JP4564204B2 - Wastewater treatment method for wastewater treatment equipment - Google Patents

Wastewater treatment method for wastewater treatment equipment Download PDF

Info

Publication number
JP4564204B2
JP4564204B2 JP2001165466A JP2001165466A JP4564204B2 JP 4564204 B2 JP4564204 B2 JP 4564204B2 JP 2001165466 A JP2001165466 A JP 2001165466A JP 2001165466 A JP2001165466 A JP 2001165466A JP 4564204 B2 JP4564204 B2 JP 4564204B2
Authority
JP
Japan
Prior art keywords
wastewater
aeration
treated water
water tank
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001165466A
Other languages
Japanese (ja)
Other versions
JP2002355693A (en
Inventor
森 泰 彦 永
安 巨太郎 居
本 弘 司 秋
野 誠一郎 佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001165466A priority Critical patent/JP4564204B2/en
Publication of JP2002355693A publication Critical patent/JP2002355693A/en
Application granted granted Critical
Publication of JP4564204B2 publication Critical patent/JP4564204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【0001】
【発明の属する分野】
本発明は、産業廃水を処理する廃水処理装置に係り、とりわけ効率的に有機物と窒素化合物を除去する廃水処理方法に関する。
【0002】
【従来の技術】
従来の有機物と窒素化合物とを含む廃水の廃水処理装置の廃水処理方法について図2を用いて説明する。産業廃水13の廃水処理装置1は、送水装置9が取付けられた廃水貯留槽8と、撹拌装置3が取付けられた処理水槽2と、処理水槽2に接続された曝気装置4および排水装置6と、処理水槽2に接続された余剰汚泥排出装置10と、制御装置5とを有している。
【0003】
廃水貯留槽8に貯留された廃水13は送水装置9によって処理水槽2に送られる。処理水槽2内では、廃水13を曝気装置4によって曝気し、同時に廃水13を撹拌装置3によって撹拌することにより、廃水中の活性汚泥に含まれる微生物の代謝作用を利用して廃水中の有機物を除去する。
【0004】
撹拌装置3には水中撹拌ポンプのように、羽根車の回転によって空気の吸気および曝気を行う曝気機能を備えたものもある。所定時間だけ撹拌曝気を行った後、撹拌装置3と曝気装置4を停止し、静置して、活性汚泥を沈殿させ、処理水11と汚泥とを分離する。処理水槽2内の処理水11は排出装置6によって処理水槽2より排出される。処理水槽2中で増殖した活性汚泥の余剰分である余剰汚泥12は、余剰汚泥排出装置10によって処理水槽2から排出される。
【0005】
産業廃水は都市下水と異なり、連続式ではなく回転分で処理され、また廃水量が非常に大きく時間変動するため、廃水処理装置1は、その廃水量の変動を吸収するために廃水貯留水槽8を有している。
【0006】
制御装置5は、所定量の廃水13が適切に浄化処理されるよう、送水装置9と、排水装置6と、撹拌装置3と、余剰汚泥排出装置10と、曝気装置4とを制御する。送水装置9と排水装置6は、ポンプあるいは電動弁の開閉による水の自然流下を利用した構造を有している。撹拌装置3としては、水中撹拌ポンプが用いられ、曝気装置4としてはコンプレッサーと散気装置の組み合わせが用いられるが、撹拌装置3および曝気装置4として、ポンプの回転によって曝気を行う仕様の水中撹拌ポンプを用いてもよい。
【0007】
実際の廃水処理装置1には図2の構成要素以外にも、スクリーンフィルタによる除塵装置、除砂装置、スカム除去装置、オゾン処理装置、膜処理装置および凝集沈殿装置等の高度な水処理機構が付随する場合もあるが、本発明との直接の関わりはないため説明を省略する。
【0008】
近年、廃水中に含まれる有機物のみならず、窒素化合物の除去も重要な課題となっている。上記構成の廃水処理装置1では、活性汚泥により硝化反応および脱窒反応を利用して窒素化合物の除去を行っている。一般に廃水中に含まれる窒素化合物は、有機性窒素、アンモニア性窒素(NH4−N)、硝酸性窒素(NO3−N)、亜硝酸性窒素(NO−N)に分類され、さらに有機性窒素は、主にタンパク質から構成される。このタンパク質が微生物によって分解されるとアンモニア性窒素(NH4−N)が生成される。
【0009】
硝化反応は、硝化細菌によるアンモニア性窒素(NH4−N)の酸化反応であり、酸素が消費されることにより、廃水中のPH値は低下する。
【0010】
ところで、硝化反応を効率よく起こさせるためには、活性汚泥中に硝化細菌を増殖させる必要がある。
【0011】
硝化細菌の増殖速度は他の微生物に比べて遅いため、硝化細菌の活性汚泥中の滞留時間(SRT)を長くさせる必要がある。また硝化細菌の増殖速度は、廃水温度およびDO(溶存酸素量)値によっても大きく影響され、両値が低いほど増殖速度は遅くなる。
【0012】
脱窒反応は、廃水中のDO値が低くなった際に、活性汚泥中の脱窒細菌が硝酸性窒素(NO3−N)と亜硝酸性窒素(NO−N)に含まれる結合酸素を利用して、有機物を分解する反応であり、つまり脱窒細菌による有機物を利用した硝酸性窒素(NO3−N)と亜硝酸性窒素(NO−N)の還元反応である。硝酸性窒素(NO3−N)と亜硝酸性窒素(NO−N)から脱窒された窒素は、窒素ガスとして大気中に放出される。従って、脱窒反応ではDO値が低いこと、酸化の対象となる有機物の存在が必要である。
【0013】
このように、硝化反応と脱窒反応を同時に起こすことにより、廃水中の有機物と窒素化合物とが効果的に除去される。
【0014】
以上より硝化反応では、廃水中の酸素量、SRT、廃水温度およびDO値が、脱窒反応では、廃水のDO値と有機物の含有量が密接に関連している。この内、酸素は曝気装置によって処理水槽内の廃水に曝気として供給され、DO値は曝気量および曝気時間によって調整される。SRTは余剰汚泥排出装置による余剰汚泥の引抜量によって調整される。廃水中の有機物の含有量は、BOD(生物的酸素要求量)値として測定可能であり、廃水中に存在するが曝気によって酸化され、その量は比較的短時間に減少する。
【0015】
【発明が解決しようとする課題】
このように、曝気装置による曝気量の調整は、有機物の除去のみならず窒素除去においても重要である。そして、この曝気量を調整するための測定値として処理水槽中のDO値とORP(酸化還元電位)値が使用されており、それぞれDO計とORP計により計測される。しかしながら、曝気装置による曝気量と廃水中の有機物と窒素化合物の含有量との関係は定性的にしか把握されておらず、上記関係を定量的にとらえ、その定量的な結果に基づいて曝気装置による曝気量の調整を行うことがないのが現状である。
【0016】
本発明はこのような点を考慮してなされたものであり、曝気装置による曝気量と廃水中の有機物と窒素化合物の含有量との間の関係を明らかにし、曝気量および曝気時間を調整して廃水中に含まれる有機物と窒素化合物を効率的に除去することができる廃水処理装置の廃水処理方法を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明は、処理廃水中の有機物と窒素化合物を活性汚泥により除去する廃水処理装置を用いた廃水処理方法において、処理水槽内の廃水を曝気装置によって曝気し、同時に撹拌する撹拌曝気工程と、曝気装置を停止し、処理水槽内の廃水に含まれる活性汚泥を沈殿させ、廃水を処理水と活性汚泥とに分離する沈殿工程と、処理水を排出装置によって排出する排出工程と、を備え、撹拌曝気工程において、処理水槽内の廃水内で、硝化反応と脱窒反応を同時に起こすよう、制御装置により曝気装置を制御して処理水槽へ供給される曝気量および曝気時間を調整することを特徴とする廃水処理装置の廃水処理方法である。
【0018】
本発明によれば、曝気装置による曝気量と廃水中の有機物および窒素化合物の含有量との間の関係を明らかにし、廃水中に含まれる有機物と窒素化合物を効率的に除去することができる。
【0019】
【発明の実施の形態】
第1の実施の形態
以下、図面を参照して本発明の第1の実施の形態について説明する。
【0020】
図1は、本発明による排出装置の廃水処理方法の一実施の形態を示す図である。
【0021】
図1に示すように、廃水処理装置1は有機物と窒素化合物とを含む廃水を処理する処理水槽2と、処理水槽2内に設置され処理水槽2内の廃水を撹拌する撹拌装置3と、処理水槽2内を曝気する曝気装置4と、処理水槽2内で処理された廃水を処理水槽2から排出する排水装置6と、曝気装置4を制御して処理水槽2へ供給される曝気量および曝気時間を調整する制御装置5とを備えている。
