JP4250693B2 - Measuring method using redox reaction - Google Patents

Measuring method using redox reaction Download PDF

Info

Publication number
JP4250693B2
JP4250693B2 JP2006262978A JP2006262978A JP4250693B2 JP 4250693 B2 JP4250693 B2 JP 4250693B2 JP 2006262978 A JP2006262978 A JP 2006262978A JP 2006262978 A JP2006262978 A JP 2006262978A JP 4250693 B2 JP4250693 B2 JP 4250693B2
Authority
JP
Japan
Prior art keywords
diphenyl
sample
measurement
tetrazolium
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006262978A
Other languages
Japanese (ja)
Other versions
JP2007020581A (en
Inventor
胤樹 小森
聡 米原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkray Inc
Original Assignee
Arkray Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray Inc filed Critical Arkray Inc
Priority to JP2006262978A priority Critical patent/JP4250693B2/en
Publication of JP2007020581A publication Critical patent/JP2007020581A/en
Application granted granted Critical
Publication of JP4250693B2 publication Critical patent/JP4250693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、試料中の測定対象物を、酸化還元反応を用いて測定する方法に関する。   The present invention relates to a method for measuring an object to be measured in a sample using an oxidation-reduction reaction.

従来から、例えば、酸化還元反応を利用して、試料中の測定対象物の量を測定することは、広く実施されている。例えば、生化学分析や臨床検査等における糖化タンパク質の測定にも適用されている。   Conventionally, for example, measuring the amount of a measurement object in a sample using an oxidation-reduction reaction has been widely performed. For example, it is applied to the measurement of glycated protein in biochemical analysis and clinical examination.

例えば、血液中の糖化タンパク質、特に赤血球中の糖化ヘモグロビン(HbA1c)は、生体血糖値の過去の履歴を反映しているため、糖尿病診断や治療等における重要な指標とされている。例えば、赤血球中の糖化タンパク質は、酸化還元反応を用いて、以下に示すようにして測定されている。   For example, glycated proteins in blood, in particular glycated hemoglobin (HbA1c) in erythrocytes, reflect the past history of biological blood glucose levels, and are therefore important indicators in diabetes diagnosis and treatment. For example, glycated protein in erythrocytes is measured as shown below using an oxidation-reduction reaction.

まず、赤血球を溶血させた試料を調製し、この溶血試料を適当なプロテアーゼ等で処理した後、フルクトシルアミノ酸オキシダーゼ(以下、FAODという)で処理し、過酸化水素を発生させる。この過酸化水素量は、赤血球中の糖化タンパク質量に対応する。そして、この試料に、ペルオキシダーゼ(以下、PODという)および還元剤を添加し、前記PODを触媒として前記過酸化水素と前記還元剤との間で酸化還元反応を起こす。この時、前記還元剤として、酸化されることにより発色する還元剤を用いれば、その発色を測定することにより前記過酸化水素量を測定でき、この結果、赤血球中の糖化タンパク質量を知ることができる。   First, a sample in which red blood cells are hemolyzed is prepared, and this hemolyzed sample is treated with an appropriate protease or the like, and then treated with fructosyl amino acid oxidase (hereinafter referred to as FAOD) to generate hydrogen peroxide. This amount of hydrogen peroxide corresponds to the amount of glycated protein in red blood cells. A peroxidase (hereinafter referred to as POD) and a reducing agent are added to the sample, and an oxidation-reduction reaction is caused between the hydrogen peroxide and the reducing agent using the POD as a catalyst. At this time, if a reducing agent that develops color when oxidized is used as the reducing agent, the amount of hydrogen peroxide can be measured by measuring the color development. As a result, the amount of glycated protein in erythrocytes can be known. it can.

しかし、血液中には、通常、アスコルビン酸(AsA)、ビリルビン等の各種還元物質が存在し、さらに、赤血球中には、グルタチオン(GSH)等の各種還元物質が存在する。これらの還元物質により、前記過酸化水素が還元されたり、前記酸化還元反応が阻害されたり、前記還元剤が発色した後に還元され退色するおそれがある。このため、赤血球中の糖化タンパク質量を正確に測定することが困難であるという問題があった。   However, various reducing substances such as ascorbic acid (AsA) and bilirubin usually exist in blood, and various reducing substances such as glutathione (GSH) exist in red blood cells. By these reducing substances, the hydrogen peroxide may be reduced, the oxidation-reduction reaction may be inhibited, or the reducing agent may be reduced and faded after coloring. For this reason, there is a problem that it is difficult to accurately measure the amount of glycated protein in erythrocytes.

また、試料ごとによって、含まれる還元物質の濃度も一定ではないため、測定精度が劣るという問題もあった。   Moreover, since the concentration of the reducing substance contained in each sample is not constant, there is a problem that measurement accuracy is inferior.

このような問題を回避するために、例えば、種々の酸化剤を前記試料に添加するという方法がある。例えば、特開昭56−151358号公報(特許文献1)には、酸化剤としてヨウ素酸、過ヨウ素酸等のハロゲン酸化物を用いる方法が開示されており、特開昭57−13357号公報(特許文献2)、特開昭57−161650号公報(特許文献3)、特開昭59−193354号公報(特許文献4)、特開昭62−169053号公報(特許文献5)、特開平3−30697号公報(特許文献6)には、酸化剤としてコバルト、鉄、セリウム等の金属錯体を用いる方法が開示されている。   In order to avoid such a problem, for example, there is a method of adding various oxidizing agents to the sample. For example, Japanese Patent Application Laid-Open No. 56-151358 (Patent Document 1) discloses a method using a halogen oxide such as iodic acid or periodic acid as an oxidizing agent. Patent Document 2), Japanese Patent Application Laid-Open No. 57-161650 (Patent Document 3), Japanese Patent Application Laid-Open No. 59-193354 (Patent Document 4), Japanese Patent Application Laid-Open No. 62-169053 (Patent Document 5), Japanese Patent Application Laid-Open No. Hei 3 Japanese Patent No. 30697 (Patent Document 6) discloses a method using a metal complex such as cobalt, iron, cerium or the like as an oxidizing agent.

しかしながら、これらの酸化剤を用いた場合でも、前述のような測定に対する影響を充分に回避できず、特に、測定対象物が赤血球内成分である場合に、前述のような酸化剤による効果が低かった。
特開昭56−151358号公報 特開昭57−13357号公報 特開昭57−161650号公報 特開昭59−193354号公報 特開昭62−169053号公報 特開平3−30697号公報
However, even when these oxidants are used, the above-described influence on the measurement cannot be sufficiently avoided. In particular, when the measurement object is an erythrocyte component, the effect of the oxidant as described above is low. It was.
JP-A-56-151358 JP-A-57-13357 Japanese Unexamined Patent Publication No. 57-161650 JP 59-193354 A JP-A-62-169053 JP-A-3-30697

そこで、本発明の目的は、試料中の測定対象物を酸化還元反応を用いて測定する方法であって、信頼性に優れる測定値を得ることができる測定方法の提供である。   Therefore, an object of the present invention is to provide a method for measuring a measurement object in a sample using an oxidation-reduction reaction, and to provide a measurement method that can obtain a measurement value with excellent reliability.

前記目的を達成するために、本発明の測定方法は、試料中の測定対象物を酸化還元反応を用いて測定する方法であって、前記酸化還元反応に先立ち、試料にテトラゾリウム化合物を添加して前記試料中に含まれる還元物質の影響を排除し、その後、前記測定対象物由来の還元物質または酸化物質を発生させ、この量を酸化還元反応により測定し、この測定値から前記測定対象物の量を決定することを特徴とする。前記テトラゾリウム化合物とは、前記テトラゾリウム化合物は、テトラゾール環の少なくとも二箇所に環構造置換基を有し、前記環構造置換基は、フェニル基、トリル基、ジフェニル基、スチリルフェニル基、チエニル基、およびジメチルチアゾイル基からなる群からそれぞれ選択された化合物である。 In order to achieve the above object, the measurement method of the present invention is a method for measuring an object to be measured in a sample using a redox reaction, wherein a tetrazolium compound is added to the sample prior to the redox reaction. The influence of the reducing substance contained in the sample is eliminated, and then a reducing substance or an oxidizing substance derived from the measurement object is generated, and this amount is measured by an oxidation-reduction reaction. It is characterized by determining the quantity. The tetrazolium compound has a ring structure substituent in at least two positions of the tetrazole ring, and the ring structure substituent includes a phenyl group, a tolyl group, a diphenyl group, a styrylphenyl group, a thienyl group, and Each compound is selected from the group consisting of dimethylthiazoyl groups .

本発明者らは、鋭意研究を行なった結果、従来の方法によると、例えば、前記GSHやAsAのような低分子量還元物質の影響が排除されていないのではなく、タンパク質等のような高分子量還元物質による影響が排除されていないことを突き止めた。そして、本発明者らは、前記テトラゾリウム化合物によれば、例えば、前記低分子量還元物質だけでなく、その他の還元物質の影響をも排除できるということを見出し、本発明の測定方法に到達した。本発明の測定方法によれば、より信頼性に優れた測定対象物の量を求めることが可能であるため、例えば、臨床医療等における各種検査に有用である。   As a result of intensive studies, the present inventors have found that, according to conventional methods, for example, the influence of low molecular weight reducing substances such as GSH and AsA is not excluded, but high molecular weights such as proteins are not excluded. I found out that the effects of reducing substances were not excluded. Then, the present inventors have found that according to the tetrazolium compound, for example, the influence of not only the low molecular weight reducing substance but also other reducing substances can be eliminated, and the measurement method of the present invention has been reached. According to the measurement method of the present invention, it is possible to determine the amount of the measurement object with higher reliability, and thus it is useful for various examinations in clinical medicine, for example.

