JP2000333696A - Measurement of glycosylated amine - Google Patents

Measurement of glycosylated amine

Info

Publication number
JP2000333696A
JP2000333696A JP11146685A JP14668599A JP2000333696A JP 2000333696 A JP2000333696 A JP 2000333696A JP 11146685 A JP11146685 A JP 11146685A JP 14668599 A JP14668599 A JP 14668599A JP 2000333696 A JP2000333696 A JP 2000333696A
Authority
JP
Japan
Prior art keywords
amine
glycated
treatment
measurement
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11146685A
Other languages
Japanese (ja)
Inventor
Satoshi Yonehara
聡 米原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkray Inc
Original Assignee
Arkray Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray Inc filed Critical Arkray Inc
Priority to JP11146685A priority Critical patent/JP2000333696A/en
Publication of JP2000333696A publication Critical patent/JP2000333696A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method enabling a glycosylated amine in a specimen to be measured with a high precision. SOLUTION: This method is to perform the oxidative decomposition of a glycosylated amine with a glycosylated amine-oxidizing and decomposing enzyme into a saccharide and an amine, to subject a saccharide to oxidative decomposition with a saccharide-oxidizing and decomposing enzyme, to measure the quantity of the same reaction product or the same consumed substance in both oxidative decomposition reactions and to determine the quantity of glycosylated amine from the measured value. For example, when the glycosylated amine is a glycosylated protein, a sample is decomposed with a protease, is treated with a fructosyl amino acid oxidase and then is treated with a glucose oxidase. By adding a peroxidase and a chromogenic substrate to the obtained solution and by measuring its coloring, sensitivity of measurement is improved in comparison with a conventional method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、試料中に存在する
糖化タンパク質、糖化ペプチドまたは糖化アミノ酸等の
糖化アミンの量を測定する方法に関する。
TECHNICAL FIELD The present invention relates to a method for measuring the amount of glycated amine such as glycated protein, glycated peptide or glycated amino acid present in a sample.

【0002】[0002]

【従来の技術】血液中の糖化タンパク質、例えば、糖化
アルブミンや、赤血球中の糖化ヘモグロビン(以下、
「HbA1c」という)等は、生体内血糖値の過去の履
歴を反映しているため、糖尿病の診断や治療等における
重要な指標とされている。
2. Description of the Related Art Glycated proteins in blood, for example, glycated albumin and glycated hemoglobin in erythrocytes (hereinafter, referred to as glycated hemoglobin).
“HbA1c”) and the like reflect the past history of the blood glucose level in the living body, and are therefore used as important indexes in the diagnosis and treatment of diabetes.

【0003】このような糖化タンパク質の測定方法とし
ては、例えば、高速液体クロマトグラフィー(HPL
C)法、ミニカラム法、免疫法、酵素法などがあげられ
る。この中でも、フルクトシルアミノ酸オキシダーゼ
(FAOD)を用いた酵素法は、他の測定方法に比べ、
正確かつ迅速に糖化タンパク質を測定できる方法であ
る。
[0003] As a method for measuring such glycated proteins, for example, high performance liquid chromatography (HPL)
C) method, mini-column method, immunization method, enzyme method and the like. Among them, the enzymatic method using fructosyl amino acid oxidase (FAOD) is more effective than other measurement methods.
This is a method that can accurately and quickly measure glycated proteins.

【0004】このFAODを用いた糖化タンパク質の測
定方法は、例えば、FAODが作用し易いように糖化タ
ンパク質をプロテアーゼで処理し、この分解物である糖
化物にFAODを作用させ、前記FAODの触媒反応に
より生成する過酸化水素量を測定し、その測定値から糖
化タンパク質の量及び糖化率を求める方法である。
A method for measuring a glycated protein using FAOD is, for example, a method of treating a glycated protein with a protease so that FAOD acts easily, and then reacting the glycated product, which is a decomposed product, with FAOD to cause a catalytic reaction of the FAOD. Is a method of measuring the amount of hydrogen peroxide generated by the method described above, and obtaining the amount of glycated protein and the saccharification rate from the measured value.

【0005】しかし、前述の酵素法によると、低濃度の
糖化タンパク質、特にHbA1cを測定することが困難
であった。HbA1cの測定のためには、赤血球の溶血
処理が必要であり、また、試薬の添加により試料は希釈
されるため、HbA1cの濃度が検出限界に至ってしま
い、測定が困難になる場合があった。さらに、前記従来
法によるHbA1cの測定においては、例えば、試料間
におけるHbA1cの濃度値が0.1%しか変化しない
場合、生成される各々の過酸化水素量により前記濃度差
を検出するには、その精度に問題があった。
However, it has been difficult to measure low-concentration glycated proteins, particularly HbA1c, by the above-mentioned enzymatic method. For the measurement of HbA1c, hemolysis of erythrocytes is necessary, and the sample is diluted by the addition of the reagent, so that the concentration of HbA1c reaches the detection limit, which sometimes makes the measurement difficult. Further, in the measurement of HbA1c by the conventional method, for example, when the concentration value of HbA1c between samples changes only by 0.1%, to detect the concentration difference based on the amount of each generated hydrogen peroxide, There was a problem with its accuracy.

