US20080241880A1 - Methods and compositions for determination of glycated proteins - Google Patents

Methods and compositions for determination of glycated proteins Download PDF

Info

Publication number
US20080241880A1
US20080241880A1 US11/595,209 US59520906A US2008241880A1 US 20080241880 A1 US20080241880 A1 US 20080241880A1 US 59520906 A US59520906 A US 59520906A US 2008241880 A1 US2008241880 A1 US 2008241880A1
Authority
US
United States
Prior art keywords
amino acid
glycated
amadoriase
nucleic acid
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/595,209
Inventor
Chong-Sheng Yuan
Abhijit Datta
Yuping Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Atomics Corp
Original Assignee
General Atomics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Atomics Corp filed Critical General Atomics Corp
Priority to US11/595,209 priority Critical patent/US20080241880A1/en
Assigned to GENERAL ATOMICS reassignment GENERAL ATOMICS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DATTA, ABHIJIT, WANG, YUPING, YUAN, CHONG-SHENG
Publication of US20080241880A1 publication Critical patent/US20080241880A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/723Glycosylated haemoglobin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0026Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
    • C12N9/0032Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with oxygen as acceptor (1.5.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/40Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2400/00Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • G01N2800/042Disorders of carbohydrate metabolism, e.g. diabetes, glucose metabolism