本発明の測定方法は、前記テトラゾリウム化合物を試料に添加することにより、試料中の還元物質の影響を排除できるため、信頼性に優れた測定を行なうことができる。このため、本発明の測定方法は、例えば、臨床医療における各種分析に適用でき、特に、糖尿病診断において重要である、赤血球中の糖化ヘモグロビン等の糖化タンパク質の測定に有用である。   In the measurement method of the present invention, by adding the tetrazolium compound to the sample, the influence of the reducing substance in the sample can be eliminated, so that measurement with excellent reliability can be performed. Therefore, the measurement method of the present invention can be applied to various analyzes in clinical medicine, for example, and is particularly useful for measurement of glycated proteins such as glycated hemoglobin in erythrocytes, which is important in diabetes diagnosis.

本発明の測定方法において、前記テトラゾリウム化合物は、テトラゾール環の少なくとも二箇所、より好ましくは、3箇所に環構造置換基を有し、前記環構造置換基は、フェニル基、トリル基、ジフェニル基、スチリルフェニル基、チエニル基、およびジメチルチアゾイル基からなる群からそれぞれ選択される。 In the measurement method of the present invention, the tetrazolium compound has a ring structure substituent in at least two positions of the tetrazole ring, more preferably three positions, and the ring structure substituent includes a phenyl group, a tolyl group, a diphenyl group, Each is selected from the group consisting of a styrylphenyl group, a thienyl group, and a dimethylthiazoyl group.

前記テトラゾリウム化合物が、前述のように、前記テトラゾール環の少なくとも二箇所に環構造置換基を有する場合、前記置換基を、前記テトラゾール環の2位および3位に有することが好ましい。また、テトラゾリウム化合物が三箇所に環構造置換基を有する場合は、前記置換基を、前記テトラゾール環の2位、3位および5位に有することが好ましい。   As described above, when the tetrazolium compound has a ring structure substituent in at least two positions of the tetrazole ring, it is preferable to have the substituent at the 2-position and the 3-position of the tetrazole ring. Moreover, when a tetrazolium compound has a ring structure substituent in three places, it is preferable to have the said substituent in 2nd-position, 3rd-position, and 5th-position of the said tetrazole ring.

本発明の測定方法において、少なくとも二つの環構造置換基の環構造がベンゼン環である。また、ベンゼン環以外の環構造置換基としては、例えば、環骨格にSまたはOを含み、かつ共鳴構造である置換基があげられ、例えば、チエニル基、チアゾイル基等である。 In the method of the present invention, the ring structure of at least two ring substituents is a benzene ring. Examples of the ring structure substituent other than the benzene ring include a substituent having S or O in the ring skeleton and having a resonance structure, such as a thienyl group and a thiazoyl group.

本発明の測定方法において、前記テトラゾリウム化合物が、テトラゾール環の少なくとも三箇所に環構造置換基を有し、前記環構造置換基のうち少なくとも2つの環構造置換基の環構造がベンゼン環であることが好ましい。   In the measurement method of the present invention, the tetrazolium compound has a ring structure substituent in at least three positions of the tetrazole ring, and the ring structure of at least two of the ring structure substituents is a benzene ring. Is preferred.

本発明の測定方法において、少なくとも一つの環構造置換基が官能基を有することが好ましく、前記官能基の数が多いことがより好ましい。   In the measurement method of the present invention, it is preferable that at least one ring structure substituent has a functional group, and it is more preferable that the number of the functional groups is large.

前記官能基としては、例えば、フェニル基(C65−)、スチリル基(C65CH=CH−)等の不飽和炭化水素基等もあげられる。なお、前記官能基は、解離によりイオン化していてもよい。 Examples of the functional group include unsaturated hydrocarbon groups such as a phenyl group (C 6 H 5 —) and a styryl group (C 6 H 5 CH═CH—). The functional group may be ionized by dissociation.

本発明の測定方法において、前記テトラゾリウム化合物が、前記ベンゼン環において、いずれの箇所(ortho−、meta−、pra−)に前記官能基を有してもよい。また、官能基の数も特に制限されず、同じ官能基を有しても、異なる官能基を有してもよい。 In the measurement method of the present invention, the tetrazolium compound may have the functional group at any position (ortho-, meta-, pra) in the benzene ring. The number of functional groups is not particularly limited, and may have the same functional group or different functional groups.

本発明の測定方法において、前記テトラゾリウム化合物は、例えば、前記テトラゾール環の2位、3位および5位にベンゼン環構造置換基を有する化合物として、例えば、3,3’−(1,1’−ビフェニル−4,4’−ジル)−ビス(2,5−ジフェニル)−2H−テトラゾリウム塩、2,5−ジフェニル−3−(p−ジフェニル)テトラゾリウム塩、2,3−ジフェニル−5−(p−ジフェニル)テトラゾリウム塩、2,5−ジフェニル−3−(4−スチリルフェニル)テトラゾリウム塩、2,5−ジフェニル−3−(m−トリル)テトラゾリウム塩および2,5−ジフェニル−3−(p−トリル)テトラゾリウム塩等があげられる。 In the measurement method of the present invention, the tetrazolium compound is, for example, a compound having a benzene ring structure substituent at the 2-position, 3-position and 5-position of the tetrazole ring, for example, 3,3 ′-(1,1′- biphenyl-4,4'-Gilles) - bis (2,5-diphenyl) -2H- tetrazolium salt, 2,5-diphenyl-3-(p-diphenyl) yl tetrazolium salt, 2,3-diphenyl-5- ( p-diphenyl) tetrazolium salt, 2,5-diphenyl-3- (4-styrylphenyl) tetrazolium salt, 2,5-diphenyl-3- (m-tolyl) tetrazolium salt and 2,5-diphenyl-3- (p -Tolyl) tetrazolium salt and the like.

また、前記テトラゾリウム化合物は、前述のような化合物には制限されず、この他に、前記テトラゾール環の2箇所にベンゼン環構造置換基および1箇所にその他の環構造置換基を有する化合物も使用でき、例えば、2,3−ジフェニル−5−(2−チエニル)テトラゾリウム塩、および3−(4,5−ジメチル−2−チアゾイル)−2,5−ジフェニル−2H−テトラゾリウム塩等があげられる。 Further, the tetrazolium compound is not limited to the above-mentioned compounds, and in addition, a compound having a benzene ring structure substituent at two positions of the tetrazole ring and another ring structure substituent at one position can be used. Examples thereof include 2,3-diphenyl-5- (2-thienyl) tetrazolium salt and 3- (4,5-dimethyl-2-thiazoyl) -2,5-diphenyl-2H-tetrazolium salt.

また、前記テトラゾール環の2箇所にベンゼン環構造置換基および1箇所に環構造でない置換基を有するテトラゾリウム化合物も使用でき、例えば、2,3−ジフェニル−5−メチルテトラゾリウム塩、2,3−ジフェニル−5−エチルテトラゾリウム塩等があげられる。 Further, tetrazolium compounds having a benzene ring structure substituent at two positions of the tetrazole ring and a substituent not having a ring structure at one position can also be used, for example, 2,3 -diphenyl-5-methyltetrazolium salt, 2,3-diphenyl Examples include -5-ethyltetrazolium salt.

前述のテトラゾリウム化合物の中でも、前述のように、環構造置換基を3つ有する化合物が好ましく、より好ましくは、環構造がベンゼン環である置換基を3つ有するものである。なお、このようなテトラゾリウム化合物は、例えば、塩でもよいし、イオン化された状態等であってもよい。 Among the above-mentioned tetrazolium compounds, as described above, a compound having three cyclic substituted groups are preferred, more preferably the ring structure is one having three substituents is a benzene ring. Such a tetrazolium compound may be, for example, a salt or an ionized state.

本発明の測定方法において、前記テトラゾリウム化合物の添加量は、特に制限されず、試料の種類や前記還元物質の量により適宜決定できる。具体的には、例えば、試料1μl当たり、前記テトラゾリウム化合物を、0.001〜100μmolの範囲になるように添加することが好ましく、より好ましくは0.005〜10μmolの範囲、特に好ましくは、0.01〜1μmolの範囲である。   In the measurement method of the present invention, the amount of the tetrazolium compound added is not particularly limited, and can be appropriately determined depending on the type of sample and the amount of the reducing substance. Specifically, for example, the tetrazolium compound is preferably added so as to be in the range of 0.001 to 100 μmol per 1 μl of the sample, more preferably in the range of 0.005 to 10 μmol, and particularly preferably 0.00. The range is 01 to 1 μmol.

本発明の測定方法において、前記試料が全血の場合、前記テトラゾリウム化合物を、全血1μl当たり、0.001〜10μmolの範囲になるように添加することが好ましく、より好ましくは0.005〜5μmolの範囲、特に好ましくは0.01〜1μmolの範囲である。 In the measurement method of the present invention, when the sample is whole blood, the tetrazolium compound is preferably added in a range of 0.001 to 10 μmol per 1 μl of whole blood, more preferably 0.005 to 5 μmol. The range is particularly preferably 0.01 to 1 μmol .

本発明の測定方法において、前記測定対象物由来の酸化物質が過酸化水素であり、酸化還元反応の測定が、前記過酸化水素量の測定であることが好ましい。   In the measurement method of the present invention, it is preferable that the oxidation substance derived from the measurement object is hydrogen peroxide, and the measurement of the oxidation-reduction reaction is measurement of the amount of hydrogen peroxide.

前記過酸化水素量の測定は、酸化酵素と酸化により発色する基質(以下、発色性基質という)とを用いた測定であることが好ましい。   The measurement of the amount of hydrogen peroxide is preferably a measurement using an oxidase and a substrate that develops color by oxidation (hereinafter referred to as a chromogenic substrate).

前記発色性基質としては、特に制限されない。また、前記酸化酵素はペルオキシダーゼであることが好ましい。 The chromogenic substrate is not particularly limited. The oxidase is preferably peroxidase.

本発明の測定方法において、前記試料の種類は、溶血試料である。 In the measurement method of the present invention, the type of the sample is a hemolyzed sample.