【0006】これらの問題は、以下に示すような原因に
よると推測される。糖化タンパク質は、通常、N末端の
α−アミノ基、ペプチド鎖中のリジン(Lys)側鎖
基、アルギニン(Arg)側鎖基等に糖が付加してお
り、これらの糖化部分が前述のように測定される。特に
HbA1cは、通常ヘモグロビン中に2個存在するβ鎖
のN末端バリン残基(α−アミノ基)が糖化されている
ことを特徴とするため、この糖化部分を測定することに
よりその量が求められる。実際にその量を数値で表す
と、通常、健常者の血液には、分子量約65,000の
ヘモグロビン(Hb)が約130g/リットル(2mm
ol/リットル)含まれており、前記Hbのうち4%
(80μmol/リットル)がHbA1cであり、前記
測定に関与する糖化部分を含むβ鎖の濃度は160μm
ol/リットルである。このβ鎖濃度が糖化部分(糖化
されたα−アミノ基)の濃度に相当する。これを測定す
る際には、試料を100倍以上に希釈することが必要な
ため、非常に低濃度となる。
[0006] These problems are presumed to be due to the following causes. Glycated proteins usually have sugars added to the N-terminal α-amino group, lysine (Lys) side chain group, arginine (Arg) side chain group and the like in the peptide chain. Is measured. In particular, HbA1c is characterized in that the N-terminal valine residue (α-amino group) of two β-chains usually present in hemoglobin is glycated, and the amount thereof is determined by measuring the glycated portion. Can be When the amount is actually represented by a numerical value, the blood of a healthy person usually contains about 130 g / liter (2 mm) of hemoglobin (Hb) having a molecular weight of about 65,000.
ol / liter) and 4% of the Hb
(80 μmol / liter) is HbA1c, and the concentration of β-chain containing a saccharified moiety involved in the measurement is 160 μm
ol / liter. This β-chain concentration corresponds to the concentration of the saccharified moiety (glycated α-amino group). When measuring this, it is necessary to dilute the sample 100 times or more, so that the concentration becomes very low.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明の目的
は、糖化アミンの量や糖化率の検出限界を従来法よりも
低く設定でき、また、信頼性に優れる測定値を得ること
ができる糖化アミンの測定方法の提供である。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a saccharified amine capable of setting the detection limits of the amount of saccharified amine and the saccharification rate lower than those of the conventional method and obtaining a highly reliable measurement value. It is an object of the present invention to provide a method for measuring an amine.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、本発明の測定方法は、試料中の糖化アミンを測定す
る方法であって、糖化アミン酸化分解酵素により、前記
糖化アミンを糖とアミンとに酸化分解し、糖酸化分解酵
素により、前記糖を酸化分解し、前記両酸化分解反応に
よる同一生成物または同一消費物の量を測定して、この
測定値から前記糖化アミンの量を決定することを特徴と
する。
In order to achieve the above object, a measuring method of the present invention is a method for measuring a glycated amine in a sample, wherein the glycated amine is converted to a saccharide by a glycated amine oxidase. It is oxidatively decomposed to an amine, and the sugar is oxidatively decomposed by a sugar oxidase, and the amount of the same product or the same consumable by the both oxidative decomposition reactions is measured, and the amount of the saccharified amine is determined from the measured value. It is characterized in that it is determined.

【0009】このように、糖化アミン酸化分解酵素およ
び糖酸化分解酵素を併用すれば、1つの糖化部分に対
し、2つの同一生成物が生成され、また2つの同一消費
物が消費される。このため、本発明の測定方法は、従来
法に比べ、理論上2倍の検出感度を実現でき、より正確
に糖化アミンの測定を行うことができる。また、試料の
希釈倍率を上げても、検出可能な前記生成物濃度または
消費物濃度を保持することができるから、試料中の共存
物質の影響を希釈により軽減できるという利点もある。
As described above, when the saccharified amine oxidase and the saccharoxidase are used in combination, two identical products are produced and two identical consumables are consumed for one saccharified moiety. Therefore, the measurement method of the present invention can theoretically achieve twice the detection sensitivity as compared with the conventional method, and can more accurately measure saccharified amine. Further, even if the dilution ratio of the sample is increased, the detectable concentration of the product or the concentration of the consumable product can be maintained, so that there is an advantage that the influence of the coexisting substance in the sample can be reduced by dilution.

【0010】本発明の測定方法において、前記同一生成
物は、過酸化水素であることが好ましい。また、前記同
一消費物は、酸素であることが好ましい。
In the measuring method according to the present invention, it is preferable that the same product is hydrogen peroxide. Preferably, the same consumable is oxygen.

【0011】本発明の測定方法において、測定対象物の
糖化アミンが、糖化アミノ酸、糖化タンパク質または糖
化ペプチドであることが好ましい。また、糖化アミン
が、糖化タンパク質または糖化ペプチドの場合は、予め
前記糖化アミンをプロテアーゼで分解してから、その分
解物と糖化アミン酸化分解酵素とを反応させることが好
ましい。
[0011] In the measurement method of the present invention, the glycated amine to be measured is preferably a glycated amino acid, a glycated protein or a glycated peptide. When the saccharified amine is a saccharified protein or saccharified peptide, the saccharified amine is preferably decomposed with a protease in advance, and then the degraded product is reacted with the saccharified amine oxidase.

【0012】試料には最初からグルコース等の糖酸化分
解酵素の基質が存在する場合があるが、前記基質と前記
糖酸化分解酵素との反応によって発生する過酸化水素や
消費される酸素が測定精度に影響を与えるおそれがあ
る。これを回避するために、本発明の測定方法におい
て、糖化アミンと糖化アミン酸化分解酵素とを反応させ
る前に、試料中に存在する糖酸化分解酵素の基質を消去
することが好ましく、その手段としては、試料に前記糖
酸化分解酵素を添加することが好ましい。
In some cases, a substrate of a glucose oxidase such as glucose is present in a sample from the beginning, and the hydrogen peroxide generated by the reaction between the substrate and the sugar oxidase and the consumed oxygen are measured accurately. May be affected. In order to avoid this, in the measurement method of the present invention, it is preferable to eliminate the substrate of the saccharide oxidase present in the sample before reacting the saccharified amine with the saccharified amine oxidase. Preferably, the sugar oxidase is added to the sample.

【0013】本発明の測定方法において、前記糖酸化分
解酵素が、グルコースオキシダーゼ(以下、「GOD」
という)、β−ガラクトシダーゼ、ピラノースオキシダ
ーゼからなる群から選択された少なくとも一つの酸化酵
素であることが好ましい。
In the measurement method of the present invention, the sugar oxidase is glucose oxidase (hereinafter referred to as "GOD").
), And at least one oxidase selected from the group consisting of β-galactosidase and pyranose oxidase.

【0014】また、糖化アミンが糖化タンパク質等の場
合、グルコースにより糖化されていることが多いため、
糖化アミンの酸化分解により生成される糖が、グルコソ
ンであることが好ましく、この場合、前記糖酸化分解酵
素は前記GODが特に好ましい。
When the glycated amine is a glycated protein or the like, it is often saccharified with glucose.
It is preferred that the sugar produced by oxidative degradation of the saccharified amine is glucosone, and in this case, the GOD is particularly preferred as the sugar oxidase.

【0015】本発明の測定方法において、前記糖を酸化
分解するために、前記糖酸化分解酵素を反応溶液に、濃
度1,000〜5000,000U/リットルの範囲に
なるように添加することが好ましく、特に好ましくは、
10,000〜1000,000U/リットルの範囲で
ある。
In the measuring method of the present invention, in order to oxidatively degrade the sugar, it is preferable to add the sugar oxidase to the reaction solution so as to have a concentration of 1,000 to 5,000,000 U / liter. , Particularly preferably,
It is in the range of 10,000 to 1,000,000 U / liter.

【0016】本発明の測定方法において、糖化アミン酸
化分解酵素が、フルクトシルアミノ酸オキシダーゼ(F
AOD)であることが好ましい。
In the method of the present invention, the saccharified amine oxidase is a fructosyl amino acid oxidase (F
(AOD).

【0017】本発明の測定方法において、過酸化水素量
の測定が、ペルオキシダーゼと前記ペルオキシダーゼに
より酸化される基質とを用いた測定であることが好まし
い。
In the measurement method of the present invention, the measurement of the amount of hydrogen peroxide is preferably a measurement using peroxidase and a substrate oxidized by the peroxidase.

【0018】前記酸化される基質は、酸化により発色す
る基質(以下、「発色性基質」という)であることが好ま
しい。前記発色性基質としては、N−(カルボキシメチ
ルアミノカルボニル)−4,4’−ビス(ジメチルアミ
ノ)ジフェニルアミンナトリウム(例えば、DA−6
4:和光純薬社製等)等の高感度発色剤であることが好
ましいが、これには特に制限されず、この他にも、例え
ば、オルトフェニレンジアミン(OPD)、トリンダー
試薬とアミノアンチピリンとを組み合わせた発色性基質
等が使用できる。
The substrate to be oxidized is preferably a substrate that develops color by oxidation (hereinafter referred to as a “chromogenic substrate”). Examples of the chromogenic substrate include sodium N- (carboxymethylaminocarbonyl) -4,4′-bis (dimethylamino) diphenylamine (for example, DA-6
4: a high-sensitivity color forming agent such as Wako Pure Chemical Industries, Ltd., but is not particularly limited thereto. In addition, for example, orthophenylenediamine (OPD), a Trinder reagent and aminoantipyrine A chromogenic substrate or the like can be used.

【0019】これらの本発明の測定方法において、測定
対象物は、糖化アミンであれば特に制限されないが、前
述のように糖化タンパク質、糖化ペプチドまたは糖化ア
ミノ酸であることが好ましい。前記糖化タンパク質とし
ては、例えば、HbA1c、糖化アルブミン、糖化グロ
ブリン、糖化カゼイン等があげられる。また、血液中の
糖化タンパク質を測定することは、糖尿病の診断に有用
であることから、測定対象試料は、血液であることが好
ましい。しかし、例えば、糖化タンパク質は、全血、血
漿、血清、血球等および尿等の生体試料や、ジュース等
の飲料水、醤油、ソース等の食料等にも含まれるため、
測定対象試料は、特に制限されない。
In these measurement methods of the present invention, the object to be measured is not particularly limited as long as it is a glycated amine, but is preferably a glycated protein, glycated peptide or glycated amino acid as described above. Examples of the glycated protein include HbA1c, glycated albumin, glycated globulin, and glycated casein. In addition, since measuring glycated protein in blood is useful for diagnosing diabetes, the sample to be measured is preferably blood. However, for example, glycated proteins are also included in biological samples such as whole blood, plasma, serum, blood cells and urine, and drinking water such as juice, soy sauce, and foods such as sauces.
The sample to be measured is not particularly limited.

【0020】なお、本発明の測定方法は、例えば、測定
キットに適用することが好ましく、これにより、本発明
の測定方法を簡便かつ迅速に行なうことができる。
The measuring method of the present invention is preferably applied to, for example, a measuring kit, whereby the measuring method of the present invention can be carried out simply and quickly.

【0021】[0021]

【発明の実施の形態】本発明の測定方法において使用で
きるFAODとしては、下記式(化1)に示す反応を触
媒するFAODであることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The FAOD which can be used in the measuring method of the present invention is preferably a FAOD which catalyzes a reaction represented by the following formula (Formula 1).

【0022】[0022]

【化1】R1−CO−CH2−NH−R2 + H2O +
2→R1−CO−CHO + NH2−R2 + H2
2
Embedded image R 1 —CO—CH 2 —NH—R 2 + H 2 O +
O 2 → R 1 -CO-CHO + NH 2 -R 2 + H 2 O
Two

【0023】前記式(化1)において、R1は、水酸基
もしくは糖化反応前の糖に由来する残基(糖残基)を意
味する。前記糖残基(R1)は、反応前の糖がアルドー
スの場合はアルドース残基であり、反応前の糖がケトー
スの場合、ケトース残基である。例えば、反応前の糖が
グルコースの場合は、アマドリ転位により、反応後の構
造はフルクトース構造をとるが、この場合、糖残基(R
1)は、グルコース残基(アルドース残基)となる。こ
の糖残基(R1)は、例えば、 −[CH(OH)]n−CH2OH で示すことができ、nは、0〜6の整数である。
In the above formula (1), R 1 represents a hydroxyl group or a residue (sugar residue) derived from a sugar before the saccharification reaction. The sugar residue (R 1 ) is an aldose residue when the sugar before the reaction is aldose, and is a ketose residue when the sugar before the reaction is ketose. For example, when the sugar before the reaction is glucose, the structure after the reaction takes a fructose structure by Amadori rearrangement. In this case, the sugar residue (R
1 ) is a glucose residue (aldose residue). This sugar residue (R 1 ) can be represented by, for example,-[CH (OH)] n -CH 2 OH, where n is an integer of 0-6.

【0024】前記式(化1)において、R2は、特に制
限されないが、糖化アミンが糖化アミノ酸、糖化ペプチ
ドまたは糖化タンパク質の場合、α−アミノ基が糖化さ
れている場合と、それ以外のアミノ基が糖化されている
場合とで異なる。
In the above formula (1), R 2 is not particularly limited, but when the glycated amine is a glycated amino acid, a glycated peptide or a glycated protein, when the α-amino group is glycated, It differs when the group is saccharified.

【0025】前記式(化1)において、α−アミノ基が
糖化されている場合、R2は、下記式(化2)で示すア
ミノ酸残基またはペプチド残基である。
In the above formula (1), when the α-amino group is saccharified, R 2 is an amino acid residue or a peptide residue represented by the following formula (2).

【0026】[0026]

【化2】−CHR3−CO−R4 Embedded image —CHR 3 —CO—R 4

【0027】前記式(化2)において、R3はアミノ酸
側鎖基を示し、R4は水酸基、アミノ酸残基またはペプ
チド残基を示し、例えば、下記式(化3)で示すことが
できる。下記式(化3)において、nは、0以上の整数
であり、R3は、前述と同様に、アミノ酸側鎖基を示
し、アミノ酸側鎖基は全て同一でも、異なっていても良
い。
In the above formula (Formula 2), R 3 represents an amino acid side chain group, and R 4 represents a hydroxyl group, an amino acid residue or a peptide residue, and can be represented by the following formula (Formula 3). In the following formula (Formula 3), n is an integer of 0 or more, and R 3 represents an amino acid side chain group as described above, and the amino acid side chain groups may be all the same or different.

【0028】[0028]

【化3】−(NH−CR3H−CO)n−OH## STR3 ##-(NH-CR 3 H-CO) n -OH

【0029】また、前記式(化1)において、α−アミ
ノ基以外のアミノ基が糖化されている(アミノ酸側鎖基
が糖化されている)場合、R2は下記式(化4)で示す
ことができる。
In the above formula (Chem. 1), when an amino group other than the α-amino group is saccharified (the amino acid side chain group is saccharified), R 2 is represented by the following formula (Chem. 4). be able to.

【0030】[0030]

【化4】−R5−CH(NH−R6)−CO−R7 Embedded image —R 5 —CH (NH—R 6 ) —CO—R 7

【0031】前記式(化4)において、R5は、アミノ
酸側鎖基のうち、糖化されたアミノ基以外の部分を示
す。例えば、糖化されたアミノ酸がリジンの場合、R5
は −CH2−CH2−CH2−CH2− であり、例えば、糖化されたアミノ酸がアルギニンの場
合、R5は、 −CH2−CH2−CH2−NH−CH(NH2)− である。
In the above formula (4), R 5 represents a portion of the amino acid side chain other than the glycated amino group. For example, when the glycated amino acid is lysine, R 5
Is —CH 2 —CH 2 —CH 2 —CH 2 —. For example, when the saccharified amino acid is arginine, R 5 is —CH 2 —CH 2 —CH 2 —NH—CH (NH 2 ) —. It is.

【0032】また、前記式(化4)において、R6は、
水素、アミノ酸残基またはペプチド残基であり、例え
ば、下記式(化5)で示すことができる。なお、下記式
(化5)において、nは0以上の整数であり、R3は、
前述と同様にアミノ酸側鎖基を示し、アミノ酸側鎖基は
全て同一でも、異なっていても良い。
In the above formula (Formula 4), R 6 is
It is hydrogen, an amino acid residue or a peptide residue, and can be represented by, for example, the following formula (Formula 5). In the following formula (Formula 5), n is an integer of 0 or more, and R 3 is
An amino acid side chain group is shown in the same manner as described above, and all the amino acid side chain groups may be the same or different.

【0033】[0033]

【化5】−(CO−CR3H−NH)n−H## STR5 ##-(CO-CR 3 H-NH) n -H

【0034】また、前記式(化4)において、R7は、
水酸基、アミノ酸残基またはペプチド残基であり、例え
ば、下記式(化6)で示すことができる。なお、下記式
(化6)において、nは0以上の整数であり、R3は、
前述と同様にアミノ酸側鎖基を示し、アミノ酸側鎖基は
全て同一でも、異なっていても良い。
Further, in the above formula (Formula 4), R 7 is
It is a hydroxyl group, an amino acid residue or a peptide residue, and can be represented by, for example, the following formula (Formula 6). In the following formula (Formula 6), n is an integer of 0 or more, and R 3 is
An amino acid side chain group is shown in the same manner as described above, and all the amino acid side chain groups may be the same or different.

【0035】[0035]

【化6】−(NH−CHR3−CO)n−OH[Of 6] - (NH-CHR 3 -CO) n -OH

【0036】本発明の測定方法において、前記糖酸化分
解酵素が酸化分解する糖は、前記式(化1)において、
1−CO−CHOで示される糖である。ただし、この
場合、R1は、糖残基を示し、水酸基は含まない。この
糖と前記糖酸化分解酵素との反応は、下記式(化7)に
示す反応であると推測される。下記式(化7)におい
て、R1は、前述のように糖残基であり、例えば、−[C
H(OH)]n−CH2OHで示すことができ、nは、0
〜6の整数である。
In the measuring method of the present invention, the sugar oxidatively decomposed by the sugar oxidase is represented by the following formula (Formula 1):
It is a sugar represented by R 1 -CO-CHO. However, in this case, R 1 represents a sugar residue and does not include a hydroxyl group. The reaction between the sugar and the sugar oxidase is presumed to be a reaction represented by the following formula (Formula 7). In the following formula (Formula 7), R 1 is a sugar residue as described above, for example,-[C
H (OH)] n —CH 2 OH, where n is 0
6 to an integer.

【0037】[0037]

【化7】R1−CO−CHO + H2O + O2→R1
−CHO +CO2 + H22
[Image Omitted] R 1 -CO-CHO + H 2 O + O 2 → R 1
-CHO + CO 2 + H 2 O 2

【0038】つぎに、本発明の測定方法について、前記
糖化アミン酸化分解酵素としてFAOD、糖酸化分解酵
素としてGODをそれぞれ用いて、血球中の糖化タンパ
ク質を測定する例をあげて説明する。
Next, the measurement method of the present invention will be described using an example of measuring glycated proteins in blood cells using FAOD as the saccharified amine oxidase and GOD as the saccharoxidase.

【0039】まず、全血から遠心分離等の常法により血
球画分を分離し、これを溶血する。この溶血方法は、特
に制限されず、例えば、界面活性剤を用いる方法、超音
波による方法、浸透圧の差を利用する方法等が使用でき
る。この中でも、操作の簡便性等の理由から、界面活性
剤を用いる方法が好ましい。
First, a blood cell fraction is separated from whole blood by a conventional method such as centrifugation, and the blood cell is lysed. The hemolysis method is not particularly limited, and for example, a method using a surfactant, a method using ultrasonic waves, a method using a difference in osmotic pressure, and the like can be used. Among them, a method using a surfactant is preferable for the reason of simplicity of operation and the like.

【0040】前記界面活性剤としては、例えば、Tri
tonX−100、Tween−20、Brij35等
が使用できる。前記界面活性剤による処理条件は、通
常、処理溶液中の血球濃度が、1〜10体積%の場合、
前記処理溶液中の濃度が0.1〜1重量%になるように
前記界面活性剤を添加し、室温で、5秒〜1分程度攪拌
すればよい。
As the surfactant, for example, Tri
tonX-100, Tween-20, Brij35 and the like can be used. The treatment conditions with the surfactant are usually such that when the blood cell concentration in the treatment solution is 1 to 10% by volume,
The surfactant may be added so that the concentration in the treatment solution is 0.1 to 1% by weight, and the mixture may be stirred at room temperature for about 5 seconds to 1 minute.

【0041】つぎに、前記溶血試料に対し、プロテアー
ゼ処理を行う。前記プロテアーゼの種類は、特に制限さ
れず、例えば、プロテアーゼK、ズブチリシン、トリプ
シン、アミノペプチダーゼ、パパイン等が使用でき、こ
の他にも、例えば、糖化アミノ酸遊離酵素等が使用でき
る。前記プロテアーゼ処理は、通常、緩衝液中で行わ
れ、その処理条件は、使用するプロテアーゼの種類、糖
化タンパク質の種類およびその濃度等により適宜決定さ
れる。
Next, protease treatment is performed on the hemolyzed sample. The type of the protease is not particularly limited, and for example, protease K, subtilisin, trypsin, aminopeptidase, papain and the like can be used. In addition, glycated amino acid releasing enzyme and the like can be used. The protease treatment is usually performed in a buffer, and the treatment conditions are appropriately determined depending on the type of protease to be used, the type of glycated protein, the concentration thereof, and the like.

【0042】プロテアーゼとしてトリプシンを用いて、
前記溶血試料を処理する場合、通常、反応液中のプロテ
アーゼ濃度100〜6,000U/リットル、反応液中
の血球濃度0.2〜5体積%、反応温度20〜50℃、
反応時間10分〜20時間、pH6〜9の範囲である。
また、前記緩衝液の種類も特に制限されず、例えば、ト
リス塩酸緩衝液、リン酸緩衝液、EPPS緩衝液、PI
PES緩衝液等が使用できる。
Using trypsin as a protease,
When the hemolyzed sample is treated, usually, the protease concentration in the reaction solution is 100 to 6,000 U / liter, the blood cell concentration in the reaction solution is 0.2 to 5% by volume, the reaction temperature is 20 to 50 ° C,
The reaction time ranges from 10 minutes to 20 hours, and the pH ranges from 6 to 9.
The type of the buffer is not particularly limited. For example, Tris-HCl buffer, phosphate buffer, EPPS buffer, PI
A PES buffer or the like can be used.

【0043】つぎに、前記プロテアーゼ処理により得ら
れた分解物を、FAODで処理する。このFAOD処理
により、前記式(化1)に示す反応が触媒される。
Next, the degradation product obtained by the protease treatment is treated with FAOD. By the FAOD treatment, the reaction represented by the above formula (Chem. 1) is catalyzed.

【0044】このFAOD処理は、前記プロテアーゼ処
理と同様に緩衝液中で行うことが好ましく、前記緩衝液
としては、特に制限されず、前記プロテアーゼ処理と同
様の緩衝液が使用できる。
This FAOD treatment is preferably carried out in a buffer as in the case of the protease treatment. The buffer is not particularly limited, and the same buffer as in the protease treatment can be used.

【0045】つぎに、前記FAOD処理物を、GODで
処理する。これにより、前記FAOD処理で過酸化水素
と共に生成された糖を酸化分解し、さらに過酸化水素を
生成させる。前記FAOD処理とこのGOD処理とによ
り、理論的には1モルの糖化アミノ酸残基から2モルの
過酸化水素が生成されることになる。
Next, the FAOD product is processed by GOD. As a result, the sugar produced together with the hydrogen peroxide in the FAOD treatment is oxidatively decomposed to further generate hydrogen peroxide. By the FAOD treatment and the GOD treatment, 2 mol of hydrogen peroxide is theoretically generated from 1 mol of the saccharified amino acid residue.

【0046】このGOD処理は、前述のように、GOD
を反応溶液に、濃度1,000〜5000,000U/
リットルの範囲になるように添加することが好ましく、
反応条件は、通常、温度15〜37℃の範囲、反応時間
1〜30分の範囲である。また、前記プロテアーゼ処理
や前記FAOD処理等と同様に緩衝液中で行うことが好
ましい。前記緩衝液としては、例えば、トリス塩酸緩衝
液、リン酸緩衝液、EPPS緩衝液、PIPES緩衝
液、クエン酸緩衝液等の緩衝液が使用できるが、操作の
簡便性等の点から、前記プロテアーゼ処理や前記FAO
D処理と同じ緩衝液を使用することが好ましい。
This GOD processing is performed by the GOD processing as described above.
Is added to the reaction solution at a concentration of 1,000 to 5,000,000 U /
It is preferable to add so as to be in the range of liter,
The reaction conditions are usually in a range of a temperature of 15 to 37 ° C and a reaction time of 1 to 30 minutes. Further, it is preferable to carry out the treatment in a buffer solution as in the protease treatment or the FAOD treatment. As the buffer, for example, a buffer such as Tris-HCl buffer, phosphate buffer, EPPS buffer, PIPES buffer, citrate buffer and the like can be used. Processing and FAO
It is preferable to use the same buffer as for D treatment.

【0047】そして、前記FAOD処理で生成した過酸
化水素と、前記GOD処理で生成した過酸化水素とを、
PODおよび前記PODの発色性基質を用いた酸化還元
反応を利用して測定する。
Then, the hydrogen peroxide generated by the FAOD process and the hydrogen peroxide generated by the GOD process are
The measurement is performed using a redox reaction using POD and a chromogenic substrate for the POD.

【0048】前記酸化還元反応は、通常、緩衝液中で行
われ、その条件は、過酸化水素濃度等により適宜決定さ
れる。また、前記緩衝液は、特に制限されず、前記FA
OD処理およびGOD処理等と同様の緩衝液等が使用で
きる。
The oxidation-reduction reaction is usually performed in a buffer, and the conditions are appropriately determined depending on the concentration of hydrogen peroxide and the like. Further, the buffer is not particularly limited, and the FA
The same buffer and the like as used in the OD treatment and the GOD treatment can be used.

【0049】なお、前記過酸化水素量は、前記ペルオキ
シダーゼ等を用いた酵素的手法の他に、例えば、電気的
手法により測定することもできる。
The amount of hydrogen peroxide can be measured by, for example, an electric method in addition to the enzymatic method using peroxidase or the like.

【0050】前記発色性基質を用いた場合は、その発色
(反応液の吸光度)を分光光度計で測定することによ
り、過酸化水素の濃度を測定でき、これから試料中の糖
化タンパク質濃度を知ることができる。このように、本
発明の測定方法によれば、測定対象物を高精度で測定で
きる。
When the chromogenic substrate is used, the concentration of hydrogen peroxide can be measured by measuring the color development (absorbance of the reaction solution) with a spectrophotometer, and the concentration of glycated protein in the sample can be determined from this. Can be. As described above, according to the measurement method of the present invention, the measurement target can be measured with high accuracy.

【0051】この測定において、各処理工程は、前述の
ように別々に行ってもよいが、例えば、以下に示すよう
な組み合わせで同時に行ってもよい処理工程がある。 1:溶血処理+プロテアーゼ処理 2:プロテアーゼ処理+FAOD処理 3:FAOD処理+GOD処理 4:FAOD処理+GOD処理+POD酸化還元処理 5:プロテアーゼ処理+FAOD処理+GOD処理+P
OD酸化還元処理
In this measurement, each processing step may be performed separately as described above, but there are processing steps that may be performed simultaneously in the following combinations, for example. 1: hemolysis treatment + protease treatment 2: protease treatment + FAOD treatment 3: FAOD treatment + GOD treatment 4: FAOD treatment + GOD treatment + POD redox treatment 5: protease treatment + FAOD treatment + GOD treatment + P
OD redox treatment

【0052】また、前記FAODと、GODと、POD
および発色性基質の添加順序も、特に制限されない。
The FAOD, GOD, POD
Also, the order of adding the chromogenic substrate is not particularly limited.

【0053】また、試料中にGODとの反応により過酸
化水素を生成する物質(GOD基質)が存在する場合
は、前記FAOD処理等を行う前に、試料(例えば、血
球の場合は溶血試料)の前処理として、予め前記試料に
GODを添加して、前記GOD基質を消去させてもよ
い。また、この前処理において十分量のGODを試料に
添加すれば、後で行うFAOD処理物に対するGOD処
理において、再度GODを添加しなくてもよい。この場
合は、GODを反応液に、濃度1,000〜5000,
000U/リットルの範囲になるように添加することが
好ましい。
When a substance (GOD substrate) that produces hydrogen peroxide by reaction with GOD is present in the sample, the sample (for example, a hemolyzed sample in the case of blood cells) is prepared before performing the FAOD treatment or the like. As a pre-treatment, GOD may be previously added to the sample to eliminate the GOD substrate. Further, if a sufficient amount of GOD is added to the sample in this pretreatment, it is not necessary to add GOD again in the GOD treatment of the FAOD-treated product performed later. In this case, GOD is added to the reaction solution at a concentration of 1,000 to 5,000,
It is preferable to add so as to be in the range of 000 U / liter.

【0054】前記試料の前処理によって生じた過酸化水
素は、例えば、溶血試料中に最初から存在するカタラー
ゼにより消去させてもよいし、別途カタラーゼを添加し
て消去させてもい。なお、前記試料の前処理を行い、か
つ前処理によって生成した過酸化水素を前記カタラーゼ
により消去した場合、このカタラーゼによって、後に行
うFAOD処理およびGOD処理で生成する過酸化水素
が消去されることを防ぐために、FAODの添加と共
に、過剰量のPODおよび発色性基質を添加することが
好ましい。この場合、PODは、前記カタラーゼの添加
量(U)に対し、5〜100倍の活性(U)量を添加す
ることが好ましい。
The hydrogen peroxide produced by the pretreatment of the sample may be eliminated by, for example, catalase existing in the hemolyzed sample from the beginning, or may be eliminated by adding catalase separately. When the sample is pretreated and the hydrogen peroxide generated by the pretreatment is eliminated by the catalase, the catalase eliminates the hydrogen peroxide produced by the subsequent FAOD treatment and GOD treatment. To prevent this, it is preferable to add an excess amount of POD and a chromogenic substrate together with the addition of FAOD. In this case, it is preferable to add the activity (U) of the POD 5 to 100 times the amount (U) of the catalase.

【0055】[0055]

【実施例】(実施例1および比較例1)各濃度のフルク
トシルバリン(以下、「FV」という)溶液10μl
に、下記GOD溶液40μlをそれぞれ添加した。そし
て、これらの溶液に、下記酸化還元反応液A 50μl
をそれぞれ添加して酸化還元反応を開始し、各反応液の
主波長694nm、副波長884nmにおける吸光度
を、生化学自動分析装置JCA−BM8(日本電子社
製)を用いて測定した。また、前記GOD溶液の代わり
に水(D.W)を用いた以外は、前述の方法と同様にし
て吸光度の測定を行ったものを比較例1とした。これら
の結果を、表1および図1のグラフに示す。同図は、F
Vの終濃度と吸光度との関係を示すグラフであり、同図
において●はGOD処理したもの(実施例1)、はGO
D未処理(D.W添加)のもの(比較例1)を示す。
EXAMPLES (Example 1 and Comparative Example 1) 10 μl of fructosyl valine (hereinafter referred to as “FV”) solution at each concentration
Was added to each of the following GOD solutions (40 μl). Then, 50 μl of the following redox reaction solution A was added to these solutions.
Was added to start the redox reaction, and the absorbance of each reaction solution at a main wavelength of 694 nm and a sub-wavelength of 884 nm was measured using an automatic biochemical analyzer JCA-BM8 (manufactured by JEOL Ltd.). In addition, Comparative Example 1 was obtained by measuring the absorbance in the same manner as described above except that water (DW) was used instead of the GOD solution. These results are shown in Table 1 and the graph of FIG. FIG.
5 is a graph showing the relationship between the final concentration of V and the absorbance.
A sample without D treatment (D.W added) (Comparative Example 1) is shown.

【0056】(FV溶液)バリン(ペプチド研究所社
製)とグルコースとを用いて、定法によりFVを調製し
た。そして、前記FVを、所定の濃度(62.5、12
5、250、500、1000μmol/リットル)に
なるように蒸留水に添加した。
(FV solution) FV was prepared by a conventional method using valine (manufactured by Peptide Research Laboratories) and glucose. Then, the FV is adjusted to a predetermined density (62.5, 12
5, 250, 500, 1000 μmol / liter) to distilled water.

【0057】(緩衝液)100mM NaH2PO4溶液
と、100mM K2HPO4溶液とを混合して、100
mMリン酸緩衝液(pH8.0)を調製した。
(Buffer) A 100 mM NaH 2 PO 4 solution was mixed with a 100 mM K 2 HPO 4 solution to form a mixture.
An mM phosphate buffer (pH 8.0) was prepared.

【0058】 (酸化還元反応液Aの組成) DA64(和光純薬社製) 40μmol/リットル POD(TypeIII:東洋紡社製) 200KU/リットル FAOD(旭化成社製) 10KU/リットル 緩衝液 100mmol/リットル(Composition of Redox Reaction Solution A) DA64 (manufactured by Wako Pure Chemical Industries, Ltd.) 40 μmol / liter POD (Type III: manufactured by Toyobo Co., Ltd.) 200 KU / liter FAOD (manufactured by Asahi Kasei Corporation) 10 KU / liter Buffer solution 100 mmol / liter

【0059】(GOD溶液)GOD(東洋紡社製)を
2,000KU/リットルの濃度になるように精製水に
溶解した。
(GOD Solution) GOD (manufactured by Toyobo Co., Ltd.) was dissolved in purified water to a concentration of 2,000 KU / liter.

【0060】(実施例2および比較例2)前記実施例1
で使用した前記酸化還元反応液Aにおいて、前記リン酸
緩衝液の代わりに、100mMトリス塩酸緩衝液(pH
7.0)を使用した以外は、実施例1と同様にして吸光
度の測定を行った。また、前記GOD溶液の代わりに水
を、前記リン酸緩衝液の代わりに前記トリス塩酸緩衝液
をそれぞれ用いた以外は、実施例1と同様にして測定を
行ったものを比較例2とした。これらの結果を、表2お
よび図2のグラフに示す。同図は、FVの終濃度と吸光
度との関係を示すグラフであり、同図において●はGO
D処理したもの(実施例2)、はGOD未処理(D.W
添加)のもの(比較例2)を示す。
(Example 2 and Comparative Example 2)
In the redox reaction solution A used in the above, instead of the phosphate buffer, a 100 mM Tris-HCl buffer (pH
The absorbance was measured in the same manner as in Example 1 except that 7.0) was used. Comparative Example 2 was measured in the same manner as in Example 1 except that water was used instead of the GOD solution and the Tris-HCl buffer was used instead of the phosphate buffer. These results are shown in Table 2 and the graph of FIG. The figure is a graph showing the relationship between the final concentration of FV and the absorbance. In FIG.
D processed (Example 2) is GOD unprocessed (D.W
Addition) (Comparative Example 2).

【0061】[0061]

【表1】 FV終濃度 実施例1 比較例1 (μmol/リットル) (Abs.) (Abs.) 0 0 0 0.625 0.045 0.038 1.25 0.098 0.076 2.5 0.208 0.151 5.0 0.444 0.304 10.0 0.950 0.623Table 1 FV final concentration Example 1 Comparative Example 1 (μmol / liter) (Abs.) (Abs.) 0 0 0 0.625 0.045 0.038 1.25 0.098 0.076 2.5 0.208 0.151 5.0 0.444 0.304 10.0 0.950 0.623

【0062】[0062]

【表2】 FV終濃度 実施例1 比較例1 (μmol/リットル) (Abs.) (Abs.) 0 0 0 0.625 0.021 0.010 1.25 0.078 0.047 2.5 0.204 0.126 5.0 0.476 0.292 10.0 1.097 0.662[Table 2] FV final concentration Example 1 Comparative Example 1 (μmol / liter) (Abs.) (Abs.) 00 00 0.625 0.021 0.010 1.25 0.078 0.047 2.5 0.204 0.126 5.0 0.476 0.292 10.0 1.097 0.662

【0063】前記表1、2および図1、2に示すよう
に、実施例では、GOD処理を行ったことにより、生成
された過酸化水素量を示す吸光度が比較例に比べて増加
した。また、その検出感度は、比較例に対して、実施例
1では約1.5倍、実施例2では約1.7倍であった。
この結果より、本発明の測定方法によれば、測定精度を
向上できることがわかる。
As shown in Tables 1 and 2 and FIGS. 1 and 2, in the examples, the GOD treatment increased the absorbance indicating the amount of generated hydrogen peroxide as compared with the comparative example. The detection sensitivity was about 1.5 times in Example 1 and about 1.7 times in Example 2 as compared with the comparative example.
From these results, it is understood that the measurement method according to the present invention can improve the measurement accuracy.

【0064】[0064]

【発明の効果】以上のように、本発明の測定方法によれ
ば、試料中の糖化アミンを、簡便かつ高精度で測定でき
る。このため、本発明の測定方法を、例えば、赤血球中
のHbA1cの測定の際に適用すれば、従来よりも測定
精度が向上し、HbA1cの糖尿病診断等の指標物質と
しての重要性がさらに向上する。
As described above, according to the measuring method of the present invention, saccharified amine in a sample can be measured simply and with high accuracy. For this reason, if the measurement method of the present invention is applied, for example, to the measurement of HbA1c in red blood cells, the measurement accuracy is improved as compared with the conventional method, and the importance of HbA1c as an indicator for diabetes diagnosis and the like is further improved. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の測定方法の一実施例において、試料中
のFV濃度と吸光度との相関関係を示したグラフであ
る。
FIG. 1 is a graph showing the correlation between the FV concentration in a sample and the absorbance in one example of the measurement method of the present invention.

【図2】本発明の測定方法のその他の実施例において、
試料中のFV濃度と吸光度との相関関係を示したグラフ
である。
FIG. 2 shows another embodiment of the measuring method of the present invention.
5 is a graph showing the correlation between the FV concentration in a sample and the absorbance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 33/72 G01N 33/72 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01N 33/72 G01N 33/72 A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 試料中の糖化アミンを測定する方法であ
って、糖化アミン酸化分解酵素により、前記糖化アミン
を糖とアミンとに酸化分解し、糖酸化分解酵素により、
前記糖を酸化分解し、前記両酸化分解反応による同一生
成物または同一消費物の量を測定して、この測定値から
前記糖化アミンの量を決定する測定方法。
1. A method for measuring a saccharified amine in a sample, wherein the saccharified amine is oxidatively decomposed into sugar and an amine by a saccharified amine oxidase, and
A measuring method in which the sugar is oxidatively decomposed, the amount of the same product or the same consumable by the both oxidative decomposition reactions is measured, and the amount of the saccharified amine is determined from the measured value.
【請求項2】 糖酸化分解酵素を反応溶液に、濃度1,
000〜5000,000U/リットルの範囲になるよ
うに添加する請求項1に記載の測定方法。
2. A sugar oxidase is added to a reaction solution at a concentration of 1,
The method according to claim 1, wherein the addition is performed so as to be in a range of 000 to 5,000,000 U / liter.
JP11146685A 1999-05-26 1999-05-26 Measurement of glycosylated amine Pending JP2000333696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11146685A JP2000333696A (en) 1999-05-26 1999-05-26 Measurement of glycosylated amine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11146685A JP2000333696A (en) 1999-05-26 1999-05-26 Measurement of glycosylated amine

Publications (1)

Publication Number Publication Date
JP2000333696A true JP2000333696A (en) 2000-12-05

Family

ID=15413277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11146685A Pending JP2000333696A (en) 1999-05-26 1999-05-26 Measurement of glycosylated amine

Country Status (1)

Country Link
JP (1) JP2000333696A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004038034A1 (en) 2002-10-23 2004-05-06 Daiichi Pure Chemicals Co., Ltd. Novel fructosyl peptide oxidase and utilization thereof
WO2005049857A1 (en) * 2003-11-19 2005-06-02 Daiichi Pure Chemicals Co., Ltd. Method of assyaing glycoprotein
WO2005056823A1 (en) * 2003-12-12 2005-06-23 Arkray, Inc. Method of measuring saccharified amine
JP2006304742A (en) * 2005-05-02 2006-11-09 Oji Paper Co Ltd Device and method for analyzing glycoprotein
WO2006118306A1 (en) * 2005-05-02 2006-11-09 Oji Paper Co., Ltd. Analysis apparatus and analysis method for glycosylated hemoglobin
JP2007163515A (en) * 2002-06-18 2007-06-28 Asahi Kasei Pharma Kk Measuring substance for glycated protein measurement, and standard measurement method
JP2007289202A (en) * 2001-10-11 2007-11-08 Arkray Inc Method of pre-treating sample for measuring saccharified amine and method of measuring saccharified amine
JP2008278898A (en) * 2001-01-31 2008-11-20 Asahi Kasei Pharma Kk Composition for assaying glycoprotein
JP2010011876A (en) * 2002-01-31 2010-01-21 Arkray Inc Method of quantifying glycosylated protein using redox reaction and quantification kit
WO2010041715A1 (en) 2008-10-09 2010-04-15 協和メデックス株式会社 Novel fructosyl peptide oxidase
JP2010104386A (en) * 2001-10-11 2010-05-13 Arkray Inc Method of pretreating sample for measuring saccharified amine and method of measuring the same
WO2015005257A1 (en) 2013-07-09 2015-01-15 協和メデックス株式会社 Method for measuring glycated hemoglobin
WO2015005258A1 (en) 2013-07-09 2015-01-15 協和メデックス株式会社 Glycated hexapeptide oxidase and use thereof

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278898A (en) * 2001-01-31 2008-11-20 Asahi Kasei Pharma Kk Composition for assaying glycoprotein
US8105800B2 (en) 2001-01-31 2012-01-31 Asahi Kasei Pharma Corporation Composition for assaying glycated proteins
JP2009000128A (en) * 2001-01-31 2009-01-08 Asahi Kasei Pharma Kk Composition for assaying glycated protein
JP2011045389A (en) * 2001-01-31 2011-03-10 Asahi Kasei Pharma Kk Composition for assaying glycated protein
JP2009000129A (en) * 2001-01-31 2009-01-08 Asahi Kasei Pharma Kk Composition for assaying glycated protein
JP4621812B2 (en) * 2001-10-11 2011-01-26 アークレイ株式会社 Sample pretreatment method for measuring glycated amine and method for measuring glycated amine
JP2007289202A (en) * 2001-10-11 2007-11-08 Arkray Inc Method of pre-treating sample for measuring saccharified amine and method of measuring saccharified amine
JP4599486B2 (en) * 2001-10-11 2010-12-15 アークレイ株式会社 Sample pretreatment method for measuring glycated amine and method for measuring glycated amine
JP4590017B2 (en) * 2001-10-11 2010-12-01 アークレイ株式会社 Sample pretreatment method for measuring glycated amine and method for measuring glycated amine
JP2010263921A (en) * 2001-10-11 2010-11-25 Arkray Inc Method for pretreating sample for measuring glycated amine and method for measuring glycated amine
JP2010110333A (en) * 2001-10-11 2010-05-20 Arkray Inc Method of pre-treating sample for measuring saccharified amine and method of measuring saccharified amine
JP2010252814A (en) * 2001-10-11 2010-11-11 Arkray Inc Method of pre-treating sample for measuring saccharified amine and method of measuring saccharified amine
JP2010104386A (en) * 2001-10-11 2010-05-13 Arkray Inc Method of pretreating sample for measuring saccharified amine and method of measuring the same
US8026078B2 (en) 2002-01-31 2011-09-27 Arkray Inc. Method of quantifying glycosylated protein using redox reaction and quantification kit
JP2010011876A (en) * 2002-01-31 2010-01-21 Arkray Inc Method of quantifying glycosylated protein using redox reaction and quantification kit
JP2007163515A (en) * 2002-06-18 2007-06-28 Asahi Kasei Pharma Kk Measuring substance for glycated protein measurement, and standard measurement method
US7329520B2 (en) 2002-10-23 2008-02-12 Daiichi Pure Chemicals Co., Ltd. Fructosyl peptide oxidase and utilization thereof
US7393549B2 (en) 2002-10-23 2008-07-01 Daiichi Pure Chemicals Co., Ltd. Defructosylation method
WO2004038034A1 (en) 2002-10-23 2004-05-06 Daiichi Pure Chemicals Co., Ltd. Novel fructosyl peptide oxidase and utilization thereof
JP2011115179A (en) * 2003-11-19 2011-06-16 Sekisui Medical Co Ltd Method of assaying glycated protein
JPWO2005049857A1 (en) * 2003-11-19 2007-11-29 第一化学薬品株式会社 Method for measuring glycated protein
KR101134607B1 (en) * 2003-11-19 2012-04-09 세키스이 메디칼 가부시키가이샤 Method of assaying glycated protein
WO2005049857A1 (en) * 2003-11-19 2005-06-02 Daiichi Pure Chemicals Co., Ltd. Method of assyaing glycoprotein
US7951553B2 (en) 2003-11-19 2011-05-31 Sekisui Medical Co., Ltd. Method of assaying glycated protein
JP4769579B2 (en) * 2003-11-19 2011-09-07 積水メディカル株式会社 Method for measuring glycated protein
WO2005056823A1 (en) * 2003-12-12 2005-06-23 Arkray, Inc. Method of measuring saccharified amine
US7794966B2 (en) 2003-12-12 2010-09-14 Arkray, Inc. Method of measuring glycated amine
JP2006304742A (en) * 2005-05-02 2006-11-09 Oji Paper Co Ltd Device and method for analyzing glycoprotein
US8128802B2 (en) 2005-05-02 2012-03-06 Oji Paper Co., Ltd Analysis apparatus and analysis method for glycosylated hemoglobin
WO2006118306A1 (en) * 2005-05-02 2006-11-09 Oji Paper Co., Ltd. Analysis apparatus and analysis method for glycosylated hemoglobin
WO2010041715A1 (en) 2008-10-09 2010-04-15 協和メデックス株式会社 Novel fructosyl peptide oxidase
WO2015005257A1 (en) 2013-07-09 2015-01-15 協和メデックス株式会社 Method for measuring glycated hemoglobin
WO2015005258A1 (en) 2013-07-09 2015-01-15 協和メデックス株式会社 Glycated hexapeptide oxidase and use thereof

Similar Documents

Publication Publication Date Title
JP3971702B2 (en) Method for selective measurement of glycated hemoglobin
US6352835B1 (en) Method of measuring substance in sample using a redox reaction
JP4621812B2 (en) Sample pretreatment method for measuring glycated amine and method for measuring glycated amine
JP4045322B2 (en) Measuring method using redox reaction
US7354732B2 (en) Method of assay with sulfonic acid compound and nitro compound
JP2000333696A (en) Measurement of glycosylated amine
EP1693463B2 (en) Method of measuring saccharified amine
US8021855B2 (en) Method of decomposing protein with sulfonic acid compound
WO2002027012A1 (en) Process for producing protein decomposition product
JP4756116B2 (en) Sample pretreatment method for measuring glycated amine and method for measuring glycated amine
JP4250693B2 (en) Measuring method using redox reaction
JP4352154B2 (en) Method for selective measurement of glycated hemoglobin
USRE45626E1 (en) Method of pre-treating sample for measuring saccharified amine and method of measuring saccharified amine
JPWO2003033730A1 (en) Measurement method using sodium azide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804