Definitions

  • U.S. Pat. No. 6,008,006 discloses that the amount of glycated proteins in a sample can be quantified by reacting the sample with first a reagent which is a combination of a protease and a peroxidase and second with a ketoamine oxidase.
  • U.S. Pat. No. 6,008,006 also discloses a kit which contains the combined peroxidase/protease enzyme reagent and also the ketoamine oxidase.
  • the present invention is directed to an isolated chimeric protein, which chimeric protein comprises, from N-terminus to C-terminus: a) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and b) a second peptidyl fragment comprising an amadoriase.
  • the present invention is directed to an isolated nucleic acid comprising a nucleotide sequence encoding a chimeric protein, which chimeric protein comprises, from N-terminus to C-terminus: a) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and b) a second peptidyl fragment comprising an amadoriase.
  • Recombinant cells comprising the nucleic acid and methods for producing the chimeric protein using the nucleic acid are also provided.
  • the present invention is directed to a method for assaying for a glycated protein in a sample, which method comprises: a) contacting a sample to be assayed with a protease to generate a glycated peptide or a glycated amino acid from a glycated protein, if contained in said sample; b) contacting said generated glycated peptide or glycated amino acid with a chimeric protein comprising, from N-terminus to C-terminus: i) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and ii) a second peptidyl fragment comprising an amadoriase, to oxidize said glycated peptide or glycated amino acid; and c) assessing oxidation of said glycated peptide or glycated amino acid by said chimeric protein to determine the presence and/or
  • the present invention is directed to a kit for assaying for a glycated protein in a sample, which kit comprises: a) a protease to generate glycated peptide or glycated amino acid from a glycated protein, if contained in a sample; b) the above-described chimeric protein to oxidize said glycated peptide or glycated amino acid; and c) means for assessing oxidation of said glycated peptide or glycated amino acid by said chimeric protein to determine the presence and/or amount of said glycated protein in said sample.
  • the present invention is directed to a method for assaying for a glycated protein in a sample, which method comprises: a) contacting a sample to be assayed with a proteinase K to generate a glycated peptide or a glycated amino acid from a glycated protein, if contained in said sample; b) contacting said generated glycated peptide or glycated amino acid with an amadoriase to oxidize said glycated peptide or glycated amino acid; and c) assessing oxidation of said glycated peptide or glycated amino acid by said amadoriase to determine the presence and/or amount of said glycated protein in said sample.
  • FIG. 1 illustrates a comparison between an exemplary GSP kit and a Randox Fructosamine kit.
  • FIG. 2 illustrates assay linearity of an exemplary method for assaying for a glycated protein in a sample.
  • FIG. 5 shows the dose-dependent signal with patient hemoglobin digested with a proteinase (5 min. digestion).
  • an “amadoriase” refers to an enzyme catalyzing the oxidative deglycation of Amadori products to yield corresponding amino acids, glucosone, and H 2 O 2 , as shown in the following reaction:
  • glycohemoglobin refers to a fructosylamine derivative produced by the glycation of hemoglobin in blood.
  • fructtosamine refers to a derivative (having a reducing ability) produced by the glycation of a protein in blood.
  • composition refers to any mixture of two or more products or compounds. It may be a solution, a suspension, liquid, powder, a paste, aqueous, non-aqueous, or any combination thereof.
  • plasma refers to the fluid, noncellular portion of the blood, distinguished from the serum obtained after coagulation.
  • sample refers to the fluid portion of the blood obtained after removal of the fibrin clot and blood cells, distinguished from the plasma in circulating blood.
  • peroxidase refers to an enzyme that catalyses a host of reactions in which hydrogen peroxide is a specific oxidizing agent and a wide range of substrates act as electron donors. It is intended to encompass a peroxidase with conservative amino acid substitutions that do not substantially alter its activity. The chief commercially available peroxidase is horseradish peroxidase.
  • glucose oxidase refers to an enzyme that catalyzes the formation of gluconic acid and H 2 O 2 from glucose, H 2 O and O 2 . It is intended to encompass glucose oxidase with conservative amino acid substitutions that do not substantially alter its activity.
  • hexokinase refers to an enzyme that catalyses the transfer of phosphate from ATP to glucose to form glucose-6-phosphate, the first reaction in the metabolism of glucose via the glycolytic pathway. It is intended to encompass hexokinase with conservative amino acid substitutions that do not substantially alter its activity.
  • the present invention is directed to an isolated chimeric protein, which chimeric protein comprises, from N-terminus to C-terminus: a) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and b) a second peptidyl fragment comprising an amadoriase.
  • any suitable bacterial leader sequences can be used.
  • expression of the polypeptide of interest as a fused protein with a leader sequence from another gene has several advantages in addition to providing for stability.
  • the presence of the N-terminal amino acids provides a means for using general purification techniques for purification of any of a variety of polypeptides.
  • the N-terminal amino acids of the N-protein are predictably antigenic, and thus specific antibodies raised against the N-terminal amino acids of the N-protein may be used for the amino purification of the fusion proteins containing the N-terminus of the N-protein.
  • the N-terminus of the N-protein has a high positive charge, which facilitates purification of the desired protein by ion-exchange chromatography, and the like.
  • the leader sequence can also be a hydrophobic amino acid sequence, which may additionally function as a signal sequence for secretion. See U.S. Pat. No. 6,194,200.
  • a DNA sequence encoding the signal sequence is joined upstream from and in reading frame with the gene of interest.
  • the signal sequence includes a cleavage site which is recognized by a signal sequence peptidase.
  • hydrophobic amino acid sequences include the bacterial alkaline phosphatase signal sequence; the OMP-A, B, C, D, E or F signal sequences; the LPP signal sequence, ⁇ -lactamase signal sequence; and toxin signal sequences.
  • leader sequences which can be used include hydrophilic sequences, for example the N-terminal 41 amino acid residues from amphiregulin which may provide for modification of the function of the polypeptide of interest. See U.S. Pat. No. 6,194,200.
  • a cytotoxic agent such as a toxin A-chain fragment, ricin A-chain, snake venom growth arresting peptide, or a targeting molecule such as a hormone or antibody can be coupled covalently with the leader sequence with in most cases minimal effect on the biological activity of the gene product of interest.
  • a DNA sequence encoding the leader sequence is joined upstream from and in reading frame with the gene of interest.
  • leader sequence is not a signal sequence or does not contain a convenient natural cleavage site
  • additional amino acids may be inserted between the gene of interest and the leader sequence to provide an enzymatic or chemical cleavage site for cleavage of the leader peptide, following purification of the fusion protein, to allow for subsequent purification of the mature polypeptide. See U.S. Pat. No. 6,194,200.
  • introduction of acid-labile aspartyl-proline linkages between the two segments of the fusion protein facilitates their separation at low pH. This method is not suitable if the desired polypeptide is acid-labile.
  • the fusion protein may be cleaved with, for example, cyanogen bromide, which is specific for the carboxy side of methionine residues. Positioning a methionine between the leader sequence and the desired polypeptide would allow for release of the desired polypeptide. This method is not suitable when the desired polypeptide contains methionine residues.
  • bacterial leader sequences disclosed in the following patents, patent application and references can also be used: WO 00/28041 and WO 89/03886; U.S. Pat. Nos. 5,914,250, 5,885,811, 5,171,670, 5,030,563, 4,948,729 and 4,588,684; EP Patent Nos. EP 0,196,864, EP 0,186,643 and EP 0,121,352; Michiels et al., Trends Microbiol., 9(4):164-8 (2001); Hobom et al., Dev. Biol. Stand, 84:255-62 (1995); Hardy and Randall, J. Cell. Sci.
  • the bacterial leader sequence is a leader sequence of an E. coli . protein, e.g., the E. coli . leader sequences disclosed in Roesser and Yanofsky, Nucleic Acids Res., 19(4):795-800 (1991); and Kuhn et al., Mol. Gen. Genet., 167(3):235-41 (1979).
  • the leader sequence has at least 40% identity to the amino acid sequence set forth in SEQ ID NO:1 (MGGSGDDDDLAL), in which the percentage identity is determined over an amino acid sequence of identical size to the amino acid sequence set forth in SEQ ID NO:1.
  • the leader sequence has at least 50%, 60%, 70%, 80%, 90%, 95%, 99% or 100% identity to the amino acid sequence set forth in SEQ ID NO:1, in which the percentage identity is determined over an amino acid sequence of identical size to the amino acid sequence set forth in SEQ ID NO:1.
  • the leader sequence binds to an antibody that specifically binds to an amino acid sequence set forth in SEQ ID NO:1.
  • the leader sequence comprises the amino acid sequence set forth in SEQ ID NO:1.
  • the first peptidyl fragment can have any suitable length.
  • the first peptidyl fragment comprises about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 amino acid residues.
  • the first peptidyl fragment comprises about 20 amino acid residues.
  • amadoriase any suitable amadoriase can be used.
  • the amadoriase is of Aspergillus sp. origin (See e.g., Takahashi et al., J. Biol. Chem., 272(6):3437-43 (1997)).
  • the amadoriase uses FAD as a cofactor.
  • the amadoriase has a FAD cofactor-binding consensus sequence Gly-X-Gly-X-X-Gly (SEQ ID NO:2), X being any amino acid residue.
  • amadoriase is amadoriase Ia, amadoriase Ib, amadoriase Ic or amadoriase II (See e.g., Takahashi et al., J. Biol. Chem., 272(6):3437-43 (1997)).
  • Amino acid sequence homology between the N-terminal sequence of amadoriases Ia, amadoriase Ib, amadoriase Ic and amadoriase II is shown in the following Table 2.
  • amadoriases e.g., amadoriases disclosed in GenBank Accession No. U82830 (Takahashi et al., J. Biol. Chem., 272(19):12505-12507 (1997) and amadoriases disclosed U.S. Pat. No. 6,127,138 can also be used.
  • a functional fragment or a derivative of an amadoriase that still substantially retain its enzymatic activity catalyzing the oxidative deglycation of Amadori products to yield corresponding amino acids, glucosone, and H 2 O 2 can also be used.
  • a functional fragment or a derivative of an amadoriase retain at least 50% of its enzymatic activity.
  • a functional fragment or a derivative of an amadoriase retain at least 50%, 60%, 70%, 80%, 90%, 95%, 99% or 100% of its enzymatic activity.
  • the enzyme activity is monitored by the release of glucosone measured by a colorimetric reaction with OPD using fructosyl propylamine as a substrate.
  • This assay is based on the end point measurement of glucosone formed after 120 min of reaction time.
  • the reaction mixture contains 20 mM sodium phosphate, pH 7.4, 10 mM OPD, 10 mM fructosyl propylamine, and enzyme protein in a final volume of 1 ml. After incubation at 37° C. for 2 h, the absorbance at 320 nm is measured. The reaction is linear to 240 min in a dose-dependent manner under these conditions.
  • One unit of enzyme activity is defined as the amount of the enzyme that produces 1 ⁇ mol of glucosone/min. Synthesized glucosone is used as a standard.
  • Hydrogen peroxide is quantitated by the quinone dye assay according to Sakai et al., Biosci. Biotech. Biochem., 59:487-491 (1995).
  • the reaction mixture contains 20 mM Tris-HCl, pH 8.0, 1.5 mM 4-aminoantipyrine, 2.0 mM phenol, 2.0 units of peroxidase, 10 mM fructosyl propylamine, and enzyme protein in a total volume of 1 ml.
  • Oxygen consumption is determined with a YSI-Beckman glucometer II equipped with a Clarke type oxygen electrode as described in Gerhardinger, et al., J. Biol. Chem., 270:218-224 (1995). Briefly, enzyme (50 ⁇ l) is added to the chamber containing 750 ⁇ l of PBS and 650 ⁇ l of water. The reaction is started by addition of 50 ⁇ l of 300 mM fructosyl propylamine (final concentration 10 mM).
  • amadoriase has at least 40% identity to the amino acid sequence set forth in SEQ ID NO:3
  • the amadoriase has at least 50%, 60%, 70%, 80%, 90%, 95%, 99% or 100% identity to the amino acid sequence set forth in SEQ ID NO:3, in which the percentage identity is determined over an amino acid sequence of identical size to the amino acid sequence set forth in SEQ ID NO:3.
  • the amadoriase binds to an antibody that specifically binds to an amino acid sequence set forth in SEQ ID NO:3.
  • the amadoriase comprises the amino acid sequence set forth in SEQ ID NO:3.
  • the first and second peptidyl fragments can be linked via any suitable linkage.
  • the first and second peptidyl fragments can be linked via a cleavable linkage.
  • the isolated chimeric protein can further comprise, at its C-terminus, a third peptidyl fragment comprising a second bacterial leader sequence from about 5 to about 30 amino acid residues. Any suitable bacterial leader sequences, including the ones described above, can be used.
  • the third peptidyl fragment can have an suitable length.
  • the third peptidyl fragment comprises about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 amino acid residues.
  • the third peptidyl fragment comprises about 20 amino acid residues.
  • the isolated chimeric protein comprises the amino acid sequence set fourth in SEQ ID NO:5
  • the present invention is directed to an isolated nucleic acid comprising a nucleotide sequence encoding a chimeric protein, which chimeric protein comprises, from N-terminus to C-terminus: a) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and b) a second peptidyl fragment comprising an amadoriase.
  • a method of producing a chimeric protein comprising growing a recombinant cell containing the nucleic acid encoding a chimeric protein, which chimeric protein comprises, from N-terminus to C-terminus: a) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and b) a second peptidyl fragment comprising an amadoriase, such that the encoded chimeric protein is expressed by the cell, and recovering the expressed chimeric protein.
  • the product of the method is further contemplated.
  • the chimeric proteins and the nucleic acids encoding the chimeric proteins can be prepared by any suitable methods, e.g., chemical synthesis, recombinant production or a combination thereof (See e.g., Current Protocols in Molecular Biology, Ausubel, et al. eds., John Wiley & Sons, Inc. (2000) and Sambrook, et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory press, (1989)).
  • the present methods can be used to assay any suitable sample.
  • the sample is a blood sample, e.g., a plasma, serum, red blood cell or whole blood sample.
  • the oxidation of the glycated peptide or glycated amino acid can be assessed by any suitable methods.
  • the oxidation of the glycated peptide or glycated amino acid can be assessed by assessing consumption of the glycated peptide or glycated amino acid, H 2 O or O 2 in the oxidation reaction or the formation of the oxidized glucose (glucosone), H 2 O 2 or the amino acid in the oxidation reaction.
  • the O 2 consumption by can be assessed by any suitable methods.
  • the O 2 consumption can be assessed by an oxygen electrode.
  • the H 2 O 2 formation can be assessed by a peroxidase and Trinder reaction.
  • the glycated peptide or glycated amino acid can be contacted with the chimeric protein and the peroxidase sequentially or simultaneously.
  • the glucosone formation can be assessed by any suitable methods.
  • the glucosone formation can be assessed by a glucose oxidase.
  • Any suitable glucose oxidase can be used.
  • glucose oxidases encoded by the nucleotide sequences with the following GenBank accession Nos. can be used: AF012277 ( Penicillium amagasakiense ); U56240 ( Talaromyces flavus ); X16061 ( Aspergillus niger gox gene); X56443 ( A. niger god gene); J05242 ( A.
  • nucleotide sequences with the GenBank accession No. J05242 See also Frederick, et al., J. Biol. Chem., 265(7):3793-802 (1990)) and the nucleotide sequences described in U.S. Pat. No. 5,879,921 can be used in obtaining nucleic acid encoding glucose oxidase.
  • the glucosone formation can be assessed by a combination of glucose 6-phosphate dehydrogenase and hexokinase.
  • Any suitable glucose 6-phosphate dehydrogenase can be used.
  • glucose 6-phosphate dehydrogenase disclosed in the following patents and patent applications can be used: WO 03/042389, WO 01/98472, WO 93/06125, and U.S. Pat. Nos. 6,127,345, 6,069,297, 5,856,104, 5,308,770, 5,244,796, 5,229,286, 5,137,821 and 4,847,195.
  • Any suitable hexokinase can be used.
  • interference of the assay can be countered.
  • ascorbate interference can be countered using a copper (II) compound, a cholic acid or a bathophenanthroline disulphonic acid or a mixture thereof.
  • Bilirubin interference can be countered using a ferrocyanide salt.
  • the present methods can be used for any suitable purpose.
  • the method used in the prognosis or diagnosis of a disease or disorder e.g., diabetes.
  • the present invention is directed to a kit for assaying for a glycated protein in a sample, which kit comprises: a) a protease to generate glycated peptide or glycated amino acid from a glycated protein, if contained in a sample; b) a chimeric protein comprising, from N-terminus to C-terminus: i) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and ii) a second peptidyl fragment comprising an amadoriase, to oxidize said glycated peptide or glycated amino acid; and c) means for assessing oxidation of said glycated peptide or glycated amino acid by said chimeric protein to determine the presence and/or amount of said glycated protein in said sample.
  • the means for assessing oxidation of said glycated peptide or glycated amino acid by said chimeric protein can comprise a peroxidase.
  • the chimeric protein and the peroxidase are formulated in a single composition.
  • the present invention is directed to a method for assaying for a glycated protein in a sample, which method comprises: a) contacting a sample to be assayed with a proteinase K to generate a glycated peptide or a glycated amino acid from a glycated protein, if contained in said sample; b) contacting said generated glycated peptide or glycated amino acid with an amadoriase to oxidize said glycated peptide or glycated amino acid; and c) assessing oxidation of said glycated peptide or glycated amino acid by said amadoriase to determine the presence and/or amount of said glycated protein in said sample.
  • the present methods can be used to assay any suitable sample.
  • the sample is a blood sample, e.g., a plasma, serum, red blood cell or whole blood sample.
  • the present methods can be used to assay any suitable glycated proteins.
  • the glycated protein to be assayed is glycoalbumin or glycohemoglobin.
  • the oxidation of the glycated peptide or glycated amino acid can be assessed by any suitable methods.
  • the oxidation of the glycated peptide or glycated amino acid can be assessed by assessing consumption of the glycated peptide or glycated amino acid, H 2 O or O 2 in the oxidation reaction or the formation of the oxidized glucose (glucosone), H 2 O 2 or the amino acid in the oxidation reaction.
  • the O 2 consumption can be assessed by any suitable methods.
  • the O 2 consumption can be assessed by an oxygen electrode.
  • the H 2 O 2 formation can be assessed by any suitable methods.
  • the H 2 O 2 formation can be assessed by a peroxidase. Any peroxidase, including the ones described in the above Sections C, can be used in the present methods. More preferably, a horseradish peroxidase is used.
  • the H 2 O 2 formation can be assessed by a peroxidase and Trinder reaction.
  • the glycated peptide or glycated amino acid can be contacted with the chimeric protein and the peroxidase sequentially or simultaneously.
  • the glucosone formation can be assessed by any suitable methods.
  • the glucosone formation can be assessed by a glucose oxidase. Any suitable glucose oxidase, including the ones described in the above Sections C, can be used.
  • the glucosone formation can be assessed by a combination of glucose 6-phosphate dehydrogenase and hexokinase.
  • Any suitable glucose 6-phosphate dehydrogenase including the ones described in the above Sections C, can be used.
  • Any suitable hexokinase including the ones described in the above Sections C, can be used.
  • the proteinase K can be inactivated before or concurrent with the contact between the glycated peptide or glycated amino acid and the amadoriase.
  • the proteinase K can be inactivated by a heat treatment or an inhibitor of the proteinase K.
  • interference of the assay can be countered.
  • ascorbate interference can be countered using a copper (II) compound, a cholic acid or a bathophenanthroline disulphonic acid or a mixture thereof.
  • Bilirubin interference can be countered using a ferrocyanide salt.
  • the present methods can be used for any suitable purpose.
  • the method used in the prognosis or diagnosis of a disease or disorder e.g., diabetes.
  • the means for assessing oxidation of said glycated peptide or glycated amino acid by said chimeric protein can comprise a peroxidase.
  • the chimeric protein and the peroxidase are formulated in a single composition.
  • amadoriase can comprise a chimeric protein, which chimeric protein comprises, from N-terminus to C-terminus: a) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and b) a second peptidyl fragment comprising an amadoriase.
  • the chimeric protein comprises the amino acid sequence set forth in SEQ ID NO:5.
  • the chimeric protein is encoded by the nucleotide sequence set forth in SEQ ID NO:6.
  • the exemplary assay kit is for determination of glycated serum proteins (fructosamine) in human serum.
  • Fructosamine is formed due to a non-enzymatic Maillard reaction between glucose and amino acid residues of proteins.
  • elevated blood glucose levels correlate with increased fructosamine formation.
  • Fructosamine is a medium term indicator of diabetic control (2-3 weeks).
  • the exemplary enzymatic assay for glycated serum proteins uses Proteinase K to digest GSP into low molecular weight glycated protein fragments (GPF), and uses Diazyme's specific FructosaminaseTM, a microorganism originated amadoriase to catalyze the oxidative degradation of Amadori product GPF to yield PF or amino acids, glucosone and H 2 O 2 . The H 2 O 2 released is measured by a colorimetric Trinder end-point reaction. The absorbance at 550 nm is proportional to the concentration of glycated serum proteins (GSP).
  • GPF glycated serum proteins
  • Reagent 1 Proteinase K, buffer Lyophilized 2 ⁇ 20 mL
  • Reagent 2 Fructosaminase TM, HRP, buffer Lyophilized 2 ⁇ 5 mL
  • Test Samples Use fresh patient serum or EDTA treated plasma samples. Plasma should be separated from cells immediately after collection. Samples can be stored at 4° C. for 2 weeks or up to 4 weeks when frozen.
  • Reconstitution One vial of Reagents 1 is reconstituted with 20 mL of distilled water. Mix gently by inversion and then allow to stand for a minimum of 10 min at room temperature before use. The reconstituted R1 is stable for 4 weeks at 4° C.
  • One vial of Reagent 2 is reconstituted with 5 mL of distilled water. Mix gently by inversion and then allow to stand at room temperature for minimum of 10 min before use. The reconstituted R2 is stable for 6 weeks at 4° C.
  • Reagent blank absorbance is read by using 50 ⁇ L of H 2 O instead of sample or calibrator.
  • the assay is linear up to 1200 ⁇ mol/L and is sensitive at 30 ⁇ mol/L.
  • Fructosamine Calibrator (Cat. No. DZ112A-S) is required for calibration.
  • Fructosamine Controls (low and high) (Cat. No. DZ112A-C1 and DZ112A-C3) are recommended to use as control sera.
  • One control (low or high) should be tested after every 30 samples. Values should fall within a specific range. If these values fall outside the range and repetition excludes error, the following steps should be taken:
  • Diazyme GSP kit Determined by running 2 replicates of a set of random samples using both Diazyme GSP kit and Randox Fructosamine kit in one run.
  • the analytical performance characteristics determined by Diazyme GSP kit were comparable to those observed with Randox Fructosamine kit when assays were performed under the conditions as described in the Example 1 (See also FIG. 1 ).
  • the assay is linear from 40-856 umole/L (See FIG. 2 ).
  • Interference analysis Interfering substance Interfering substances concentration % Interference Ascorbic Acid 4 mg/dL ⁇ 0.3 Bilirubin 2 mg/dL ⁇ 0.6 Glucose 1200 mg/dL ⁇ 0.6 Hemoglobin 100 mg/dL ⁇ 4.4 Triglycerol 250 mg/dL 1.2 Uric Acid 15 mg/dL 5.3
  • FIG. 5 shows the dose-dependent signal with patient hemoglobin digested with a proteinase (5 min. digestion).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

This invention relates generally to the field of glycated protein detection. In particular, the invention provides chimeric proteins, nucleic acids encoding the chimeric proteins, methods and kits for assaying for a glycated protein in a sample, using inter alia, an amadoriase.