本発明の測定方法において、測定対象物としては、例えば、全血中成分、赤血球内成分、血漿中成分、血清中成分、尿成分、髄液成分等があげられるが、好ましくは赤血球内成分である。前記赤血球内成分としては、例えば、糖化ヘモグロビン、糖化アルブミン等の糖化タンパク質、糖化ペプチド、糖化アミノ酸、グルコース、尿酸、コレステロール、クレアチニン、サルコシン、グリセロール等があげられ、より好ましくは糖化タンパク質である。例えば、前記赤血球成分を測定する場合、全血をそのまま溶血させたものを試料としてもよいし、全血から赤血球を分離して、前記赤血球を溶血させたものを試料として用いてもよい。   In the measurement method of the present invention, examples of the measurement target include whole blood components, erythrocyte components, plasma components, serum components, urine components, and cerebrospinal fluid components, preferably erythrocyte components. is there. Examples of the erythrocyte component include glycated proteins such as glycated hemoglobin and glycated albumin, glycated peptides, glycated amino acids, glucose, uric acid, cholesterol, creatinine, sarcosine, and glycerol, and more preferably glycated proteins. For example, when measuring the red blood cell component, a sample obtained by hemolyzing whole blood as it is may be used as a sample, or a sample obtained by separating red blood cells from whole blood and hemolyzing the red blood cells may be used as a sample.

本発明の測定方法において、前記糖化タンパク質の糖部分をFAODで酸化分解することにより過酸化水素を生成させることが好ましい。また、前記糖化ペプチド、糖化アミンも、同様にFAODを作用させることが好ましい。なお、前記糖化タンパク質や糖化ペプチドは、必要に応じて、前記FAOD処理前に、プロテアーゼ処理することが好ましい。   In the measurement method of the present invention, it is preferable to generate hydrogen peroxide by oxidatively degrading the sugar portion of the glycated protein with FAOD. In addition, the glycated peptide and glycated amine are preferably allowed to act on FAOD as well. The glycated protein or glycated peptide is preferably treated with a protease before the FAOD treatment, if necessary.

前記FAODとしては、下記式(1)に示す反応を触媒するFAODであることが好ましい。   As said FAOD, it is preferable that it is FAOD which catalyzes reaction shown to following formula (1).

Figure 0004250693
Figure 0004250693

前記式(1)において、R1は、水酸基もしくは糖化反応前の糖に由来する残基(糖残基)を意味する。前記糖残基(R1)は、反応前の糖がアルドースの場合はアルドース残基であり、反応前の糖がケトースの場合、ケトース残基である。例えば、反応前の糖がグルコースの場合は、アマドリ転位により、反応後の構造はフルクトース構造をとるが、この場合、糖残基(R1)は、グルコース残基(アルドース残基)となる。この糖残基(R1)は、例えば、
−[CH(OH)]n−CH2OH
で示すことができ、nは、0〜6の整数である。
In the formula (1), R 1 means a hydroxyl group or a residue (sugar residue) derived from a sugar before saccharification reaction. The sugar residue (R 1 ) is an aldose residue when the sugar before the reaction is aldose, and is a ketose residue when the sugar before the reaction is ketose. For example, when the sugar before the reaction is glucose, the structure after the reaction takes a fructose structure due to Amadori rearrangement. In this case, the sugar residue (R 1 ) becomes a glucose residue (aldose residue). This sugar residue (R 1 ) is, for example,
- [CH (OH)] n -CH 2 OH
N is an integer of 0-6.

前記式(1)において、R2は、特に制限されないが、例えば、糖化アミノ酸、糖化ペプチドまたは糖化タンパク質の場合、α−アミノ基が糖化されている場合と、それ以外のアミノ基が糖化されている場合とで異なる。 In the formula (1), R 2 is not particularly limited. For example, in the case of a glycated amino acid, a glycated peptide or a glycated protein, the α-amino group is glycated and the other amino groups are glycated. It differs depending on the case.

前記式(1)において、α−アミノ基が糖化されている場合、R2は、下記式(2)で示すアミノ酸残基またはペプチド残基である。 In the formula (1), when the α-amino group is glycated, R 2 is an amino acid residue or a peptide residue represented by the following formula (2).

Figure 0004250693
Figure 0004250693

前記式(2)において、R3はアミノ酸側鎖基を示す。また、R4は水酸基、アミノ酸残基またはペプチド残基を示し、例えば、下記式(3)で示すことができる。下記式(3)において、nは、0以上の整数であり、R3は、前述と同様にアミノ酸側鎖基を示す。 In the formula (2), R 3 represents an amino acid side chain group. R 4 represents a hydroxyl group, an amino acid residue, or a peptide residue, and can be represented by, for example, the following formula (3). In the following formula (3), n is an integer of 0 or more, and R 3 represents an amino acid side chain group as described above.

Figure 0004250693
Figure 0004250693

また、前記式(1)において、α−アミノ基以外のアミノ基が糖化されている(アミノ酸側鎖基が糖化されている)場合、R2は下記式(4)で示すことができる。 In the formula (1), when an amino group other than the α-amino group is saccharified (the amino acid side chain group is saccharified), R 2 can be represented by the following formula (4).

Figure 0004250693
Figure 0004250693

前記式(4)において、R5は、アミノ酸側鎖基のうち、糖化されたアミノ基以外の部分を示す。例えば、糖化されたアミノ酸がリジンの場合、R5
−CH2−CH2−CH2−CH2
であり、
例えば、糖化されたアミノ酸がアルギニンの場合、R5は、
−CH2−CH2−CH2−NH−CH(NH2)−
である。
In the formula (4), R 5 is the amino acid side chain, showing a portion other than the glycated amino group. For example, when the glycated amino acid is lysine, R 5 is —CH 2 —CH 2 —CH 2 —CH 2 —.
And
For example, when the glycated amino acid is arginine, R 5 is
—CH 2 —CH 2 —CH 2 —NH—CH (NH 2 ) —
It is.

また、前記式(4)において、R6は、水素、アミノ酸残基またはペプチド残基であり、例えば、下記式(5)で示すことができる。なお、下記式(5)において、nは0以上の整数であり、R3は、前述と同様にアミノ酸側鎖基を示す。 In the formula (4), R 6 is hydrogen, an amino acid residue or a peptide residue, and can be represented by, for example, the following formula (5). In the following formula (5), n is an integer of 0 or more, and R 3 represents an amino acid side chain group as described above.

Figure 0004250693
Figure 0004250693

また、前記式(4)において、R7は、水酸基、アミノ酸残基またはペプチド残基であり、例えば、下記式(6)で示すことができる。なお、下記式(6)において、nは0以上の整数であり、R3は、前述と同様にアミノ酸側鎖基を示す。 In the formula (4), R 7 is a hydroxyl group, an amino acid residue or a peptide residue, and can be represented by the following formula (6), for example. In the following formula (6), n is an integer of 0 or more, and R 3 represents an amino acid side chain group as described above.

Figure 0004250693
Figure 0004250693

本発明の測定方法において、試料中の前記還元物質は、特に制限されないが、その分子量が、10,000以上であり、好ましくは10,000〜3,000,000の範囲であり、より好ましくは10,000〜300,000の範囲であり、特に好ましくは30,000〜100,000の範囲である。 In the measurement method of the present invention, the reducing substance in the sample is not particularly limited, but the molecular weight is 10,000 or more , preferably in the range of 10,000 to 3,000,000, more preferably. It is in the range of 10,000 to 300,000, particularly preferably in the range of 30,000 to 100,000.

また、試料中の前記還元物質はタンパク質であることが好ましい。前記タンパク質の分子量は、好ましくは、10,000〜3,000,000の範囲、より好ましくは10,000〜300,000の範囲、特に好ましくは30,000〜100,000の範囲である。このような還元物質としては、例えば、ヘモグロビン、グロビン、グロブリン、アルブミン等があげられ、好ましくは、ヘモグロビンである。 Moreover, it is preferable that the said reducing substance in a sample is protein. The molecular weight of the protein, preferably, 10, the range of 000~3,000,000, more preferably in the range of 10,000 to 300,000, particularly preferably from 30,000 to 100,000. Examples of such a reducing substance include hemoglobin, globin, globulin, and albumin, and hemoglobin is preferable.

つぎに、本発明の測定方法について、血球中の糖化タンパク質を測定する例をあげて説明する。   Next, the measurement method of the present invention will be described with an example of measuring glycated protein in blood cells.

まず、全血をそのまま溶血し、または全血から遠心分離等の常法により血球画分を分離してこれを溶血し、溶血試料を調製する。この溶血方法は、特に制限されず、例えば、界面活性剤を用いる方法、超音波による方法、浸透圧の差を利用する方法等が使用できる。この中でも、操作の簡便性等の理由から、前記界面活性剤を用いる方法が好ましい。   First, whole blood is hemolyzed as it is, or a blood cell fraction is separated from whole blood by a conventional method such as centrifugation, and this is hemolyzed to prepare a hemolyzed sample. The hemolysis method is not particularly limited, and for example, a method using a surfactant, a method using ultrasonic waves, a method using a difference in osmotic pressure, and the like can be used. Among these, the method using the surfactant is preferable for reasons such as ease of operation.

前記界面活性剤としては、例えば、ポリオキシエチレン−p−t−オクチルフェニル エーテル(Triton系界面活性剤等)、ポリオキシエチレン ソルビタン アルキル エステル(Tween系界面活性剤等)、ポリオキシエチレン アルキル エーテル(Brij系界面活性剤等)等の非イオン性界面活性剤が使用でき、具体的には、例えば、TritonX−100、Tween−20、Brij35等があげられる。前記界面活性剤による処理条件は、通常、処理溶液中の血球濃度が、1〜10体積%の場合、前記処理溶液中の濃度が0.01〜5重量%になるように前記界面活性剤を添加し、室温で、数秒(約5秒)〜10分程度攪拌すればよい。   Examples of the surfactant include polyoxyethylene-pt-octylphenyl ether (Triton surfactant, etc.), polyoxyethylene sorbitan alkyl ester (Tween surfactant, etc.), polyoxyethylene alkyl ether ( Nonionic surfactants such as Brij type surfactants can be used, and specific examples include Triton X-100, Tween-20, Brij 35, and the like. The treatment conditions with the surfactant are usually such that when the blood cell concentration in the treatment solution is 1 to 10% by volume, the surfactant is adjusted so that the concentration in the treatment solution is 0.01 to 5% by weight. Add and stir at room temperature for a few seconds (about 5 seconds) to about 10 minutes.

つぎに、前記溶血試料に対し、前記テトラゾール環構造を有するテトラゾリウム化合物を添加し、試料の前処理を行なう。   Next, the tetrazolium compound having the tetrazole ring structure is added to the hemolyzed sample, and the sample is pretreated.

前記テトラゾリウム化合物は、例えば、前処理溶液中の血球濃度が、1〜10体積%の場合、濃度0.02〜2000mmol/リットルの範囲になるように添加することが好ましく、より好ましくは0.1〜1000mmol/リットルの範囲、特に好ましくは0.4〜200mmol/リットルの範囲である。 For example, when the blood cell concentration in the pretreatment solution is 1 to 10% by volume, the tetrazolium compound is preferably added so that the concentration is in the range of 0.02 to 2000 mmol / liter, and more preferably 0.1 to 0.1%. It is in the range of ~ 1000 mmol / liter, particularly preferably in the range of 0.4 to 200 mmol / liter .

前記前処理は、通常、緩衝液中で行われる。前記緩衝液は、例えば、CHES緩衝液、CAPSO緩衝液、CAPS緩衝液、リン酸緩衝液、Tris緩衝液、EPPS緩衝液、HEPES緩衝液等が使用できる。そのpHは、例えば、6〜13の範囲であり、好ましくは8〜12の範囲、より好ましくは9〜11の範囲である。また、前記前処理溶液中における前記緩衝液の最終濃度は、例えば、1〜400mmol/リットルの範囲であり、好ましくは10〜200mmol/リットルの範囲である。   The pretreatment is usually performed in a buffer solution. Examples of the buffer include CHES buffer, CAPSO buffer, CAPS buffer, phosphate buffer, Tris buffer, EPPS buffer, and HEPES buffer. The pH is, for example, in the range of 6 to 13, preferably in the range of 8 to 12, and more preferably in the range of 9 to 11. Moreover, the final concentration of the buffer solution in the pretreatment solution is, for example, in the range of 1 to 400 mmol / liter, and preferably in the range of 10 to 200 mmol / liter.

この前処理の条件は、特に制限されないが、通常、温度10〜37℃の範囲であり、処理時間10秒〜60分の範囲である。   The conditions for this pretreatment are not particularly limited, but are usually in the range of a temperature of 10 to 37 ° C. and a treatment time of 10 seconds to 60 minutes.

前記テトラゾリウム化合物は、そのまま使用してもよいが、操作の簡便性や処理効率等の点から、溶媒に溶解したテトラゾリウム化合物溶液として使用することが好ましい。前記溶液の濃度は、テトラゾリウム化合物の種類(例えば、分子量等)等により適宜決定でき、例えば、0.01〜120mmol/リットルの範囲であり、好ましくは0.1〜50mmol/リットルの範囲、より好ましくは0.2〜20mmol/リットルの範囲である。前記溶媒としては、例えば、蒸留水、生理食塩水、緩衝液等が使用でき、前記緩衝液としては、例えば、前述と同様の緩衝液が使用できる。なお、前記テトラゾリウム化合物は、一種類でもよいし、二種類以上を併用してもよい。   The tetrazolium compound may be used as it is, but it is preferably used as a tetrazolium compound solution dissolved in a solvent from the viewpoint of easy operation and processing efficiency. The concentration of the solution can be appropriately determined depending on the type of tetrazolium compound (for example, molecular weight, etc.), and is, for example, in the range of 0.01 to 120 mmol / liter, preferably in the range of 0.1 to 50 mmol / liter. Is in the range of 0.2-20 mmol / liter. As the solvent, for example, distilled water, physiological saline, buffer solution, or the like can be used. As the buffer solution, for example, the same buffer solution as described above can be used. In addition, the said tetrazolium compound may be one type and may use 2 or more types together.

つぎに、この前処理済み溶血試料に対し、プロテアーゼ処理を行う。これは、後の処理に使用するFAODを測定対象物に作用し易くするためである。   Next, a protease treatment is performed on the pretreated hemolyzed sample. This is for facilitating the action of the FAOD used for the subsequent processing on the measurement object.

前記プロテアーゼの種類は、特に制限されず、例えば、プロテアーゼK、ズブチリシン、トリプシン、アミノペプチダーゼ等が使用できる。前記プロテアーゼ処理は、通常、緩衝液中で行われ、その処理条件は、使用するプロテアーゼの種類、測定対象物である糖化タンパク質の種類およびその濃度等により適宜決定される。   The kind of the protease is not particularly limited, and for example, protease K, subtilisin, trypsin, aminopeptidase and the like can be used. The protease treatment is usually performed in a buffer solution, and the treatment conditions are appropriately determined depending on the type of protease to be used, the type of glycated protein that is a measurement target, the concentration thereof, and the like.

具体的には、例えば、前記プロテアーゼとしてプロテアーゼKを用いて前記前処理済み溶血試料を処理する場合、通常、反応液中のプロテアーゼ濃度10〜30,000mg/リットル、反応液中の血球濃度0.05〜15体積%、反応温度15〜37℃、反応時間1分〜24時間、pH6〜12の範囲である。また、前記緩衝液の種類も特に制限されず、例えば、トリス塩酸緩衝液、EPPS緩衝液、PIPES緩衝液等が使用できる。   Specifically, for example, when the pretreated hemolyzed sample is treated with protease K as the protease, the protease concentration in the reaction solution is usually 10 to 30,000 mg / liter, and the blood cell concentration in the reaction solution is 0. It is the range of 05-15 volume%, reaction temperature 15-37 degreeC, reaction time 1 minute-24 hours, and pH 6-12. Further, the type of the buffer solution is not particularly limited, and for example, Tris-HCl buffer solution, EPPS buffer solution, PIPES buffer solution and the like can be used.

つぎに、前記プロテアーゼ処理により得られた分解物を、前記FAODで処理する。このFAOD処理により、前記式(1)に示す反応が触媒される。   Next, the degradation product obtained by the protease treatment is treated with the FAOD. By this FAOD treatment, the reaction represented by the formula (1) is catalyzed.

このFAOD処理は、前記プロテアーゼ処理と同様に緩衝液中で行うことが好ましい。その処理条件は、使用するFAODの種類、測定対象物である糖化タンパク質の種類およびその濃度等により適宜決定される。   This FAOD treatment is preferably performed in a buffer solution as in the protease treatment. The processing conditions are appropriately determined depending on the type of FAOD to be used, the type of glycated protein that is a measurement target, its concentration, and the like.

具体的には、例えば、反応液中のFAOD濃度50〜50,000U/リットル、反応液中の血球濃度0.01〜1体積%、反応温度15〜37℃、反応時間1〜60分、pH6〜9の範囲である。また、前記緩衝液の種類も特に制限されず、前記プロテアーゼ処理と同様の緩衝液が使用できる。   Specifically, for example, the FAOD concentration in the reaction solution is 50 to 50,000 U / liter, the blood cell concentration in the reaction solution is 0.01 to 1% by volume, the reaction temperature is 15 to 37 ° C., the reaction time is 1 to 60 minutes, and the pH is 6 It is the range of ~ 9. Further, the type of the buffer solution is not particularly limited, and the same buffer solution as in the protease treatment can be used.

つぎに、前記FAOD処理で生成した過酸化水素を、PODおよび前記発色性基質を用いて酸化還元反応により測定する。   Next, the hydrogen peroxide generated by the FAOD treatment is measured by a redox reaction using POD and the chromogenic substrate.

前記発色性基質としては、例えば、N−(カルボキシメチルアミノカルボニル)−4,4’−ビス(ジメチルアミノ)ジフェニルアミンナトリウム、オルトフェニレンジアミン(OPD)、トリンダー試薬と4−アミノアンチピリンとを組み合せた基質等があげらる。前記トリンダー試薬としては、例えば、フェノール、フェノール誘導体、アニリン誘導体、ナフトール、ナフトール誘導体、ナフチルアミン、ナフチルアミン誘導体等があげらる。また、前記アミノアンチピリンの他に、アミノアンチピリン誘導体、バニリンジアミンスルホン酸、メチルベンズチアゾリノンヒドラゾン(MBTH)、スルホン化メチルベンズチアゾリノンヒドラゾン(SMBTH)等も使用できる。このような発色性基質の中でも、特に好ましくは、前述のように、N−(カルボキシメチルアミノカルボニル)−4,4’−ビス(ジメチルアミノ)ジフェニルアミンナトリウムである。   As the chromogenic substrate, for example, N- (carboxymethylaminocarbonyl) -4,4′-bis (dimethylamino) diphenylamine sodium, orthophenylenediamine (OPD), a substrate obtained by combining a Trinder reagent and 4-aminoantipyrine Etc. Examples of the Trinder reagent include phenol, phenol derivatives, aniline derivatives, naphthol, naphthol derivatives, naphthylamine, naphthylamine derivatives, and the like. In addition to the aminoantipyrine, aminoantipyrine derivatives, vanillin diamine sulfonic acid, methylbenzthiazolinone hydrazone (MBTH), sulfonated methylbenzthiazolinone hydrazone (SMBTH) and the like can also be used. Among such chromogenic substrates, as described above, N- (carboxymethylaminocarbonyl) -4,4'-bis (dimethylamino) diphenylamine sodium is particularly preferable.

前記酸化還元反応は、通常、緩衝液中で行われ、その条件は、前記生成した過酸化水素の濃度等により適宜決定される。通常、反応液中のPOD濃度10〜100,000IU/リットル、発色性基質濃度0.005〜30mmol/l、反応温度15〜37℃、反応時間0.1〜30分、pH5〜9である。また、前記緩衝液は、特に制限されず、例えば、前記プロテアーゼ処理およびFAOD処理等と同様の緩衝液等が使用できる。   The oxidation-reduction reaction is usually performed in a buffer solution, and the conditions are appropriately determined depending on the concentration of the generated hydrogen peroxide. Usually, the POD concentration in the reaction solution is 10 to 100,000 IU / liter, the chromogenic substrate concentration is 0.005 to 30 mmol / l, the reaction temperature is 15 to 37 ° C., the reaction time is 0.1 to 30 minutes, and the pH is 5 to 9. The buffer solution is not particularly limited, and for example, the same buffer solution as the protease treatment and FAOD treatment can be used.

前記酸化還元反応において、例えば、前記発色性基質を用いた場合、前記反応液の発色程度(吸光度)を分光光度計で測定することにより、過酸化水素の量を測定できる。そして、例えば、この過酸化水素濃度と検量線等とを用いて、試料中の糖化タンパク質量を求めることができる。   In the oxidation-reduction reaction, for example, when the chromogenic substrate is used, the amount of hydrogen peroxide can be measured by measuring the degree of color development (absorbance) of the reaction solution with a spectrophotometer. For example, the amount of glycated protein in the sample can be determined using the hydrogen peroxide concentration and the calibration curve.

なお、前記過酸化水素量は、前記POD等を用いた酵素的手法の他に、例えば、電気的手法により測定することもできる。   The amount of hydrogen peroxide can be measured by, for example, an electrical method in addition to the enzymatic method using the POD or the like.

この測定方法において、テトラゾリウム化合物による前処理工程は、前述のように、酸化還元反応が実質的に生じる前であれば、特に制限されないが、前記FAOD処理後に過酸化水素が発生することから、前記FAOD処理前に行なうことが好ましい。また、各処理工程は、前述のように別々に行ってもよいが、例えば、以下に示すような組み合わせで同時に行ってもよい処理工程がある。   In this measurement method, the pretreatment step with the tetrazolium compound is not particularly limited as long as the oxidation-reduction reaction substantially occurs as described above, but hydrogen peroxide is generated after the FAOD treatment. It is preferably performed before the FAOD treatment. Moreover, although each process process may be performed separately as mentioned above, there exists a process process which may be performed simultaneously by the combination as shown below, for example.

1:溶血処理+前処理
2:溶血処理+前処理+プロテアーゼ処理
3:プロテアーゼ処理+FAOD処理
4:FAOD処理+POD酸化還元処理
5:プロテアーゼ処理+FAOD処理+POD酸化還元処理
また、前記FAOD、PODおよび発色性基質の添加順序も、特に制限されない。
1: hemolysis treatment + pretreatment 2: hemolysis treatment + pretreatment + protease treatment 3: protease treatment + FAOD treatment 4: FAOD treatment + POD oxidation-reduction treatment 5: protease treatment + FAOD treatment + POD oxidation-reduction treatment The order of adding the substrates is not particularly limited.

このように、試料にテトラゾリウム化合物を接触させることにより、GSH、AsA、ジチオスレイトール、システイン、N−アセチル−システイン等の低分子量還元物質による影響だけでなく、例えば、タンパク質や前述のような分子量の範囲である還元物質による影響も回避することができる。   Thus, by contacting the sample with a tetrazolium compound, not only the influence of low molecular weight reducing substances such as GSH, AsA, dithiothreitol, cysteine, N-acetyl-cysteine, but also proteins and molecular weights as described above, for example. It is also possible to avoid the influence of the reducing substance within the range.

また、本発明の測定方法の前記テトラゾリウム化合物による前処理工程において、例えば、前記テトラゾリウム化合物以外の酸化剤を、さらに併用してもよい。前記酸化剤としては、例えば、ヨード酢酸ナトリウム、ヨーソ酸、過ヨウ素酸等のハロゲン酸化物、EDTA−Fe、アスコルビン酸オキシダーゼ、ビリルビンオキシダーゼ等が使用できる。このような酸化剤の添加量は、例えば、試料1μl当たり0.001〜0.1mgの範囲である。   In the pretreatment step with the tetrazolium compound in the measurement method of the present invention, for example, an oxidizing agent other than the tetrazolium compound may be used in combination. Examples of the oxidizing agent include halogen oxides such as sodium iodoacetate, iodoacid, and periodic acid, EDTA-Fe, ascorbate oxidase, bilirubin oxidase, and the like. The amount of the oxidizing agent added is, for example, in the range of 0.001 to 0.1 mg per 1 μl of sample.

本発明の測定方法において、測定対象物は、酸化還元反応を利用するものであれば、特に制限されず、前記糖化タンパク質の他に、例えば、前述のように、糖化ペプチド、糖化アミノ酸、グルコース、コレステロール、尿酸、クレアチニン、サルコシン、グリセロール等があげられる。   In the measurement method of the present invention, the measurement object is not particularly limited as long as it uses an oxidation-reduction reaction. In addition to the glycated protein, for example, as described above, a glycated peptide, a glycated amino acid, glucose, Examples include cholesterol, uric acid, creatinine, sarcosine, glycerol and the like.

例えば、過酸化水素を発生させて、前記各測定対象物の量を測定する場合は、例えば、前記グルコースにはグルコースオキシダーゼを、前記コレステロールにはコレステロールオキシダーゼを、前記尿酸にはウリカーゼを、前記クレアチニンにはサルコシンオキシダーゼを、前記サルコシンにはサルコシンオキシダーゼを、前記グリセロールにはグリセロールオキシダーゼを、それぞれ作用させて過酸化水素を発生させればよい。この過酸化水素量の測定方法は、前述と同様にして行なうことができる。また、糖化ペプチド、糖化アミノ酸は、例えば、前記糖化タンパク質の測定と同様にして測定できる。   For example, when hydrogen peroxide is generated to measure the amount of each measurement object, for example, glucose oxidase for glucose, cholesterol oxidase for cholesterol, uricase for uric acid, and creatinine Sarcosine oxidase, sarcosine oxidase on the sarcosine, glycerol oxidase on the glycerol, and hydrogen peroxide may be generated. The method for measuring the amount of hydrogen peroxide can be performed in the same manner as described above. The glycated peptide and glycated amino acid can be measured in the same manner as the measurement of the glycated protein, for example.

また、前記テトラゾリウム化合物による試料中の還元物質の処理後、測定対象物由来の還元物質を発生させ、この量を酸化還元反応により測定し、この測定値から、前記測定対象物の量を決定する場合は、例えば、以下に示すようにして測定を行なうことができる。   Further, after treatment of the reducing substance in the sample with the tetrazolium compound, a reducing substance derived from the measurement object is generated, this amount is measured by an oxidation-reduction reaction, and the amount of the measurement object is determined from this measurement value. In this case, for example, measurement can be performed as shown below.

例えば、前記測定対象物がグルコースの場合、例えば、NADやNADP等の存在下、グルコースデヒドロゲナーゼを用いて、NADHやNADPH等の還元物質を発生させる。そして、前記測定対象物由来の還元物質であるNADHやNADPHを、例えば、ジアホラーゼと、還元により発色する基質とを用いて、酸化還元反応により測定する。そして、前述のように、例えば、この測定対象物由来の還元物質の濃度と検量線等とを用いて、試料中の測定対象物の量を求めることができる。また、例えば、測定対象物がコレステロールの場合はコレステロールデヒドロゲナーゼを、サルコシンの場合は、サルコシンデヒドロゲナーゼをそれぞれ使用できる。   For example, when the measurement object is glucose, a reducing substance such as NADH or NADPH is generated using glucose dehydrogenase in the presence of NAD or NADP, for example. Then, NADH and NADPH, which are reducing substances derived from the measurement object, are measured by an oxidation-reduction reaction using, for example, diaphorase and a substrate that develops color by reduction. And as above-mentioned, the quantity of the measuring object in a sample can be calculated | required using the density | concentration of a reducing substance derived from this measuring object, a calibration curve, etc., for example. Further, for example, when the measurement object is cholesterol, cholesterol dehydrogenase can be used, and when the measurement object is sarcosine, sarcosine dehydrogenase can be used.

前記還元により発色する基質としては、特に制限されないが、例えば、前記試料中の還元物質の影響を排除するために添加した発色性のテトラゾリウム化合物を用いてもよい。また、各測定波長に応じて、前記試料の前処理に使用したものとは違う種類の発色性のテトラゾリウム化合物を使用してもよい。前記発色性のテトラゾリウム化合物の他には、例えば、2,6−ジクロロフェノールインドフェノール等も使用できる。なお、より優れた信頼性の測定値を得るために、例えば、前記測定対象物由来の還元物質を測定する前に、予め吸光度を測定しておくことが好ましい。   The substrate that develops color by reduction is not particularly limited. For example, a color-forming tetrazolium compound added to eliminate the influence of the reducing substance in the sample may be used. Depending on each measurement wavelength, a color-developing tetrazolium compound of a different type from that used for the pretreatment of the sample may be used. In addition to the color-forming tetrazolium compound, for example, 2,6-dichlorophenolindophenol can also be used. In order to obtain a more reliable measurement value, for example, it is preferable to measure the absorbance in advance before measuring the reducing substance derived from the measurement object.

このように、前記テトラゾリウム化合物を用いて試料を処理すれば、前記低分子量還元物質だけでなく、例えば、前述のようなタンパク質等の高分子量還元物質の影響も回避できる。このため、分子量1万以上の還元物質や、タンパク質である還元物質が影響する場合は、前記全血試料だけには限定されず、前述のような各種試料に対しても適用できる。全血試料以外の試料を用いる場合は、前記試料が異なる以外は同様の試薬を用いて、同様にして測定することができる。   Thus, if the sample is treated with the tetrazolium compound, the influence of not only the low molecular weight reducing substance but also the high molecular weight reducing substance such as protein as described above can be avoided. For this reason, when a reducing substance having a molecular weight of 10,000 or more or a reducing substance that is a protein is affected, the invention is not limited to the whole blood sample, and can be applied to various samples as described above. When a sample other than the whole blood sample is used, measurement can be performed in the same manner using the same reagent except that the sample is different.

つぎに、実施例について比較例と併せて説明する。   Next, examples will be described together with comparative examples.

参考例1、比較例1)
この参考例は、試料を下記テトラゾリウム化合物で前処理し、前記試料中の還元物質の影響を排除した例である。以下に、使用した試薬および方法を示す。
( Reference Example 1, Comparative Example 1)
The reference example, pretreated samples below tetrazolium compounds are examples in which the influence of reducing substances in the sample. The reagents and methods used are shown below.

(界面活性剤溶液)
ポリオキシエチレン(10)−p−t−オクチルフェニル エーテル(以下、Triton X−100という)を、濃度0.1体積%になるように精製水と混合して調製した。
(Surfactant solution)
Polyoxyethylene (10) -pt-octylphenyl ether (hereinafter referred to as Triton X-100) was prepared by mixing with purified water to a concentration of 0.1% by volume.

(WST−3溶液)
濃度が1mmol/リットルになるように、精製水に 2−(4−ヨードフェニル)−3−(2,4−ジニトロフェニル)−5−(2,4−ジスルホフェニル)−2H−テトラゾリウム,モノナトリウム塩(WST−3、同仁化学研究所社製)を溶解して調製した。
(WST-3 solution)
In purified water, 2- (4-iodophenyl) -3- (2,4-dinitrophenyl) -5- (2,4-disulfophenyl) -2H-tetrazolium, mono was added so that the concentration was 1 mmol / liter. A sodium salt (WST-3, manufactured by Dojindo Laboratories) was dissolved and prepared.

(フルクトシルバリン溶液)
フルクトシルバリン(以下、FVという)は、特開平2−69644号公報にしたがって製造した(以下、同じ)。前記FVを、濃度50μmol/リットルになるように0.5mol/リットルTris−HCl緩衝液(pH8.0)に添加して調製した。
(Fructosylvaline solution)
Fructosylvaline (hereinafter referred to as FV) was produced according to JP-A-2-69644 (hereinafter the same). The FV was prepared by adding to a 0.5 mol / liter Tris-HCl buffer (pH 8.0) to a concentration of 50 μmol / liter.

(酸化還元反応溶液A)
FAOD(旭化成工業社製:以下同じ) 28.6KU/リットル
POD(東洋紡社製:以下、同じ) 14.3KU/リットル
DA−64(和光純薬工業社製:以下、同じ) 28.6μmol/リットル
蒸留水 残分
健常者の全血を遠心分離(1630G、10分間)して血球を回収した。そして、前記血球を前記Triton X−100溶液で、20倍(体積)希釈し、溶血させたものを溶血試料とした。
(Redox reaction solution A)
FAOD (Asahi Kasei Kogyo Co., Ltd .: The same applies below) 28.6 KU / L POD (Toyobo Co., Ltd .: The same applies below) 14.3 KU / L DA-64 (Wako Pure Chemical Industries, Ltd .: The same applies below) 28.6 μmol / L Distilled water residue Whole blood of a healthy person was centrifuged (1630 G, 10 minutes) to collect blood cells. The blood cells were diluted 20 times (volume) with the Triton X-100 solution and hemolyzed to obtain hemolyzed samples.

前記試料50μlに、0.5mol/リットル CHES緩衝液(PH9.0)50μlを添加してから、前記WST−3溶液100μlを添加し、攪拌後、37℃で10分間処理した。前記処理後、前記処理済み試料に、前記FV溶液400μlを添加してから、前記酸化還元反応溶液A 1400μlを添加し、反応を開始した。そして、反応溶液の726nmにおける吸光度を測定した。   After adding 50 μl of 0.5 mol / liter CHES buffer (PH9.0) to 50 μl of the sample, 100 μl of the WST-3 solution was added, and after stirring, treated at 37 ° C. for 10 minutes. After the treatment, 400 μl of the FV solution was added to the treated sample, and then 1400 μl of the oxidation-reduction reaction solution A was added to start the reaction. Then, the absorbance of the reaction solution at 726 nm was measured.

コントロールとしては、前記溶血試料の代り蒸留水を用いた以外は、前述と同様にして測定を行なった。比較例1としては、前記WST−3溶液の代りに蒸留水を用いた以外は、前記参考例1と同様にして測定を行なった。 As a control, measurement was performed in the same manner as described above except that distilled water was used instead of the hemolyzed sample. As Comparative Example 1, measurement was performed in the same manner as in Reference Example 1 except that distilled water was used instead of the WST-3 solution.

そして、これらの測定値を下記式(数1)に代入し、コントロールの吸光度を100%とした時の相対値(%)を求めた。これらの結果を下記表1に示す。   Then, these measured values were substituted into the following formula (Equation 1) to obtain a relative value (%) when the absorbance of the control was 100%. These results are shown in Table 1 below.

Figure 0004250693
Figure 0004250693

Figure 0004250693
Figure 0004250693

このように、血球の溶血試料をテトラゾリウム化合物で処理することにより、前記試料中の還元物質の影響を排除でき、測定の信頼性が向上した。
(比較例2および比較例3)
参考例1と同様にして血球を回収し、これを1.0体積%Triton X−100溶液で、5倍(体積)希釈し、溶血させたものを溶血試料とした。この溶血試料50μlに、1.0mol/リットル ヨード酢酸ナトリウム(Aldorich社製:以下、同じ)溶液150μlを添加し、攪拌後、37℃で10分間処理した。前記処理後、前記処理済み試料に、前記FV溶液400μlを添加し、続いて、前記酸化還元反応溶液A 1400μlを添加して反応を開始した。そして、前記実施例1と同様にして吸光度を測定し、コントロールに対する相対値(%)を求めた。これを比較例2とした。なお、コントロールとしては、前記溶血試料の代りに蒸留水を用いた以外は、前述と同様にして測定を行なった。
Thus, by treating the hemolyzed sample of blood cells with the tetrazolium compound, the influence of the reducing substance in the sample can be eliminated, and the reliability of the measurement is improved.
(Comparative Example 2 and Comparative Example 3)
Blood cells were collected in the same manner as in Reference Example 1, and this was diluted 5 times (volume) with 1.0 volume% Triton X-100 solution, and hemolyzed sample was used as a hemolyzed sample. To 50 μl of this hemolyzed sample, 150 μl of a 1.0 mol / liter sodium iodoacetate (Aldrich: hereinafter the same) solution was added, stirred, and then treated at 37 ° C. for 10 minutes. After the treatment, 400 μl of the FV solution was added to the treated sample, and then 1400 μl of the oxidation-reduction reaction solution A was added to initiate the reaction. Then, the absorbance was measured in the same manner as in Example 1, and the relative value (%) to the control was determined. This was designated as Comparative Example 2. As a control, measurement was performed in the same manner as described above except that distilled water was used instead of the hemolyzed sample.

比較例3は、前記ヨード酢酸ナトリウム溶液の代りに蒸留水を添加した以外は、前記参考例1と同様にして測定を行なった。これらの結果を下記表2に示す。 In Comparative Example 3, measurement was performed in the same manner as in Reference Example 1 except that distilled water was added instead of the sodium iodoacetate solution. These results are shown in Table 2 below.

Figure 0004250693
Figure 0004250693

前記表2に示すように、従来から使用されている酸化剤であるヨード酢酸ナトリウムでは、溶血試料中の還元物質の影響を回避できないことが確認できた。
(比較例4)
この比較例は、赤血球の溶血試料を分子量分画してから、ヨード酢酸ナトリウムで処理した例である。
ヘパリンを添加した健常者血液10mlを遠心分離(1630G、10分間)し、血漿層および白血球層をピペットで除去した。得られた赤血球層に、生理食塩水加え、前記赤血球が溶血しないように、ゆっくり混和してから、前述と同様に遠心分離を行ない、上清を除去した。この一連の洗浄操作は、3回繰り返し行なった。つぎに、得られた赤血球に、同量(体積)の蒸留水を加えて完全に溶血させた後、再度、遠心分離(4530G、10分間)を行ない、膜成分を除去した溶液を試料1とした。
As shown in Table 2 above, it has been confirmed that sodium iodoacetate, which is an oxidant conventionally used, cannot avoid the influence of reducing substances in the hemolyzed sample.
(Comparative Example 4)
In this comparative example, a hemolyzed sample of red blood cells was subjected to molecular weight fractionation and then treated with sodium iodoacetate.
Ten milliliters of healthy human blood to which heparin was added was centrifuged (1630 G, 10 minutes), and the plasma layer and leukocyte layer were removed with a pipette. To the obtained erythrocyte layer, physiological saline was added, and the mixture was slowly mixed so that the erythrocytes would not be hemolyzed, followed by centrifugation as described above to remove the supernatant. This series of washing operations was repeated three times. Next, after adding the same amount (volume) of distilled water to the obtained erythrocytes to completely hemolyze them, centrifugation (4530 G, 10 minutes) is performed again, and the solution from which the membrane components have been removed is referred to as Sample 1. did.

つぎに、試料1を、CENTRIPREP 30(ミリポア社製)を用いて、遠心分離(1630G、4時間)することにより限外濾過した。前記CENTRIPREP 30に残った分子量3万以上の画分を、試料2とし、濾液を試料3とした。   Next, the sample 1 was ultrafiltered by centrifuging (1630G, 4 hours) using CENTRIPREP 30 (Millipore). The fraction having a molecular weight of 30,000 or more remaining in the CENTRIPREP 30 was designated as sample 2, and the filtrate was designated as sample 3.

つぎに、前記試料3を、さらに、CENTRIPREP 10(ミリポア社製)を用いて、遠心分離(1630G、2時間)することにより限外濾過した。前記CENTRIPREP 10に残った分子量1万以上3万未満の画分を試料4とし、濾液を試料5とした。   Next, the sample 3 was further ultrafiltered by centrifugation (1630 G, 2 hours) using CENTRIPREP 10 (manufactured by Millipore). The fraction remaining in the CENTRIPREP 10 with a molecular weight of 10,000 or more and less than 30,000 was designated as sample 4, and the filtrate was designated as sample 5.

そして、前記各試料を蒸留水で希釈した希釈溶液200μlに、前記FV溶液400μlを添加し、続いて、前記酸化還元反応溶液A 1400μlを添加して反応を開始した。そして、前記実施例1と同様にして吸光度を測定し、コントロールに対する相対値(%)を求めた。なお、前記試料1〜2は、蒸留水により80倍に希釈し、試料3〜試料5は、10倍に希釈した。コントロールとしては、前記溶血試料の代り蒸留水を用いた以外は、前述と同様にして測定を行なった。   Then, 400 μl of the FV solution was added to 200 μl of a diluted solution obtained by diluting each sample with distilled water, and then 1400 μl of the oxidation-reduction reaction solution A was added to start the reaction. Then, the absorbance was measured in the same manner as in Example 1, and the relative value (%) to the control was determined. The samples 1 and 2 were diluted 80 times with distilled water, and the samples 3 to 5 were diluted 10 times. As a control, measurement was performed in the same manner as described above except that distilled water was used instead of the hemolyzed sample.

また、前記各試料の希釈溶液50μlに対し、前記ヨード酢酸ナトリウム溶液150μlを添加し、攪拌後、37℃で10分間処理した。そして、前記処理済み希釈試料に、前記FV溶液400μlを添加し、続いて、前記酸化還元反応溶液A 1400μlを添加して反応を開始した。前記参考例1と同様にして吸光度を測定し、コントロールに対する相対値(%)を求めた。これらの結果を下記表3に示す。 Further, 150 μl of the sodium iodoacetate solution was added to 50 μl of the diluted solution of each sample, and the mixture was stirred and treated at 37 ° C. for 10 minutes. Then, 400 μl of the FV solution was added to the processed diluted sample, and then 1400 μl of the oxidation-reduction reaction solution A was added to start the reaction. Absorbance was measured in the same manner as in Reference Example 1, and a relative value (%) to the control was determined. These results are shown in Table 3 below.

Figure 0004250693
Figure 0004250693

前記表3に示すように、試料1(未分画)および試料2(分子量3万以上の画分)については、ほとんど測定することができなかった。また、前記試料1および試料2をヨード酢酸ナトリウムで処理しても、同様に、ほとんど測定できなかった。このことから、ヨード酢酸ナトリウムでは、1万以上、特に3万以上の還元物質についての影響を、ほとんど回避できないことがわかった。
実施例1、比較例5)
この実施例は、各種テトラゾリウム化合物を用いて、血液試料を処理して、前記試料中の還元物質の影響を排除した例である。以下に、使用したテトラゾリウム化合物の化合物名とその構造を示す。
As shown in Table 3, almost no measurement was possible for sample 1 (unfractionated) and sample 2 (fraction with a molecular weight of 30,000 or more). Similarly, even when Sample 1 and Sample 2 were treated with sodium iodoacetate, almost no measurement was possible. From this, it was found that sodium iodoacetate can hardly avoid the influence of 10,000 or more, especially 30,000 or more reducing substances.
( Example 1 and Comparative Example 5)
In this example, blood samples were treated with various tetrazolium compounds to eliminate the influence of reducing substances in the samples. The compound names and structures of the tetrazolium compounds used are shown below.

(1−8)D0883:2,5−ジフェニル−3−(p−ジフェニル)テトラゾリウム クロライド  (1-8) D0883: 2,5-diphenyl-3- (p-diphenyl) tetrazolium chloride

Figure 0004250693
Figure 0004250693

(1−9)D0884:2,3−ジフェニル−5−(p−ジフェニル)テトラゾリウム クロライド(1-9) D0884: 2,3-diphenyl-5- (p-diphenyl) tetrazolium chloride

Figure 0004250693
Figure 0004250693

(1−10)D0915:2,5−ジフェニル−3−(4−スチリルフェニル)テトラゾリウム クロライド(1-10) D0915: 2,5-diphenyl-3- (4-styrylphenyl) tetrazolium chloride

Figure 0004250693
Figure 0004250693

(1−11)T324:2,5−ジフェニル−3−(m−トリル)テトラゾリウム クロライド(1-11) T324: 2,5-diphenyl-3- (m-tolyl) tetrazolium chloride

Figure 0004250693
Figure 0004250693

(1−12)T326:2,5−ジフェニル−3−(p−トリル)テトラゾリウム クロライド(1-12) T326: 2,5-diphenyl-3- (p-tolyl) tetrazolium chloride

Figure 0004250693
Figure 0004250693

(2)テトラゾール環の2箇所にベンゼン環構造置換基を有し、1箇所にその他の環構造置換基を有するテトラゾリウム化合物
(2−1)B0325:2,3−ジフェニル−5−(2−チエニル)テトラゾリウム クロライド
(2) Tetrazolium compound having a benzene ring structure substituent at two positions on the tetrazole ring and another ring structure substituent at one position (2-1) B0325 : 2,3-diphenyl-5- (2-thienyl) ) Tetrazolium chloride

Figure 0004250693
Figure 0004250693

(2−4)MTT:3−(4,5−ジメチル−2−チアゾイル)−2,5−ジフェニル−2H−テトラゾリウム クロライド(2-4) MTT: 3- (4,5-dimethyl-2-thiazoyl) -2,5-diphenyl-2H-tetrazolium chloride

Figure 0004250693
Figure 0004250693

(3)テトラゾール環の2箇所にベンゼン環構造置換基を有し、1箇所に環構造以外の置換基を有するテトラゾリウム化合物 (3) A tetrazolium compound having a benzene ring structure substituent at two positions on the tetrazole ring and a substituent other than the ring structure at one position.

(3−3)B313:2,3−ジフェニル−5−メチルテトラゾリウム クロライド(3-3) B313: 2,3-diphenyl-5-methyltetrazolium chloride

Figure 0004250693
Figure 0004250693

(3−4)B319:2,3−ジフェニル−5−エチルテトラゾリウム クロライド(3-4) B319: 2,3-diphenyl-5-ethyltetrazolium chloride

Figure 0004250693
Figure 0004250693

なお、これら化合物は、東京化成社製である。
(FV溶液)
前記FVを、濃度10μmol/リットルになるように0.145mol/リットルKPB(pH7.0)に添加して調製した。
(酸化還元反応溶液B)
FAOD 73KU/リットル
POD 219KU/リットル
DA−64 146μmol/リットル
蒸留水 残分
1.0mol/リットル CAPSO緩衝液(pH10.0)25μlに、前記10体積% Triton X−100溶液41.3μlおよび健常者の全血1.65μlを添加し、蒸留水で250μlに定量した。そして、これを精製水で3倍(体積)希釈したものを溶血試料とした。
These compounds are manufactured by Tokyo Chemical Industry Co., Ltd.
(FV solution)
The FV was prepared by adding 0.145 mol / liter KPB (pH 7.0) to a concentration of 10 μmol / liter.
(Redox reaction solution B)
FAOD 73 KU / L POD 219 KU / L DA-64 146 μmol / L Distilled water Residue 1.0 mol / L In CAPSO buffer (pH 10.0) 25 μL, the 10 vol% Triton X-100 solution 41.3 μL 1.65 μl of whole blood was added and quantified to 250 μl with distilled water. And what diluted this 3 times (volume) with purified water was made into the hemolysis sample.

前記溶血試料250μlに、各種テトラゾリウム化合物溶液150μlを添加し、攪拌後、37℃で60分間処理した。そして、前記処理済み試料25μlに、前記FV溶液55μlを添加してから、前記酸化還元反応溶液B 15μlを添加し、反応を開始した。そして、前記参考例1と同様にして吸光度を測定し、コントロールに対する相対値(%)を求めた。なお、前記テトラゾリウム化合物溶液の濃度は、WST−5については0.5mmol/リットルとし、それ以外の溶液は濃度5mmol/リットルとした。 150 μl of various tetrazolium compound solutions were added to 250 μl of the hemolyzed sample, stirred, and then treated at 37 ° C. for 60 minutes. Then, 55 μl of the FV solution was added to 25 μl of the processed sample, and then 15 μl of the redox reaction solution B was added to start the reaction. And the light absorbency was measured like the said reference example 1, and the relative value (%) with respect to control was calculated | required. The concentration of the tetrazolium compound solution was 0.5 mmol / liter for WST-5, and the concentration of the other solutions was 5 mmol / liter.

コントロールとしては、前記溶血試料の代り蒸留水を用いた以外は、前述と同様にして測定を行なった。比較例5としては、前記テトラゾリウム化合物溶液の代りに蒸留水を用いた以外は、前記実施例1と同様にして測定を行なった。これらの結果を下記表4に示す。 As a control, measurement was performed in the same manner as described above except that distilled water was used instead of the hemolyzed sample. As Comparative Example 5, measurement was performed in the same manner as in Example 1 except that distilled water was used instead of the tetrazolium compound solution. These results are shown in Table 4 below.

Figure 0004250693
Figure 0004250693

前記表4に示すように、溶血試料を前記各種テトラゾリウム化合物で処理することにより、測定値の信頼性が向上した。特に、テトラゾール環の3箇所にベンゼン環構造置換基を有するテトラゾリウム化合物(1−8)〜(1−12)によれば、さらに信頼性に優れた測定値を得ることができた。 As shown in Table 4, the reliability of the measured values was improved by treating the hemolyzed sample with the various tetrazolium compounds. In particular, according to the tetrazolium compounds (1-8) to (1-12) having a benzene ring structure substituent at three positions on the tetrazole ring, it was possible to obtain a more reliable measurement value .

Claims (15)

試料中の測定対象物を酸化還元反応を用いて測定する方法であって、前記試料が溶血試料であり、前記酸化還元反応に先立ち、試料にテトラゾリウム化合物を添加して前記試料中に含まれる還元物質の影響を排除し、その後、前記測定対象物由来の還元物質または酸化物質を発生させ、この量を、前記テトラゾリウム化合物以外の発色性基質の存在下、酸化還元反応により測定し、この測定値から前記測定対象物の量を決定する工程を含み、
前記テトラゾリウム化合物は、テトラゾール環の少なくとも二箇所に環構造置換基を有し、前記環構造置換基は、フェニル基、トリル基、ジフェニル基、スチリルフェニル基、チエニル基、およびジメチルチアゾイル基からなる群からそれぞれ選択され、
前記試料中の還元物質の分子量が、10,000以上である測定方法。
A method for measuring an object to be measured in a sample using a redox reaction, wherein the sample is a hemolytic sample, and prior to the redox reaction, a tetrazolium compound is added to the sample and the reduction contained in the sample After eliminating the influence of the substance, a reducing substance or an oxidizing substance derived from the measurement object is generated, and this amount is measured by a redox reaction in the presence of a chromogenic substrate other than the tetrazolium compound. Determining the amount of the measurement object from
The tetrazolium compound has a ring structure substituent in at least two positions of the tetrazole ring, and the ring structure substituent is composed of a phenyl group, a tolyl group, a diphenyl group, a styrylphenyl group, a thienyl group, and a dimethylthiazoyl group. Each selected from a group,
The measurement method wherein the molecular weight of the reducing substance in the sample is 10,000 or more .
前記少なくとも二つの環構造置換基が、フェニル基である請求項1に記載の測定方法。 The measurement method according to claim 1, wherein the at least two ring structure substituents are phenyl groups . 前記テトラゾリウム化合物が、テトラゾール環の少なくとも三箇所に環構造置換基を有し、前記環構造置換基のうち少なくとも2つの環構造置換基の環構造がフェニル基である請求項1または2に記載の測定方法。 3. The ring structure according to claim 1, wherein the tetrazolium compound has a ring structure substituent in at least three positions of the tetrazole ring, and the ring structure of at least two ring structure substituents among the ring structure substituents is a phenyl group . Measuring method. テトラゾリウム化合物が、
2,5−ジフェニル−3−(p−ジフェニル)テトラゾリウム塩、
2,3−ジフェニル−5−(p−ジフェニル)テトラゾリウム塩、
2,5−ジフェニル−3−(4−スチリルフェニル)テトラゾリウム塩、
2,5−ジフェニル−3−(m−トリル)テトラゾリウム塩、
2,5−ジフェニル−3−(p−トリル)テトラゾリウム塩、
2,3−ジフェニル−5−(2−チエニル)テトラゾリウム塩、
3−(4,5−ジメチル−2−チアゾイル)−2,5−ジフェニル−2H−テトラゾリウム塩、
2,3−ジフェニル−5−メチルテトラゾリウム塩および
2,3−ジフェニル−5−エチルテトラゾリウム塩
からなる群から選択された少なくとも一つの化合物である請求項1〜3のいずれかに記載の測定方法。
Tetrazolium compound
2,5-diphenyl-3- (p-diphenyl) tetrazolium salt,
2,3-diphenyl-5- (p-diphenyl) tetrazolium salt,
2,5-diphenyl-3- (4-styrylphenyl) tetrazolium salt,
2,5-diphenyl-3- (m-tolyl) tetrazolium salt,
2,5-diphenyl-3- (p-tolyl) tetrazolium salt,
2,3-diphenyl-5- (2-thienyl) tetrazolium salt,
3- (4,5-dimethyl-2-thiazoyl) -2,5-diphenyl-2H-tetrazolium salt,
2,3-diphenyl-5-methyltetrazolium salt and
The measurement method according to any one of claims 1 to 3 , which is at least one compound selected from the group consisting of 2,3-diphenyl-5-ethyltetrazolium salt .
テトラゾリウム化合物が、2,5−ジフェニル−3−(p−ジフェニル)テトラゾリウム塩、2,3−ジフェニル−5−(p−ジフェニル)テトラゾリウム塩、  A tetrazolium compound is 2,5-diphenyl-3- (p-diphenyl) tetrazolium salt, 2,3-diphenyl-5- (p-diphenyl) tetrazolium salt,
2,5−ジフェニル−3−(4−スチリルフェニル)テトラゾリウム塩および2,5−ジフェニル−3−(m−トリル)テトラゾリウム塩からなる群から選択された少なくとも一つの化合物である請求項1〜4のいずれかに記載の測定方法。The compound is at least one compound selected from the group consisting of 2,5-diphenyl-3- (4-styrylphenyl) tetrazolium salt and 2,5-diphenyl-3- (m-tolyl) tetrazolium salt. The measuring method in any one of.
前記テトラゾリウム化合物が、試料1μl当たり0.001〜100μmolの範囲の濃度になるように添加される請求項1〜5のいずれかに記載の測定方法。 The measurement method according to claim 1 , wherein the tetrazolium compound is added so as to have a concentration in a range of 0.001 to 100 μmol per 1 μl of a sample. 試料が全血であり、前記テトラゾリウム化合物が、全血1μl当たり0.001〜10μmolの範囲の濃度になるように添加される請求項1〜6のいずれかに記載の測定方法。 The measurement method according to claim 1 , wherein the sample is whole blood, and the tetrazolium compound is added so as to have a concentration in the range of 0.001 to 10 μmol per μl of whole blood. 前記測定対象由来の酸化物質が過酸化水素であり、酸化還元反応の測定が、前記過酸化水素量の測定である請求項1〜7のいずれかに記載の測定方法。 The measurement method according to claim 1 , wherein the oxidation substance derived from the measurement target is hydrogen peroxide, and the measurement of the oxidation-reduction reaction is measurement of the amount of hydrogen peroxide. 前記過酸化水素量の測定が、ペルオキシダーゼと酸化により発色する基質とを用いた測定である請求項8に記載の測定方法。 The measurement method according to claim 8 , wherein the measurement of the amount of hydrogen peroxide is measurement using peroxidase and a substrate that develops color by oxidation. 前記基質が、N−(カルボキシメチルアミノカルボニル)−4,4’−ビス(ジメチルアミノ)ジフェニルアミンナトリウムである請求項9に記載の測定方法。 The measurement method according to claim 9 , wherein the substrate is sodium N- (carboxymethylaminocarbonyl) -4,4′-bis (dimethylamino) diphenylamine. 前記測定対象物が、赤血球内成分である請求項1〜10のいずれかに記載の測定方法。 The measurement method according to claim 1 , wherein the measurement object is a component in red blood cells. 前記測定対象物が、赤血球内の糖化タンパク質であり、前記糖化タンパク質の糖部分をフルクトシルアミノ酸オキシダーゼで酸化分解することにより過酸化水素を生成させる請求項8に記載の測定方法。 The measurement method according to claim 8 , wherein the measurement object is a glycated protein in erythrocytes, and hydrogen peroxide is generated by oxidative decomposition of a sugar portion of the glycated protein with fructosyl amino acid oxidase. 前記試料中の還元物質がタンパク質である請求項1〜12のいずれかに記載の測定方法。 The measuring method according to claim 1 , wherein the reducing substance in the sample is a protein. 前記試料中の還元物質がヘモグロビンである請求項1〜13のいずれかに記載の測定方法。 The measuring method according to claim 1 , wherein the reducing substance in the sample is hemoglobin. 前記糖化タンパク質が、糖化ヘモグロビンである請求項12〜14のいずれかに記載の測定方法。 The measurement method according to any one of claims 12 to 14 , wherein the glycated protein is glycated hemoglobin.
JP2006262978A 1998-11-17 2006-09-27 Measuring method using redox reaction Expired - Lifetime JP4250693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006262978A JP4250693B2 (en) 1998-11-17 2006-09-27 Measuring method using redox reaction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP34358398 1998-11-17
JP2006262978A JP4250693B2 (en) 1998-11-17 2006-09-27 Measuring method using redox reaction

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP32608799A Division JP4045322B2 (en) 1998-11-17 1999-11-16 Measuring method using redox reaction

Publications (2)

Publication Number Publication Date
JP2007020581A JP2007020581A (en) 2007-02-01
JP4250693B2 true JP4250693B2 (en) 2009-04-08

Family

ID=37782155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006262978A Expired - Lifetime JP4250693B2 (en) 1998-11-17 2006-09-27 Measuring method using redox reaction

Country Status (1)

Country Link
JP (1) JP4250693B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788472B (en) * 2018-03-07 2023-12-15 泰尔茂株式会社 Method, reagent and chip for determining concentration of analyte in biological sample

Also Published As

Publication number Publication date
JP2007020581A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
US6514720B2 (en) Method of measuring substance in sample using a redox reaction
JP5097758B2 (en) Method and kit for measuring glycated protein using redox reaction
JP4045322B2 (en) Measuring method using redox reaction
EP1329722A1 (en) Assay method with the use of redox reaction
WO2002027330A1 (en) Method of quantifying hemoglobin and method of measuring glycation ratio of hemoglobin
JP4061366B2 (en) Measuring method using sulfonic acid compound and nitro compound
JP2000333696A (en) Measurement of glycosylated amine
JP4214277B2 (en) Measurement method by redox reaction using formazan
JPWO2002027012A1 (en) Method for producing protein hydrolyzate
JP4143698B2 (en) N- (carboxymethylaminocarbonyl) -4,4'-bis (dimethylamino) diphenylamine sodium miscoloration preventing method, reagent solution using the method, and measuring method
JP2007147630A (en) Measuring method using sulfonic acid compound and nitro compound
JP4250693B2 (en) Measuring method using redox reaction
US7226790B2 (en) Method for measurement using sodium azide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081119

R150 Certificate of patent or registration of utility model

Ref document number: 4250693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term