【0022】
廃水処理装置1の処理水槽2には、処理水槽2内の廃水温度を計測する水温計7aと、処理水槽2内の廃水のPH値を計測するPH計7bと、処理水槽2内の廃水のORP値を計測するORP計7cと、処理水槽2内の廃水のDO値を計測するDO計7dとを備え、各々計測値は、記録計7eへ送られてこの記録計7eによって連続的に記録が可能となっている。
【0023】
図1に示すように、廃水貯留槽8内には送水装置9が設置され、また処理水槽2には余剰汚泥を引抜く余剰汚泥排出装置(余剰汚泥ポンプ)10が接続されている。
【0024】
図1において、制御装置5は曝気装置4のみではなく、送水装置9、撹拌装置3、排出装置6および余剰汚泥排出装置10と、を制御するようになっている。
【0025】
また送水装置9と排水装置6は、ポンプあるいは電動弁の開閉による水の自然流下を利用した構造を有している。撹拌装置3としては、水中撹拌ポンプが用いられ、曝気装置4としてはコンプレッサーと散気装置の組み合わせが用いられるが、撹拌装置3および曝気装置4として、ポンプの回転によって曝気を行う仕様の水中撹拌ポンプを用いてもよい。
【0026】
次にこのような構成からなる実施の形態の作用、すなわち廃水処理方法について述べる。
【0027】
まず図3に示すように、廃水貯留槽8から送水装置9により廃水(原水)が処理水槽2内へ供給される(原水供給工程E)。
【0028】
次に処理水槽2内の廃水が曝気装置4によって曝気され、同時に廃水が撹拌装置3によって撹拌される(撹拌曝気工程A)。その後、曝気装置4と撹拌装置3が停止し、処理水槽2内の廃水に含まれる活性汚泥が沈殿し、廃水は処理水と活性汚泥とに分離される(沈殿工程B)。その後、処理水槽2内の処理水は排水装置6によって排出される(排出工程C)。次に、原水供給工程Eが繰り返される。なお、図3は、1サイクルGを表示し、横軸は各工程の経過時間(h)を示している。
【0029】
上述した廃水処理方法において、送水装置9、撹拌装置3、曝気装置4および排出装置6は、各々制御装置5により駆動制御される。
【0030】
次に制御装置5による廃水処理方法について、さらに詳述する。制御装置5は、予め行った廃水処理実験の結果に基づいて、以下のようにして廃水処理制御を行う。
【0031】
まず廃水処理装置1を用いて、曝気装置4による曝気量と処理水槽2内の廃水中の有機物および窒素化合物の含有量との間の関係を導出するため、以下に述べる設定で廃水処理実験を行った。
【0032】
廃水処理実験は初期設定条件として、1)曝気量28L/min、DOの最大値2〜4mg/L、2)曝気量35L/min、DOの最大値4〜6mg/L、3)曝気量40L/min、DOの最大値6mg/L以上として、1サイクル12時間の回分処理による2週間連続運転を行い、最後の1サイクル運転について水質分析を行った。上記の水質分析は、曝気開始10分後より1時間毎に処理水槽2中より廃水を採取し、廃水中のアンモニア性窒素(NH4−N)、亜硝酸性窒素(NO−N)、硝酸性窒素(NO3−N)の含有量について分析を行った。また、初期設定条件として、DOの最大値に幅を持たせたのは、廃水の水質に僅かではあるが経時的変動があるためである。図4に実験開始当初の廃水の水質を示す。
【0033】
なお、水質分析において、沈殿工程Bと排水工程Cでは、活性汚泥を廃水中の沈降分離した沈殿汚泥と上澄みとに個別に採取し、分析を行った。沈殿汚泥の採取には採水器を用いた。沈殿汚泥の分析に際しては、前処理として遠心分離とろ過を行った。また、処理水槽2中の廃水とは別に、処理水槽2から排出された処理水に関しても、処理水中のBOD、SS、アンモニア性窒素(NH4−N)、亜硝酸性窒素(NO−N)および硝酸性窒素(NO3−N)の含有量について分析を行った。
【0034】
次に廃水処理実験の初期設定条件1)、2)、3)の実験結果について、図5乃至図7において説明する。
【0035】
図5乃至図7は、各々の初期設定条件を1)曝気量28L/min、DOの最大値2〜4mg/Lとした場合(図5)、2)曝気量35L/min、DOの最大値4〜6mg/Lとした場合(図6)、3)40L/min、DOの最大値6mg/L以上とした場合(図7)を示す。また図5乃至図7の各々の(a)は、横軸に経過時間(h)、縦軸にPH値又は廃水中のアンモニア性窒素(NH−N)と亜硝酸性窒素(NO−N)の含有量(mg/L)を示す。図5乃至図7の各々の(b)は、横軸に経過時間(h)、縦軸にORP値(mV)又は廃水中のアンモニア性窒素(NH−N)と亜硝酸性窒素(NO−N)の含有量(mg/L)を示す。図5乃至図7の各々の(c)は、横軸に経過時間(h)、縦軸にDO値(mg/L)又は廃水中のアンモニア性窒素(NH−N)と亜硝酸性窒素(NO−N)の含有量(mg/L)を示す。
【0036】
図5乃至図7において、実線(1)は上澄みについて水質分析を行った結果であり、単位体積当たりの廃水中のアンモニア性窒素(NH−N)の含有量(mg/L)を示している。また図5乃至図7において、実線(2)は上澄みについて水質分析を行った結果であり、単位体積当たりの廃水中の亜硝酸性窒素(NO−N)の含有量(mg/L)を示している。さらに図5乃至図7における破線(3)は沈殿汚泥について、単位体積当たりのアンモニア性窒素(NH4−N)の含有量(mg/L)を示している。また図5乃至図7における破線(4)は沈殿汚泥について、単位体積当たりの亜硝酸性窒素(NO−N)の含有量(mg/L)を示している。
【0037】
図5における実線(5)はPH値を示し、図6における実線(5)はORP値を示し、図7における実線(5)はDO値を示している。さらに図5乃至図7の各々の(d)は、廃水処理装置を各初期設定条件で2週間連続運転を行い、最後の1サイクル運転にて水質分析を行った結果を示す。
【0038】
次に、図5乃至図7に共通する廃水処理実験結果について説明する。
【0039】
撹拌曝気工程の開始直後は処理水槽内に注入された廃水の影響で各図(a)、(b)、(c)のPH値、ORP値、DO値は不安定であるが、曝気時間の初期の傾向としては、時間の経過とともにPH値は減少し、ORP値は負の領域で増加し、DO値は一定値0をとる。また一定の時間経過後ORP値が負の値から正の値に変化すると、PH値の減少率は低下し、その後PH値は増加に転じる。また、同時にDO値は一定値0から増加傾向に転じる。
【0040】
また図5、図6、図7の順で曝気装置4による曝気量は大きく設定されているが、ORP値が負の値から正の値に変化するまでの時間は、曝気量が大きいほど短くなっている。なお、処理水槽2内の廃水のBOD値の連続分析は行わなかったが、撹拌曝気工程Aにおいて、廃水投入直後の処理水槽2内の廃水のBOD値は約370mg(投入された廃水のBOD値を12000mg/L、廃水投入量/1サイクルを115L、処理水槽容積を3700Lとした場合の概算値)より図5乃至図7の(d)に示す処理水質のBOD値まで減少していくと推測される。
【0041】
沈殿工程Bと排水工程Cでは、PH値は緩やかに増加し、ORP値は減少傾向にあり、DO値は一定時間経過後に一定値0をとる。沈殿工程Bにおいて、沈殿汚泥の亜硝酸性窒素(NO−N)(図5乃至図7(4))は沈殿工程B開始後1時間以内に0にまで減少している。また、アンモニア性窒素(NH4−N)は、上澄み(図5乃至図7(1))と沈殿汚泥(図5乃至図7(3))の双方で余り変化していない。硝酸性窒素(NO3−N)については図5乃至図7(d)からわかるように、全ての実験の水質検査で0mg/Lであったことから、図5乃至図7における表記を省略している。
【0042】
硝酸性窒素(NO3−N)が、全ての実験の水質検査で0mg/Lとなるのは次のような理由からである。すなわち、窒素化合物が有機性窒素、アンモニア性窒素(NH4−N)、亜硝酸性窒素(NO−N)、窒素ガスの順で変化しており、各変化の過程で硝酸性窒素の生成が行われないからである。
【0043】
次に、図5乃至図7の実験結果について個別に説明する。
【0044】
図8乃至図10は各々図5乃至図7の個別の実験結果を1サイクルGを各時間帯別にDO値、BOD値、アンモニア性窒素(NH4−N)、亜硝酸性窒素(NO−N)についての特徴をまとめた図表である。
【0045】
上記の各時間帯は、1サイクルGを廃水投入30分前から撹拌曝気工程A開始時まで(−0.5〜0.0h)と、撹拌曝気工程A開始時からORP値が約0になる時まで、ORP値が約0になった時から撹拌曝気工程A終了時までと、沈殿工程Bの開始時から排水工程Cの終了時まで(6.0〜11.5h)とに分けられている。
【0046】
まず、曝気量を28L/min(図5)に設定した場合について説明する。
【0047】
曝気量が28L/minの沈殿工程Bでは、沈殿汚泥の浮上が観察された。このような沈殿汚泥の浮上は、28L/minと低曝気量のため撹拌曝気工程AでBOD値を低減できないことから、沈殿工程Bで亜硝酸性窒素(NO−N)が脱窒反応により発生した窒素ガスの気泡により、沈殿汚泥が浮上したもの考えられる。この汚泥浮上により処理水のSS値が曝気量35L/min(図6(d))と40L/min(図7(d))の設定の時と比較して増加している。
【0048】
曝気量28L/minの廃水処理実験結果BOD:140mg/LとSS:180mg/L(図5(d))は、日本の排出基準の日間平均値であるBOD:120mg/LおよびSS:150mg/L(参考値)を越える値となっている。
【0049】
次に、曝気量40L/min(図7)と曝気量35L/min(図6)に設定した場合について比較する。
【0050】
曝気量40L/minのBOD値は、曝気量35L/minのBOD値と比較して低く抑えられているが、DO値が平均的に高いため、脱窒反応の進行が困難であり、窒素化合物は脱窒反応の進行過程の途中である亜硝酸性窒素(NO−N)の状態で存在し、亜硝酸性窒素(NO−N)濃度が高くなることから、硝化反応の進行も抑制される。また、曝気量40L/minの場合は、曝気量28L/minおよび35L/minと比較して、曝気量が大きいにもかかわらず、アンモニア性窒素(NH4−N)濃度が高くなっている。
【0051】
曝気量35L/minのBOD値(図6(d))は曝気量40L/minの時(図7(d))より大きいが、日本の排出基準は下回っており、かつ汚泥の浮上も発生していない。また、曝気量を35L/minの設定の時は40L/minの時より、DO値が平均的に低いことから脱窒反応の進行が早く、亜硝酸性窒素(NO−N)濃度が低いため、硝化反応の進行も早い。
【0052】
従って、初期設定条件1)、2)および3)を比較したとき、2)曝気量35L/minに設定した時が、最も効率良く廃水中に含まれる有機物と窒素化合物を除去することができる。さらに、曝気量35L/minに設定した時の実験結果を示す図6より明らかなように、硝化反応と脱窒反応とが同時に進行するように、撹拌曝気工程Aの終了前約30分間に亜硝酸性窒素濃度が0〜10mg/L程度の範囲に増加するように曝気量を調整した場合に、最も効率良く廃水中に含まれる有機物と窒素化合物を除去することができる。
【0053】
図11は、本発明による廃水処理装置1の廃水処理方法の変形例を示している。
【0054】
処理水槽2内に亜硝酸性窒素イオン濃度計7fが設置され、制御装置5は亜硝酸イオン濃度計7fからの情報に基づいて、撹拌曝気工程Aの終了前約30分間に亜硝酸性窒素(NO−N)濃度が0〜10mg/L程度の範囲に増加するように曝気量と曝気時間を調整する。
【0055】
図11において、硝化反応と脱窒反応とが同時に進行するように、撹拌曝気工程Aの終了前約30分間に亜硝酸性窒素(NO−N)濃度が約0〜10mg/Lの範囲に増加するように曝気量を調整することにより、脱窒反応の進行が早く、亜硝酸性窒素(NO−N)濃度が低いため硝化反応の進行も早く、硝化反応と脱窒反応を利用して廃水中の有機物と窒素化合物を効率よく除去することができる。
【0056】
第2の実施の形態
図12および図13は、本発明の第2の実施の形態を示す図である。図12および図13に示すように、撹拌曝気工程Aと沈殿工程Bとの間において、処理水槽2内の廃水内で硝化反応および脱窒反応を同時に起こし、廃水中の活性汚泥の浮上を防止するように、制御装置5により撹拌装置3のみを作動させる(撹拌工程D)。図12および図13において図1、図3乃至図11に示す第1の実施の形態と同一部分には同一符号を符して詳細な説明は省略する。
【0057】
図5乃至図7の実験結果から、各沈殿工程Bにおいて、活性汚泥中の有機物を利用して亜硝酸性窒素(NO−N)の脱窒反応が進行しているものと推測される。従って、撹拌曝気工程Aと沈殿工程Bの間に撹拌装置3のみを作動させる撹拌工程D(図12)を設けることによって、活性汚泥の撹拌により亜硝酸性窒素(NO−N)の脱窒反応を促進し、曝気量28L/minの設定(図5)で問題となった沈殿工程Bの沈殿汚泥の浮上をも防止することができる。
【0058】
すなわち、撹拌曝気工程Aにおいて、曝気装置4からの曝気量が小さく、撹拌曝気工程A終了前約30分間、亜硝酸性窒素(NO−N)濃度が0〜10mg/Lの範囲に増加せず0mg/Lのままであった場合、撹拌曝気工程A終了後に撹拌工程Dを設けることにより、さらに脱窒反応を促進でき、沈殿汚泥の浮上をも防止することができる。
【0059】
図13は、曝気量28L/minの設定において撹拌曝気工程Aと沈殿工程Bの間に撹拌工程Dを設けた実験結果である。撹拌工程Dは、約1時間の撹拌装置による処理水槽2内の廃水の撹拌を行った。
【0060】
図13の実験結果において、撹拌工程Dを設けたことにより、脱窒反応が促進され、沈殿汚泥の浮上を防止することが可能となることがわかる。さらに、BOD値だけでなくSS値も、図5(d)と図13(d)を比較した結果からわかるように、大幅に低減できることが確認された。
【0061】
このように、撹拌曝気工程Aと沈殿工程Bとの間において、約1時間の撹拌装置による処理水槽2内の廃水の撹拌を行う撹拌工程Dを設けることによって、効率的に処理水槽2内の廃水内で硝化反応および脱窒反応を同時に起こし、有機物と窒素化合物を除去することができることがわかる。
【0062】
【発明の効果】
以上のように、本発明によれば、 廃水中の有機物と窒素化合物を活性汚泥により除去する廃水処理装置の廃水処理方法おいて、予め求めた曝気装置による曝気量と廃水中の有機物および窒素化合物の含有量との間の関係に基づいて、硝化反応と脱窒反応を同時に起こすよう、曝気装置の曝気量および曝気時間を調整することにより、廃水中に含まれる窒素化合物および有機物を効率的に除去することができる。
【図面の簡単な説明】
【図1】本発明による排出装置の廃水処理方法の第1の実施の形態を示す全体構成図
【図2】従来の廃水処理装置を示す図
【図3】本発明による排出装置の廃水処理方法の各工程を示す図
【図4】実験開始時の廃水の水質を示す図表
【図5】曝気量28L/minの実験結果を示す図
【図6】曝気量35L/minの実験結果を示す図
【図7】曝気量40L/minの実験結果を示す図
【図8】曝気量28L/minの実験結果の特徴を示す図表
【図9】曝気量35L/minの実験結果の特徴を示す図表
【図10】曝気量40L/minの実験結果の特徴を示す図表
【図11】亜硝酸性窒素イオン濃度計を備えた廃水処理装置を示す図
【図12】本発明の第2の実施の形態の廃水処理方法の各工程を示す図
【図13】図12に示す廃水処理方法を用いた実験結果を示す図
【符号の説明】
1 廃水処理装置
2 処理水槽
3 撹拌装置
4 曝気装置
5 制御装置
6 排水装置
7a 水温計
7b PH計
7c ORP計
7d DO計
7e 記録計
7f 亜硝酸イオン濃度計
8 廃水貯留槽
9 送水装置
10 余剰汚泥排出装置
A 撹拌曝気工程
B 沈殿工程
C 排水工程
D 撹拌工程
E 原水供給工程
[0001]
[Field of the Invention]
The present invention relates to a wastewater treatment apparatus for treating industrial wastewater, and more particularly to a wastewater treatment method for efficiently removing organic substances and nitrogen compounds.
[0002]
[Prior art]
A conventional wastewater treatment method for a wastewater treatment apparatus containing wastewater containing organic substances and nitrogen compounds will be described with reference to FIG. A wastewater treatment device 1 for industrial wastewater 13 includes a wastewater storage tank 8 to which a water supply device 9 is attached, a treatment water tank 2 to which a stirring device 3 is attached, an aeration device 4 and a drainage device 6 connected to the treatment water tank 2. The surplus sludge discharge device 10 connected to the treated water tank 2 and the control device 5 are included.
[0003]
The waste water 13 stored in the waste water storage tank 8 is sent to the treated water tank 2 by the water supply device 9. In the treated water tank 2, the waste water 13 is aerated by the aeration device 4, and at the same time, the waste water 13 is agitated by the agitation device 3. Remove.
[0004]
Some agitators 3 have an aeration function, such as an underwater agitation pump, that performs intake and aeration of air by rotation of an impeller. After stirring and aeration for a predetermined time, the stirring device 3 and the aeration device 4 are stopped and allowed to stand to precipitate activated sludge, and the treated water 11 and sludge are separated. The treated water 11 in the treated water tank 2 is discharged from the treated water tank 2 by the discharge device 6. Excess sludge 12, which is a surplus of activated sludge grown in the treated water tank 2, is discharged from the treated water tank 2 by the surplus sludge discharging device 10.
[0005]
Unlike industrial sewage, industrial wastewater is treated not by a continuous system but by rotation, and the amount of wastewater is very large and fluctuates over time. Therefore, the wastewater treatment apparatus 1 uses a wastewater storage tank 8 to absorb fluctuations in the amount of wastewater. have.
[0006]
The control device 5 controls the water supply device 9, the drainage device 6, the stirring device 3, the excess sludge discharge device 10, and the aeration device 4 so that a predetermined amount of waste water 13 is appropriately purified. The water feeding device 9 and the drainage device 6 have a structure using the natural flow of water by opening or closing a pump or an electric valve. A submersible agitation pump is used as the agitator 3, and a combination of a compressor and an aeration device is used as the aeration device 4. The agitator 3 and the aeration device 4 are submerged in a specification that performs aeration by rotating the pump. A pump may be used.
[0007]
In addition to the components shown in FIG. 2, the actual wastewater treatment apparatus 1 has advanced water treatment mechanisms such as a screen filter dust removal device, a sand removal device, a scum removal device, an ozone treatment device, a membrane treatment device, and a coagulation sedimentation device. Although it may accompany, there is no direct connection with the present invention, so the description is omitted.
[0008]
In recent years, removal of not only organic substances contained in wastewater but also nitrogen compounds has become an important issue. In the wastewater treatment apparatus 1 having the above-described configuration, nitrogen compounds are removed using activated sludge using a nitrification reaction and a denitrification reaction. In general, nitrogen compounds contained in wastewater are classified into organic nitrogen, ammoniacal nitrogen (NH 4 -N), nitrate nitrogen (NO 3 -N), and nitrite nitrogen (NO 2 -N). Sexual nitrogen is mainly composed of proteins. When this protein is degraded by microorganisms, ammoniacal nitrogen (NH 4 —N) is produced.
[0009]
The nitrification reaction is an oxidation reaction of ammoniacal nitrogen (NH 4 -N) by nitrifying bacteria. As oxygen is consumed, the PH value in the wastewater decreases.
[0010]
By the way, in order to efficiently cause the nitrification reaction, it is necessary to grow nitrifying bacteria in the activated sludge.
[0011]
Since the growth rate of nitrifying bacteria is slower than that of other microorganisms, it is necessary to increase the residence time (SRT) in the activated sludge of nitrifying bacteria. The growth rate of nitrifying bacteria is greatly influenced by the waste water temperature and the DO (dissolved oxygen amount) value. The lower the both values, the slower the growth rate.
[0012]
In the denitrification reaction, when the DO value in the wastewater becomes low, the denitrifying bacteria in the activated sludge are bound oxygen contained in nitrate nitrogen (NO 3 -N) and nitrite nitrogen (NO 2 -N). Is a reaction for decomposing organic matter, that is, a reduction reaction of nitrate nitrogen (NO 3 -N) and nitrite nitrogen (NO 2 -N) using organic matter by denitrifying bacteria. Nitrogen denitrified from nitrate nitrogen (NO 3 —N) and nitrite nitrogen (NO 2 —N) is released into the atmosphere as nitrogen gas. Therefore, the denitrification reaction requires a low DO value and the presence of organic substances to be oxidized.
[0013]
As described above, by causing the nitrification reaction and the denitrification reaction at the same time, organic substances and nitrogen compounds in the wastewater are effectively removed.
[0014]
As described above, in the nitrification reaction, the oxygen amount, SRT, waste water temperature, and DO value in wastewater are closely related, and in the denitrification reaction, the DO value of wastewater and the content of organic matter are closely related. Of these, oxygen is supplied as aeration to the wastewater in the treated water tank by the aeration apparatus, and the DO value is adjusted by the aeration amount and the aeration time. SRT is adjusted by the amount of surplus sludge extracted by the surplus sludge discharger. The content of organic matter in the wastewater can be measured as a BOD (Biological Oxygen Demand) value and is present in the wastewater but is oxidized by aeration, and its amount decreases in a relatively short time.
[0015]
[Problems to be solved by the invention]
Thus, the adjustment of the amount of aeration by the aeration apparatus is important not only for removing organic substances but also for removing nitrogen. And the DO value and ORP (oxidation reduction potential) value in a processing water tank are used as a measured value for adjusting this aeration amount, and it measures with a DO meter and an ORP meter, respectively. However, the relationship between the amount of aeration by the aeration device and the content of organic substances and nitrogen compounds in the wastewater is only qualitatively understood, and the above relationship is taken quantitatively, and the aeration device is based on the quantitative results. The current situation is that there is no need to adjust the amount of aeration.
[0016]
The present invention has been made in consideration of such points, and clarifies the relationship between the aeration amount by the aeration apparatus and the contents of organic matter and nitrogen compounds in the wastewater, and adjusts the aeration amount and the aeration time. An object of the present invention is to provide a wastewater treatment method for a wastewater treatment apparatus that can efficiently remove organic substances and nitrogen compounds contained in wastewater.
[0017]
[Means for Solving the Problems]
The present invention relates to a wastewater treatment method using a wastewater treatment apparatus that removes organic matter and nitrogen compounds in treated wastewater by activated sludge, and agitating and aeration steps in which the wastewater in the treatment water tank is aerated by an aeration apparatus and stirred at the same time. Stopping the equipment, precipitating the activated sludge contained in the wastewater in the treated water tank, separating the wastewater into treated water and activated sludge, and a discharging process for discharging the treated water by the discharge device, and stirring In the aeration process, the aeration apparatus is controlled by the control device so that the nitrification reaction and the denitrification reaction occur simultaneously in the wastewater in the treatment water tank, and the aeration amount and the aeration time supplied to the treatment water tank are adjusted. This is a wastewater treatment method for a wastewater treatment apparatus.
[0018]
ADVANTAGE OF THE INVENTION According to this invention, the relationship between the aeration amount by an aeration apparatus and the content of the organic substance and nitrogen compound in wastewater is clarified, and the organic substance and nitrogen compound contained in wastewater can be removed efficiently.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
First Embodiment Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
[0020]
FIG. 1 is a diagram showing an embodiment of a wastewater treatment method for a discharge device according to the present invention.
[0021]
As shown in FIG. 1, a wastewater treatment apparatus 1 includes a treatment water tank 2 for treating waste water containing organic substances and nitrogen compounds, a stirring device 3 installed in the treatment water tank 2 and stirring waste water in the treatment water tank 2, and a treatment Aeration device 4 for aeration in water tank 2, drainage device 6 for discharging waste water treated in treatment water tank 2 from treatment water tank 2, and aeration amount and aeration supplied to treatment water tank 2 by controlling aeration device 4 And a control device 5 for adjusting the time.
[0022]
The treated water tank 2 of the waste water treatment apparatus 1 includes a water temperature meter 7 a that measures the temperature of the waste water in the treated water tank 2, a PH meter 7 b that measures the PH value of the waste water in the treated water tank 2, and the waste water in the treated water tank 2. An ORP meter 7c that measures the ORP value and a DO meter 7d that measures the DO value of the wastewater in the treatment water tank 2 are provided. Each measured value is sent to the recorder 7e and continuously recorded by the recorder 7e. Is possible.
[0023]
As shown in FIG. 1, a water supply device 9 is installed in the wastewater storage tank 8, and an excess sludge discharge device (excess sludge pump) 10 that extracts excess sludge is connected to the treated water tank 2.
[0024]
In FIG. 1, the control device 5 controls not only the aeration device 4 but also the water supply device 9, the stirring device 3, the discharge device 6, and the excess sludge discharge device 10.
[0025]
Further, the water supply device 9 and the drainage device 6 have a structure that utilizes the natural flow of water by opening and closing of a pump or an electric valve. A submersible agitation pump is used as the agitator 3, and a combination of a compressor and an aeration device is used as the aeration device 4. The agitator 3 and the aeration device 4 are submerged in a specification that performs aeration by rotating the pump. A pump may be used.
[0026]
Next, the operation of the embodiment having such a configuration, that is, a wastewater treatment method will be described.
[0027]
First, as shown in FIG. 3, waste water (raw water) is supplied from the waste water storage tank 8 to the treated water tank 2 by the water feeding device 9 (raw water supply process E).
[0028]
Next, the wastewater in the treated water tank 2 is aerated by the aeration device 4 and at the same time, the wastewater is stirred by the stirring device 3 (stirring aeration step A). Thereafter, the aeration device 4 and the stirring device 3 are stopped, the activated sludge contained in the waste water in the treated water tank 2 is precipitated, and the waste water is separated into treated water and activated sludge (precipitation step B). Thereafter, the treated water in the treated water tank 2 is discharged by the drainage device 6 (discharge process C). Next, the raw water supply process E is repeated. FIG. 3 shows one cycle G, and the horizontal axis indicates the elapsed time (h) of each process.
[0029]
In the wastewater treatment method described above, the water supply device 9, the stirring device 3, the aeration device 4, and the discharge device 6 are each driven and controlled by the control device 5.
[0030]
Next, the wastewater treatment method by the control device 5 will be described in further detail. The control device 5 performs wastewater treatment control as follows based on the results of a wastewater treatment experiment performed in advance.
[0031]
First, in order to derive the relationship between the amount of aeration by the aeration device 4 and the contents of organic matter and nitrogen compounds in the wastewater in the treatment water tank 2 using the wastewater treatment device 1, a wastewater treatment experiment was performed with the settings described below. went.
[0032]
The wastewater treatment experiment was conducted under the following initial setting conditions: 1) Aeration amount 28 L / min, DO maximum value 2 to 4 mg / L, 2) Aeration amount 35 L / min, DO maximum value 4 to 6 mg / L, 3) Aeration amount 40 L / Min, with a maximum value of DO of 6 mg / L or more, continuous operation was performed for 2 weeks by batch processing for 12 hours per cycle, and water quality analysis was performed for the last one cycle operation. In the above water quality analysis, waste water is collected from the treated water tank 2 every hour from 10 minutes after the start of aeration, and ammonia nitrogen (NH 4 -N), nitrite nitrogen (NO 2 -N) in the waste water, The content of nitrate nitrogen (NO 3 —N) was analyzed. Moreover, the reason why the maximum DO value is given a range as the initial setting condition is that there is a slight variation in the quality of the wastewater over time. Fig. 4 shows the quality of wastewater at the beginning of the experiment.
[0033]
In addition, in the water quality analysis, in the precipitation process B and the drainage process C, the activated sludge was separately collected and analyzed for the precipitated sludge and the supernatant obtained by sedimentation in the wastewater. A water sampler was used to collect the precipitated sludge. In the analysis of the precipitated sludge, centrifugation and filtration were performed as pretreatment. In addition to the waste water in the treated water tank 2, the treated water discharged from the treated water tank 2 is also BOD, SS, ammonia nitrogen (NH 4 -N), nitrite nitrogen (NO 2 -N) in the treated water. ) And nitrate nitrogen (NO 3 —N) content were analyzed.
[0034]
Next, the initial setting conditions 1), 2) and 3) of the wastewater treatment experiment will be described with reference to FIGS.
[0035]
5 to 7 show that the initial setting conditions are 1) aeration amount 28 L / min, maximum DO value 2 to 4 mg / L (FIG. 5), 2) aeration amount 35 L / min, maximum DO value In the case of 4 to 6 mg / L (FIG. 6), 3) 40 L / min, the case where the maximum DO value is 6 mg / L or more (FIG. 7) is shown. In each of FIGS. 5 to 7, the horizontal axis represents elapsed time (h), and the vertical axis represents PH value or ammonia nitrogen (NH 4 -N) and nitrite nitrogen (NO 2 − in wastewater). N) content (mg / L) is shown. In each of FIGS. 5 to 7, (b) shows the elapsed time (h) on the horizontal axis, the ORP value (mV) on the vertical axis, or ammoniacal nitrogen (NH 4 -N) and nitrite nitrogen (NO) in the wastewater. 2- N) content (mg / L). In each of FIGS. 5 to 7, (c) shows elapsed time (h) on the horizontal axis, DO value (mg / L) on the vertical axis, or ammoniacal nitrogen (NH 4 -N) and nitrite nitrogen in the wastewater. indicating the content of the (NO 2 -N) (mg / L).
[0036]
5 to 7, the solid line (1) is the result of water quality analysis on the supernatant, and shows the content (mg / L) of ammoniacal nitrogen (NH 4 -N) in wastewater per unit volume. Yes. 5 to 7, the solid line (2) is the result of water quality analysis of the supernatant, and the content (mg / L) of nitrite nitrogen (NO 2 -N) in the wastewater per unit volume is shown. Show. Dashed line (3) in addition 5 to 7 for precipitation sludge, shows the content of ammonia nitrogen (NH 4 -N) per unit volume (mg / L). Dashed line (4) also in FIGS. 5-7 for the settled sludge, shows the content of nitrite nitrogen (NO 2 -N) per unit volume (mg / L).
[0037]
The solid line (5) in FIG. 5 indicates the PH value, the solid line (5) in FIG. 6 indicates the ORP value, and the solid line (5) in FIG. 7 indicates the DO value. Further, each of (d) in FIG. 5 to FIG. 7 shows the result of water quality analysis in the last one-cycle operation of the wastewater treatment apparatus continuously operated for 2 weeks under each initial setting condition.
[0038]
Next, the wastewater treatment experiment results common to FIGS. 5 to 7 will be described.
[0039]
Immediately after the start of the stirring and aeration process, the PH value, ORP value, and DO value of each figure (a), (b), and (c) are unstable due to the influence of the wastewater injected into the treated water tank, but the aeration time As an initial tendency, the PH value decreases with the passage of time, the ORP value increases in a negative region, and the DO value takes a constant value of 0. Further, when the ORP value changes from a negative value to a positive value after a certain time has elapsed, the decrease rate of the PH value decreases, and then the PH value starts to increase. At the same time, the DO value starts to increase from the constant value 0.
[0040]
In addition, the aeration amount by the aeration apparatus 4 is set to be large in the order of FIG. 5, FIG. 6, and FIG. 7, but the time until the ORP value changes from a negative value to a positive value becomes shorter as the aeration amount increases. It has become. In addition, although the continuous analysis of the BOD value of the wastewater in the treated water tank 2 was not performed, in the stirring aeration process A, the BOD value of the wastewater in the treated water tank 2 immediately after the wastewater was charged was about 370 mg (the BOD value of the introduced wastewater) Is estimated to be reduced to the BOD value of the treated water quality shown in FIG. 5 to FIG. 7 (d) from 12,000 mg / L, wastewater input / cycle of 115L, and treated water tank volume of 3700L) Is done.
[0041]
In the precipitation process B and the drainage process C, the PH value gradually increases, the ORP value tends to decrease, and the DO value takes a constant value of 0 after a certain time has elapsed. In the precipitation step B, the nitrite nitrogen (NO 2 -N) (FIGS. 5 to 7 (4)) in the precipitated sludge is reduced to 0 within 1 hour after the start of the precipitation step B. Ammonia nitrogen (NH 4 —N) is not significantly changed in both the supernatant (FIGS. 5 to 7 (1)) and the precipitated sludge (FIGS. 5 to 7 (3)). As can be seen from FIGS. 5 to 7 (d), nitrate nitrogen (NO 3 —N) was 0 mg / L in all experiments, so the notation in FIGS. 5 to 7 was omitted. ing.
[0042]
The reason why nitrate nitrogen (NO 3 -N) is 0 mg / L in the water quality test of all experiments is as follows. That is, the nitrogen compound changes in the order of organic nitrogen, ammonia nitrogen (NH 4 -N), nitrite nitrogen (NO 2 -N), and nitrogen gas, and nitrate nitrogen is generated in the course of each change. This is because is not done.
[0043]
Next, the experimental results of FIGS. 5 to 7 will be described individually.
[0044]
FIGS. 8 to 10 show the individual experimental results of FIGS. 5 to 7, respectively, for one cycle G for each time period, DO value, BOD value, ammonia nitrogen (NH 4 -N), nitrite nitrogen (NO 2 − 11 is a chart summarizing features of N).
[0045]
In each of the above-mentioned time zones, the ORP value becomes approximately 0 from the start of the stirring / aeration process A until the start of the stirring / aeration process A (-0.5 to 0.0 h) from 30 minutes before the introduction of the wastewater in one cycle G. Until the time, the ORP value is divided into the period from the time when the ORP value becomes about 0 to the end of the stirring aeration process A and the time from the start of the precipitation process B to the end of the drainage process C (6.0 to 11.5 h). Yes.
[0046]
First, the case where the aeration amount is set to 28 L / min (FIG. 5) will be described.
[0047]
In the precipitation step B with an aeration amount of 28 L / min, the precipitation sludge was observed to float. Since the precipitation sludge floats as low as 28 L / min, the BOD value cannot be reduced in the stirring aeration process A. Therefore, in the precipitation process B, nitrite nitrogen (NO 2 -N) is denitrified. It is thought that the precipitated sludge was floated by the generated nitrogen gas bubbles. Due to the sludge floating, the SS value of the treated water is increased as compared with the case where the aeration amount is set to 35 L / min (FIG. 6D) and 40 L / min (FIG. 7D).
[0048]
Waste water treatment experiment results BOD: 140 mg / L and SS: 180 mg / L (FIG. 5 (d)) with an aeration amount of 28 L / min are BOD: 120 mg / L and SS: 150 mg / L, which are the daily average values of Japanese emission standards. The value exceeds L (reference value).
[0049]
Next, the case where the aeration amount is set to 40 L / min (FIG. 7) and the aeration amount is set to 35 L / min (FIG. 6) will be compared.
[0050]
The BOD value at an aeration amount of 40 L / min is kept low compared to the BOD value at an aeration amount of 35 L / min. However, since the DO value is high on average, the denitrification reaction is difficult to proceed, and the nitrogen compound Exists in the state of nitrite nitrogen (NO 2 -N), which is in the process of denitrification reaction, and the nitrite nitrogen (NO 2 -N) concentration is high, so the progress of nitrification reaction is also suppressed Is done. Further, in the case of an aeration amount of 40 L / min, the ammoniacal nitrogen (NH 4 —N) concentration is high compared with the aeration amounts of 28 L / min and 35 L / min, although the aeration amount is large.
[0051]
Although the BOD value (Fig. 6 (d)) at an aeration amount of 35 L / min is larger than that at an aeration amount of 40 L / min (Fig. 7 (d)), it is below Japan's emission standards and sludge floats. Not. Further, when the aeration amount is set to 35 L / min, since the DO value is lower than that at 40 L / min on average, the progress of the denitrification reaction is quick and the concentration of nitrite nitrogen (NO 2 -N) is low. Therefore, the nitrification reaction proceeds quickly.
[0052]
Therefore, when the initial setting conditions 1), 2) and 3) are compared, 2) When the aeration amount is set to 35 L / min, the organic substances and nitrogen compounds contained in the wastewater can be removed most efficiently. Further, as is clear from FIG. 6 showing the experimental results when the aeration amount is set to 35 L / min, the sublimation is performed for about 30 minutes before the completion of the stirring aeration step A so that the nitrification reaction and the denitrification reaction proceed simultaneously. When the amount of aeration is adjusted so that the nitrate nitrogen concentration is increased to a range of about 0 to 10 mg / L, organic substances and nitrogen compounds contained in the wastewater can be removed most efficiently.
[0053]
FIG. 11 shows a modification of the wastewater treatment method of the wastewater treatment apparatus 1 according to the present invention.
[0054]
A nitrite nitrogen ion concentration meter 7f is installed in the treated water tank 2, and the control device 5 determines the amount of nitrite nitrogen (about 30 minutes before the end of the stirring and aeration step A based on the information from the nitrite ion concentration meter 7f. The aeration amount and the aeration time are adjusted so that the concentration of NO 2 -N) increases to a range of about 0 to 10 mg / L.
[0055]
In FIG. 11, the nitrite nitrogen (NO 2 —N) concentration is within a range of about 0 to 10 mg / L for about 30 minutes before the completion of the stirring and aeration step A so that the nitrification reaction and the denitrification reaction proceed simultaneously. By adjusting the amount of aeration so that it increases, the progress of the denitrification reaction is fast, and the nitrite nitrogen (NO 2 -N) concentration is low, so the progress of the nitrification reaction is fast, and the nitrification reaction and denitrification reaction are used. Thus, organic substances and nitrogen compounds in wastewater can be efficiently removed.
[0056]
Second embodiment Figs. 12 and 13 are diagrams showing a second embodiment of the present invention. As shown in FIG. 12 and FIG. 13, a nitrification reaction and a denitrification reaction occur simultaneously in the wastewater in the treated water tank 2 between the agitating aeration process A and the precipitation process B to prevent the activated sludge from rising in the wastewater. Thus, only the stirring device 3 is operated by the control device 5 (stirring step D). 12 and 13, the same parts as those of the first embodiment shown in FIGS. 1 and 3 to 11 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0057]
From the experimental results of FIGS. 5 to 7, it is presumed that in each precipitation step B, denitrification of nitrite nitrogen (NO 2 —N) proceeds using the organic matter in the activated sludge. Therefore, by providing the stirring step D (FIG. 12) that operates only the stirring device 3 between the stirring aeration step A and the precipitation step B, denitrification of nitrite nitrogen (NO 2 -N) by stirring the activated sludge. The reaction can be promoted, and the precipitation sludge in the precipitation step B, which has become a problem when the aeration amount is set to 28 L / min (FIG. 5), can also be prevented.
[0058]
That is, in the stirring aeration process A, the amount of aeration from the aeration apparatus 4 is small, and the nitrite nitrogen (NO 2 -N) concentration is increased to a range of 0 to 10 mg / L for about 30 minutes before the completion of the stirring aeration process A. In the case where it remains at 0 mg / L, the denitrification reaction can be further promoted and the precipitation sludge can be prevented from rising by providing the stirring step D after the completion of the stirring and aeration step A.
[0059]
FIG. 13 shows experimental results in which the stirring step D is provided between the stirring and aeration step A and the precipitation step B at a setting of an aeration amount of 28 L / min. In the stirring step D, the wastewater in the treated water tank 2 was stirred by a stirring device for about 1 hour.
[0060]
In the experimental result of FIG. 13, it can be seen that the provision of the stirring step D promotes the denitrification reaction and can prevent the precipitation sludge from floating. Furthermore, it was confirmed that not only the BOD value but also the SS value can be significantly reduced, as can be seen from the result of comparing FIG. 5 (d) and FIG. 13 (d).
[0061]
Thus, between the stirring aeration process A and the precipitation process B, by providing the stirring process D which stirs the wastewater in the treated water tank 2 by the stirring apparatus for about 1 hour, the inside of the treated water tank 2 is efficiently provided. It can be seen that the nitrification reaction and the denitrification reaction can occur simultaneously in the wastewater to remove organic substances and nitrogen compounds.
[0062]
【The invention's effect】
As described above, according to the present invention, in the wastewater treatment method for a wastewater treatment apparatus that removes organic matter and nitrogen compounds in wastewater with activated sludge, the amount of aeration by the aeration apparatus determined in advance and the organic matter and nitrogen compounds in the wastewater. By adjusting the aeration amount and aeration time of the aeration device so that the nitrification reaction and the denitrification reaction occur simultaneously based on the relationship between the nitrogen content and the nitrogen content, the nitrogen compounds and organic substances contained in the wastewater can be efficiently Can be removed.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing a first embodiment of a wastewater treatment method for a discharge device according to the present invention. FIG. 2 is a diagram showing a conventional wastewater treatment device. FIG. 3 is a wastewater treatment method for a discharge device according to the present invention. FIG. 4 is a diagram showing the quality of wastewater at the start of the experiment. FIG. 5 is a diagram showing the experimental result of the aeration amount of 28 L / min. FIG. 6 is a diagram showing the experimental result of the aeration amount of 35 L / min. FIG. 7 is a diagram showing experimental results for an aeration amount of 40 L / min. FIG. 8 is a diagram showing characteristics of experimental results for an aeration amount of 28 L / min. FIG. 9 is a diagram showing features of experimental results for an aeration amount of 35 L / min. FIG. 10 is a chart showing the characteristics of the experimental results with an aeration rate of 40 L / min. FIG. 11 is a view showing a wastewater treatment apparatus equipped with a nitrite nitrogen ion concentration meter. FIG. 12 is a diagram of a second embodiment of the present invention. Fig. 13 shows each step of the waste water treatment method. Fig. 13 shows waste water treatment shown in Fig. 12. It shows the experimental results using the law [Description of symbols]
DESCRIPTION OF SYMBOLS 1 Wastewater treatment apparatus 2 Treated water tank 3 Stirring apparatus 4 Aeration apparatus 5 Control apparatus 6 Drainage apparatus 7a Water temperature meter 7b PH meter 7c ORP meter 7d DO meter 7e Record meter 7f Nitrite ion concentration meter 8 Wastewater storage tank 9 Water supply device 10 Excess sludge Discharge device A Stirring aeration process B Precipitation process C Drainage process D Stirring process E Raw water supply process

Claims (2)

廃水中の有機物と窒素化合物を活性汚泥により除去する廃水処理装置を用いた廃水処理方法において、
有機物と窒素化合物とを有し、硝酸性窒素を有さない廃水を処理水槽内へ供給する工程と、
処理水槽内の廃水を曝気装置によって曝気し、同時に撹拌装置によって撹拌する撹拌曝気工程と、
曝気装置および撹拌装置を停止し、処理水槽内の廃水に含まれる活性汚泥を沈殿させ、廃水を処理水と活性汚泥とに分離する沈殿工程と、
処理水を排出装置によって排出する排出工程と、を備え、
処理水槽内へ供給された廃水において、廃水処理の上記各工程中、硝酸性窒素の濃度が0mg/Lに維持され、
撹拌曝気工程において、処理水槽内の廃水内で、制御装置により、撹拌曝気工程終了前30分間に亜硝酸性窒素濃度が増加し続けるとともに、撹拌曝気工程終了時に亜硝酸性窒素濃度が10mg/Lを超えないよう曝気装置の曝気量を調整し、これによって硝化反応と脱窒反応を同時に起こすことを特徴とする廃水処理装置の廃水処理方法。
In a wastewater treatment method using a wastewater treatment device that removes organic matter and nitrogen compounds in wastewater with activated sludge,
A step of supplying wastewater containing organic matter and a nitrogen compound and not containing nitrate nitrogen into the treated water tank;
An aeration process in which waste water in the treated water tank is aerated by an aeration apparatus and is agitated by an agitator at the same time;
A precipitation step of stopping the aeration device and the stirring device, precipitating the activated sludge contained in the wastewater in the treated water tank, and separating the wastewater into treated water and activated sludge;
A discharge step of discharging treated water by a discharge device,
In the wastewater supplied into the treated water tank, the concentration of nitrate nitrogen is maintained at 0 mg / L during each step of the wastewater treatment,
In the agitation aeration process, the nitrite nitrogen concentration continues to increase for 30 minutes before the agitation aeration process is completed by the control device in the wastewater in the treated water tank, and the nitrite nitrogen concentration is 10 mg / L at the end of the agitation aeration process. A wastewater treatment method for a wastewater treatment apparatus, wherein the aeration amount of the aeration apparatus is adjusted so as not to exceed, and thereby a nitrification reaction and a denitrification reaction occur simultaneously.
廃水中の有機物と窒素化合物を活性汚泥により除去する廃水処理装置を用いた廃水処理方法において、
有機物と窒素化合物とを有し、硝酸性窒素を有さない廃水処理前の廃水を処理水槽内へ供給する工程と、
処理水槽内の廃水を曝気装置によって曝気し、同時に撹拌装置によって撹拌する撹拌曝気工程と、
曝気装置を停止し、処理水槽内の廃水を撹拌装置によって撹拌する撹拌工程と、
撹拌装置を停止し、処理水槽内の廃水に含まれる活性汚泥を沈殿させ、廃水を処理水と活性汚泥とに分離する沈殿工程と、
処理水を排出装置によって排出する排出工程と、を備え、
処理水槽内へ供給された廃水において、廃水処理の上記各工程中、硝酸性窒素の濃度が0mg/Lに維持され、
撹拌工程において、処理水槽内の廃水内で、制御装置により、撹拌工程終了前30分間に亜硝酸性窒素濃度が増加し続けるとともに、撹拌工程終了時に亜硝酸性窒素濃度が10mg/Lを超えないよう撹拌装置の撹拌を調整し、これによって硝化反応と脱窒反応を同時に起こすことを特徴とする廃水処理装置の廃水処理方法。
In a wastewater treatment method using a wastewater treatment device that removes organic matter and nitrogen compounds in wastewater with activated sludge,
A step of supplying wastewater before treatment of wastewater containing organic matter and nitrogen compounds and not containing nitrate nitrogen into the treated water tank;
An aeration process in which waste water in the treated water tank is aerated by an aeration apparatus and is agitated by an agitator at the same time;
A stirring step of stopping the aeration apparatus and stirring the waste water in the treated water tank with a stirring device;
A precipitation step of stopping the agitator, precipitating the activated sludge contained in the wastewater in the treated water tank, and separating the wastewater into treated water and activated sludge;
A discharge step of discharging treated water by a discharge device,
In the wastewater supplied into the treated water tank, the concentration of nitrate nitrogen is maintained at 0 mg / L during each step of the wastewater treatment,
In the agitation process, the nitrite nitrogen concentration continues to increase for 30 minutes before the end of the agitation process in the wastewater in the treated water tank, and the nitrite nitrogen concentration does not exceed 10 mg / L at the end of the agitation process A wastewater treatment method for a wastewater treatment apparatus, wherein the stirring of the stirring apparatus is adjusted so that a nitrification reaction and a denitrification reaction occur simultaneously.
JP2001165466A 2001-05-31 2001-05-31 Wastewater treatment method for wastewater treatment equipment Expired - Fee Related JP4564204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001165466A JP4564204B2 (en) 2001-05-31 2001-05-31 Wastewater treatment method for wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001165466A JP4564204B2 (en) 2001-05-31 2001-05-31 Wastewater treatment method for wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2002355693A JP2002355693A (en) 2002-12-10
JP4564204B2 true JP4564204B2 (en) 2010-10-20

Family

ID=19008126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001165466A Expired - Fee Related JP4564204B2 (en) 2001-05-31 2001-05-31 Wastewater treatment method for wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP4564204B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133445A1 (en) * 2012-03-09 2013-09-12 メタウォーター株式会社 Wastewater treatment device, wastewater treatment method, wastewater treatment system, control device, control method, and program
EP2824080A4 (en) * 2012-03-09 2015-10-28 Metawater Co Ltd Wastewater treatment device, wastewater treatment method, wastewater treatment system, control device, control method, and program
CN113735329B (en) * 2021-09-28 2022-08-12 无锡海拓环保装备科技有限公司 Air flotation dephosphorization purification device and control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209296A (en) * 1984-03-31 1985-10-21 Shimizu Constr Co Ltd Batch treatment of activated sludge
JPH0418992A (en) * 1990-05-14 1992-01-23 Mitsubishi Kakoki Kaisha Ltd Treatment of night soil sewage
JPH05309389A (en) * 1992-05-11 1993-11-22 Kubota Corp Treatment of sewage
JPH09164399A (en) * 1995-12-18 1997-06-24 Kurita Water Ind Ltd Nitrating and denitrifying method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209296A (en) * 1984-03-31 1985-10-21 Shimizu Constr Co Ltd Batch treatment of activated sludge
JPH0418992A (en) * 1990-05-14 1992-01-23 Mitsubishi Kakoki Kaisha Ltd Treatment of night soil sewage
JPH05309389A (en) * 1992-05-11 1993-11-22 Kubota Corp Treatment of sewage
JPH09164399A (en) * 1995-12-18 1997-06-24 Kurita Water Ind Ltd Nitrating and denitrifying method

Also Published As

Publication number Publication date
JP2002355693A (en) 2002-12-10

Similar Documents

Publication Publication Date Title
JP3771870B2 (en) Sewage treatment system by oxidation ditch method
JP4327770B2 (en) Biological nitrification treatment method and nitrification treatment apparatus for wastewater containing ammonia nitrogen
JPH0777640B2 (en) Dephosphorization device
JP4564204B2 (en) Wastewater treatment method for wastewater treatment equipment
US5972220A (en) Pre-thickened aerobic digester system
JPH05169090A (en) Device for supplying nitrification bacteria in biological activated carbon treatment tower
CN110902967A (en) Wastewater treatment method and wastewater treatment system based on sequencing batch membrane biological reaction
JP4386054B2 (en) Intermittent biological treatment method
JP2007275846A (en) Wastewater treatment system and wastewater treatment method
JPH0768294A (en) Wastewater treatment method
JP4034074B2 (en) Wastewater treatment equipment
JP2004275820A (en) Wastewater treatment apparatus
JPH10286583A (en) Apparatus for treating phosphorus-containing organic water apparatus
JP4403704B2 (en) Biofilm filtration apparatus and treatment method
JP3276904B2 (en) Wastewater treatment method
JP6716664B2 (en) Batch type carrier water treatment method
CN111547852B (en) Control method of integrated shortcut nitrification-anaerobic ammonia oxidation denitrification process
JP2003225693A (en) Method for drainage treatment
JP3639679B2 (en) Nitrogen removal method of wastewater by modified activated sludge circulation method
CN211712879U (en) Wastewater treatment system based on sequencing batch membrane bioreaction
JP4605877B2 (en) Flock particle size control method and water treatment method
JPH07116691A (en) Treatment of drainage
KR100404690B1 (en) Apparatus for advanced treatment of water polluted by organic substances
JPH0760274A (en) Water treatment equipment
JP3359851B2 (en) Wastewater treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees