】
本発明に基づく糖化タンパク質の定量方法に於いて、ケトアミン構造を認識する酵素を用いる場合に、その作用の検出は、例えばデヒドロゲナーゼを用いた場合には補酵素の変化量を、例えば補酵素としてNADを用いて生成される変化の量として還元型補酵素である還元型NADをその極大吸収波長域である340nm付近の波長にて比色計で測定する等公知の技術を用い直接定量するか、若しくは生じた還元型補酵素を各種ジアフォラーゼ、またはフェナジンメトサルフェート等の電子キャリアー及びニトロテトラゾリウム、WST−1、WST−8(以上同人化学研究所社製)に代表される各種テトラゾリウム塩等の還元系発色試薬を用い間接的に定量してもよく、またこれ以外の公知の方法により直接、間接的に測定してもよい。
【0038】
また例えばオキシダーゼを用いた場合には、酸素の消費量または反応生成物の量を測定することが好ましい。反応生成物として、例えばケトアミンオキシダーゼを用いた場合には反応により過酸化水素及びグルコソンが生成し、過酸化水素及びグルコソン共に公知の方法により直接、間接的に測定する事が出来る。
【0039】
上記過酸化水素の量は、例えばパーオキシダーゼ等を用いて色素等を生成し、発色、発光、蛍光等により定量しても良く、また電気化学的手法によって定量しても良く、カタラーゼ等を用いてアルコールからアルデヒドを生成せしめて、生じたアルデヒドの量を定量しても良い。
【0040】
過酸化水素の発色系は、パーオキシダーゼの存在下で4−AA若しくは3−メチル−2−ベンゾチアゾリノンヒドラゾン(MBTH)等のカップラーとフェノール等の色原体との酸化縮合により色素を生成するトリンダー試薬、パーオキシダーゼの存在下で直接酸化、呈色するロイコ型試薬(N−(カルボキシメチルアミノカルボニル)−4,4−ビス(ジメチルアミノ)ビフェニルアミン(DA64)、10−(カルボキシメチルアミノカルボニル)−3,7−ビス(ジメチルアミノ)フェノチアジン(DA67);以上和光純薬社製等)等を用いることが出来る。
【0041】
また過酸化水素を電極を用いて測定する場合、電極には、過酸化水素との間で電子を授受する事の出来る材料である限り特に制限されないが、例えば白金、金若しくは銀等が挙げられ、電極測定方法としてはアンペロメトリー、ポテンショメトリー、クーロメトリー等の公知の方法を用いることが出来、さらにオキシダーゼまたは基質と電極との間の反応に電子伝達体を介在させ、得られる酸化、還元電流或いはその電気量を測定しても良い。
【0042】
電子伝達体としては電子伝達機能を有する任意の物質が使用可能であり、例えばフェロセン誘導体、キノン誘導体等の物質が挙げられる。またオキシダーゼ反応により生成する過酸化水素と電極の間に電子伝達体を介在させ得られる酸化、還元電流またはその電気量を測定しても良い。
【0043】
さらに本発明のプロテアーゼを用いた測定方法、試薬において、本発明のプロテアーゼを単独で使用することはもちろんであるが、加えてその反応前後若しくは同時に他のエンドプロテアーゼ、または他のエキソプロテアーゼを作用させても良い。
【0044】
本発明のプロテアーゼを用いたヘモグロビンA1cの測定用試薬の液組成については、使用するプロテアーゼの至適pHを考慮し、反応が効率よく進行するようにpH及びプロテアーゼ濃度を決定すればよい。
例えば前記ペクチナ−ゼXP−534(Bacillus属由来)以上ナガセケムテックス社製を用いる場合には、タンパク質分解活性がpH6.5〜9.0付近で強いことから、反応のpHは6.5〜9.0を選択することができる。またプロテアーゼ濃度は実際に使用される反応時間中に被検液中のタンパク質を十分に分解し得る濃度で有れば良く0.1〜500KU/mlが好ましく、0.5〜250KU/mlがさらに好ましい。
【0045】
ケトアミン構造を認識する酵素を用いて断片化された糖化ペプチドもしくはタンパク質を測定する試薬の液組成については、使用するケトアミン構造を認識する酵素の至適pHを考慮し、反応が効率よく進行するようにpHを選択しその後糖化アミノ酸に作用する酵素量を決定すればよい。
【0046】
例えば遺伝子組換フルクトサミンオキシダーゼ(旭化成社製)の場合、最大活性の50%以上の活性を示す領域がpH6.5〜10と広く、反応のpHは6.5〜10を選択できる。また酵素添加濃度は実際に使用される反応時間中に被検液から生成された糖化アミノ酸を十分に測定し得る濃度で有れば良く、0.01U〜1000U/mlが好ましく、0.1U〜500U/mlがより好ましく、0.5U〜200U/mlが最も好ましい。
【0047】
本発明に於けるヘモグロビンA1c定量試薬としては、糖化ヘモグロビン若しくはそのフラグメントからα鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用よりも、β鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用が大きいプロテアーゼを含有するものとして調製すれば良く、好ましくは該プロテアーゼ及びケトアミン構造を認識する酵素を含有するものとして調整すれば良く、例えば液状品及び液状品の凍結物あるいは凍結乾燥品として提供できる。
【0048】
また、本発明に基づく糖化タンパク質を定量する酵素反応組成には、例えば界面活性剤、塩類、緩衝剤、pH調製剤や防腐剤などを適宜選択して添加しても良い。
【0049】
かくして調整された本発明のヘモグロビンA1c測定用試薬を用いて、被検液中のヘモグロビンA1cを測定するには、測定用試薬0.01〜5.0mlに被検液0.001〜0.5mlを加え、37℃の温度にて反応させ、レートアッセイを行う場合には、反応開始後の一定時間後の2点間の数分ないし数十分間、例えば3分後と4分後の1分間、または3分ごと8分後の5分間における変化した補酵素、溶存酸素、過酸化水素若しくはその他生成物の量を直接または間接的に前記の方法で測定すれば良く、エンドポイントアッセイの場合には反応開始後一定時間後の変化した補酵素、溶存酸素、過酸化水素若しくはその他生成物の量を同様に測定すれば良い。この場合既知濃度の糖化ヘモグロビンを用いて測定した場合の吸光度等の変化と比較すれば被検液中の糖化ヘモグロビンの量を求めることができる。
【0050】
ここで述べた披検液とは、糖化ヘモグロビンを含有する被検液であり、さらに好ましくは、全血、全血の溶血液、遠心分離された赤血球、洗浄赤血球等が挙げられる。また分離された赤血球や糖化ヘモグロビンをあらかじめプロテアーゼにより断片化したプロテアーゼ処理液も好ましい被検液として用いることができる。
【0051】
【発明の実施の形態】
ついで、本発明の実施例を詳しく述べるが、本発明は何らこれにより限定されるものではない。
【0052】
【実施例】
本発明を実施例に基づいて説明する。
〔実施例1〕
<ヘモグロビンA1c測定用プロテアーゼのスクリーニング>
ヘモグロビンA1c測定用プロテアーゼとは、糖化ヘモグロビン若しくはそのフラグメントからα鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用よりも、β鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用が大きいプロテアーゼのことを示す。
【0053】
糖化ヘモグロビンからN末端のFVを生成するヘモグロビンA1c測定用プロテアーゼのヘモグロビンα鎖及びβ鎖への作用は下記の基質溶液1)を用いて糖化バリンを生成させ、ケトアミンオキシダーゼにて検出を行った。また、糖化ヘモグロビンからN末端の糖化ジペプチドを生成するヘモグロビンA1c測定用プロテアーゼのヘモグロビンα鎖及びβ鎖への作用は下記の基質溶液2)を用いてpNAの遊離による405nmの増加により測定した。
【0054】
基質液1)
5mM FVH若しくはFVL
発色液1)

Figure 2004344052
上記基質液1)を96穴プレートに90μl、緩衝液(50mM Tris−HCl pH7.5)90μlをとり、プロテアーゼを含有する溶液20μl( 高濃度の方が好ましい)を添加した。室温で2時間反応後、発色液1)を100μl添加、室温で放置し青色の発色(550nm)をプレートリーダーで測定した。
【0055】
基質液2)
1mM FVHpNA若しくはFVLpNA
上記基質液2)を96穴プレートに90μl、緩衝液(50mM Tris−HCl pH7.5)90μlをとり、プロテアーゼを含有する溶液20μl( 高濃度の方が好ましい)を添加した。室温で2時間反応させた。黄色の発色(405nm)をプレートリーダーで測定した。結果を表1に示す。
【0056】
尚プロテアーゼは以下のものを使用した。αキモトリプシン(from Bovine Pancreas)、カルボキシペプチダーゼA(from Bovine Pancreas)、プロナーゼ(Streptomyces griseus)以上和光純薬社製、カルボキシペプチダーゼW(Carboxypeptidase W, from Wheat)、カルボキシペプチダーゼY(酵母由来)、ブタ肝由来ロイシンアミノペプチダーゼ(Leucine aminopeputidase, from porcine kidney サイトゾル由来、ミクロソーム由来)、バチルスリケニフォルミス(from Bacillus globigii)由来プロテアーゼ、プロテイナーゼK(ProteinaseK from Tritirachium album)、プロテアーゼタイプI(from Bovine Pancreas)、プロテアーゼタイプXXIV(Subtilisin Carlsberg)、プロテアーゼタイプXVIII(from Rhizopus sp.)、プロテアーゼタイプXIX(from Aspergillus sojae)、プロテアーゼタイプXIII(from Aspergillus saitoi)、プロテアーゼタイプXXIII(from Aspergillus oryzae)以上シグマ社製、デオキシン1(from Penicillium amagasakinase)、ペクチナ−ゼXP−534(from Bacillus属由来)以上ナガセケムテックス社製、プロテアーゼP“アマノ”(from Aspergillus melleus)、プロテアーゼKアマノ(alkaline proteinase from Aspergillus)、プロテアーゼS“アマノ”(from Bacillus)以上アマノエンザイム株式会社製)、GODO高純度プロテアーゼ(Bacillus属由来中性プロテアーゼ、合同酒精株式会社製)、スミチームMP(from Aspergillus melleus)スミチ−ムP(パパイン)以上新日本化学社製)、Pfu N−acetyl Deblocking Aminopeputidase(from Pyrococcus furiosus;タカラ社製)、アミノペプチダーゼT( from Thermus 和光純薬社製)、アミノペプチダーゼM(from Hog kidney PIERCE社製)、乳酸菌(from Lactobacillus)G15(acidophilus、IFO3953)、G30(casei、IFO12521)、
【0057】
【表1】
Figure 2004344052
【0058】
表1に示したとおり、従来から糖化ヘモグロビンへの作用が知られていたパパイン、キモトリプシン、プロナーゼ、ズブチリシン等ではβ鎖を特異的に認識する事は出来なかった。一方糖化ヘモグロビン若しくはそのフラグメントからα鎖N末端の糖化バリンを生じる作用よりも、β鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用が大きいプロテアーゼとしてはプロテアーゼがロイシンアミノペプチダーゼ(Leucine aminopeputidase, from porcine kidney)、Pfu N−acetyl Deblocking Aminopeputidase(from Pyrococcus furiosus)、デオキシン1(from Penicillium amagasakinase)、GODO高純度プロテアーゼ(from Bacillus)、プロテアーゼS“アマノ”(from Bacillus)、アミノペプチダーゼM(from Hog kidney)、アミノペプチダーゼT( from Thermus)、乳酸菌(from Lactobacillus)G15(acidophilus)、G30(casei)、に活性が確認された。
【0059】
また糖化ヘモグロビンからα鎖N末端の糖化ジペプチドを生じる作用よりも、β鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用が大きいプロテアーゼとしては、プロテアーゼタイプXXIII ( from Aspergillus oryzae)、プロテアーゼP“アマノ”( from Aspergillus melleus)、プロテアーゼK“アマノ“(alkaline proteinase from Aspergillus)、プロテイナーゼK(ProteinaseK from Tritirachium album)、ペクチナ−ゼXP−534(from Bacillus)、スミチームMP(from Aspergillus melleus)、に活性が確認された。
【0060】
〔実施例2〕
<合成基質に対する反応曲線>
1;基質液としてFVH若しくはFVLを用いた場合
<基質溶液>
実施例1の発色液1に1mMになるようにFVHもしくはFVLを溶解した。別途ブランクとして基質マイナスの発色液も調整した。
<プロテアーゼ> Pfu N−acetyl Deblocking Aminopeputidase(from Pyrococcus furiosus)、GODO高純度プロテアーゼ(Bacillus属由来中性プロテアーゼ、合同酒精株式会社製)
<操作>
上記反応液を940μlをキュベットにとり37℃で3分間予備加温する。適当に希釈したプロテアーゼを含有する溶液60μl添加、撹拌し、37℃で反応を開始し、550nmの吸光度を測定した。結果を図1に示す。
【0061】
図1からわかるようにPfu N−acetyl Deblocking Aminopeputidase(from Pyrococcus furiosus)、GODO高純度プロテアーゼ(from Bacillus)はどちらも、ヘモグロビンα鎖のN端糖化ペプチドであるFVLには作用せず、ヘモグロビンβ鎖のN端糖化ペプチドであるFVHに作用しFVを切り出すプロテアーゼであることが明白であり、経時的にその生成量が増加することから確かにプロテアーゼの反応であることが明確であった。このことからPfu N−acetyl Deblocking Aminopeputidase(from Pyrococcus furiosus)、GODO高純度プロテアーゼ(from Bacillus)は糖化ヘモグロビンからβ鎖N末端の糖化アミノ酸を生じる作用が大きいプロテアーゼであり、かつ糖化ヘモグロビンからα鎖N末端の糖化アミノ酸又は糖化ペプチドを実質的に生じないプロテアーゼであることが明白であった。
【0062】
<合成基質に対する反応曲線2;基質液としてFVHpNA若しくはFVLpNAを用いた場合>
<基質溶液> 実施例1の基質溶液2と同じ。
<プロテアーゼ> ペクチナーゼXP−534(ナガセケムテックス社製)、プロテアーゼPアマノ(アマノエンザイム株式会社製)
<操作>
基質溶液2、225μlに50mM、Tris緩衝液pH7.5、675μlを添加し37℃でインキュベートした。適当に希釈したプロテアーゼを含有する溶液100μl添加、撹拌し37℃で反応を開始し、405nmの吸光度を測定した。結果を図2に示す。
【0063】
図2からわかるようにペクチナーゼXP−534はヘモグロビンα鎖のN端糖化ペプチドであるFVLpNAには作用せず、ヘモグロビンβ鎖のN端糖化ペプチドであるFVHpNAに作用するプロテアーゼであることが明白であった。また、プロテアーゼPアマノははヘモグロビンα鎖のN端糖化ペプチドであるFVLpNAへの作用よりも、ヘモグロビンβ鎖のN端糖化ペプチドであるFVHpNAへの作用の方が大きなプロテアーゼであることが明白であった。
【0064】
また、ペクチナーゼXP−534、プロテアーゼPアマノ共に経時的に基質の分解が進むことから確かにプロテアーゼの反応であることが明確であった。
このことからペクチナーゼXP−534は、糖化ヘモグロビンからβ鎖N末端の糖化ペプチドを生じる作用が大きいプロテアーゼであり、かつ糖化ヘモグロビンからα鎖N末端の糖化ペプチドを実質的に生じないプロテアーゼであることが明白であった。また、プロテアーゼPアマノは糖化ヘモグロビン若しくはそのフラグメントからα鎖N末端の糖化ペプチドを生じる作用よりもβ鎖N末端の糖化ペプチドを生じる作用が大きいプロテアーゼであることが明白であった。
【0065】
〔実施例3〕
<ヘモグロビンA1c測定試薬>
ヘモグロビンA1c測定試薬を下記の組成で調製した。
Figure 2004344052
【0066】
〔実施例4〕
<本発明のプロテアーゼを用いた糖化ヘモグロビンの測定>
<ヘモグロビンA1c測定用試薬> 実施例3に記載の試薬
<試料> 市販ヘモグロビン測定用キャリブレーター(協和メデックス社製)低値(表示ヘモグロビンA1c値;5%)及び高値(表示ヘモグロビンA1c値;10%)を5:0、4:1、3:2、2:3、1:4、0:5の割合で混合した。
【0067】
健常者及び糖尿病患者全血(EDTA採血;採血管ベネディクト社製)各5検体を使用。全血試料のHbA1c値はHbA1c測定装置(アークレイ社製)にて測定した。
<全血試料の溶血方法及び溶血試料中のヘモグロビン濃度の測定>
全血は3000回転で遠心分離し血球成分を取得した。溶血試薬(0.9%Briji35;和光純薬社製を含む50mM Tris緩衝液pH7.5)280μlに血球成分20μlを添加して溶血させた。市販ヘモグロビン測定用キャリブレーター低値及び高値の混合品はそのまま使用した。
<反応手順>
上記R1試薬0.7mlをセルにとり37℃にする。試料80μlを混合し、37℃4.5分反応を行いヘモグロビン濃度測定の目的で571nmの吸光度を測定し、次いで751nmを測光した(A0)。試料添加から正確に5分後上記R2試薬220μlをセルに分注し37℃−5分間インキュベーションし751nmを測光した(A1)。ブランクの測定は、試料に蒸留水を用いてブランクの吸光度変化(ブランクΔA=A1ブランク−A0ブランク)を測定した。HbA1c濃度の算出はキャリブレーターの検量線より算出した。さらにヘモグロビンA1c濃度をヘモグロビン濃度で除し、ヘモグロビンA1c値を算出した。キャリブレーターの測定結果を図3に、健常者及び患者全血の測定結果を表2に示す。
【0068】
【表2】
Figure 2004344052
【0069】
図3からわかるようにヘモグロビンA1c用キャリブレーターの希釈系列から良好な直線の検量線が作製でき、本測定系にて正確にヘモグロビンA1cを測定することが可能であった。
また表2から分かるように、本発明のヘモグロビンA1cを用いた測定方法とHPLC法で値が良く一致し、正確にヘモグロビンA1cを測定していることが明白であった。
【発明の効果】
糖化ヘモグロビンのβ鎖N末端の糖化アミノ酸及び/又は糖化ペプチドを選択的に測定する為のプロテアーゼを含有するヘモグロビンA1c測定用試薬、方法を大量、安価に提供する事が可能になる。
【図面の簡単な説明】
【図1】本発明の実施例2に基づく糖化ヘモグロビン若しくはそのフラグメントからβ鎖N末端の糖化アミノ酸を生じる作用が大きいプロテアーゼを用いた場合の反応曲線である。
【図2】本発明の実施例2に基づく糖化ヘモグロビン若しくはそのフラグメントからβ鎖N末端の糖化ペプチドを生じる作用が大きいプロテアーゼを用いた場合の反応曲線である。
【図3】本発明の実施例4に基づくヘモグロビンA1cの検量線および測定結果である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a reagent for measuring hemoglobin A1c using a protease that has a greater action of generating a glycated amino acid or a glycated peptide at the N-terminus of a β-chain than an action of generating a glycated amino acid or a glycated peptide at the N-terminus of an α-chain from glycated hemoglobin or a fragment thereof. The present invention relates to a reagent and a measuring method capable of measuring only hemoglobin in which the β-chain N-terminal, which is the definition of hemoglobin A1c, is glycated. Further, the present invention relates to a reagent and method for measuring glycated hemoglobin, which is useful for accurately, simply, and rapidly quantifying hemoglobin A1c in a blood sample using an enzyme.
[0002]
[Prior art]
Measurement of glycated protein is very important in diagnosing and managing diabetes, and in particular, if the value of hemoglobin A1c is controlled to 7% or less according to recent studies, the risk of developing and developing complications will be significantly reduced. It has been proven to be effective and is often used as an indispensable index in clinical settings. As a method for quantifying hemoglobin A1c, an electrophoresis method, an ion exchange chromatography method, an affinity chromatography method, an immunization method and an enzyme method are generally known. However, the electrophoresis method and the chromatography method require expensive dedicated equipment, and the processing speed is slow, so that they are not suitable for a clinical test in which a large number of samples are processed. In addition, the immunization method has been rapidly spread in recent years because the analysis method is relatively simple and requires only a short time.However, since the antigen-antibody reaction is used, the immunity method is not always accurate with respect to reproducibility and influence of coexisting substances. The point is that it is a problem.
[0003]
An enzymatic method is known as a quantitative method that does not require a dedicated device, has a high processing speed, is highly accurate, simple, and inexpensive (Patent Documents 1 and 2). Since the definition of hemoglobin A1c is hemoglobin in which the amino acid at the N-terminus of the hemoglobin β chain is glycated, when measuring hemoglobin A1c using an enzyme, the amino acid at the β-N-terminus is converted from the glycated amino acid at the N-terminus to the glycated amino acid at the N-terminus. Alternatively, a peptide containing an N-terminal glycated amino acid must be released and quantified.
[0004]
Generally, it is considered that the glycation site of hemoglobin is about 60% of the β-chain amino group and about 40% of the α-chain amino group. In addition, the protein is glycated at the N-terminus, and the plugged protein is resistant to proteases. Enzymes that can hydrolyze such protease-resistant glycated amino acid residues (Patent Documents 3 to 5) and methods (Patent Document 6) are also known.
[0005]
However, these enzymes are methods in which hemoglobin is allowed to act as a protease to release glycated amino acids, and it is not described whether only glycated amino acids at the N-terminal of the hemoglobin β chain can be measured.
[Patent Document 1]
JP-A-8-336386
[Patent Document 2]
WO97 / 13872
[Patent Document 3]
JP 2001-57897 A
[Patent Document 4]
WO00 / 50579
[Patent Document 5]
WO 00/61732
[Patent Document 6]
JP 2000-300294 A
[0006]
[Problems to be solved by the invention]
An object of the present invention is to measure hemoglobin A1c containing a protease having a greater effect of producing a glycated amino acid or peptide at the N-terminus of the β-chain than the activity of producing a glycated amino acid or peptide at the N-terminus of the α-chain from glycated hemoglobin or a fragment thereof. It is an object of the present invention to provide a method and a reagent for measuring hemoglobin A1c using a protease useful for clinical biochemical tests, particularly for measuring hemoglobin A1c.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, it is necessary to divide glycated hemoglobin into α-chain and β-chain, and to use these as a substrate, to search for a protease that selectively produces an N-terminal glycated amino acid or a peptide containing a glycated amino acid from the β-chain. Good. However, the saccharification ratio of naturally occurring saccharified hemoglobin was about 5%, and the yield was extremely poor because the saccharification rate was low. Furthermore, when using these substances as substrates and detecting protease activity using enzymes that act on glycated amino acids, it was difficult to detect hemoglobin due to its inherent red color.
[0008]
Therefore, as a result of intensive studies, we synthesized a glycated peptide present at the N-terminus of glycated hemoglobin and glycated hemoglobin from the glycated hemoglobin to the β-chain N-terminal rather than the action of generating glycated amino acids or glycated peptides at the α-chain N-terminus from glycated hemoglobin. A method has been devised for screening for a protease having a large action to produce amino acids or glycated peptides.
[0009]
However, as a result of using these substrates, most of the proteases that have been confirmed to have an effect on glycated hemoglobin have surprisingly little effect.Therefore, conventional proteases measure glycation at the ε-position in the molecule. I thought it was. Furthermore, enzymes that cut out glycated amino acids at the α-position of glycated hemoglobin are also known, but most of these enzymes also cut both glycated amino acids and / or glycated peptides at the N-terminals of the α and β chains. there were.
[0010]
Thus, the present inventors have screened widely from natural and commercially available proteases using these synthetic substrates. As a result, when the glycated amino acid is glycated valine, the liver-derived leucine aminopeptidase from porcine kidney, porcine liver-derived leucine aminopeptidase, Pfu N-acetyl Deblocking Aminopeptides (from Pyrococcus furiosus), Deoxin 1 (from Penicillium amagasakisinase), GODO High Purity Protease (from fom Bacillus), Amino Acids (from Bacillus) T (from T ermus), Lactobacillus (from Lactobacillus) G15 (acidophilus), G30 (casei) and the like, and when the glycated peptide at the N-terminal of the α-chain is glycated valylleucine and the glycated peptide at the N-terminal of the β-chain is glycated valylhistidine. Protease P "Amano" (from Aspergillus melleus), Protease K "Amano" (from Aspergillus alkaline proteinase), Proteinase K (Proteinase K from Trimpus germ-pact-pB-pB-p-b-A-p-p-B-A-p-p-B-A-p-p-B-A-p-p-B-A-p-p-B-A-p-p-b-A-p-p-b-p-p-B-p-b-p-p-b-p-b-p-p-b-p-p-b-p-p-b) ), Protease type XXIII (from Asper) illus oryzae; Protease M "Amano") and the like have a greater action to produce a glycated amino acid or glycated peptide at the N-terminus of the β-chain than to produce a glycated amino acid or glycated peptide at the N-terminus of the α-chain from glycated hemoglobin or a fragment thereof. Found to be active.
[0011]
Furthermore, the present inventors have found that hemoglobin A1c can be measured with good reproducibility, with high accuracy, and easily, by allowing an enzyme acting on a glycated amino acid such as ketoamine oxidase to act on these protease reaction solutions, thereby completing the present invention.
That is, the present invention
1) A reagent for measuring hemoglobin A1c containing a protease having an action of producing a glycated amino acid or a glycated peptide at the β-chain N-terminus greater than an action of producing a glycated amino acid or glycated peptide at the α-chain N-terminus from glycated hemoglobin or a fragment thereof.
[0012]
2) The reagent according to 1), which contains a protease that does not substantially generate a glycated amino acid or a glycated peptide at the N-terminal of the α-chain from glycated hemoglobin or a fragment thereof.
[0013]
3) The glycated amino acid is glycated valine, and the protease is derived from porcine kidney, Pyrococcus, Penicillium, Bacillus, Thermus, Lactobacillus. The reagent according to 1) and 2).
[0014]
4) Protease is leucine aminopeptidase (from porcine kidney), Pfu N-acetyl Deblocking Aminopeptidase (promyl oxidase), protease (Omylase), (puryl oxidase), (promyl oxidase), (promyl oxidase), (protease). Bacillus), aminopeptidase M (from Hog kidsney), aminopeptidase T (from Thermus), lactic acid bacteria (from Lactobacillus) G15, G30, the reagents according to 1) to 3).
[0015]
5) The glycated peptide at the N-terminus of the α-chain is glycated valylleucine, the glycated peptide at the N-terminus of the β-chain is glycated valylhistidine, and the protease is derived from Aspergillus, Bacillus, Tritirachium. The reagent according to 1) or 2), characterized in that:
[0016]
6) protease Protease P "Amano" (from Aspergillus), protease K "Amano" (alkaline proteinase from Aspergillus), proteinase K (ProteinaseK from Tritirachium), Pekuchina - Ze XP-534 (from Bacillus), Sumizyme MP (from Aspergillus ), Protease type XXIII (from Aspergillus), the reagent according to 1), 2) and 5).
[0017]
7) A hemoglobin A1c characterized by using a protease having an action of producing a glycated amino acid or a glycated peptide at the β-chain N-terminus larger than an action of producing a glycated amino acid or a glycated peptide at the α-chain N-terminus from glycated hemoglobin or a fragment thereof. Measuring method.
[0018]
8) The method according to 7), wherein a protease that does not substantially produce a glycated amino acid or glycated peptide at the N-terminal of the α-chain from glycated hemoglobin or a fragment thereof is used.
[0019]
In addition, the present invention relates to a protease, a measuring method, and a reagent that are particularly useful for accurately, simply, quickly, and inexpensively quantifying hemoglobin A1c in a blood sample using an enzyme.
[0020]
Hereinafter, the configuration and preferred embodiments of the present invention will be described in more detail.
[0021]
<Amadori compound>
The Amadori compound in the present invention is a compound represented by the following general formula (1)-(CO) -CHR-NH- () generated by a Maillard reaction between a compound having an amino group such as a protein and a compound having an aldehyde group such as glucose. R represents a hydrogen atom or a hydroxyl group) and represents a compound having a ketoamine structure. Amadori compounds include glycated proteins such as glycated hemoglobin and glycated albumin, and glycated peptides obtained by glycating peptides.
[0022]
<Saccharified hemoglobin>
It refers to an Amadori compound in which hemoglobin is saccharified by the Maillard reaction, and it is said that valine at the N-terminal of the α-chain and β-chain and the ε-position of lysine in the molecule are saccharified. The fragment of glycated hemoglobin refers to a part thereof, and in the present invention, refers to a peptide containing a glycation site at the N-terminal of the β chain.
[0023]
<Hemoglobin A1c>
The glycated hemoglobin refers to a molecule in which valine at the N-terminal of the hemoglobin β chain is saccharified, and is a stable Amadori compound. Hemoglobin A1c does not include unstable hemoglobin, which is a Schiff base before Amadori transfer.
A protease that can be used in the present invention and has a greater action to produce a glycated amino acid or peptide at the N-terminus of the β chain than to produce a glycated amino acid or peptide at the N-terminus of the α-chain from glycated hemoglobin or a fragment thereof is glycated hemoglobin. Alternatively, the protease acts on the β-chain N-terminal glycation site of the fragment thereof and can cleave the N-terminal glycated amino acid or a peptide containing the glycated amino acid, and the action on the glycated hemoglobin β chain or the fragment thereof is glycation. Any protease may be used as long as it has a greater effect on hemoglobin α chain.
[0024]
In the present invention, it can be measured by the following method whether or not the action of generating a glycated amino acid or peptide at the α-chain N-terminal from glycated hemoglobin or a fragment thereof is greater.
When the product is a glycated amino acid, using the synthetic substrates 1 deoxyfructosyl valyl histidine and 1 deoxy fructosyl valyl leucine described below as substrates, the resulting 1 deoxyfructosyl valine is detected using an enzyme that recognizes a ketoamine structure. Can be measured.
[0025]
On the other hand, when the product is a glycated peptide, using the synthetic substrates 1 deoxyfructosyl valyl histidyl paranitroanilide and 1 deoxyfructosyl valyl leucyl paranitroanilide described below as substrates, the yellow color of the generated paranitroaniline is around 405 nm. It can be measured by detecting absorption.
A glycated amino acid or a peptide containing a glycated amino acid is preferably a glycated amino acid or a glycated peptide having a length that can be finally detected by an enzyme that recognizes a ketoamine structure, and a process for producing a glycated amino acid or a peptide containing a glycated amino acid. Use the protease of the present invention.
[0026]
Examples of preferred proteases are specifically shown below, but this is only one example. Porcine liver-derived leucine aminopeptidase (Leucine aminopeptidase from porcine liver) Leukine aminopeptidase derived from pig liver is known to be derived from cytosol and microsome, but any of them may be used. Proteinase K (Proteinase K) from Tritirachium album, protease type XXIII (from Aspergillus) or more, manufactured by Sigma, Pfu N-acetyl Deblocking Aminopeptidase (from Pyrococcus furiosus xaic-a-a-k-a-a-a-a-a-k-a-a-a-a-a-a-a-a-a-a-e-a-a). lase) manufactured by Nagase ChemteX Co., Ltd., protease P “Amano” (from Aspergillus melleus), protease K “Amano” (alkaline protein from aspergillus), protease S “Amano” (from Bacillus Enzyme Co., Ltd.) Protease (neutral protease derived from the genus Bacillus, manufactured by Godo Shusei Co., Ltd.), aminopeptidase M (manufactured by from Hog kidsney PIERCE), lactic acid bacteria (from Lactobacillus) G15 (acidophilus, IFO3953), G30 (casei, IFO12521T amino) from Thermus aquaticus YT-1; ATCC2 104 manufactured by Wako Pure Chemical Industries, Ltd.), sumizyme MP (made from Aspergillus melleus New Japan Chemical Co., Ltd.), and the like.
[0027]
Although we have found activity that can be used in the present invention in these enzyme solutions, it is possible that the protease may be contaminated as contaminants. Any protease that exists in the same solution as the enzyme and has the activity usable in the present invention can be used.
The action on glycated hemoglobin α-chain or its fragment, or the action on glycated hemoglobin β-chain or its fragment, actually cuts the glycated hemoglobin α-chain, β-chain or its fragment with these proteases, A glycated amino acid or a peptide containing a glycated amino acid generated from each substrate may be confirmed by a known method such as electrophoresis or MASS.
[0028]
For the purpose of simply confirming this effect, we used 1 deoxyfructosyl valyl histidine (hereinafter abbreviated as FVH) and 1 deoxyfructosyl valyl histidyl paranitroanilide (hereinafter HVHpNA) as a model for glycated hemoglobin β chain. 1) as a model of glycated hemoglobin α chain, and 1 deoxyfructosyl valylleucine (hereinafter abbreviated as FVL) and 1 deoxyfructosyl valylleucyl paranitroanilide (hereinafter abbreviated as HVLpNA). It was synthesized and purified using the method described above (Hashiba H, J. Agric. Food Chem. 24:70, 1976). Confirmation of protease activity using FVH and FVL may be performed by measuring the generated FV with a known ketoamine oxidase, and in the case of a substrate containing pNA, release of pNA may be measured by absorption near 405 nm.
[0029]
The protease of the present invention is a protease having a greater action of generating a glycated amino acid or peptide at the N-terminal of the β-chain than a function of generating a glycated amino acid or peptide at the N-terminal of the α-chain from glycated hemoglobin or a fragment thereof. By confirming the effect on glycated hemoglobin α chain or a fragment thereof and the effect on glycated hemoglobin β chain or a fragment thereof, the result is that the effect on glycated hemoglobin β chain or a fragment thereof is greater than the effect on glycated hemoglobin α chain. It is preferable that the action on the glycated hemoglobin β chain or a fragment thereof is twice or more, more preferably 5 times or more, more preferably 5 times or more the action on the glycated hemoglobin α chain or a fragment thereof. Is more than 10 times And most preferably a protease that does not substantially act on glycated hemoglobin α-chain or a fragment thereof.
[0030]
In addition, the protease which does not substantially act on glycated hemoglobin α chain or a fragment thereof means that the effect on β chain is usually 20 times or more, preferably 50 times or more with respect to α chain.
[0031]
The activity of the protease in the present invention was measured by the casein-forin method. The unit of activity, 1 U, was defined as 1 U, which is the amount of the enzyme that shows color of the Folin reagent corresponding to 1 μg of tyrosine per minute at 37 ° C.
[0032]
As a method for measuring glycated hemoglobin using a protease having an action of generating a glycated amino acid or glycated peptide at the N-terminus of the β-chain greater than an action of generating a glycated amino acid or glycated peptide at the α-chain N-terminus from the glycated hemoglobin or a fragment thereof of the present invention. Is used to selectively cut out glycated amino acids and / or glycated peptides at the N-terminus of the hemoglobin β chain using the above-mentioned protease, and after deproteinization, use the reducing ability of the glycated amino acids and glycated peptides to develop a dye or the like to quantify. The amount may be determined using a means such as chromatography, an antigen-antibody reaction, or an enzymatic reaction, preferably without deproteinization, and most preferably using an enzyme that recognizes a ketoamine structure.
[0033]
As the enzyme which can be used in the present invention and which recognizes a ketoamine structure, any enzyme can be used as long as it works well on the glycated amino acid or the peptide containing the glycated amino acid at the N-terminal of the cut-out hemoglobin β chain by the action of the protease. Although the glycated amino acid at the N-terminal of the hemoglobin β chain is an amino acid in which the α-amino group is saccharified, the α-amino group specifically acts on the saccharified amino acid, and the ε-amino acid present in the molecule is present. Most preferred are enzymes that do not substantially act on glycated amino acids.
[0034]
Examples of the type of enzyme include oxidase, dehydrogenase, and kinase, and oxidase, which has been best studied and can be obtained at low cost, is preferable. In general, oxidase in which an α-amino group specifically acts on a saccharified amino acid and an ε-amino group does not substantially act on a saccharified amino acid has poor stability. The measurement may be performed using an oxidase that functions well on both glycated amino acids whose glycated groups are used, and the ε-amino group is saccharified using an oxidase that has a highly stable ε-amino group specifically acting on glycated amino acids. It is also possible to eliminate only the amino acid which has been saccharified and measure only the amino acid whose α-amino group has been saccharified using an oxidase which acts on both saccharified amino acids having a highly stable saccharified α-amino group and ε-amino group.
[0035]
Examples of oxidases that recognize the most preferred ketoamine structure in terms of specificity include enzymes specific to α-amino glycated amino acids that do not act on glycated amino acids, such as fructosyl amino acid oxidase (FAOD): Derived from Corynebacterium sp. (FERM P-8245) is mentioned, but the enzyme has a residual activity of 10% or less when treated at 45 ° C. for 10 minutes, and is not preferable for practical use. On the other hand, as an oxidase which is an enzyme which acts well on both saccharified amino acids in which the α-amino group and the ε-amino group are saccharified and has high stability, Gibberella or Aspergillus (for example, IFO-6365, -4242,-). 5710 etc.) derived fructosamine oxidase, Candida derived fructosylamine deglycase, Penicillium (Penicillium) genus (for example, IFO-4651, -6581, -7905, -5748, -7994, -4897, -5337 etc.) Fructosyl amino acid degrading enzyme derived from the genus Fusarium (eg, IFO-4468, -4471, -6384, -7706, -9964, -9971, -31180, -9972, etc.) And an enzyme recognizing a ketoamine structure such as a ketoamine oxidase derived from the genus Acremonium or from the genus Debaryomyces, and more preferably, a genetically modified keto having sufficient activity even in the presence of a protease. Amine oxidase (manufactured by Asahi Kasei Corporation) is included.
[0036]
The activity of the enzyme acting on glycated amino acids was 1 deoxyfructosyl Z lysine (hereinafter abbreviated as FZL) or 1 deoxyfructosyl valine (hereinafter abbreviated as FV. Both FZL and FV were synthesized and purified according to the method of Hashiba et al. ), The amount of the enzyme that produces 1 μmol of hydrogen peroxide per minute at 37 ° C. was defined as 1 U.
[0037]
In the method for quantifying a glycated protein according to the present invention, when an enzyme that recognizes a ketoamine structure is used, its action is detected by, for example, using a dehydrogenase to determine the amount of change in a coenzyme, such as NAD as a coenzyme. The amount of change produced using the reduced NAD, which is a reduced coenzyme, is directly quantified using a known technique such as measuring with a colorimeter at a wavelength around 340 nm, which is the maximum absorption wavelength range, or Alternatively, the resulting reduced coenzyme can be converted into various diaphorases or electron carriers such as phenazine methosulfate and various tetrazolium salts represented by nitrotetrazolium, WST-1 and WST-8 (all manufactured by Dojindo Chemical Laboratories). The determination may be performed indirectly using a coloring reagent, or the measurement may be performed directly or indirectly by other known methods.
[0038]
For example, when oxidase is used, it is preferable to measure the amount of consumed oxygen or the amount of reaction products. When, for example, ketoamine oxidase is used as a reaction product, hydrogen peroxide and glucosone are generated by the reaction, and both hydrogen peroxide and glucosone can be measured directly and indirectly by a known method.
[0039]
The amount of the hydrogen peroxide is, for example, a dye or the like is generated using peroxidase or the like, and color development, luminescence, may be quantified by fluorescence, or may be quantified by an electrochemical method, using catalase or the like. Alternatively, an aldehyde may be generated from the alcohol, and the amount of the generated aldehyde may be determined.
[0040]
The coloring system of hydrogen peroxide generates a dye by oxidative condensation of a coupler such as 4-AA or 3-methyl-2-benzothiazolinone hydrazone (MBTH) with a chromogen such as phenol in the presence of peroxidase. Leuco-type reagent (N- (carboxymethylaminocarbonyl) -4,4-bis (dimethylamino) biphenylamine (DA64), 10- (carboxymethylamino) Carbonyl) -3,7-bis (dimethylamino) phenothiazine (DA67); such as those manufactured by Wako Pure Chemical Industries, Ltd.).
[0041]
When measuring hydrogen peroxide using an electrode, the electrode is not particularly limited as long as it is a material that can exchange electrons with hydrogen peroxide, and examples thereof include platinum, gold, and silver. As the electrode measurement method, known methods such as amperometry, potentiometry, and coulometry can be used, and furthermore, an oxidase or reduction current obtained by interposing an electron carrier in the reaction between the oxidase or the substrate and the electrode can be used. Alternatively, the quantity of electricity may be measured.
[0042]
Any substance having an electron transfer function can be used as the electron carrier, and examples thereof include substances such as ferrocene derivatives and quinone derivatives. Alternatively, oxidation, reduction current or the amount of electricity obtained by interposing an electron carrier between hydrogen peroxide generated by the oxidase reaction and the electrode may be measured.
[0043]
Further, in the measurement method and reagent using the protease of the present invention, the protease of the present invention may be used alone, or in addition to the reaction of another endoprotease or another exoprotease before or after the reaction or simultaneously. May be.
[0044]
Regarding the liquid composition of the reagent for measuring hemoglobin A1c using the protease of the present invention, the pH and the concentration of the protease may be determined so that the reaction proceeds efficiently in consideration of the optimum pH of the protease to be used.
For example, when the pectinase XP-534 (derived from Bacillus genus) or higher is used by Nagase ChemteX, the proteolytic activity is strong at around pH 6.5 to 9.0, so the reaction pH is 6.5 to 9.0. 9.0 can be selected. The protease concentration may be a concentration that can sufficiently decompose the protein in the test solution during the reaction time actually used, and is preferably 0.1 to 500 KU / ml, more preferably 0.5 to 250 KU / ml. preferable.
[0045]
The reagent composition for measuring glycated peptides or proteins fragmented using an enzyme recognizing a ketoamine structure should be considered in consideration of the optimum pH of the enzyme used for recognizing the ketoamine structure to allow the reaction to proceed efficiently. Then, the pH may be selected and then the amount of the enzyme acting on the glycated amino acid may be determined.
[0046]
For example, in the case of recombinant fructosamine oxidase (manufactured by Asahi Kasei Corporation), the region showing 50% or more of the maximum activity is as wide as pH 6.5 to 10, and the reaction pH can be selected from 6.5 to 10. The concentration of the enzyme to be added may be a concentration capable of sufficiently measuring glycated amino acids generated from the test solution during the reaction time actually used, and is preferably 0.01 U to 1000 U / ml, more preferably 0.1 U to 1000 U / ml. 500 U / ml is more preferred, and 0.5 U to 200 U / ml is most preferred.
[0047]
As the hemoglobin A1c quantification reagent in the present invention, a protease having an action of producing a glycated amino acid or glycated peptide at the N-terminus of the β-chain is greater than an action of producing a glycated amino acid or glycated peptide at the N-terminus of the α-chain from glycated hemoglobin or a fragment thereof. And preferably prepared as containing the protease and an enzyme recognizing the ketoamine structure, and can be provided, for example, as a liquid product or a frozen or freeze-dried liquid product.
[0048]
Further, for example, a surfactant, a salt, a buffer, a pH adjuster, a preservative, and the like may be appropriately selected and added to the enzyme reaction composition for quantifying a glycated protein according to the present invention.
[0049]
In order to measure hemoglobin A1c in a test solution using the thus-prepared reagent for measuring hemoglobin A1c of the present invention, 0.001-0.5 ml of test solution is added to 0.01-5.0 ml of measurement reagent. When a rate assay is performed by reacting at a temperature of 37 ° C., several minutes to several tens of minutes between two points after a certain time after the start of the reaction, for example, 1 minute after 3 minutes and 4 minutes The amount of altered coenzyme, dissolved oxygen, hydrogen peroxide or other products for 5 minutes, or 8 minutes after every 3 minutes, may be measured directly or indirectly by the method described above. For example, the amount of the changed coenzyme, dissolved oxygen, hydrogen peroxide or other products after a certain time from the start of the reaction may be measured in the same manner. In this case, the amount of glycated hemoglobin in the test liquid can be determined by comparing the change in absorbance or the like when measured using glycated hemoglobin of a known concentration.
[0050]
The test solution described here is a test solution containing glycated hemoglobin, and more preferably includes whole blood, hemolyzed whole blood, centrifuged red blood cells, washed red blood cells, and the like. A protease-treated solution obtained by fragmenting the separated erythrocytes or glycated hemoglobin with a protease in advance can also be used as a preferable test solution.
[0051]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, examples of the present invention will be described in detail, but the present invention is not limited thereto.
[0052]
【Example】
The present invention will be described based on examples.
[Example 1]
<Screening of protease for measuring hemoglobin A1c>
The protease for measuring hemoglobin A1c refers to a protease that has a greater effect of generating a glycated amino acid or a glycated peptide at the N-terminal of the β-chain than a function of generating a glycated amino acid or glycated peptide at the N-terminal of the α-chain from glycated hemoglobin or a fragment thereof. .
[0053]
The action of the protease for measuring hemoglobin A1c, which generates N-terminal FV from glycated hemoglobin, on the α-chain and the β-chain of hemoglobin was determined by generating glycated valine using the following substrate solution 1) and detecting it with ketoamine oxidase. . The effect of the protease for measuring hemoglobin A1c, which produces an N-terminal glycated dipeptide from glycated hemoglobin, on the hemoglobin α-chain and β-chain was measured by increasing 405 nm by releasing pNA using the following substrate solution 2).
[0054]
Substrate solution 1)
5 mM FVH or FVL
Coloring solution 1)
Figure 2004344052
90 μl of the above substrate solution 1) and 90 μl of a buffer solution (50 mM Tris-HCl pH 7.5) were placed in a 96-well plate, and 20 μl of a solution containing a protease (a higher concentration is preferable) was added. After reacting at room temperature for 2 hours, 100 µl of a coloring solution 1) was added, and the mixture was allowed to stand at room temperature, and the blue color (550 nm) was measured with a plate reader.
[0055]
Substrate solution 2)
1 mM FVHpNA or FVLpNA
90 μl of the above substrate solution 2) and 90 μl of a buffer solution (50 mM Tris-HCl pH 7.5) were placed in a 96-well plate, and 20 μl of a protease-containing solution (preferably at a higher concentration) was added. The reaction was performed at room temperature for 2 hours. The yellow color development (405 nm) was measured on a plate reader. Table 1 shows the results.
[0056]
The following proteases were used. α-chymotrypsin (from Bovine Pancreas), carboxypeptidase A (from Bovine Pancreas), pronase (Streptomyces griseus) or more, manufactured by Wako Pure Chemical Industries, Inc., carboxypeptidase W (Carboxypeptidase W, carboxypeptidase W) Derived leucine aminopeptidase (leucine aminopeptidase, from porcine kidney cytosol, derived from microsome), Bacillus licheniformis (from Bacillus globigii), protease, proteinase K (Proteinamic Kylase) Ip I (from Bovine Pancreas), Protease type XXIV (Subtilisin Carlsberg), Protease type XVIII (from Rhizopus sp.), Protease type XIX (from Aspergillus sojae), Protease type XAzispragsXa (Xa) oryzae, manufactured by Sigma, deoxin 1 (from Penicillium amagasakinase), pectinase XP-534 (derived from the genus from Bacillus), manufactured by Nagase ChemteX Corporation, protease P "Amano" (from Aspergillus promulus) Ase K Amano (alkaline protein from Aspergillus), Protease S "Amano" (from Bacillus) or higher, manufactured by Amano Enzyme Co., Ltd., GODO High Purity Protease (Bacillus genus neutral protease, manufactured by Godo Shusei Co., Ltd.), Sumiteam MP (from Aspergillus melleus) Sumitim P (papain) or more manufactured by Shin Nippon Chemical Co., Ltd.), Pfu N-acetyl Deblocking Aminopeptidase (from Pyrococcus furiosus; manufactured by Takara), Aminopeptidase Mp (Takamura) (From Hog kidsney PIERCE), lactic acid bacteria (from Lac tobacillus) G15 (acidophilus, IFO3953), G30 (casei, IFO12521),
[0057]
[Table 1]
Figure 2004344052
[0058]
As shown in Table 1, β-chain could not be specifically recognized by papain, chymotrypsin, pronase, subtilisin, etc., which had been known to have an effect on glycated hemoglobin. On the other hand, leucine aminopeptidase (from porcine kidney) is a protease having a greater action to produce a glycated amino acid or a glycated peptide at the β-chain N-terminus than to produce glycated valine at the α-chain N-terminus from glycated hemoglobin or a fragment thereof. ), Pfu N-acetyl Deblocking Aminopeptidase (from Pyrococcus furiosus), deoxin 1 (from Penicillium amagaskinase), GODO high-purity protease (from Bacillus bacillus bacillomase, protease B) Ami Nopeptidase T (from Thermus), lactic acid bacteria (from Lactobacillus) G15 (acidophilus), and G30 (casei) were confirmed to have activity.
[0059]
Proteases having a greater effect of producing a glycated amino acid or a glycated peptide at the β-chain N-terminus than the activity of producing a glycated dipeptide at the α-chain N-terminus from glycated hemoglobin include protease type XXIII (from Aspergillus oryzae) and protease P “Amano”. (From Aspergillus melleus), protease K “Amano” (alkaline proteinase from Aspergillus), proteinase K (Proteinase K from Tritiramus album, pectinase XPm-b-pharmacrum, and Pectinase XP-Bm-pharmacrum). Was done.
[0060]
[Example 2]
<Reaction curve for synthetic substrate>
1: When FVH or FVL is used as the substrate solution
<Substrate solution>
FVH or FVL was dissolved in the coloring solution 1 of Example 1 so as to be 1 mM. Separately, a substrate minus coloring solution was also prepared as a blank.
<Protease> Pfu N-acetyl Deblocking Aminopeptidase (from Pyrococcus furiosus), GODO high-purity protease (neutral protease from Bacillus genus, manufactured by Godo Shusei Co., Ltd.)
<Operation>
940 μl of the above reaction solution is placed in a cuvette and preliminarily heated at 37 ° C. for 3 minutes. 60 μl of a solution containing an appropriately diluted protease was added, stirred, the reaction was started at 37 ° C., and the absorbance at 550 nm was measured. The results are shown in FIG.
[0061]
As can be seen from FIG. 1, neither Pfu N-acetyl Deblocking Aminopeptides (from Pyrococcus furiosus) nor GODO high-purity protease (from Bacillus) act on FVL, which is the N-terminal glycosylated peptide of hemoglobin α-chain, and FVL molybin. Is apparently a protease that acts on FVH, which is an N-terminal glycated peptide, to cleave FV, and since the amount of production increases with time, it was clearly a protease reaction. From this, Pfu N-acetyl Deblocking Aminopeptidase (from Pyrococcus furiosus) and GODO high-purity protease (from Bacillus) are proteases that have a large action to generate glycated amino acids at the β-chain N-terminus from glycated hemoglobin and α-glycated glycated hemoglobin. It was evident that the protease was substantially free of terminal glycated amino acids or glycated peptides.
[0062]
<Reaction curve 2 for synthetic substrate; using FVHpNA or FVLpNA as substrate solution>
<Substrate solution> Same as substrate solution 2 of Example 1.
<Protease> Pectinase XP-534 (manufactured by Nagase ChemteX Corporation), Protease P Amano (manufactured by Amano Enzyme Co., Ltd.)
<Operation>
To 225 μl of the substrate solution, 675 μl of 50 mM, Tris buffer pH 7.5 was added and incubated at 37 ° C. 100 μl of an appropriately diluted protease-containing solution was added, stirred, the reaction was started at 37 ° C., and the absorbance at 405 nm was measured. FIG. 2 shows the results.
[0063]
As can be seen from FIG. 2, it is clear that pectinase XP-534 is a protease that does not act on FVLpNA, which is the N-terminal glycated peptide of hemoglobin α chain, but acts on FVHpNA, which is the N-terminal glycated peptide of hemoglobin β chain. Was. It is also clear that protease P Amano has a greater effect on FVHpNA, which is an N-terminal glycated peptide of hemoglobin β chain, than FVLpNA, which is an N-terminal glycated peptide of hemoglobin α chain. Was.
[0064]
In addition, both pectinase XP-534 and protease P-Amano clearly showed that the reaction was a protease reaction since the decomposition of the substrate progressed with time.
From this fact, pectinase XP-534 is a protease having a large effect of generating a β-chain N-terminal glycated peptide from glycated hemoglobin, and a protease which does not substantially generate an α-chain N-terminal glycated peptide from glycated hemoglobin. It was obvious. In addition, it was clear that protease P Amano was a protease having a greater effect of generating a glycated peptide at the N-terminal of the β chain than that of glycated hemoglobin or a fragment thereof.
[0065]
[Example 3]
<Reagent for measuring hemoglobin A1c>
A hemoglobin A1c measurement reagent was prepared with the following composition.
Figure 2004344052
[0066]
[Example 4]
<Measurement of glycated hemoglobin using the protease of the present invention>
<Reagent for measuring hemoglobin A1c> Reagent described in Example 3
<Sample> A commercially available hemoglobin measurement calibrator (manufactured by Kyowa Medex Co., Ltd.) was used to determine a low value (displayed hemoglobin A1c value; 5%) and a high value (displayed hemoglobin A1c value; 10%) at 5: 0, 4: 1, 3: 2, and 2; : 3, 1: 4, 0: 5.
[0067]
Five samples of healthy and diabetic patients whole blood (EDTA blood collection; blood collection tube manufactured by Benedict) were used. The HbA1c value of the whole blood sample was measured with an HbA1c measuring device (Arkray).
<Hemolysis method of whole blood sample and measurement of hemoglobin concentration in hemolyzed sample>
Whole blood was centrifuged at 3000 rpm to obtain blood cell components. 20 μl of a blood cell component was added to 280 μl of a hemolysis reagent (0.9% Briji35; 50 mM Tris buffer pH 7.5 containing Wako Pure Chemical Industries, Ltd.) to cause hemolysis. A commercially available mixture of low and high calibrators for measuring hemoglobin was used as it was.
<Reaction procedure>
Take 0.7 ml of the R1 reagent into a cell and heat to 37 ° C. A sample (80 μl) was mixed, reacted at 37 ° C. for 4.5 minutes, measured for absorbance at 571 nm for the purpose of measuring hemoglobin concentration, and then measured at 751 nm (A0). Exactly 5 minutes after the addition of the sample, 220 μl of the R2 reagent was dispensed into the cell, incubated at 37 ° C. for 5 minutes, and measured at 751 nm (A1). The blank was measured by measuring the absorbance change of the blank (blank ΔA = A1 blank−A0 blank) using distilled water as a sample. The HbA1c concentration was calculated from the calibration curve of the calibrator. Further, the hemoglobin A1c concentration was calculated by dividing the hemoglobin A1c concentration by the hemoglobin concentration. The measurement results of the calibrator are shown in FIG. 3, and the measurement results of healthy subjects and patient whole blood are shown in Table 2.
[0068]
[Table 2]
Figure 2004344052
[0069]
As can be seen from FIG. 3, a good linear calibration curve could be prepared from the dilution series of the hemoglobin A1c calibrator, and it was possible to accurately measure hemoglobin A1c with this measurement system.
Further, as can be seen from Table 2, the values of the measurement method using hemoglobin A1c of the present invention and the HPLC method were in good agreement, and it was clear that hemoglobin A1c was accurately measured.
【The invention's effect】
A reagent and a method for measuring hemoglobin A1c containing a protease for selectively measuring a glycated amino acid and / or a glycated peptide at the N-terminal of the glycated hemoglobin β-chain can be provided in large quantities at low cost.
[Brief description of the drawings]
FIG. 1 is a reaction curve in the case of using a protease having a large action of generating a glycated amino acid at the N-terminal of a β-chain from glycated hemoglobin or a fragment thereof based on Example 2 of the present invention.
FIG. 2 is a reaction curve in the case of using a protease having a large action of generating a glycated peptide at the N-terminal of a β-chain from glycated hemoglobin or a fragment thereof based on Example 2 of the present invention.
FIG. 3 shows a calibration curve and measurement results of hemoglobin A1c based on Example 4 of the present invention.

Claims (8)

糖化ヘモグロビン若しくはそのフラグメントからα鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用よりもβ鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用が大きいプロテアーゼを含有するヘモグロビンA1c測定用試薬。A reagent for measuring hemoglobin A1c, comprising a protease having an action of producing a glycated amino acid or glycated peptide at the N-terminal of the β-chain larger than an action of producing a glycated amino acid or glycated peptide at the N-terminus of the α-chain from glycated hemoglobin or a fragment thereof. 糖化ヘモグロビン若しくはそのフラグメントからα鎖N末端の糖化アミノ酸又は糖化ペプチドを実質的に生じないプロテアーゼを含有することを特徴とする請求項1記載の試薬。2. The reagent according to claim 1, comprising a protease that does not substantially produce a glycated amino acid or a glycated peptide at the N-terminal of the α-chain from glycated hemoglobin or a fragment thereof. 糖化アミノ酸が糖化バリンであり、プロテアーゼが豚腎臓(porcine kidney)、パイロコッカス(Pyrococcus)、ペニシリウム(Penicillium)、バチルス(Bacillus)、サーマス(Thermus)、乳酸菌(Lactobacillus)由来であることを特徴とする請求項項1及び2に記載の試薬。The glycated amino acid is glycated valine, and the protease is derived from porcine kidney, Pyrococcus, Penicillium, Bacillus, Thermus, Lactobacillus. The reagent according to claim 1. プロテアーゼがロイシンアミノペプチダーゼ(Leucine aminopeputidase, from porcine kidney)、Pfu N−acetyl Deblocking Aminopeputidase(from Pyrococcus)、デオキシン1(from Penicillium)、GODO高純度プロテアーゼ(from Bacillus)、プロテアーゼS“アマノ”(from Bacillus)、アミノペプチダーゼM(from Hog kidney)、アミノペプチダーゼT(from Thermus)、乳酸菌(from Lactobacillus)G15、G30、であることを特徴とする請求項1〜3に記載の試薬。Proteases are Leucine aminopeptidase (from porcine kidney), Pfu N-acetyl Deblocking Aminopeptidase (from Pyrococcus), Deoxin B (PyrogenBlom) The reagent according to any one of claims 1 to 3, wherein the reagent is aminopeptidase M (from Hog kidney), aminopeptidase T (from Thermus), or lactic acid bacterium (from Lactobacillus) G15 or G30. α鎖N末端の糖化ペプチドが糖化バリルロイシンであり、β鎖N末端の糖化ペプチドが糖化バリルヒスチジンであり、プロテアーゼがアスペルギルス(Aspergillus)、バチルス(Bacillus)、トリチラチウム(Tritirachium)由来であることを特徴とする請求項1及び2に記載の試薬。The glycated peptide at the N-terminal of the α-chain is glycated valylleucine, the glycated peptide at the N-terminal of the β-chain is glycated valylhistidine, and the protease is derived from Aspergillus, Bacillus, and Tritirachium. The reagent according to claim 1 or 2, wherein プロテアーゼがプロテアーゼP“アマノ”(from Aspergillus)、プロテアーゼK“アマノ”(alkaline proteinase from Aspergillus)、プロテイナーゼK(ProteinaseK from Tritirachium)、ペクチナ−ゼXP−534(from Bacillus)、スミチームMP(from Aspergillus)、プロテアーゼタイプXXIII(from Aspergillus)であることを特徴とする請求項1、2及び5に記載の試薬。Protease Protease P "Amano" (from Aspergillus), protease K "Amano" (alkaline proteinase from Aspergillus), proteinase K (ProteinaseK from Tritirachium), Pekuchina - Ze XP-534 (from Bacillus), Sumizyme MP (from Aspergillus), The reagent according to claim 1, 2 or 5, which is of protease type XXIII (from Aspergillus). 糖化ヘモグロビン若しくはそのフラグメントからα鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用よりも、β鎖N末端の糖化アミノ酸又は糖化ペプチドを生じる作用が大きいプロテアーゼを用いることを特徴とするヘモグロビンA1cの測定方法。A method for measuring hemoglobin A1c, which comprises using a protease having an action of producing a glycated amino acid or a glycated peptide at the β-chain N-terminus more than an action of producing a glycated amino acid or a glycated peptide at the α-chain N-terminus from glycated hemoglobin or a fragment thereof. . 糖化ヘモグロビン若しくはそのフラグメントからα鎖N末端の糖化アミノ酸又は糖化ペプチドを実質的に生じなプロテアーゼを用いることを特徴とする請求項7記載の方法。The method according to claim 7, wherein a protease is used which does not substantially produce a glycated amino acid or glycated peptide at the N-terminal of the α-chain from glycated hemoglobin or a fragment thereof.
JP2003143965A 2003-05-21 2003-05-21 Protease for hemoglobin a1c assay Pending JP2004344052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143965A JP2004344052A (en) 2003-05-21 2003-05-21 Protease for hemoglobin a1c assay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143965A JP2004344052A (en) 2003-05-21 2003-05-21 Protease for hemoglobin a1c assay

Publications (1)

Publication Number Publication Date
JP2004344052A true JP2004344052A (en) 2004-12-09

Family

ID=33531583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143965A Pending JP2004344052A (en) 2003-05-21 2003-05-21 Protease for hemoglobin a1c assay

Country Status (1)

Country Link
JP (1) JP2004344052A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304742A (en) * 2005-05-02 2006-11-09 Oji Paper Co Ltd Device and method for analyzing glycoprotein
WO2006118306A1 (en) 2005-05-02 2006-11-09 Oji Paper Co., Ltd. Analysis apparatus and analysis method for glycosylated hemoglobin
WO2006120976A1 (en) 2005-05-06 2006-11-16 Arkray, Inc. Protein cleavage method and use thereof
WO2008018596A1 (en) 2006-08-11 2008-02-14 Arkray, Inc. Postprandial hyperglycemia marker, method for determination thereof, and use thereof
WO2008093722A1 (en) 2007-01-30 2008-08-07 Arkray, Inc. Method for detection of phenothiazine derivative dye, and color-developer reagent for use in the method
WO2008093723A1 (en) 2007-01-30 2008-08-07 Arkray, Inc. Measurement method for hba1c
US8758648B2 (en) 2008-03-19 2014-06-24 Arkray, Inc. Stabilizer of color former and use thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304742A (en) * 2005-05-02 2006-11-09 Oji Paper Co Ltd Device and method for analyzing glycoprotein
WO2006118306A1 (en) 2005-05-02 2006-11-09 Oji Paper Co., Ltd. Analysis apparatus and analysis method for glycosylated hemoglobin
US8128802B2 (en) 2005-05-02 2012-03-06 Oji Paper Co., Ltd Analysis apparatus and analysis method for glycosylated hemoglobin
WO2006120976A1 (en) 2005-05-06 2006-11-16 Arkray, Inc. Protein cleavage method and use thereof
US7820404B2 (en) 2005-05-06 2010-10-26 Arkray, Inc. Protein cleavage method and use thereof
EP2224245A1 (en) 2006-08-11 2010-09-01 Arkray, Inc. Postprandial hyperglycemia marker, method of measuring the same, and usage thereof
EP2224246A1 (en) 2006-08-11 2010-09-01 Arkray, Inc. Postprandial hyperglycemia marker, method of measuring the same, and usage thereof
EP2325652A2 (en) 2006-08-11 2011-05-25 Arkray, Inc. Postprandial hyperglycemia marker, method of measuring the same, and usage thereof
WO2008018596A1 (en) 2006-08-11 2008-02-14 Arkray, Inc. Postprandial hyperglycemia marker, method for determination thereof, and use thereof
WO2008093723A1 (en) 2007-01-30 2008-08-07 Arkray, Inc. Measurement method for hba1c
WO2008093722A1 (en) 2007-01-30 2008-08-07 Arkray, Inc. Method for detection of phenothiazine derivative dye, and color-developer reagent for use in the method
US8008085B2 (en) 2007-01-30 2011-08-30 Arkray, Inc. Method of measuring HbA1c
US8273577B2 (en) 2007-01-30 2012-09-25 Arkray, Inc. Method for detecting phenothiazine-derivative color and color-developer reagent used therein
EP3001190A1 (en) 2007-01-30 2016-03-30 ARKRAY, Inc. Method for detecting phenothiazine-derivative color and color-developer reagent used therein
US8758648B2 (en) 2008-03-19 2014-06-24 Arkray, Inc. Stabilizer of color former and use thereof

Similar Documents

Publication Publication Date Title
JP5517976B2 (en) Method for measuring glycated protein
US7070948B1 (en) Method for assaying glycated protein
US20100291623A1 (en) Process for producing alpha-glycosylated dipeptide and method of assaying alpha-glycosylated dipeptide
EP1726660A1 (en) Method of measuring glycoprotein
US20110312009A1 (en) Composition for assaying glycated proteins
WO2007094354A1 (en) HEMOGLOBIN A1c SENSOR
JP4260541B2 (en) Test piece for measuring glycated protein
WO2007072941A1 (en) Method for determination of glycosylated protein
JP2004275013A (en) New enzyme
JP4889396B2 (en) Method for stabilizing leuco dyes
US7354732B2 (en) Method of assay with sulfonic acid compound and nitro compound
EP1914315B1 (en) Method for determination of glycosylated protein and determination kit
JP2004344052A (en) Protease for hemoglobin a1c assay
JP3734212B2 (en) Method for selective fragmentation of proteins
JP4925384B2 (en) Method for quantifying N-terminal glycated protein
JPWO2005056823A1 (en) Method for measuring saccharified amines
JP4260542B2 (en) Method for measuring ketoamine in polymer
JP4565807B2 (en) Protease for measuring glycated protein
JP2004049063A (en) Determination method using protease-containing reagent and determination reagent
JP2004113014A (en) Method for scavenging saccharified amino acid
JP2006149230A (en) Method for determining ratio of glycated protein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602