Description

    BACKGROUND OF THE INVENTION
  • A glycated protein is a substance which is produced by the non-enzymatic and irreversible binding of the amino group of an amino acid constituting a protein, with the aldehyde group of a reducing sugar such as aldose. See e.g., U.S. Pat. No. 6,127,138. Such a non-enzymatic and irreversible binding reaction is also called “Amadori rearrangement,” and therefore the above-mentioned glycated protein may also be called “Amadori compound” in some cases.
  • Nonenzymatic glycation of proteins has been implicated in the development of certain diseases, e.g., diabetic complications and the aging process (Takahashi et al., J. Biol. Chem., 272(19):12505-7 (1997); and Baynes and Monnier, Prog. Clin. Biol. Res., 304:1-410 (1989)). This reaction leads to dysfunction of target molecules through formation of sugar adducts and cross-links. Considerable interest has focused on the Amadori product that is the most important “early” modification during nonenzymatic glycation in vitro and in vivo.
  • Various assays for glycated proteins are known. For example, U.S. Pat. No. 6,127,138 discloses that a sample containing a glycated protein is treated with Protease XIV or a protease from Aspergillus genus, thereafter (or while treating the sample with the above protease) FAOD (fructosyl amino acid oxidase) is caused to react with the sample so as to measure the amount of oxygen consumed by the FAOD reaction or the amount of the resultant reaction product, thereby to measure the glycated protein.
  • In another example, U.S. Pat. No. 6,008,006 discloses that the amount of glycated proteins in a sample can be quantified by reacting the sample with first a reagent which is a combination of a protease and a peroxidase and second with a ketoamine oxidase. U.S. Pat. No. 6,008,006 also discloses a kit which contains the combined peroxidase/protease enzyme reagent and also the ketoamine oxidase.
  • BRIEF SUMMARY OF THE INVENTION
  • In one aspect, the present invention is directed to an isolated chimeric protein, which chimeric protein comprises, from N-terminus to C-terminus: a) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and b) a second peptidyl fragment comprising an amadoriase.
  • In another aspect, the present invention is directed to an isolated nucleic acid comprising a nucleotide sequence encoding a chimeric protein, which chimeric protein comprises, from N-terminus to C-terminus: a) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and b) a second peptidyl fragment comprising an amadoriase. Recombinant cells comprising the nucleic acid and methods for producing the chimeric protein using the nucleic acid are also provided.
  • In still another aspect, the present invention is directed to a method for assaying for a glycated protein in a sample, which method comprises: a) contacting a sample to be assayed with a protease to generate a glycated peptide or a glycated amino acid from a glycated protein, if contained in said sample; b) contacting said generated glycated peptide or glycated amino acid with a chimeric protein comprising, from N-terminus to C-terminus: i) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and ii) a second peptidyl fragment comprising an amadoriase, to oxidize said glycated peptide or glycated amino acid; and c) assessing oxidation of said glycated peptide or glycated amino acid by said chimeric protein to determine the presence and/or amount of said glycated protein in said sample.
  • In yet another aspect, the present invention is directed to a kit for assaying for a glycated protein in a sample, which kit comprises: a) a protease to generate glycated peptide or glycated amino acid from a glycated protein, if contained in a sample; b) the above-described chimeric protein to oxidize said glycated peptide or glycated amino acid; and c) means for assessing oxidation of said glycated peptide or glycated amino acid by said chimeric protein to determine the presence and/or amount of said glycated protein in said sample.
  • In yet another aspect, the present invention is directed to a method for assaying for a glycated protein in a sample, which method comprises: a) contacting a sample to be assayed with a proteinase K to generate a glycated peptide or a glycated amino acid from a glycated protein, if contained in said sample; b) contacting said generated glycated peptide or glycated amino acid with an amadoriase to oxidize said glycated peptide or glycated amino acid; and c) assessing oxidation of said glycated peptide or glycated amino acid by said amadoriase to determine the presence and/or amount of said glycated protein in said sample.
  • In yet another aspect, the present invention is directed to a kit for assaying for a glycated protein in a sample, which kit comprises: a) a proteinase K to generate a glycated peptide or a glycated amino acid from a glycated protein, if contained in said sample; b) an amadoriase to oxidize said glycated peptide or glycated amino acid; and c) means for assessing oxidation of said glycated peptide or glycated amino acid by said amadoriase to determine the presence and/or amount of said glycated protein in said sample.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)
  • FIG. 1 illustrates a comparison between an exemplary GSP kit and a Randox Fructosamine kit.
  • FIG. 2 illustrates assay linearity of an exemplary method for assaying for a glycated protein in a sample.
  • FIGS. 3 and 4 show the dose-dependent reaction with fructosyl-valine.
  • FIG. 5 shows the dose-dependent signal with patient hemoglobin digested with a proteinase (5 min. digestion).
  • DETAILED DESCRIPTION OF THE INVENTION
  • For clarity of disclosure, and not by way of limitation, the detailed description of the invention is divided into the subsections that follow.
  • A. DEFINITIONS
  • Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this invention belongs. All patents, applications, published applications and other publications referred to herein are incorporated by reference in their entirety. If a definition set forth in this section is contrary to or otherwise inconsistent with a definition set forth in the patents, applications, published applications and other publications that are herein incorporated by reference, the definition set forth in this section prevails over the definition that is incorporated herein by reference.
  • As used herein, “a” or “an” means “at least one” or “one or more.”
  • As used herein, a “leader sequence” refers to a peptide sequence, when fused to a target peptide or protein, increases stability and/or expression level of the target peptide or protein. Normally, a leader sequence increases stability and/or expression level of the target peptide or protein for at least 50%. Preferably, a leader sequence increases stability and/or expression level of the target peptide or protein for at least 1 fold, 2 folds, 5 folds, 10 folds or more than 10 folds. In the regulation of gene expression for enzymes concerned with amino acid synthesis in prokaryotes, the leader sequence codes for the leader peptide that contains several residues of the amino acid being regulated. Transcription is closely linked to translation, and if translation is retarded by limited supply of aminoacyl tRNA for the specific amino acid, the mode of transcription of the leader sequence permits full transcription of the operon genes; otherwise complete transcription of the leader sequence prematurely terminates transcription of the regulated gene.
  • As used herein, a “glycated protein” refers to a substance which is produced by the non-enzymatic and irreversible binding of the amino group of an amino acid constituting a protein, with the aldehyde group of a reducing sugar such as aldose. See e.g., U.S. Pat. No. 6,127,138. Such a non-enzymatic and irreversible binding reaction is also called “Amadori rearrangement,” and therefore the above-mentioned glycated protein may also be called “Amadori compound” in some cases.
  • As used herein, an “amadoriase” refers to an enzyme catalyzing the oxidative deglycation of Amadori products to yield corresponding amino acids, glucosone, and H2O2, as shown in the following reaction:

  • R1—CO—CH2—NH—R2+O2+H2O→R1—CO—CHO+R2—NH2+H2O2
  • wherein, R1 represents the aldose residue of a reducing sugar and R2 represents a residue of an amino acid, protein or peptide. Other synonyms of amadoriase include fructosyl amino acid oxidase (FAOD) and fructosyl amine:oxygen oxidoreductase (FAOO). For purposes herein, the name “amadoriase” is used herein, although all such chemical synonyms are contemplated. “Amadoriase” also encompasses a functional fragment or a derivative that still substantially retain its enzymatic activity catalyzing the oxidative deglycation of Amadori products to yield corresponding amino acids, glucosone, and H2O2. Typically, a functional fragment or derivative retains at least 50% of its amadoriase activity. Preferably, a functional fragment or derivative retains at least 60%, 70%, 80%, 90%, 95%, 99% or 100% of its amadoriase activity. It is also intended that an amadoriase can include conservative amino acid substitutions that do not substantially alter its activity. Suitable conservative substitutions of amino acids are known to those of skill in this art and may be made generally without altering the biological activity of the resulting molecule. Those of skill in this art recognize that, in general, single amino acid substitutions in non-essential regions of a polypeptide do not substantially alter biological activity (see, e.g., Watson, et al., Molecular Biology of the Gene, 4th Edition, 1987, The Bejacmin/Cummings Pub. Co., p. 224). Such exemplary substitutions are preferably made in accordance with those set forth in TABLE 1 as follows:
  • TABLE 1
    Original residue Conservative substitution
    Ala (A) Gly; Ser
    Arg (R) Lys
    Asn (N) Gln; His
    Cys (C) Ser
    Gln (Q) Asn
    Glu (E) Asp
    Gly (G) Ala; Pro
    His (H) Asn; Gln
    Ile (I) Leu; Val
    Leu (L) Ile; Val
    Lys (K) Arg; Gln; Glu
    Met (M) Leu; Tyr; Ile
    Phe (F) Met; Leu; Tyr
    Ser (S) Thr
    Thr (T) Ser
    Trp (W) Tyr
    Tyr (Y) Trp; Phe
    Val (V) Ile; Leu

    Other substitutions are also permissible and may be determined empirically or in accord with known conservative substitutions.
  • As used herein, “glycohemoglobin” refers to a fructosylamine derivative produced by the glycation of hemoglobin in blood.
  • As used herein, “glycoalbumin” refers to a fructosylamine derivative produced by the glycation of albumin in blood.
  • As used herein, “fructosamine” refers to a derivative (having a reducing ability) produced by the glycation of a protein in blood.
  • As used herein, a “composition” refers to any mixture of two or more products or compounds. It may be a solution, a suspension, liquid, powder, a paste, aqueous, non-aqueous, or any combination thereof.
  • As used herein, a “combination” refers to any association between two or among more items.
  • As used herein, “plasma” refers to the fluid, noncellular portion of the blood, distinguished from the serum obtained after coagulation.
  • As used herein, “serum” refers to the fluid portion of the blood obtained after removal of the fibrin clot and blood cells, distinguished from the plasma in circulating blood.
  • As used herein, “fluid” refers to any composition that can flow. Fluids thus encompass compositions that are in the form of semi-solids, pastes, solutions, aqueous mixtures, gels, lotions, creams, and other such compositions.
  • As used herein, “peroxidase” refers to an enzyme that catalyses a host of reactions in which hydrogen peroxide is a specific oxidizing agent and a wide range of substrates act as electron donors. It is intended to encompass a peroxidase with conservative amino acid substitutions that do not substantially alter its activity. The chief commercially available peroxidase is horseradish peroxidase.
  • As used herein, “glucose oxidase” refers to an enzyme that catalyzes the formation of gluconic acid and H2O2 from glucose, H2O and O2. It is intended to encompass glucose oxidase with conservative amino acid substitutions that do not substantially alter its activity.
  • As used herein, “hexokinase” refers to an enzyme that catalyses the transfer of phosphate from ATP to glucose to form glucose-6-phosphate, the first reaction in the metabolism of glucose via the glycolytic pathway. It is intended to encompass hexokinase with conservative amino acid substitutions that do not substantially alter its activity.
  • As used herein, the abbreviations for any protective groups, amino acids and other compounds, are in accord with their common usage, recognized abbreviations, or the IUPAC-IUB Commission on Biochemical Nomenclature, unless otherwise indicated (see Biochemistry 11: 1726 (1972)).
  • B. CHIMERIC PROTEINS COMPRISING AN AMADORIASE AND NUCLEIC ACIDS ENCODING THE SAME
  • In one aspect, the present invention is directed to an isolated chimeric protein, which chimeric protein comprises, from N-terminus to C-terminus: a) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and b) a second peptidyl fragment comprising an amadoriase.
  • Any suitable bacterial leader sequences can be used. As disclosed in U.S. Pat. No. 6,194,200, expression of the polypeptide of interest as a fused protein with a leader sequence from another gene has several advantages in addition to providing for stability. For example, the presence of the N-terminal amino acids provides a means for using general purification techniques for purification of any of a variety of polypeptides. For example, the N-terminal amino acids of the N-protein are predictably antigenic, and thus specific antibodies raised against the N-terminal amino acids of the N-protein may be used for the amino purification of the fusion proteins containing the N-terminus of the N-protein. Furthermore, the N-terminus of the N-protein has a high positive charge, which facilitates purification of the desired protein by ion-exchange chromatography, and the like.
  • The leader sequence can also be a hydrophobic amino acid sequence, which may additionally function as a signal sequence for secretion. See U.S. Pat. No. 6,194,200. A DNA sequence encoding the signal sequence is joined upstream from and in reading frame with the gene of interest. Typically, the signal sequence includes a cleavage site which is recognized by a signal sequence peptidase. Thus, positioning the polypeptide of interest directly after the signal sequence cleavage site will allow it to be specifically cleaved from the signal sequence and secreted as a mature polypeptide. Examples of hydrophobic amino acid sequences include the bacterial alkaline phosphatase signal sequence; the OMP-A, B, C, D, E or F signal sequences; the LPP signal sequence, β-lactamase signal sequence; and toxin signal sequences.
  • Other leader sequences which can be used include hydrophilic sequences, for example the N-terminal 41 amino acid residues from amphiregulin which may provide for modification of the function of the polypeptide of interest. See U.S. Pat. No. 6,194,200. In addition, a cytotoxic agent such as a toxin A-chain fragment, ricin A-chain, snake venom growth arresting peptide, or a targeting molecule such as a hormone or antibody can be coupled covalently with the leader sequence with in most cases minimal effect on the biological activity of the gene product of interest. As with the other leader sequences, a DNA sequence encoding the leader sequence is joined upstream from and in reading frame with the gene of interest.
  • Where the leader sequence is not a signal sequence or does not contain a convenient natural cleavage site, additional amino acids may be inserted between the gene of interest and the leader sequence to provide an enzymatic or chemical cleavage site for cleavage of the leader peptide, following purification of the fusion protein, to allow for subsequent purification of the mature polypeptide. See U.S. Pat. No. 6,194,200. For example, introduction of acid-labile aspartyl-proline linkages between the two segments of the fusion protein facilitates their separation at low pH. This method is not suitable if the desired polypeptide is acid-labile. The fusion protein may be cleaved with, for example, cyanogen bromide, which is specific for the carboxy side of methionine residues. Positioning a methionine between the leader sequence and the desired polypeptide would allow for release of the desired polypeptide. This method is not suitable when the desired polypeptide contains methionine residues.
  • Other bacterial leader sequences disclosed in the following patents, patent application and references can also be used: WO 00/28041 and WO 89/03886; U.S. Pat. Nos. 5,914,250, 5,885,811, 5,171,670, 5,030,563, 4,948,729 and 4,588,684; EP Patent Nos. EP 0,196,864, EP 0,186,643 and EP 0,121,352; Michiels et al., Trends Microbiol., 9(4):164-8 (2001); Hobom et al., Dev. Biol. Stand, 84:255-62 (1995); Hardy and Randall, J. Cell. Sci. Suppl., 11:29-43 (1989); Saier et al., FASEB J, 2(3):199-208 (1988); and Peakman et al., Nucleic Acids Res., 20(22):6111-2 (1992). Preferably, the bacterial leader sequence is a leader sequence of an E. coli. protein, e.g., the E. coli. leader sequences disclosed in Roesser and Yanofsky, Nucleic Acids Res., 19(4):795-800 (1991); and Kuhn et al., Mol. Gen. Genet., 167(3):235-41 (1979).
  • In one example, the leader sequence has at least 40% identity to the amino acid sequence set forth in SEQ ID NO:1 (MGGSGDDDDLAL), in which the percentage identity is determined over an amino acid sequence of identical size to the amino acid sequence set forth in SEQ ID NO:1. Preferably, the leader sequence has at least 50%, 60%, 70%, 80%, 90%, 95%, 99% or 100% identity to the amino acid sequence set forth in SEQ ID NO:1, in which the percentage identity is determined over an amino acid sequence of identical size to the amino acid sequence set forth in SEQ ID NO:1. Also preferably, the leader sequence binds to an antibody that specifically binds to an amino acid sequence set forth in SEQ ID NO:1. Still preferably, the leader sequence comprises the amino acid sequence set forth in SEQ ID NO:1.
  • The first peptidyl fragment can have any suitable length. For example, the first peptidyl fragment comprises about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 amino acid residues. Preferably, the first peptidyl fragment comprises about 20 amino acid residues.
  • Any suitable amadoriase can be used. In one example, the amadoriase is of Aspergillus sp. origin (See e.g., Takahashi et al., J. Biol. Chem., 272(6):3437-43 (1997)). In another example, the amadoriase uses FAD as a cofactor. Preferably, the amadoriase has a FAD cofactor-binding consensus sequence Gly-X-Gly-X-X-Gly (SEQ ID NO:2), X being any amino acid residue. In still another example, the amadoriase is amadoriase Ia, amadoriase Ib, amadoriase Ic or amadoriase II (See e.g., Takahashi et al., J. Biol. Chem., 272(6):3437-43 (1997)). Amino acid sequence homology between the N-terminal sequence of amadoriases Ia, amadoriase Ib, amadoriase Ic and amadoriase II is shown in the following Table 2. These data were obtained by a computerized search using the combined GenBank™ CDS translations/PDB/SwissProt/SPupdate/PIR data base (See Table IV of Takahashi et al., J. Biol. Chem., 272(6):3437-43 (1997)). Numbers indicate the amino acid positions within each sequence. Conservative substitutions are indicated by (+). The data of amadoriases correspond to the N-terminal sequences obtained in Takahashi et al., J. Biol. Chem., 272(6):3437-43 (1997).
  • TABLE 2
    Amino acid sequence homology between the N-
    terminal sequence of amadoriase Ia, amadoriase
    Ib, amadoriase Ic and amadoriase II
    Sequences with
    Protein residue nos. SEQ ID NO
    Amadoriases Ia 1A P S I L S T E S S I SEQ ID NO:7
    (C/T) V I G A G T W
    G20
    Amadoriase Ib 1A P S I L S T E S S I SEQ ID NO:8
    I V I G A G T W G20
    Amadoriase Ic 1S T E S S I  I  V I G SEQ ID NO:9
    A G T W G (C) (S) T A
    L20
    Amadoriase II 1A V T K S S S L  L  I SEQ ID NO:10
    V G A G T W G T S T20
  • Other amadoriases, e.g., amadoriases disclosed in GenBank Accession No. U82830 (Takahashi et al., J. Biol. Chem., 272(19):12505-12507 (1997) and amadoriases disclosed U.S. Pat. No. 6,127,138 can also be used. A functional fragment or a derivative of an amadoriase that still substantially retain its enzymatic activity catalyzing the oxidative deglycation of Amadori products to yield corresponding amino acids, glucosone, and H2O2 can also be used.
  • Normally, a functional fragment or a derivative of an amadoriase retain at least 50% of its enzymatic activity. Preferably, a functional fragment or a derivative of an amadoriase retain at least 50%, 60%, 70%, 80%, 90%, 95%, 99% or 100% of its enzymatic activity.
  • Assays for enzymatic activities of amadoriases are known in the art (See e.g., Takahashi et al., J. Biol. Chem., 272(6):3437-43 (1997) and U.S. Pat. No. 6,127,138). Four exemplary assays for enzymatic activities of amadoriases are disclosed in Takahashi et al., J. Biol. Chem., 272(6):3437-43 (1997).
  • Glucosone Formation
  • In this assay, the enzyme activity is monitored by the release of glucosone measured by a colorimetric reaction with OPD using fructosyl propylamine as a substrate. This assay is based on the end point measurement of glucosone formed after 120 min of reaction time. The reaction mixture contains 20 mM sodium phosphate, pH 7.4, 10 mM OPD, 10 mM fructosyl propylamine, and enzyme protein in a final volume of 1 ml. After incubation at 37° C. for 2 h, the absorbance at 320 nm is measured. The reaction is linear to 240 min in a dose-dependent manner under these conditions. One unit of enzyme activity is defined as the amount of the enzyme that produces 1 μmol of glucosone/min. Synthesized glucosone is used as a standard.
  • Free Amine Assay
  • To assay the release of free amine, fluorescence is measured after reaction with fluorescamine. Twenty-five (25) μl of a solution of pure enzyme or enzyme-rich fraction, 15 μl of 20% fructosyl propylamine in water, and 250 μl of PBS are incubated at 37° C. for different times as indicated. The reaction is stopped by filtration through a Microcon-10 (Amicon, Beverly, Mass.) at 4 C. One (1) μl of the pure or 1:10 diluted filtrate is added to 1.5 ml of 50 mM phosphate buffer pH 8.0. Under vigorous vortexing 0.5 ml of 0.03% fluorescamine in dioxane is rapidly added. After 5 min fluorescence is measured (λex=390 nm, λem=475 nm). A standard plot is made with 6-150 ng of propylamine.
  • H2O2 Assay
  • Hydrogen peroxide is quantitated by the quinone dye assay according to Sakai et al., Biosci. Biotech. Biochem., 59:487-491 (1995). The reaction mixture contains 20 mM Tris-HCl, pH 8.0, 1.5 mM 4-aminoantipyrine, 2.0 mM phenol, 2.0 units of peroxidase, 10 mM fructosyl propylamine, and enzyme protein in a total volume of 1 ml. Production of the H2O2 is monitored by the formation of a quinone dye following the absorbance at 505 nm (ε=5.13×103). The production of 0.5 μmol of quinone dye corresponds to the formation of 1.0 μmol of H2O2.
  • Oxygen Consumption
  • Oxygen consumption is determined with a YSI-Beckman glucometer II equipped with a Clarke type oxygen electrode as described in Gerhardinger, et al., J. Biol. Chem., 270:218-224 (1995). Briefly, enzyme (50 μl) is added to the chamber containing 750 μl of PBS and 650 μl of water. The reaction is started by addition of 50 μl of 300 mM fructosyl propylamine (final concentration 10 mM).
  • In another example, the amadoriase has at least 40% identity to the amino acid sequence set forth in SEQ ID NO:3
  • (AVTKSSSLLIVGAGTWGTSTALHLARRGYTNVTVLDPYPVPSAISAGND
    VNKVISSGQYSNNKDEIEVNEILAEEAFNGWKNDPLFKPYYHDTGLLMSA
    SQEGLDRLGVRVRPGEDPNLVELTRPEQFRKLAPEGVLQGDFPGWKGYFA
    RSGAGWAHARNALVAAAREAQRMGVKFVTGTPQGRVVTLIFENNDVKGAV
    TGDGKIWRAERTFLCAGASAGQFLDFKNQLRPTAWTLVHIALKPEERALY
    KNIPVIFNIERGFFFEPDEERGEIKICDEHPGYTNMVQSADGTMMSIPFE
    KTQIPKEAETRVRALLKETMPQLADRPFSFARICWCADTANREFLIDRHP
    QYHSLVLGCGASGRGFKYLPSIGNLIVDAMEGKVPQKIHELIKWNPDIAA
    NRNWRDTLGRFGGPNRVMDFHDVKEWTNVQYRDISKL),

    in which the percentage identity is determined over an amino acid sequence of identical size to the amino acid sequence set forth in SEQ ID NO:3. Preferably, the amadoriase has at least 50%, 60%, 70%, 80%, 90%, 95%, 99% or 100% identity to the amino acid sequence set forth in SEQ ID NO:3, in which the percentage identity is determined over an amino acid sequence of identical size to the amino acid sequence set forth in SEQ ID NO:3. Also preferably, the amadoriase binds to an antibody that specifically binds to an amino acid sequence set forth in SEQ ID NO:3. Also preferably, the amadoriase comprises the amino acid sequence set forth in SEQ ID NO:3.
  • The first and second peptidyl fragments can be linked via any suitable linkage. For example, the first and second peptidyl fragments can be linked via a cleavable linkage.
  • The isolated chimeric protein can further comprise, at its C-terminus, a third peptidyl fragment comprising a second bacterial leader sequence from about 5 to about 30 amino acid residues. Any suitable bacterial leader sequences, including the ones described above, can be used.
  • In one example, the second bacterial leader sequence is a leader sequence of an E. coli. protein. in another example, the second bacterial leader sequence has at least 40% identity to the amino acid sequence set forth in SEQ ID NO:4 (KGELEGLPIPNPLLRTG), in which the percentage identity is determined over an amino acid sequence of identical size to the amino acid sequence set forth in SEQ ID NO:4. Preferably, the second bacterial leader sequence has at least 50%, 60%, 70%, 80%, 90%, 95%, 99% or 100% identity to the amino acid sequence set forth in SEQ ID NO:4, in which the percentage identity is determined over an amino acid sequence of identical size to the amino acid sequence set forth in SEQ ID NO:4. Also preferably, the second bacterial leader sequence binds to an antibody that specifically binds to an amino acid sequence set forth in SEQ ID NO:4. Also preferably, the second bacterial leader sequence comprises the amino acid sequence set forth in SEQ ID NO:4.
  • The third peptidyl fragment can have an suitable length. For example, the third peptidyl fragment comprises about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 amino acid residues. Preferably, the third peptidyl fragment comprises about 20 amino acid residues.
  • The isolated chimeric protein of can further comprise, at its C-terminus, a third peptidyl fragment comprising a peptide tag. Any suitable tag can be used. For example, the tag can be FLAG, HA, HA1, c-Myc, 6-His, AU1, EE, T7, 4A6, ε, B, gE and Ty1 tag (See Table 3).
  • TABLE 3
    Exemplary epitope tag systems
    SEQ
    Epitope Peptide ID Antibody Reference
    FLAG AspTyrLysAspAspAspLys 11 4E11 Prickett1
    HA TyrProTyrAspValPRoAspTyrAla 12 12Ca5 Xie2
    HA1 CysGlnAspLeuProGlyAsnAspAsnSerThr 13 mouse MAb Nagelkerken3
    c-Myc GluGlnLysLeuIleSerGluGluAspLeu 14 9E10 Xie2
    6-His HisHisHisHisHisHis 15 BAbCO*
    AU1 AspThrTyrArgTyrIle 16 BAbCO
    EE GluTyrMetProMetGlu 17 anti-EE Tolbert4
    T7 AlaSerMetThrGlyGlyGlnGlnMetGlyArg 18 Invitrogen Chen5
    Tseng6
    4A6 SerPheProGlnPheLysProGlnGluIle 19 4A6 Rudiger7
    ε LysGlyPheSerTyrPheGlyGluAspLeuMetPro 20 anti-PKCε Olah8
    B GlnTyrProAlaLeuThr 21 D11, F10 Wang9
    gE GlnArgGlnTyrGlyAspValPheLysGlyAsp 22 3B3 Grose10
    Ty1 GluValHisThrAsnGlnAspProLeuAsp 23 BB2, TYG5 Bastin11
    1Prickett, et al., BioTechniques, 7(6): 580-584 (1989)
    2Xie, et al., Endocrinology, 139(11): 4563-4567 (1998)
    3Nagelkerke, et al., Electrophoresis, 18: 2694-2698 (1997)
    4Tolbert and Lameh, J. Neurochem., 70: 113-119 (1998)
    5Chen and Katz, BioTechniques, 25(1): 22-24 (1998)
    6Tseng and Verma, Gene, 169: 287-288 (1996)
    7Rudiger, et al., BioTechniques, 23(1): 96-97 (1997)
    8Olah, et al., Biochem., 221: 94-102 (1994)
    9Wang, et al., Gene, 169(1): 53-58 (1996)
    10Grose, U.S. Pat. No. 5,710,248
    11Bastin, et al., Mol. Biochem. Parasitology, 77: 235-239 (1996) Invitrogen, Sigma, Santa Cruz Biotech
  • In an example, the isolated chimeric protein comprises the amino acid sequence set fourth in SEQ ID NO:5
  • (MGGSGDDDDLALAVTKSSSLLIVGAGTWGTSTALHLARRGYTNVTVLDP
    YPVPSAISAGNDVNKVISSGQYSNNKDEIEVNEILAEEAFNGWKNDPLFK
    PYYHDTGLLMSACSQEGLDRLGVRVRPGEDPNLVELTRPEQFRKLAPEGV
    LQGDFPGWKGYFARSGAGWAHARNALVAAAREAQRMGVKFVTGTPQGRVV
    TLIFENNDVKGAVTGDGKIWRAERTFLCAGASAGQFLDFKNQLRPTAWTL
    VHIALKPEERALYKNIPVIFNIERGFFFEPDEERGEIKICDEHPGYTNMV
    QSADGTMMSIPFEKTQIPKEAETRVRALLKETMPQLADRPFSFARICWCA
    DTANREFLIDRHPQYHSLVLGCGASGRGFKYLPSIGNLIVDAMEGKVPQK
    IHELIKWNPDIAANRNWRDTLGRFGGPNRVMDFHDVKEWTNVQYRDISKL
    KGELEGLPIPNPLLRTGHHHHHH).
  • In another aspect, the present invention is directed to an isolated nucleic acid comprising a nucleotide sequence encoding a chimeric protein, which chimeric protein comprises, from N-terminus to C-terminus: a) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and b) a second peptidyl fragment comprising an amadoriase.
  • In one example, the isolated nucleic acid comprises a nucleotide sequence encoding the chimeric protein comprising the amino acid sequence set forth in SEQ ID NO:5. In another example, the isolated nucleic acid comprises a nucleotide sequence set forth in SEQ ID NO:6
  • (ATGGGAGGTTCGGGTGACGATGATGACCTGGCTCTCGCCGTCACTAAGT
    CATCATCTCTCCTGATCGTTGGTGCCGGGACTTGGGGCACCTCAACGGCT
    CTGCACCTCGCGCGCCGCGGATATACCAACGTTACCGTGCTGGACCCCTA
    TCCTGTCCCTAGCGCCATCTCCGCCGGAAACGACGTGAACAAAGTCATTA
    GCAGTGGCCAATATTCGAATAACAAAGACGAAATCGAAGTGAATGAGATC
    TTGGCGGAAGAGGCGTTTAACGGTTGGAAGAACGACCCGCTTTTCAAACC
    GTATTATCATGATACGGGCCTGCTGATGTCTGCTTGCTCGCAGGAGGGCC
    TGGATCGCCTGGGCGTCCGGGTACGTCCGGGCGAGGATCCTAATCTGGTG
    GAACTTACCCGCCCGGAGCAATTTCGTAAACTGGCCCCGGAAGGCGTGTT
    GCAAGGTGATTTTCCGGGTTGGAAAGGGTACTTTGCGCGTTCCGGCGCTG
    GCTGGGCACATGCAAGGAATGCCTTAGTGGCAGCAGCACGCGAAGCACAG
    CGCATGGGTGTAAAATTTGTTACTGGCACCCCGCAGGGTCGTGTAGTCAC
    GTTAATCTTTGAAAATAACGATGTAAAAGGTGCCGTTACGGGCGATGGCA
    AAATTTGGAGAGCGGAACGTACATTCCTGTGTGCTGGGGCTAGCGCGGGT
    CAGTTCCTAGATTTCAAGAATCAACTTCGACCAACCGCTTGGACCCTGGT
    ACACATTGCGTTAAAACCGGAAGAACGTGCGTTGTACAAAAATATACCGG
    TTATCTTTAACATCGAACGGGGGTTTTTCTTTGAACCCGATGAGGAGCGC
    GGTGAGATTAAAATATGCGATGAACACCCGGGCTACACAAATATGGTCCA
    GAGTGCAGACGGCACGATGATGAGCATTCCGTTCGAAAAAACCCAGATTC
    CAAAAGAAGCCGAAACGCGCGTTCGGGCCCTGCTGAAAGAGACAATGCCC
    CAGCTGGCAGACCGTCCATTCAGCTTCGCACGCATTTGCTGGTGTGCCGA
    TACCGCGAATCGCGAATTCCTGATAGATCGACATCCGCAGTACCACAGTC
    TTGTGTTGGGCTGTGGTGCGAGCGGAAGAGGGTTTAAATATCTGCCTTCT
    ATTGGGAATCTCATTGTTGACGCGATGGAAGGTAAAGTGCCGCAAAAAAT
    TCACGAATTAATCAAGTGGAACCCGGACATTGCGGCGAACCGTAACTGGC
    GTGATACTCTGGGGCGTTTTGGCGGTCCAAATCGTGTGATGGATTTTCAT
    GATGTGAAGGAATGGACCAATGTTCAGTATCGTGATATTTCCAAGCTGAA
    AGGAGAGTTGGAAGGTaaGCCAATCCCTAACCCGTTACTGCGCACAGGCC
    ATCACCATCATCATCATTAA).
  • In still another example, the isolated nucleic acid comprising a nucleotide sequence complementary to the nucleotide sequence encoding a chimeric protein, which chimeric protein comprises, from N-terminus to C-terminus: a) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and b) a second peptidyl fragment comprising an amadoriase.
  • A recombinant cell containing the nucleic acid, or a complementary strand thereof, encoding a chimeric protein, which chimeric protein comprises, from N-terminus to C-terminus: a) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and b) a second peptidyl fragment comprising an amadoriase, is contemplated.
  • A method of producing a chimeric protein is also contemplated, which method comprising growing a recombinant cell containing the nucleic acid encoding a chimeric protein, which chimeric protein comprises, from N-terminus to C-terminus: a) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and b) a second peptidyl fragment comprising an amadoriase, such that the encoded chimeric protein is expressed by the cell, and recovering the expressed chimeric protein. The product of the method is further contemplated.
  • The chimeric proteins and the nucleic acids encoding the chimeric proteins can be prepared by any suitable methods, e.g., chemical synthesis, recombinant production or a combination thereof (See e.g., Current Protocols in Molecular Biology, Ausubel, et al. eds., John Wiley & Sons, Inc. (2000) and Sambrook, et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory press, (1989)).
  • C. METHODS AND KITS FOR ASSAYING FOR A GLYCATED PROTEIN USING A CHIMERIC PROTEIN
  • In still another aspect, the present invention is directed to a method for assaying for a glycated protein in a sample, which method comprises: a) contacting a sample to be assayed with a protease to generate a glycated peptide or a glycated amino acid from a glycated protein, if contained in said sample; b) contacting said generated glycated peptide or glycated amino acid with a chimeric protein comprising, from N-terminus to C-terminus: i) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and ii) a second peptidyl fragment comprising an amadoriase, to oxidize said glycated peptide or glycated amino acid; and c) assessing oxidation of said glycated peptide or glycated amino acid by said chimeric protein to determine the presence and/or amount of said glycated protein in said sample.
  • The present methods can be used to assay any suitable sample. Preferably, the sample is a blood sample, e.g., a plasma, serum, red blood cell or whole blood sample.
  • The present methods can be used to assay any suitable glycated proteins. Preferably, the glycated protein to be assayed is glycoalbumin or glycohemoglobin.
  • Any suitable protease can be used in the present methods. Either an endo-type protease or an exo-type protease can be used. Exemplary endo-type proteases include trypsin, α-chymotrypsin, subtilisin, proteinase K, papain, cathepsin B, pepsin, thermolysin, protease XVII, protease XXI, lysyl-endopeptidase, prolether and bromelain F. Exemplary exo-type proteases include an aminopeptidase or a carboxypeptidase. In one example, the protease is proteinase K, pronase E, ananine, thermolysin, subtilisin or cow pancreas proteases.
  • The protease can be used to generates a glycated peptide of any suitable size. For example, the protease can be used to generates a glycated peptide from about 2 to about 30 amino acid residues. In another example, the protease is used to generate glycated glycine, glycated valine or glycated lysine residue or a glycated peptide comprising glycated glycine, glycated valine or glycated lysine residue.
  • Any suitable chimeric proteins, including the ones described in the above Section B, can be used in the present methods. In one example, the chimeric protein comprises the amino acid sequence set forth in SEQ ID NO:5. In another example, the chimeric protein is encoded by the nucleotide sequence set forth in SEQ ID NO:6.
  • The oxidation of the glycated peptide or glycated amino acid can be assessed by any suitable methods. For example, the oxidation of the glycated peptide or glycated amino acid can be assessed by assessing consumption of the glycated peptide or glycated amino acid, H2O or O2 in the oxidation reaction or the formation of the oxidized glucose (glucosone), H2O2 or the amino acid in the oxidation reaction.
  • The O2 consumption by can be assessed by any suitable methods. For example, the O2 consumption can be assessed by an oxygen electrode.
  • The H2O2 formation can be assessed by any suitable methods. For example, the H2O2 formation can be assessed by a peroxidase. Any peroxidase can be used in the present methods. More preferably, a horseradish peroxidase is used. For example, the horseradish peroxidases with the following GenBank accession Nos. can be used: E01651; D90116 (prxC3 gene); D90115 (prxC2 gene); J05552 (Synthetic isoenzyme C(HRP-C)); S14268 (neutral); OPRHC (C1 precursor); S00627 (C1C precursor); JH0150 (C3 precursor); S00626 (C1B precursor); JH0149 (C2 precursor); CAA00083 (Armoracia rusticana); and AAA72223 (synthetic horseradish peroxidase isoenzyme C(HRP-C)). In another example, the H2O2 formation can be assessed by a peroxidase and Trinder reaction. The glycated peptide or glycated amino acid can be contacted with the chimeric protein and the peroxidase sequentially or simultaneously.
  • The glucosone formation can be assessed by any suitable methods. For example, the glucosone formation can be assessed by a glucose oxidase. Any suitable glucose oxidase can be used. For example, glucose oxidases encoded by the nucleotide sequences with the following GenBank accession Nos. can be used: AF012277 (Penicillium amagasakiense); U56240 (Talaromyces flavus); X16061 (Aspergillus niger gox gene); X56443 (A. niger god gene); J05242 (A. niger); AF012277 (Penicillium amagasakiense); U56240 (Talaromyces flavus); X16061 (Aspergillus niger gox gene); X56443 (A. niger god gene); J05242 (A. niger glucose). Preferably, the nucleotide sequences with the GenBank accession No. J05242 (See also Frederick, et al., J. Biol. Chem., 265(7):3793-802 (1990)) and the nucleotide sequences described in U.S. Pat. No. 5,879,921 can be used in obtaining nucleic acid encoding glucose oxidase.
  • In another example, the glucosone formation can be assessed by a combination of glucose 6-phosphate dehydrogenase and hexokinase. Any suitable glucose 6-phosphate dehydrogenase can be used. For example, glucose 6-phosphate dehydrogenase disclosed in the following patents and patent applications can be used: WO 03/042389, WO 01/98472, WO 93/06125, and U.S. Pat. Nos. 6,127,345, 6,069,297, 5,856,104, 5,308,770, 5,244,796, 5,229,286, 5,137,821 and 4,847,195. Any suitable hexokinase can be used. For example, hexokinase disclosed in the following patents and patent applications can be used: WO 02/20795, US2002/009779, WO 01/90378, WO 01/90325, WO 01/68694, WO 01/47968 and U.S. Pat. No. 5,948,665.
  • If desirable, the protease can be inactivated before or current with the contact between the glycated peptide or glycated amino acid and the chimeric protein. The protease can be inactivated by any suitable methods. For example, the protease can be inactivated by a heat treatment or an inhibitor of the protease.
  • If desirable, interference of the assay can be countered. For example, ascorbate interference can be countered using a copper (II) compound, a cholic acid or a bathophenanthroline disulphonic acid or a mixture thereof. Bilirubin interference can be countered using a ferrocyanide salt.
  • The present methods can be used for any suitable purpose. Preferably, the method used in the prognosis or diagnosis of a disease or disorder, e.g., diabetes.
  • In yet another aspect, the present invention is directed to a kit for assaying for a glycated protein in a sample, which kit comprises: a) a protease to generate glycated peptide or glycated amino acid from a glycated protein, if contained in a sample; b) a chimeric protein comprising, from N-terminus to C-terminus: i) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and ii) a second peptidyl fragment comprising an amadoriase, to oxidize said glycated peptide or glycated amino acid; and c) means for assessing oxidation of said glycated peptide or glycated amino acid by said chimeric protein to determine the presence and/or amount of said glycated protein in said sample.
  • Any suitable means can be included in the present kits. For example, the means for assessing oxidation of said glycated peptide or glycated amino acid by said chimeric protein can comprise a peroxidase. Preferably, the chimeric protein and the peroxidase are formulated in a single composition.
  • D. METHODS AND KITS FOR ASSAYING FOR A GLYCATED PROTEIN USING PROTEINASE K AND AN AMADORIASE
  • In yet another aspect, the present invention is directed to a method for assaying for a glycated protein in a sample, which method comprises: a) contacting a sample to be assayed with a proteinase K to generate a glycated peptide or a glycated amino acid from a glycated protein, if contained in said sample; b) contacting said generated glycated peptide or glycated amino acid with an amadoriase to oxidize said glycated peptide or glycated amino acid; and c) assessing oxidation of said glycated peptide or glycated amino acid by said amadoriase to determine the presence and/or amount of said glycated protein in said sample.
  • The present methods can be used to assay any suitable sample. Preferably, the sample is a blood sample, e.g., a plasma, serum, red blood cell or whole blood sample.
  • The present methods can be used to assay any suitable glycated proteins. Preferably, the glycated protein to be assayed is glycoalbumin or glycohemoglobin.
  • Any suitable amadoriase, including the ones described in the above Sections B and C, can be used in the present methods. For example, the amadoriase can comprise a chimeric protein, which chimeric protein comprises, from N-terminus to C-terminus: a) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and b) a second peptidyl fragment comprising an amadoriase. Preferably, the chimeric protein comprises the amino acid sequence set forth in SEQ ID NO:5. Also preferably, the chimeric protein is encoded by the nucleotide sequence set forth in SEQ ID NO:6.
  • The oxidation of the glycated peptide or glycated amino acid can be assessed by any suitable methods. For example, the oxidation of the glycated peptide or glycated amino acid can be assessed by assessing consumption of the glycated peptide or glycated amino acid, H2O or O2 in the oxidation reaction or the formation of the oxidized glucose (glucosone), H2O2 or the amino acid in the oxidation reaction.
  • The O2 consumption can be assessed by any suitable methods. For example, the O2 consumption can be assessed by an oxygen electrode.
  • The H2O2 formation can be assessed by any suitable methods. For example, the H2O2 formation can be assessed by a peroxidase. Any peroxidase, including the ones described in the above Sections C, can be used in the present methods. More preferably, a horseradish peroxidase is used. In another example, the H2O2 formation can be assessed by a peroxidase and Trinder reaction. The glycated peptide or glycated amino acid can be contacted with the chimeric protein and the peroxidase sequentially or simultaneously.
  • The glucosone formation can be assessed by any suitable methods. For example, the glucosone formation can be assessed by a glucose oxidase. Any suitable glucose oxidase, including the ones described in the above Sections C, can be used.
  • In another example, the glucosone formation can be assessed by a combination of glucose 6-phosphate dehydrogenase and hexokinase. Any suitable glucose 6-phosphate dehydrogenase, including the ones described in the above Sections C, can be used. Any suitable hexokinase, including the ones described in the above Sections C, can be used.
  • Any suitable proteinase K can be used in the present methods. For example, proteinase K disclosed in the following patents and patent applications can be used: WO 02/072634, WO 02/064760, WO 96/28556, and U.S. Pat. Nos. 6,451,574 and 5,344,770. Preferably, proteinase K from Tritirachium album is used (See e.g., Sigma-Aldrich Catalog No. 82452).
  • If desirable, the proteinase K can be inactivated before or concurrent with the contact between the glycated peptide or glycated amino acid and the amadoriase. For example, the proteinase K can be inactivated by a heat treatment or an inhibitor of the proteinase K.
  • If desirable, interference of the assay can be countered. For example, ascorbate interference can be countered using a copper (II) compound, a cholic acid or a bathophenanthroline disulphonic acid or a mixture thereof. Bilirubin interference can be countered using a ferrocyanide salt.
  • The present methods can be used for any suitable purpose. Preferably, the method used in the prognosis or diagnosis of a disease or disorder, e.g., diabetes.
  • In yet another aspect, the present invention is directed to a kit for assaying for a glycated protein in a sample, which kit comprises: a) a proteinase K to generate a glycated peptide or a glycated amino acid from a glycated protein, if contained in said sample; b) an amadoriase to oxidize said glycated peptide or glycated amino acid; and c) means for assessing oxidation of said glycated peptide or glycated amino acid by said amadoriase to determine the presence and/or amount of said glycated protein in said sample.
  • Any suitable means can be included in the present kits. For example, the means for assessing oxidation of said glycated peptide or glycated amino acid by said chimeric protein can comprise a peroxidase. Preferably, the chimeric protein and the peroxidase are formulated in a single composition.
  • Any suitable amadoriase, including the ones described in the above Sections B and C, can be used in the present kits. For example, the amadoriase can comprise a chimeric protein, which chimeric protein comprises, from N-terminus to C-terminus: a) a first peptidyl fragment comprising a bacterial leader sequence from about 5 to about 30 amino acid residues; and b) a second peptidyl fragment comprising an amadoriase. Preferably, the chimeric protein comprises the amino acid sequence set forth in SEQ ID NO:5. Also preferably, the chimeric protein is encoded by the nucleotide sequence set forth in SEQ ID NO:6.
  • E. EXAMPLES Example 1 Glycated Serum Protein Enzymatic Assay Kit
  • Intended Use. The exemplary assay kit is for determination of glycated serum proteins (fructosamine) in human serum. Fructosamine is formed due to a non-enzymatic Maillard reaction between glucose and amino acid residues of proteins. In diabetic patients, elevated blood glucose levels correlate with increased fructosamine formation. Fructosamine is a medium term indicator of diabetic control (2-3 weeks).
  • Assay Principle. The exemplary enzymatic assay for glycated serum proteins (GSP) uses Proteinase K to digest GSP into low molecular weight glycated protein fragments (GPF), and uses Diazyme's specific Fructosaminase™, a microorganism originated amadoriase to catalyze the oxidative degradation of Amadori product GPF to yield PF or amino acids, glucosone and H2O2. The H2O2 released is measured by a colorimetric Trinder end-point reaction. The absorbance at 550 nm is proportional to the concentration of glycated serum proteins (GSP).
  • Figure US20080241880A1-20081002-C00001
  • TABLE 4
    Reagent Table
    Reagent 1 (R1) Proteinase K, buffer
    Lyophilized
    2 × 20 mL
    Reagent 2 (R2) Fructosaminase ™, HRP, buffer
    Lyophilized
    2 × 5 mL
  • Test Samples. Use fresh patient serum or EDTA treated plasma samples. Plasma should be separated from cells immediately after collection. Samples can be stored at 4° C. for 2 weeks or up to 4 weeks when frozen.
  • Reconstitution. One vial of Reagents 1 is reconstituted with 20 mL of distilled water. Mix gently by inversion and then allow to stand for a minimum of 10 min at room temperature before use. The reconstituted R1 is stable for 4 weeks at 4° C. One vial of Reagent 2 is reconstituted with 5 mL of distilled water. Mix gently by inversion and then allow to stand at room temperature for minimum of 10 min before use. The reconstituted R2 is stable for 6 weeks at 4° C.
  • Assay Procedure
  • 1. Pre-warm reconstituted R1 and R2 at room temperature.
  • 2. Instrumental parameters.
      • Wavelength: 550 nm; reference 700 nm
      • Cuvette: 1 cm light path
      • Temperature: 37° C.
  • 3. Add 200 μL of the reconstituted R1 and 50 μL of sample or calibrator into cuvette. Mix and incubate for 5 min. Read absorbance at 550 nm as A1.
  • 4. Add 50 μL of the reconstituted R2, mix and incubate for further 5 min and then read the absorbance at 550 nm as A2.
  • 5. Reagent blank absorbance is read by using 50 μL of H2O instead of sample or calibrator.
  • Figure US20080241880A1-20081002-C00002
  • Calculation
  • ΔA=A2-A1
  • Concentration of glycated serum proteins (fructosamine) in sample:
  • Fructosamine ( µ mole / L ) = Δ Asample - Δ Ablank × Conc . of calibrator
  • Normal values. Adults (20-60 years) have a normal range of 122-285 μmol/L. Each laboratory should establish an expected range with a set of standards.
  • Linearity and Sensitivity. The assay is linear up to 1200 μmol/L and is sensitive at 30 μmol/L. The Diazyme Glycated Serum Protein (fructosamine) assay is precise with a mean inter-assay CV of <3% and mean intra assay CV of <2%. Assay data showed excellent correlation with the alternative fructosamine measurement method with r2=0.99.
  • Interferences. The following analyte concentrations were not found to affect the assay:
  • Ascorbic acid (4 mg/dL)
  • Bilirubin (2 mg/dL)
  • Glucose (1200 mg/dL
  • Hemoglobin (100 mg/dL)
  • Triglycerides (250 mg/dL)
  • Uric acid (15 mg/dL)
  • Calibration. Fructosamine Calibrator (Cat. No. DZ112A-S) is required for calibration.
  • Quality Control. Fructosamine Controls (low and high) (Cat. No. DZ112A-C1 and DZ112A-C3) are recommended to use as control sera. One control (low or high) should be tested after every 30 samples. Values should fall within a specific range. If these values fall outside the range and repetition excludes error, the following steps should be taken:
  • 1. Check instrument settings and light source;
  • 2. Check reaction temperature;
  • 3. Check expiry date of kit and contents; and
  • 4. Check the quality of the water used for reagents reconstitution.
  • REFERENCES
    • Armbuster D A, Fructosamine: Structure, Analysis and Clinical Usefulness. Clin. Chem. 1987; 33 (12): 2153-2163.
    • Kouzuma, T. et al. An enzymatic method for the measurement of glycated albumin in biological samples. Clin. Chimi. Acta 2002; 324: 61-71.
    Example 2 Glycated Serum Protein Assay Precision and Linearity
  • Method Comparison
  • Determined by running 2 replicates of a set of random samples using both Diazyme GSP kit and Randox Fructosamine kit in one run. The analytical performance characteristics determined by Diazyme GSP kit were comparable to those observed with Randox Fructosamine kit when assays were performed under the conditions as described in the Example 1 (See also FIG. 1).
  • Assay Linearity
  • Determined by running 2 replicates of a set of series diluted serum samples in one run. The assay is linear from 40-856 umole/L (See FIG. 2).
  • Interference
  • Determined by running 3 replicates each of a control sample in the absence and presence of various potential interference substances at indicated concentrations (See the following Table 5).
  • TABLE 5
    Interference analysis
    Interfering substance
    Interfering substances concentration % Interference
    Ascorbic Acid
     4 mg/dL −0.3
    Bilirubin  2 mg/dL −0.6
    Glucose 1200 mg/dL  −0.6
    Hemoglobin 100 mg/dL −4.4
    Triglycerol 250 mg/dL 1.2
    Uric Acid  15 mg/dL 5.3
  • Example 3 Assay for Glycated Hemoglobin HbA1c
  • A. Glycated Valine Measurement:
  • 1. Mix 10 ul 170 mM Glycated Valine (G-Valine) (This value was assumed all valine was converted to G-Valine in the cooking procedure.) with 300 ul R1 (80 mMCHES, 30 mmMOPS, 0.9% BRIJ). This mixture serves as sample stock solution (GVR1).
  • 2. Set spectrometer wavelength at 726 nm, temperature at 37° C. Pipette 150 ul R2 (30 mMMES, 1 mMCaCl2, 2 mMWST-3, 1570 U/ml Proteinase K) to a cuvette, add 0 ul, 2.5 ul, 5 ul, 10 ul, 15 ul, 20 ul above GVR1 respectively for dose response, make up the sample volume to 20 ul with H2O in R1, incubate for 5 min, get the first O.D. reading, then add 30 ul R3 (0.08 mMDA-64, 240 mMTris, 180 U/ml HRP, 20 U/ml FAOD), incubate for 3 min, get the second O.D. reading. Calculate the O.D. difference between these two readings, using 20 ul H2O in R1 as control. FIGS. 3 and 4 show the dose-dependent reaction with fructosyl-valine.
  • B. Glycated Hemoglobin Measurement:
  • 1. Mix 10 ul high level Glycated Hemoglobin (G-hg(HHg)), 10 ul mid level G-hg(MHg), 10 ul normal level G-hg (NMHg) respectively with 300 ul R1.
  • 2. Set spectrometer wavelength at 570 nm, temperature at 37° C. Pipette 150 ul R2 to cuvette, add 20 ul above Hg in R1 as sample, read the O.D. after 4 min incubation, using H2O in R1 as control. This O.D. reading gives the relative Hg concentration.
  • 3. Change the spectrometer wavelength to 726 nm, get the first O.D. reading, add 30 ul R3, incubate for 5 min, get the second O.D. reading. Calculate the O.D. difference between these two readings. Normalize these O.D. differences of the three samples with their Hg concentrations. FIG. 5 shows the dose-dependent signal with patient hemoglobin digested with a proteinase (5 min. digestion).
  • The above examples are included for illustrative purposes only and are not intended to limit the scope of the invention. Many variations to those described above are possible. Since modifications and variations to the examples described above will be apparent to those of skill in this art, it is intended that this invention be limited only by the scope of the appended claims.

Claims (17)

1-25. (canceled)
26: An isolated nucleic acid comprising a nucleotide sequence encoding a chimeric protein comprising, from N-terminus to C-terminus:
a) a first peptidyl fragment comprising the amino acid sequence set forth in SEQ ID NO:1;
b) a second peptidyl fragment comprising an amadoriase; and
c) a third peptidyl fragment comprising the amino acid sequence set forth in SEQ ID NO:4.
27. (canceled)
28: The nucleic acid of claim 26, which comprises the nucleotide sequence set forth in SEQ ID NO:6
(ATGGGAGGTTCGGGTGACGATGATGACCTGGCTCTCGCCGTCACTAAGT CATCATCTCTCCTGATCGTTGGTGCCGGGACTTGGGGCACCTCAACGGCT CTGCACCTCGCGCGCCGCGGATATACCAACGTTACCGTGCTGGACCCCTA TCCTGTCCCTAGCGCCATCTCCGCCGGAAACGACGTGAACAAAGTCATTA GCAGTGGCCAATATTCGAATAACAAAGACGAAATCGAAGTGAATGAGATC TTGGCGGAAGAGGCGTTTAACGGTTGGAAGAACGACCCGCTTTTCAAACC GTATTATCATGATACGGGCCTGCTGATGTCTGCTTGCTCGCAGGAGGGCC TGGATCGCCTGGGCGTCCGGGTACGTCCGGGCGAGGATCCTAATCTGGTG GAACTTACCCGCCCGGAGCAATTTCGTAAACTGGCCCCGGAAGGCGTGTT GCAAGGTGATTTTCCGGGTTGGAAAGGGTACTTTGCGCGTTCCGGCGCTG GCTGGGCACATGCAAGGAATGCCTTAGTCGCAGCAGCACGCGAAGCACAG CGCATGGGTGTAAAATTTGTTACTGGCACCCCGCAGGGTCGTGTAGTCAC GTTAATCTTTGAAAATAACGATGTAAAAGGTGCCGTTACGGGCGATGGCA AAATTTGGAGAGCGGAACGTACATTCCTGTGTGCTGGGGCTAGCGCGGGT CAGTTCCTAGATTTCAAGAATCAACTTCGACCAACCGCTTGGACCCTGGT ACACATTGCGTTAAAACCGGAAGAACGTGCGTTGTACAAAAATATACCGG TTATCTTTAACATCGAACGGGGGTTTTTCTTTGAACCCGATGAGGAGCGC GGTGAGATTAAAATATGCGATGAACACCCGGGCTACACAAATATGGTCCA GAGTGCAGACGGCACGATGATGAGCATTCCGTTCGAAAAAACCCAGATTC CAAAAGAAGCCGAAACGCGCGTTCGGGCCCTGCTGAAAGAGACAATGCCC CAGCTGGCAGACCGTCCATTCAGCTTCGCACGCATTTGCTGGTGTGCCGA TACCGCGAATCGCGAATTCCTGATACJATCGACATCCGCAGTACCACAGT CTTGTGTTGGGCTGTGGTGCGAGCGGAAGAGGGTTTAAATATCTGCCTTC TATTGGGAATCTCATTGTTGACGCGATGGAAGGTAAAGTGCCGCAAAAAA TTCACGAATTAATCAAGTGGAACCCGGACATTGCGGCGAACCGTAACTGG CGTGATACTCTGGGGCGTTTTGGCGGTCCAAATCGTGTGATGGATTTTCA TGATGTGAAGGAATGGACCAATGTTCAGTATCGTGATATTTCCAAGCTGA AAGGAGAGTTGGAAGGTaaGCCAATCCCTAACCCGTTACTGCGCACAGGC CATCACCATCATCATCATTAA).
29: An isolated nucleic acid comprising a nucleotide sequence complementary to the nucleotide sequence of claim 26.
30: A recombinant cell containing the nucleic acid of claim 26.
31: A method of producing a chimeric protein comprising growing a recombinant cell containing the nucleic acid of claim 26 such that the encoded chimeric protein is expressed by the cell, and recovering the expressed chimeric protein.
32-86. (canceled)
87: The isolated nucleic acid of the claim 26, wherein the amadoriase is of Aspergillus sp. origin.
88: The isolated nucleic acid of the claim 26, wherein the amadoriase uses FAD as a cofactor.
89: The isolated nucleic acid of the claim 26, wherein the amadoriase has a FAD cofactor-binding consensus sequence Gly-X-Gly-X-X-Gly (SEQ ID NO:2), X being any amino acid residue.
90: The isolated nucleic acid of the claim 26, wherein the amadoriase is selected from the group consisting of amadoriase Ia, amadoriase Ib, amadoriase Ic and amadoriase II.
91: The isolated nucleic acid of the claim 26, wherein the amadoriase comprises the amino acid sequence set forth in SEQ ID NO:3
(AVTKSSSLLIVGAGTWGTSTALHLARRGYTNVTVLDPYPVPSAISAGND VNKVISSGQYSNNKDEIEVNEILAEEAFNGWKNDPLFKPYYHDTGLLMSA CSQEGLDRLGVRVRPGEDPNLVELTRPEQFRKLAPEGVLQGDFPGWKGYF ARSGAGWAHARNALVAAAREAQRMGVKFVTGTPQGRVVTLIFENNDVKGA VTGDGKIWRAERTFLCAGASAGQFLDFKNQLRPTAWTLVHIALKPEERAL YKNIPVIFNIERGFFFEPDEERGEIKICDEHPGYTNMVQSADGTMMSIPF EKTQIPKEAETRVRALLKETMPQLADRPFSFARICWCADTANREFLIDRH PQYHSLVLGCGASGRGFKYLPSIGNLIVDAMEGKVPQKIHELIKWNPDIA ANRNWRDTLGRFGGPNRVMDFHDVKEWTNVQYRDISKL).
92: The isolated nucleic acid of the claim 26, wherein the chimeric protein further comprises, at its C-terminus, a fourth peptidyl fragment comprising a peptide tag.
93: The isolated nucleic acid of the claim 92, wherein the peptide tag is selected from the group consisting of FLAG, HA, HA1, c-Myc, 6-His, AU1, EE, T7, 4A6, {acute over (ε)}, B, gE and Ty1 tag.
94: The isolated nucleic acid of the claim 26, wherein the chimeric protein comprises the amino acid sequence set forth in SEQ ID NO:5
(MGGSGDDDDLALAVTKSSSLLIVGAGTWGTSTALHLARRGYTNVTVLDP YPVPSAISAGNDVNKVISSGQYSNNKDEIEVNEILAEEAFNGWKNDPLFK PYYHDTGLLMSACSQEGLDRLGVRVRPGEDPNLVELTRPEQFRKLAPEGV LQGDFPGWKGYFARSGAGWAHARNALVAAAREAQRMGVKFVTGTPQGRVV TLIFENNDVKGAVTGDGKIWRAERTFLCAGASAGQFLDFKNQLRPTAWTL VHIALKPEERALYKNIPVIFNIERGFFFEPDEERGEIKICDIEHPGYTNM VQSADGTMMSIPFEKTQIPKEAETRVRALLKETMPQLADRPFSFARICWC ADTANREFLIDRHPQYHSLVLGCGASGRGFKYLPSIGNLIVDAMEGKVPQ KIHELIKWNPDIAANRNWRDTLGRFGGPNRVMDFHDVKEWTNVQYRDISK LKGELEGLPIPNPLLRTGHHHHHH).
95: The isolated nucleic acid of the claim 26, wherein the first and the second peptidyl fragments are linked via a cleavable linkage.
US11/595,209 2003-07-17 2006-11-08 Methods and compositions for determination of glycated proteins Abandoned US20080241880A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/595,209 US20080241880A1 (en) 2003-07-17 2006-11-08 Methods and compositions for determination of glycated proteins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/622,893 US7153666B2 (en) 2003-07-17 2003-07-17 Methods and compositions for determination of glycated proteins
US11/595,209 US20080241880A1 (en) 2003-07-17 2006-11-08 Methods and compositions for determination of glycated proteins

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/622,893 Division US7153666B2 (en) 2003-07-17 2003-07-17 Methods and compositions for determination of glycated proteins

Publications (1)

Publication Number Publication Date
US20080241880A1 true US20080241880A1 (en) 2008-10-02

Family

ID=34063265

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/622,893 Expired - Lifetime US7153666B2 (en) 2003-07-17 2003-07-17 Methods and compositions for determination of glycated proteins
US11/595,209 Abandoned US20080241880A1 (en) 2003-07-17 2006-11-08 Methods and compositions for determination of glycated proteins

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/622,893 Expired - Lifetime US7153666B2 (en) 2003-07-17 2003-07-17 Methods and compositions for determination of glycated proteins

Country Status (7)

Country Link
US (2) US7153666B2 (en)
EP (1) EP1651759B1 (en)
JP (2) JP4966009B2 (en)
AT (1) ATE383418T1 (en)
CA (1) CA2532557C (en)
DE (1) DE602004011228T2 (en)
WO (1) WO2005017136A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100025264A1 (en) * 2008-05-13 2010-02-04 Chong-Sheng Yuan Electrochemical biosensor for direct determination of percentage of glycated hemoglobin
US7943385B2 (en) 2006-07-25 2011-05-17 General Atomics Methods for assaying percentage of glycated hemoglobin
US20110189712A1 (en) * 2006-07-25 2011-08-04 General Atomics Methods for assaying percentage of glycated hemoglobin

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6951728B2 (en) * 2002-05-10 2005-10-04 Lifescan, Inc. Multilayer reagent test strips to quantify glycated protein in a physiological sample
US7153666B2 (en) * 2003-07-17 2006-12-26 General Atomics Methods and compositions for determination of glycated proteins
US8187831B2 (en) * 2003-09-19 2012-05-29 General Atomics Determination of ions using ion-sensitive enzymes
EP1693461B1 (en) * 2003-11-19 2011-05-11 Sekisui Medical Co., Ltd. Method of assaying glycated protein
GB0418651D0 (en) * 2004-08-20 2004-09-22 Medical Res Council Method
WO2009067421A1 (en) 2007-11-20 2009-05-28 Siemens Heathcare Diagnostics Inc. Methods for the detection of glycated hemoglobin
WO2022189344A1 (en) 2021-03-08 2022-09-15 Universiteit Gent Treatment of eye diseases with fructosyl-amino acid oxidase

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050014935A1 (en) * 2003-07-17 2005-01-20 Chong-Sheng Yuan Methods and compositions for determination of glycated proteins

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2713581A (en) 1949-02-23 1955-07-19 Montclair Res Corp Certain tetrazolium salts and process for preparing them
GB738585A (en) 1952-07-17 1955-10-19 May & Baker Ltd Improvements in or relating to tetrazolium compounds
GB1513488A (en) 1976-11-11 1978-06-07 Lushina O Method of preparing 2h-tetrazolium chlorides and 2h-tetrazolium chlorides hydrochlorides
GB8308483D0 (en) 1983-03-28 1983-05-05 Health Lab Service Board Secretion of gene products
US4588684A (en) 1983-04-26 1986-05-13 Chiron Corporation a-Factor and its processing signals
JPS59219270A (en) 1983-05-30 1984-12-10 Wako Pure Chem Ind Ltd Method and reagent for stabilization of tetrazolium salt with cyclodextrin
BE901119A (en) 1984-11-23 1985-03-15 Wallone Region PROCESS FOR THE PREPARATION OF VECTOR PLASMIDS CAPABLE OF TRANSFORMING A BACTERIAL HOST ESCHERICHIA COLI AND OF PROMOTING AND CONTROLLING THE EXPRESSION OF HETEROLOGOUS DNA IN IT.
US4948729A (en) 1985-03-25 1990-08-14 Cetus Corporation Production of soluble recombinant proteins
EP0196864A3 (en) 1985-03-25 1988-03-23 Cetus Corporation Alkaline phosphatase-mediated processing and secretion of recombinant proteins, dna sequences for use therein and cells transformed using such sequences
EP0204523B1 (en) 1985-05-31 1992-02-26 Syntex (U.S.A.) Inc. Glucose-6-phosphate dehydrogenase conjugates, their preparation and use
US5196314A (en) 1986-04-04 1993-03-23 Boehringer Mannheim Gmbh Process and reagent for the determination of substrates or enzyme activities
DE3611227A1 (en) 1986-04-04 1987-10-08 Boehringer Mannheim Gmbh METHOD AND REAGENT FOR DETERMINING SUBSTRATES OR ENZYMACTIVITIES
US5008006A (en) * 1987-06-05 1991-04-16 Miller Jan D Chemical conditioning of fine coal for improved flotation and pyrite rejection
US5030563A (en) 1987-07-07 1991-07-09 Genetics Institute, Inc. Bacterial hypersecretion using mutant repressor sequence
CA1335357C (en) 1987-10-30 1995-04-25 Timothy M. Rose Expression systems for preparation of polypeptides in prokaryotic cells
JP2970811B2 (en) 1987-10-30 1999-11-02 オンコゲン ア リミテッド パートナーシップ Expression systems for preparing polypeptides in prokaryotic cells
US5516682A (en) 1988-07-05 1996-05-14 University Of Maryland Subtilin variant of enhanced stability and activity
JP2742281B2 (en) 1988-12-29 1998-04-22 旭化成工業株式会社 Glucose-6-phosphate dehydrogenase gene
JPH04504504A (en) 1989-04-13 1992-08-13 エンジィマティクス インコーポレイテッド Use of fluid-insoluble oxidizers to remove interfering substances in redox measurement systems
US5171670A (en) 1989-05-12 1992-12-15 The General Hospital Corporation Recombinant dna method for production of parathyroid hormone
US5312759A (en) 1989-12-20 1994-05-17 Iatron Laboratories, Inc. Method for measurement of fructosamines using 1,2-quinones
DE4024158A1 (en) 1990-07-30 1992-02-06 Boehringer Mannheim Gmbh CLONING AND OVEREXPRESSION OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE FROM LEUCONOSTOC DEXTRANICUS
US5244796A (en) 1990-10-12 1993-09-14 Syracuse University Cloned leuconostoc mesenteroides glucose-6-phosphate dehydrogenase genes and method of making glucose-6-phospate dehydrogenase
MY107664A (en) 1991-01-17 1996-05-30 Kao Corp Novel alkaline proteinase and process for producing the same
WO1993006125A1 (en) 1991-09-20 1993-04-01 The United States Of America, Represented By The Secretary, Department Of Health And Human Services ISOLATION AND CHARACTERIZATION OF cDNA OF PLASMODIUM FALCIPARUM GLUCOSE-6-PHOSPHATE DEHYDROGENASE
US5789221A (en) 1994-03-03 1998-08-04 Kyogo Daiichi Kagaku Co., Ltd. Fructosyl amino acid oxidase and process for producing the same
CA2156226C (en) 1994-08-25 1999-02-23 Takayuki Taguchi Biological fluid analyzing device and method
US5712138A (en) 1994-10-05 1998-01-27 Kyoto Daiichi Kagaku Co., Ltd. Fructosyl amino acid oxidase
IL117350A0 (en) 1995-03-09 1996-07-23 Procter & Gamble Proteinase k variants having decreased adsorption and increased hydrolysis
DE69635503T2 (en) 1995-04-11 2006-08-17 Arkray, Inc. Fructosyl amino acid oxidase and process for its preparation
EP0823943B1 (en) 1995-05-05 1999-07-28 Genzyme Limited Determination of glycated proteins
JP3217687B2 (en) 1996-02-16 2001-10-09 オリエンタル酵母工業株式会社 Novel hexokinase
IL120587A (en) 1996-04-04 2000-10-31 Lifescan Inc Reagent test strip for determination of blood glucose
JPH1033177A (en) 1996-07-23 1998-02-10 Kdk Corp Fructosyl amino acid oxidase
US5710248A (en) 1996-07-29 1998-01-20 University Of Iowa Research Foundation Peptide tag for immunodetection and immunopurification
US5856104A (en) 1996-10-28 1999-01-05 Affymetrix, Inc. Polymorphisms in the glucose-6 phosphate dehydrogenase locus
US5879921A (en) 1996-11-07 1999-03-09 Novo Nordisk A/S Recombinant expression of a glucose oxidase from a cladosporium strain
US6069297A (en) 1996-12-09 2000-05-30 Sloan-Kettering Institute For Cancer Research Glucose-6-phosphate dehydrogenase deficient mice and methods of using same
US6127345A (en) 1997-01-21 2000-10-03 Smithkline Beecham Corporation Polynucleotides encoding the glucose 6-phosphate dehydrogenase of Streptococcus pneumoniae
DE69835268T2 (en) 1997-04-24 2006-11-23 Arkray, Inc. METHOD FOR THE ENZYMATIC DETECTION OF A SUGAR PROTEIN
JP3987900B2 (en) 1997-11-26 2007-10-10 アークレイ株式会社 Method for measuring glycated protein
GB9824282D0 (en) 1998-11-05 1998-12-30 Microbiological Research Agenc Delivery of superoxide dismutase to neuronal cells
US6352835B1 (en) 1998-11-17 2002-03-05 Kyoto Daiichi Kagaku Co. Ltd. Method of measuring substance in sample using a redox reaction
JP3949854B2 (en) 1999-10-01 2007-07-25 キッコーマン株式会社 Method for measuring glycated protein
CN1300763A (en) 1999-12-23 2001-06-27 复旦大学 Polypeptide-hexokinase protien 12 and polynucleotide for coding this polypeptide
CN1313391A (en) 2000-03-15 2001-09-19 上海博德基因开发有限公司 Polypeptide-human hexokinase protein 10 and polynucleotide for coding it
CN1323837A (en) 2000-05-16 2001-11-28 上海博德基因开发有限公司 New polypeptide-human hexokinase protein 11 and polynucleotides for coding same
AU2001263360A1 (en) 2000-05-19 2001-12-03 Millennium Pharmaceuticals, Inc. 50365, a hexokinase family member and uses thereof
WO2001098472A1 (en) 2000-06-21 2001-12-27 Kyowa Hakko Kogyo Co., Ltd Novel glucose-6-phosphate dehydrogenase
CN1333350A (en) 2000-07-07 2002-01-30 上海博德基因开发有限公司 Novel polypeptide--hexokinase protein 9.68 and polynucleotide for encoding said polypeptide
DE10105912A1 (en) 2001-02-09 2002-08-14 Roche Diagnostics Gmbh Recombinant Proteinase K
DE10105911A1 (en) 2001-02-09 2002-08-14 Roche Diagnostics Gmbh Expression of the recombinant proteinase K from Tritirachium album in yeast
DE10155505A1 (en) 2001-11-13 2003-05-22 Basf Ag Genes that code for glucose-6-phosphate dehydrogenase proteins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050014935A1 (en) * 2003-07-17 2005-01-20 Chong-Sheng Yuan Methods and compositions for determination of glycated proteins

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943385B2 (en) 2006-07-25 2011-05-17 General Atomics Methods for assaying percentage of glycated hemoglobin
US20110189712A1 (en) * 2006-07-25 2011-08-04 General Atomics Methods for assaying percentage of glycated hemoglobin
US8318501B2 (en) 2006-07-25 2012-11-27 General Atomics Methods for assaying percentage of glycated hemoglobin
US8338184B2 (en) 2006-07-25 2012-12-25 General Atomics Methods for assaying percentage of glycated hemoglobin
US8557591B2 (en) 2006-07-25 2013-10-15 General Atomics Methods for assaying percentage of glycated hemoglobin
US20100025264A1 (en) * 2008-05-13 2010-02-04 Chong-Sheng Yuan Electrochemical biosensor for direct determination of percentage of glycated hemoglobin
US8673646B2 (en) 2008-05-13 2014-03-18 General Atomics Electrochemical biosensor for direct determination of percentage of glycated hemoglobin

Also Published As

Publication number Publication date
ATE383418T1 (en) 2008-01-15
US20050014935A1 (en) 2005-01-20
EP1651759A1 (en) 2006-05-03
JP2011224025A (en) 2011-11-10
WO2005017136A1 (en) 2005-02-24
CA2532557C (en) 2014-04-15
JP4966009B2 (en) 2012-07-04
EP1651759B1 (en) 2008-01-09
CA2532557A1 (en) 2005-02-24
US7153666B2 (en) 2006-12-26
JP2007531499A (en) 2007-11-08
DE602004011228D1 (en) 2008-02-21
DE602004011228T2 (en) 2009-01-02

Similar Documents

Publication Publication Date Title
US20080241880A1 (en) Methods and compositions for determination of glycated proteins
ES2391802T3 (en) Composition for glycosylated protein assay
EP2044444B1 (en) Methods for assaying percentage of glycated hemoglobin
AU694039B2 (en) Determination of glycated proteins
US8993255B2 (en) Protein having fructosyl valyl histidine oxidase activity, modified protein, and use of the protein or the modified protein
EP2843050B1 (en) Modified amadoriase capable of acting on fructosyl hexapeptide
JP4061348B2 (en) Enzymatic measurement method of glycated protein
JP5927771B2 (en) Method for measuring hemoglobin A1c
JP5442432B2 (en) Method for measuring glycated hexapeptide
Lorentz et al. Arylesterase in serum: elaboration and clinical application of a fixed-incubation method.
US20100291623A1 (en) Process for producing alpha-glycosylated dipeptide and method of assaying alpha-glycosylated dipeptide
JPH08154672A (en) Fructosylaminoacid oxidase and its production
KR20140020273A (en) Method of analyzing l-tryptophan in biological samples, and kit used therein
US8187831B2 (en) Determination of ions using ion-sensitive enzymes
JP4260542B2 (en) Method for measuring ketoamine in polymer
JP4565807B2 (en) Protease for measuring glycated protein

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ATOMICS, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YUAN, CHONG-SHENG;DATTA, ABHIJIT;WANG, YUPING;REEL/FRAME:020767/0214

Effective date: 20031105

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION