JP4562034B2 - Photovoltaic panel manufacturing method - Google Patents

Photovoltaic panel manufacturing method Download PDF

Info

Publication number
JP4562034B2
JP4562034B2 JP2005159991A JP2005159991A JP4562034B2 JP 4562034 B2 JP4562034 B2 JP 4562034B2 JP 2005159991 A JP2005159991 A JP 2005159991A JP 2005159991 A JP2005159991 A JP 2005159991A JP 4562034 B2 JP4562034 B2 JP 4562034B2
Authority
JP
Japan
Prior art keywords
photovoltaic
electrode
resin
photovoltaic panel
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005159991A
Other languages
Japanese (ja)
Other versions
JP2006049831A (en
Inventor
鎬一 浅井
一俊 酒井
尋信 市川
貢雄 森下
俊司 吉金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Machine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Machine Manufacturing Co Ltd filed Critical Fuji Machine Manufacturing Co Ltd
Priority to JP2005159991A priority Critical patent/JP4562034B2/en
Publication of JP2006049831A publication Critical patent/JP2006049831A/en
Application granted granted Critical
Publication of JP4562034B2 publication Critical patent/JP4562034B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、多数の粒状の光発電素子を千鳥状又はマトリックス状に配列して透明樹脂でパネル状に成形する光発電パネルの製造方法に関する発明である。   The present invention relates to a photovoltaic panel manufacturing method in which a large number of granular photovoltaic elements are arranged in a staggered pattern or a matrix pattern and are molded into a panel shape with a transparent resin.

近年、太陽光エネルギを電気エネルギに変換する光発電パネルの発電効率を高めるために、例えば、特許文献1(特公平7−54855号公報)、特許文献2(特開2002−164554号公報)に示すように、光発電素子を粒状(若しくは球状)に形成するようにしたものがある。粒状の光発電素子は、様々な方向から入射する太陽光に対してその光入射方向から見た素子投影面積(受光量)がほぼ一定となるため、太陽高度が低くても効率良く発電できる利点がある。   In recent years, for example, Patent Document 1 (Japanese Patent Publication No. 7-54855) and Patent Document 2 (Japanese Patent Application Laid-Open No. 2002-164554) have been proposed in order to increase the power generation efficiency of photovoltaic panels that convert solar energy into electrical energy. As shown, there is one in which the photovoltaic element is formed in a granular shape (or spherical shape). Granular photovoltaic elements have the advantage that the element projected area (light receiving amount) seen from the light incident direction is almost constant with respect to sunlight incident from various directions, so that it is possible to generate power efficiently even when the solar altitude is low. There is.

これらの特許文献1,2の技術では、表面電極を兼ねたベースプレートに形成された多数の円形孔にそれぞれ粒状シリコンを嵌め込み、ベースプレートの下面側に突出した粒状シリコン露出部に、絶縁層を介して電極を形成するようにしている。   In the techniques of these Patent Documents 1 and 2, granular silicon is fitted into a large number of circular holes formed in the base plate that also serves as a surface electrode, and the granular silicon exposed portion protruding on the lower surface side of the base plate is interposed via an insulating layer. An electrode is formed.

しかし、上記特許文献1,2の技術では、ベースプレートの上面側に露出する粒状シリコン受光領域の面積と、下面側の電極形成領域の大きさ(高さ)は、ベースプレートに形成された円形孔の内径と粒状シリコンの外径との関係によって決定されるため、粒状シリコン受光領域の面積と電極形成領域の大きさ(高さ)を均一化するためには、粒状シリコンの外径寸法や形状・真球精度に対して高い均一性が要求される。このため、粒状シリコン製造工程の管理が複雑化して粒状シリコンの生産性が低下すると共に、粒状シリコンの歩留まりが悪くなってしまい、製造コストが高くなるという欠点がある。   However, in the techniques of Patent Documents 1 and 2, the area of the granular silicon light receiving region exposed on the upper surface side of the base plate and the size (height) of the electrode forming region on the lower surface side are the same as the circular holes formed in the base plate. Since it is determined by the relationship between the inner diameter and the outer diameter of the granular silicon, in order to make the area of the granular silicon light receiving area and the size (height) of the electrode forming area uniform, High uniformity is required for true spherical accuracy. For this reason, the management of the granular silicon manufacturing process is complicated, the productivity of the granular silicon is lowered, the yield of the granular silicon is deteriorated, and the manufacturing cost is increased.

また、電極と粒状光発電素子との接合部分には、オーミックコンタクトを形成する必要があり、そのために、光発電素子上に直接に電極材料を堆積するか、光発電素子上にコンタクト穴を有する絶縁膜を形成し、このコンタクト穴から露出する光発電素子の部分に電極材料を堆積する方法がある。   In addition, it is necessary to form an ohmic contact at the junction between the electrode and the granular photovoltaic device. For this purpose, electrode material is directly deposited on the photovoltaic device, or a contact hole is provided on the photovoltaic device. There is a method of forming an insulating film and depositing an electrode material on the portion of the photovoltaic element exposed from the contact hole.

例えば、特許文献3(特開2004−63564号公報)の電極形成方法は、球状第1半導体表面の第2半導体層を開口して第1半導体の一部を露出させ、第1半導体の露出部及び第2半導体の外周部にそれぞれ内部電極を形成する方法において、底部に接続孔を設けた複数の凹部を有する電気絶縁層及び接続孔としてその周辺部を残して凹部内に形成された第2導電体層からなる支持体を用意し、次いで第2導電体層開口部と第1半導体露出部接続孔周辺部に接するように球状光発電素子を凹部内に配置し、接合部を溶着した後、各部電極を対応する導電体層に半田付けなどで接続するようにしている。   For example, in the electrode forming method disclosed in Patent Document 3 (Japanese Patent Laid-Open No. 2004-63564), the second semiconductor layer on the spherical first semiconductor surface is opened to expose a part of the first semiconductor, and the exposed portion of the first semiconductor. And a method of forming internal electrodes on the outer periphery of the second semiconductor, respectively, and an electrical insulating layer having a plurality of recesses provided with connection holes at the bottom, and a second formed in the recesses as the connection holes, leaving the periphery. After preparing a support made of a conductor layer, and then placing the spherical photovoltaic device in the recess so as to contact the periphery of the second conductor layer opening and the first semiconductor exposed portion connection hole, and welding the joint Each electrode is connected to a corresponding conductor layer by soldering or the like.

また、特許文献4(特開2004−95826号公報)の電極形成方法は、球状光発電素子の表面に、インクジェット方式により導電性インクを塗布し、これを熱処理することにより少なくとも1つの電極を形成する。この方式により、球状の第1導電体の露出面に第1電極を形成し、第2導電型半導体層の外周面の一部に第2電極を形成するようにしている。   In addition, in the electrode forming method disclosed in Patent Document 4 (Japanese Patent Application Laid-Open No. 2004-95826), at least one electrode is formed by applying conductive ink to the surface of the spherical photovoltaic device by an ink jet method and heat-treating it. To do. With this method, the first electrode is formed on the exposed surface of the spherical first conductor, and the second electrode is formed on a part of the outer peripheral surface of the second conductivity type semiconductor layer.

また、特許文献5(特開2004−140217号公報)の電極形成方法は、光発電素子の表面の第2半導体層の開口部内の第1半導体に第1電極を形成し、第2半導体層の外周部に第2電極を形成し、これを電気絶縁層及び第2導電層からなる支持体の凹部の所定位置に配置し、第1の半田により第1電極と第1導電層とを半田付けし、次いで、第1の電極の半田の固相線温度よりも低い液相線温度を有する半田により第2電極を第2導電層に接繚するようにしている。   Moreover, the electrode formation method of patent document 5 (Unexamined-Japanese-Patent No. 2004-140217) forms a 1st electrode in the 1st semiconductor in the opening part of the 2nd semiconductor layer on the surface of a photovoltaic device, A second electrode is formed on the outer periphery, and the second electrode is disposed at a predetermined position of the concave portion of the support made of the electrical insulating layer and the second conductive layer, and the first electrode and the first conductive layer are soldered by the first solder. Then, the second electrode is brought into contact with the second conductive layer with solder having a liquidus temperature lower than the solidus temperature of the solder of the first electrode.

これら特許文献3,4,5の技術では、球状光発電素子上にオーミックな電極を形成するには、球状シリコンの外径寸法や形状、真球精度に対して高い均一性が要求されるとともに、ベースプレートと粒状シリコンとの間に、高い真球精度が要求されることになり、量産性が低く製造コストが高くなるという欠点がある。   In the technologies of these Patent Documents 3, 4, and 5, in order to form an ohmic electrode on a spherical photovoltaic device, high uniformity is required for the outer diameter size and shape of spherical silicon and the true spherical accuracy. In addition, there is a drawback in that high sphericity accuracy is required between the base plate and the granular silicon, resulting in low mass productivity and high manufacturing cost.

また、特許文献6(特開2003−282480号公報)には、半導体の電極形成部に電極材製のディスクまたはブラシを擦り付けることにより電極材を塗布し、擦り付けに伴う摩擦熱によりシンタリングを行う方法が開示されているが、電極部周辺にある封止材に働く摩擦熱や物理的な力が働き、光発電素子を保持する樹脂層に損傷を与える可能性がある。
特公平7−54855号公報 特開2002−164554号公報 特開2004−63564号公報 特開2004−95826号公報 特開2004−140217号公報 特開2003−282480号公報
In Patent Document 6 (Japanese Patent Laid-Open No. 2003-282480), an electrode material is applied by rubbing a disk or brush made of an electrode material to a semiconductor electrode forming portion, and sintering is performed by frictional heat accompanying rubbing. Although a method is disclosed, frictional heat and physical force acting on the sealing material around the electrode portion may work, and the resin layer holding the photovoltaic element may be damaged.
Japanese Patent Publication No. 7-54855 JP 2002-164554 A JP 2004-63564 A JP 2004-95826 A JP 2004-140217 A JP 2003-282480 A

本発明は上述した課題を解決しようとしてなされたものであり、従って、本発明の目的は、光発電パネルの要求品質レベルを満たしつつ、光発電素子(粒状シリコン)の外径寸法や形状・真球精度に対する許容範囲を広げることができて、光発電素子の生産性向上、歩留まり向上を製品品質を落とさずに実現できる光発電パネルの製造方法を提供することにある。また、本発明の他の目的は、光発電素子を保持する樹脂層に損傷を与えることなく、電極と前記光発電素子との接合部分にオーミックな接触抵抗部を容易に形成することができる光発電パネルの製造方法を提供することにある。   The present invention has been made in order to solve the above-described problems. Therefore, the object of the present invention is to satisfy the required quality level of the photovoltaic panel, while maintaining the outer diameter size, shape and trueness of the photovoltaic element (granular silicon). It is an object of the present invention to provide a photovoltaic panel manufacturing method that can widen an allowable range for the sphere accuracy and can realize improvement in productivity and yield of photovoltaic elements without deteriorating product quality. Another object of the present invention is to provide an optical device capable of easily forming an ohmic contact resistance portion at the junction between the electrode and the photovoltaic device without damaging the resin layer holding the photovoltaic device. It is providing the manufacturing method of an electric power generation panel.

上記目的を達成するために、請求項1に係る発明は、多数の粒状の光発電素子を配列して透明樹脂でパネル状に成形し、且つ、各光発電素子の一部を樹脂部から突出させた光発電パネルを製造する方法において、成形キャビティに前記多数の光発電素子が1個ずつ収容される多数の椀状凹部が形成され、且つ各椀状凹部の底部に前記各光発電素子の一部が下向きに突出する円形の貫通孔が形成された成形型と、少なくとも前記貫通孔に対向する部分に逃げ凹部が形成された受け台とを用い、
前記受け台の逃げ凹部に可塑性シール材を充填する工程と、
前記受け台上に前記成形型をセットする工程と、
前記成形型の各椀状凹部に前記光発電素子を1個ずつ収容する工程と、
前記成形型の各椀状凹部内に収容された前記各光発電素子を上方から押さえ付けて前記各光発電素子の下部を各椀状凹部の貫通孔に嵌まり込ませて前記可塑性シール材の内部にほぼ一定量だけ押し込む素子押し込み工程と、
前記成形型の成形キャビティ内に前記透明樹脂の樹脂液を注入する工程と、
前記成形型の成形キャビティ内の前記樹脂液を硬化させて前記多数の光発電素子を透明樹脂でパネル状に一体化した光発電パネルを成形する工程と、
前記成形型の成形キャビティから前記光発電パネルを取り出す工程と
を含むことを特徴とする光発電パネルの製造方法である。
In order to achieve the above object, according to the first aspect of the present invention, a large number of granular photovoltaic elements are arranged and formed into a panel shape with a transparent resin, and a part of each photovoltaic element protrudes from the resin portion. In the method for manufacturing a photovoltaic panel, a plurality of bowl-shaped recesses for receiving the plurality of photovoltaic elements one by one are formed in a molding cavity, and the bottom of each bowl-shaped depression is formed on each photovoltaic element. Using a molding die in which a circular through hole partially protruding downward is formed, and a cradle in which a relief recess is formed at least in a portion facing the through hole,
Filling the relief recess of the cradle with a plastic sealing material;
Setting the mold on the cradle;
Storing one photovoltaic element in each bowl-shaped recess of the mold;
By pressing the photovoltaic elements housed in the bowl-shaped recesses of the mold from above, the lower portions of the photovoltaic elements are fitted into the through holes of the bowl-shaped recesses, and the plastic sealing material An element pushing process for pushing a substantially constant amount inside,
Injecting a resin liquid of the transparent resin into a molding cavity of the mold;
Curing the resin liquid in the molding cavity of the mold and molding a photovoltaic panel in which the photovoltaic elements are integrated into a panel with a transparent resin;
Removing the photovoltaic panel from the molding cavity of the molding die.

要するに、本発明では、受け台の逃げ凹部に可塑性シール材を充填して、この受け台上に成形型をセットし、この成形型の各椀状凹部内に収容した各光発電素子を上方から押さえ付けて各光発電素子の下部を各椀状凹部の貫通孔に嵌まり込ませて受け台の逃げ凹部内の可塑性シール材の内部にほぼ一定量だけ押し込んだ後、成形型の成形キャビティ内に透明樹脂の樹脂液を注入して硬化させることで、多数の光発電素子を透明樹脂でパネル状に一体化した光発電パネルを成形するものである。このようにすれば、光発電パネルの製造に用いる光発電素子の外径寸法や形状・真球精度に多少のばらつきがあっても、光発電パネルの樹脂部からの素子突出量を均一化することができると共に、光発電素子の外径寸法や形状・真球精度のばらつきによって生じる各椀状凹部の貫通孔と光発電素子との隙間を可塑性シール材でシールすることができて、その隙間からの樹脂漏れを防止することができる(この際、樹脂の粘度を調整して樹脂漏れをより確実に防止するようにしても良い)。これにより、光発電パネルの要求品質レベルを満たしつつ、光発電素子(粒状シリコン)の外径寸法や形状・真球精度に対する許容範囲を広げることができて、光発電素子の生産性向上、歩留まり向上を製品品質を落とさずに実現することができる。   In short, in the present invention, a plastic sealing material is filled in the relief recess of the cradle, a molding die is set on the cradle, and each photovoltaic element housed in each bowl-shaped recess of the molding die is viewed from above. Press down and fit the lower part of each photovoltaic device into the through hole of each bowl-shaped recess and push it into the plastic seal material in the relief recess of the cradle by an almost constant amount, then inside the molding cavity of the mold A photovoltaic panel in which a number of photovoltaic elements are integrated into a panel shape with a transparent resin is formed by injecting a resin solution of a transparent resin into the resin. In this way, even if there is some variation in the outer diameter size, shape, and true sphere accuracy of the photovoltaic elements used in the production of the photovoltaic panel, the amount of element protrusion from the resin portion of the photovoltaic panel is made uniform. The gap between the through hole of each bowl-shaped recess and the photovoltaic element caused by variations in the outer diameter size, shape, and true spherical accuracy of the photovoltaic element can be sealed with a plastic sealing material. Can be prevented (in this case, the viscosity of the resin may be adjusted to prevent the resin leakage more reliably). As a result, the allowable range for the outer diameter size, shape and true spherical accuracy of photovoltaic elements (granular silicon) can be expanded while meeting the required quality level of photovoltaic panels, improving the productivity of photovoltaic elements and yield. Improvements can be realized without compromising product quality.

この場合、請求項2のように、素子押し込み工程において、各光発電素子の下端を受け台の逃げ凹部の底面に当接又はほぼ当接させるように押し込むことで、各光発電素子の下部を可塑性シール材の内部にほぼ一定量だけ押し込むようにすると良い。このようにすれば、極めて簡単な作業で樹脂部からの素子突出量を均一化することができ、生産性を更に高めることができる。但し、本発明は、可塑性シール材の粘度を調整することで、光発電素子の下部を可塑性シール材の内部にほぼ一定量だけ押し込むようにしても良い。   In this case, as in claim 2, in the element pushing step, the lower end of each photovoltaic element is pushed by pushing the lower end of each photovoltaic element so as to contact or substantially contact the bottom surface of the relief recess of the receiving base. It is preferable to push the plastic seal material into the plastic seal material by a substantially constant amount. In this way, the amount of element protrusion from the resin portion can be made uniform by an extremely simple operation, and productivity can be further increased. However, in the present invention, the lower part of the photovoltaic device may be pushed into the plastic sealing material by a substantially constant amount by adjusting the viscosity of the plastic sealing material.

更に、請求項3のように、各光発電素子の下端が受け台の逃げ凹部の底面に当接又はほぼ当接した状態において各光発電素子の外周面が各貫通孔の内周縁に当接又はほぼ当接した状態になるように各貫通孔の孔径を設定するようにすると良い。このようにすれば、素子押し込み工程で、各椀状凹部の貫通孔と光発電素子との隙間を小さくすることができて、その隙間から可塑性シール材の一部が椀状凹部内に押し込まれることを防止できて、光発電素子と樹脂部との境界を滑らかに形成することができる。これにより、光発電パネルの裏面側に、光反射面を兼ねる電極を形成する工程で、光発電素子と樹脂部との境界周辺の電極(光反射面)を滑らかに形成することができ、光発電素子への反射光の受光量を増加させることができて、光発電効率を高めることができる。   Further, as in claim 3, the outer peripheral surface of each photovoltaic device is in contact with the inner peripheral edge of each through-hole in a state where the lower end of each photovoltaic device is in contact with or substantially in contact with the bottom surface of the recess of the cradle. Or it is good to set the hole diameter of each through-hole so that it may be in the substantially contact | abutted state. In this way, in the element pushing step, the gap between the through hole of each bowl-shaped recess and the photovoltaic element can be reduced, and a part of the plastic seal material is pushed into the bowl-shaped recess from the gap. This can be prevented, and the boundary between the photovoltaic device and the resin portion can be formed smoothly. Thereby, the electrode (light reflecting surface) around the boundary between the photovoltaic element and the resin portion can be smoothly formed in the step of forming the electrode that also serves as the light reflecting surface on the back surface side of the photovoltaic panel. The amount of reflected light received by the power generation element can be increased, and the photovoltaic power generation efficiency can be increased.

また、請求項4のように、光発電パネルの各光発電素子のうちの樹脂部から突出する部分に電極を形成するようにすると良い。本発明では、樹脂部からの素子突出量が均一化されるため、この突出部分に形成する電極の大きさや高さ位置を均一化することができる。   Further, as in claim 4, it is preferable to form an electrode on a portion protruding from the resin portion of each photovoltaic element of the photovoltaic panel. In the present invention, since the element protrusion amount from the resin portion is made uniform, the size and height position of the electrode formed on the protrusion portion can be made uniform.

また、他の目的を達成するために、請求項に係る発明は、多数の粒状の光発電素子を配列して透明樹脂でパネル状に成形し、且つ各光発電素子の一部を樹脂部から露出させてその部分に電極を形成した光発電パネルを製造する方法において、前記光発電素子のうちの前記樹脂部から露出する部分に前記電極を形成した後、レーザー光を前記電極に照射してシンタリングすることで、前記電極と前記光発電素子との接合部分にオーミックな接触抵抗部を形成するようにしたものである。このようにすれば、光発電パネルの製造に用いる光発電素子の外径寸法や形状・真球精度に多少のばらつきがあっても、レーザー光によるシンタリングによって、電極と光発電素子との接合部分にオーミックな接触抵抗部を容易に形成することができる。 In order to achieve another object, the invention according to claim 5 is arranged in such a manner that a large number of granular photovoltaic elements are arranged and formed into a panel shape with a transparent resin, and a part of each photovoltaic element is a resin portion. In the method of manufacturing a photovoltaic panel in which an electrode is formed on the exposed portion, the electrode is formed on a portion of the photovoltaic element exposed from the resin portion, and then the laser beam is applied to the electrode. Thus, an ohmic contact resistance portion is formed at the junction between the electrode and the photovoltaic element. In this way, even if there is some variation in the outer diameter size, shape, and true sphere accuracy of the photovoltaic elements used in the production of photovoltaic panels, the electrodes and photovoltaic elements are joined by laser beam sintering. An ohmic contact resistance portion can be easily formed in the portion.

以下、本発明を実施するための最良の形態を具体化した3つの実施例1〜3を説明する。   Hereinafter, three Examples 1 to 3 embodying the best mode for carrying out the present invention will be described.

本発明の実施例1を図1乃至図15に基づいて説明する。まず、図15に基づいて本実施例の製造方法で製造した光発電パネル10の構造を説明する。   A first embodiment of the present invention will be described with reference to FIGS. First, the structure of the photovoltaic panel 10 manufactured by the manufacturing method of the present embodiment will be described with reference to FIG.

光発電パネル10は、多数の粒状の光発電素子11を千鳥状又はマトリックス状に配列して透明樹脂12(樹脂部)で一体化したものである。この透明樹脂12としては、例えば、光透過性の紫外線硬化性樹脂を用いると良い。   The photovoltaic panel 10 has a large number of granular photovoltaic elements 11 arranged in a zigzag or matrix shape and integrated with a transparent resin 12 (resin portion). As the transparent resin 12, for example, a light transmissive ultraviolet curable resin may be used.

各光発電素子11は、外周部にn型半導体層が薄く形成され、その内周側がp型半導体層となっている。この光発電素子11の製造方法は、特に限定されず、例えば、国際公開WO99/10935号公報に示すように、加熱融解されたシリコン液滴を自由落下させて、そのシリコン液滴を表面張力で球状の形状に変形させて凝固させる自由落下法や、特開2002−60943号公報に示すように、プラズマCVD装置内で、芯材の表面全体にSiを堆積させて球状の光発電素子を製造するプラズマCVD法を用いても良いし、それ以外の製造方法を用いても良い。   Each photovoltaic device 11 has an n-type semiconductor layer formed thinly on the outer periphery, and a p-type semiconductor layer on the inner periphery. The method for producing the photovoltaic element 11 is not particularly limited. For example, as shown in International Publication WO99 / 10935, a silicon droplet that has been heated and melted is freely dropped, and the silicon droplet is subjected to surface tension. A free-fall method in which a spherical shape is deformed and solidified, or as shown in Japanese Patent Laid-Open No. 2002-60943, a spherical photovoltaic device is manufactured by depositing Si on the entire surface of a core material in a plasma CVD apparatus. The plasma CVD method may be used, or other manufacturing methods may be used.

光発電パネル10の裏面側(図15において上面側)には、各光発電素子11の外周部のn型半導体層に導通するn電極13が透明樹脂12の裏側を覆うように形成されている。このn電極13は、2層の絶縁性樹脂層14,15によって完全に覆われている。下層の絶縁性樹脂層14は、後述するエッチング時に保護層(マスク)として機能し、上層の絶縁性樹脂層15は、n電極13とp電極16とを絶縁する絶縁層として機能する。   On the back surface side (upper surface side in FIG. 15) of the photovoltaic panel 10, an n-electrode 13 is formed so as to cover the back side of the transparent resin 12. . The n-electrode 13 is completely covered with two insulating resin layers 14 and 15. The lower insulating resin layer 14 functions as a protective layer (mask) during etching, which will be described later, and the upper insulating resin layer 15 functions as an insulating layer that insulates the n electrode 13 and the p electrode 16.

各光発電素子11の後端部には、研磨等によってn型半導体層が部分的に取り除かれてp型半導体層が露出する部分が形成され、このp型半導体層にp電極16が導通するように形成されている。このp電極16は、絶縁性樹脂等で形成された耐候性の保護絶縁層17によって完全に覆われ、保護・絶縁されている。   A portion where the n-type semiconductor layer is partially removed by polishing or the like to expose the p-type semiconductor layer is formed at the rear end portion of each photovoltaic element 11, and the p-electrode 16 is conducted to the p-type semiconductor layer. It is formed as follows. The p-electrode 16 is completely covered and protected / insulated by a weather-resistant protective insulating layer 17 made of an insulating resin or the like.

以上のように構成した光発電パネル10の製造方法を説明する。前述したように、粒状の光発電素子11の製造方法は、特に限定されず、どの様な方法で粒状の光発電素子11を製造しても良く、1つのメーカーで光発電素子11の製造から光発電パネル10の製造までを一貫して行っても良いし、他のメーカーで製造した光発電素子11を購入して光発電パネル10を製造するようにしても良い。以下、何等かの方法で製造された粒状の光発電素子11を用いて光発電パネル10を製造する各工程を図1乃至図15に基づいて順番に説明する。   A method for manufacturing the photovoltaic panel 10 configured as described above will be described. As described above, the method for manufacturing the granular photovoltaic element 11 is not particularly limited, and the granular photovoltaic element 11 may be manufactured by any method. The process up to the production of the photovoltaic panel 10 may be performed consistently, or the photovoltaic panel 10 may be produced by purchasing a photovoltaic element 11 manufactured by another manufacturer. Hereafter, each process of manufacturing the photovoltaic panel 10 using the granular photovoltaic element 11 manufactured with the some method is demonstrated in order based on FIG. 1 thru | or FIG.

[1]可塑性シール材充填工程
まず、図1に示すように、上面側に浅底の逃げ凹部21が形成された受け台22を使用し、この受け台22の逃げ凹部21内に可塑性シール材23を充填する。この可塑性シール材23は、塑性変形可能で、透明樹脂12(紫外線硬化性樹脂)の樹脂液が浸透しないシール性を有し、且つ透明樹脂12が接着しない材料が用いられる。具体的には、可塑性シール材23として、油粘土、糊、タイル目地用のウレタン系シーリング材、型抜き用の熱硬化性の液状シリコンゴム等を用いれば良い。
[1] Plastic Seal Material Filling Step First, as shown in FIG. 1, a cradle 22 having a shallow relief recess 21 formed on the upper surface side is used, and the plastic seal material is placed in the relief recess 21 of the cradle 22. 23 is filled. The plastic sealing material 23 is made of a material that can be plastically deformed, has a sealing property that does not penetrate the resin liquid of the transparent resin 12 (ultraviolet curable resin), and does not adhere to the transparent resin 12. Specifically, as the plastic sealing material 23, oil clay, glue, urethane-based sealing material for tile joints, thermosetting liquid silicone rubber for die cutting, or the like may be used.

受け台22の逃げ凹部21の深さ寸法は、光発電パネル10の透明樹脂12からの光発電素子11の突出量(素子突出量)とほぼ同一の深さ寸法又はこれよりも若干大きい深さ寸法に設定されている。   The depth dimension of the relief recess 21 of the cradle 22 is substantially the same as or slightly larger than the protrusion amount (element protrusion amount) of the photovoltaic element 11 from the transparent resin 12 of the photovoltaic panel 10. Set to dimensions.

[2]成形型セット工程
可塑性シール材充填工程終了後に、成形型セット工程に進み、図2に示すように、受け台22上に成形型24をセットする。この成形型24の成形キャビティ25には、多数の光発電素子11が1個ずつ収容される多数の椀状凹部26が形成され、且つ各椀状凹部26の底部に各光発電素子11の一部が下向きに突出する円形の貫通孔27が形成されている。尚、図2〜図6には、椀状凹部26が3個のみ図示されているが、実際には椀状凹部26が多数形成されている。
[2] Mold Die Setting Process After the plastic seal material filling process is completed, the process proceeds to the mold setting process, and the mold 24 is set on the cradle 22 as shown in FIG. The molding cavity 25 of the mold 24 is formed with a large number of bowl-shaped recesses 26 in which a large number of photovoltaic elements 11 are accommodated one by one, and one photovoltaic element 11 is provided at the bottom of each bowl-shaped recess 26. A circular through-hole 27 whose portion protrudes downward is formed. Although only three hook-shaped recesses 26 are shown in FIGS. 2 to 6, many hook-shaped recesses 26 are actually formed.

[3]光発電素子収容工程
成形型セット工程終了後に、光発電素子収容工程に進み、図3に示すように、成形型24の各椀状凹部26に光発電素子11を1個ずつ収容する。尚、成形型24の各椀状凹部26に光発電素子11を収容した後、この成形型24を受け台22上にセットするようにしても良い。
[3] Photovoltaic element accommodation process After the molding die setting process is completed, the process proceeds to the photovoltaic element accommodation process, and as shown in FIG. 3, the photovoltaic elements 11 are accommodated one by one in each bowl-shaped recess 26 of the molding die 24. . In addition, after accommodating the photovoltaic device 11 in each bowl-shaped recessed part 26 of the shaping | molding die 24, you may make it set this shaping | molding die 24 on the receiving stand 22. FIG.

[4]素子押し込み工程
光発電素子収容工程終了後に、素子押し込み工程に進み、図4に示すように、成形型24の各椀状凹部26内に収容された各光発電素子11を治具(図示せず)で上方から押さえ付けて各光発電素子11の下部を各椀状凹部26の貫通孔27に嵌まり込ませて、受け台22の逃げ凹部21内の可塑性シール材23の内部にほぼ一定量だけ押し込む。この素子押し込み工程において、各光発電素子11の下端を受け台22の逃げ凹部21の底面に当接又はほぼ当接させるように押し込むことで、各光発電素子11の下部を可塑性シール材23の内部にほぼ一定量だけ押し込むようにすれば良い。
[4] Element Pushing Process After the photovoltaic element housing process is completed, the process proceeds to the element pushing process, and as shown in FIG. 4, each photovoltaic element 11 housed in each bowl-shaped recess 26 of the mold 24 is attached to a jig ( (Not shown) and pressed from above to fit the lower portion of each photovoltaic element 11 into the through hole 27 of each bowl-shaped recess 26, and inside the plastic sealing material 23 in the escape recess 21 of the cradle 22. Push in almost a certain amount. In this element pushing step, the lower end of each photovoltaic element 11 is pushed so as to abut or substantially abut against the bottom surface of the relief recess 21 of the pedestal 22, thereby lowering the lower part of each photovoltaic element 11 of the plastic sealing material 23. It is only necessary to push a certain amount into the interior.

この場合、各光発電素子11の下端が受け台22の逃げ凹部21の底面に当接又はほぼ当接した状態において各光発電素子11の外周面が各貫通孔27の内周縁に当接又はほぼ当接した状態になるように各貫通孔27の孔径が設定されている。   In this case, the outer peripheral surface of each photovoltaic element 11 is in contact with the inner peripheral edge of each through-hole 27 in a state where the lower end of each photovoltaic element 11 is in contact with or substantially in contact with the bottom surface of the relief recess 21 of the cradle 22. The hole diameter of each through hole 27 is set so as to be in a substantially abutting state.

[5]樹脂液注入工程
素子押し込み工程終了後に、樹脂液注入工程に進み、図5に示すように、成形型24の成形キャビティ25内に透明樹脂12(紫外線硬化性樹脂)の樹脂液を注入して、全ての椀状凹部26を樹脂液中に完全に沈めた状態にする。この際、各椀状凹部26の貫通孔27と光発電素子11との隙間が可塑性シール材23でシールされ、その隙間からの樹脂漏れが防止される。
[5] Resin liquid injection process After the element pushing process is completed, the process proceeds to the resin liquid injection process, and the resin liquid of transparent resin 12 (ultraviolet curable resin) is injected into the molding cavity 25 of the mold 24 as shown in FIG. Thus, all the bowl-shaped recesses 26 are completely submerged in the resin liquid. At this time, the gap between the through hole 27 of each bowl-shaped recess 26 and the photovoltaic element 11 is sealed with the plastic sealing material 23, and resin leakage from the gap is prevented.

[6]樹脂硬化工程
樹脂液注入工程終了後に、樹脂硬化工程に進み、図6に示すように、成形型24の成形キャビティ25内の透明樹脂12(紫外線硬化性樹脂)の樹脂液に紫外線を照射して該樹脂液を硬化させることで、多数の光発電素子11を透明樹脂12でパネル状に一体化した光発電パネル10を成形する。
[6] Resin curing process After the resin liquid injection process is completed, the process proceeds to the resin curing process. As shown in FIG. 6, the resin liquid of the transparent resin 12 (ultraviolet curable resin) in the molding cavity 25 of the mold 24 is irradiated with ultraviolet rays. By irradiating and curing the resin liquid, the photovoltaic panel 10 in which a large number of photovoltaic elements 11 are integrated into a panel shape with the transparent resin 12 is formed.

[7]離型工程
樹脂硬化工程終了後に、離型工程に進み、図7に示すように、成形型24の成形キャビティ25から光発電パネル10を取り出す。
[7] Mold Release Process After the resin curing process is completed, the process proceeds to the mold release process, and the photovoltaic panel 10 is taken out from the molding cavity 25 of the mold 24 as shown in FIG.

[8]n電極形成工程
離型工程終了後に、n電極形成工程に進み、図8に示すように、光発電パネル10の裏面全体に、蒸着、めっき、塗布、CVD、スパッタリング等の導体成膜技術を用いてn電極13を形成する。n電極13を形成する導体は、Ag、Ag系導体等の電気抵抗値が小さく、且つ、光を反射しやすい導体(入射光の反射面としても機能させるため)を用いることが好ましい。このn電極13は、各光発電素子11の外周部のn型半導体層に導通し、且つ透明樹脂12の裏側を覆って入射光の反射面としても機能するようになっている。尚、n電極13の一部は、後述するサンドブラスト工程で光発電素子11の一部を露出させるように取り除かれるため、その部分にはn電極13を形成しない部分があっても良い。
[8] n-electrode formation process After the mold release process, the process proceeds to the n-electrode formation process. As shown in FIG. 8, conductor film formation such as vapor deposition, plating, coating, CVD, and sputtering is performed on the entire back surface of the photovoltaic panel 10. The n-electrode 13 is formed using a technique. As the conductor forming the n-electrode 13, it is preferable to use a conductor that has a small electrical resistance value such as Ag or an Ag-based conductor and easily reflects light (to function also as a reflection surface of incident light). The n-electrode 13 is electrically connected to the n-type semiconductor layer on the outer peripheral portion of each photovoltaic element 11 and covers the back side of the transparent resin 12 so as to function also as a reflection surface for incident light. Note that a part of the n-electrode 13 is removed so as to expose a part of the photovoltaic element 11 in a sandblasting process described later, and therefore there may be a part where the n-electrode 13 is not formed.

[9]保護層(下層の絶縁性樹脂層)形成工程
n電極形成工程終了後に、保護層形成工程に進み、図9に示すように、光発電パネル10の裏面のn電極13全面に、エポキシ系樹脂等の絶縁性樹脂を塗布して硬化させて保護層(下層の絶縁性樹脂層)14を形成し、n電極13全面を保護層14で覆った状態にする。この保護層14を形成する樹脂は、熱硬化性樹脂、紫外線硬化性樹脂、嫌気性硬化樹脂等のいずれを用いても良いが、絶縁性と耐エッチング性(エッチング時のマスクとして用いるため)を備えている必要がある。尚、保護層14の一部は、次のサンドブラスト工程で光発電素子11の一部を露出させるように取り除かれるため、その部分には保護層14を形成しない部分があっても良い。
[9] Protection Layer (Lower Insulating Resin Layer) Formation Process After the n electrode formation process is completed, the process proceeds to the protection layer formation process. As shown in FIG. An insulating resin such as a resin is applied and cured to form a protective layer (lower insulating resin layer) 14, and the entire surface of the n electrode 13 is covered with the protective layer 14. The resin for forming the protective layer 14 may be any of thermosetting resin, ultraviolet curable resin, anaerobic curable resin, etc., but has insulation and etching resistance (to be used as a mask during etching). It is necessary to have. In addition, since a part of the protective layer 14 is removed so as to expose a part of the photovoltaic element 11 in the next sandblasting process, there may be a part where the protective layer 14 is not formed.

[10]サンドブラスト工程
保護層形成工程終了後に、サンドブラスト工程に進み、図10に示すように、サンドブラストにより、各光発電素子11の後端部の保護層14とn電極13を部分的に取り除いて、各光発電素子11の後端部のn型半導体層を露出させた状態にする。尚、サンドブラストに代えて、研磨、レーザ加工、放電加工等によって保護層14とn電極13を部分的に取り除くようにしても良い。
[10] Sandblasting process After the protective layer forming process is completed, the process proceeds to the sandblasting process. As shown in FIG. 10, the protective layer 14 and the n-electrode 13 at the rear end of each photovoltaic device 11 are partially removed by sandblasting. Then, the n-type semiconductor layer at the rear end of each photovoltaic element 11 is exposed. Instead of sandblasting, the protective layer 14 and the n-electrode 13 may be partially removed by polishing, laser processing, electric discharge processing, or the like.

[11]エッチング工程
サンドブラスト工程終了後に、エッチング工程に進み、保護層14をマスク(エッチングレジスト)として用いて、該保護層14から露出する光発電素子11の後端部のn型半導体層を化学エッチングして取り除き、その内側のp型半導体層を露出させた状態にする。尚、化学エッチングに代えて、ドライエッチングを用いても良い。
[11] Etching Process After the sandblasting process, the process proceeds to the etching process, and the protective layer 14 is used as a mask (etching resist), and the n-type semiconductor layer at the rear end of the photovoltaic element 11 exposed from the protective layer 14 is chemically treated. Etching is performed to remove the p-type semiconductor layer inside. Note that dry etching may be used instead of chemical etching.

[12]絶縁層(上層の絶縁性樹脂層)形成工程
エッチング工程終了後に、絶縁層(上層の絶縁性樹脂層)形成工程に進み、図11に示すように、光発電パネル10の裏面全体に、エポキシ系樹脂等の絶縁性樹脂を塗布して硬化させて絶縁層(上層の絶縁性樹脂層)15を形成し、前記サンドブラスト工程で部分的に露出されたn電極13を完全に覆って絶縁した状態にする。この絶縁層15を形成する樹脂は、その下層の保護層14と同種、異種のいずれの絶縁性樹脂を用いても良く、熱硬化性樹脂、紫外線硬化性樹脂、嫌気性硬化樹脂等のいずれを用いても良い。尚、絶縁層15の一部は、次の研磨工程で光発電素子11の一部を露出させるように除かれるため、その部分には絶縁層15を形成しない部分があっても良い。
[12] Insulating layer (upper insulating resin layer) forming step After the etching step is completed, the process proceeds to the insulating layer (upper insulating resin layer) forming step, and as shown in FIG. Then, an insulating resin such as an epoxy resin is applied and cured to form an insulating layer (upper insulating resin layer) 15, and the n electrode 13 partially exposed in the sandblasting process is completely covered and insulated. To the state. The insulating layer 15 may be made of any of the same or different types of insulating resin as the protective layer 14 underneath, and any of thermosetting resin, ultraviolet curable resin, anaerobic curable resin, etc. It may be used. In addition, since a part of the insulating layer 15 is removed so that a part of the photovoltaic element 11 is exposed in the next polishing step, there may be a part where the insulating layer 15 is not formed.

[13]研磨工程
絶縁層形成工程終了後に、研磨工程に進み、図12に示すように、光発電パネル10の裏面の絶縁層15を研磨装置で研磨して平坦化すると共に、光発電素子11の後端部のp型半導体層を絶縁層15から露出させると共に、該p型半導体層の露出面を平坦化する。尚、サンドブラストで研磨するようにしても良い。
[13] Polishing Step After the insulating layer forming step, the process proceeds to the polishing step. As shown in FIG. 12, the insulating layer 15 on the back surface of the photovoltaic panel 10 is polished and flattened by a polishing apparatus, and the photovoltaic element 11 The p-type semiconductor layer at the rear end of the p-type semiconductor layer is exposed from the insulating layer 15 and the exposed surface of the p-type semiconductor layer is planarized. In addition, you may make it grind | polish by sandblasting.

[14]p電極形成工程
研磨工程終了後に、p電極形成工程に進み、図13に示すように、光発電パネル10の裏面全体にp電極16を各光発電素子11のp型半導体層の露出面に密着させるように形成する。このp電極16を形成する導体は、前述したn電極13と同じ導体でも良いし、異なる導体を用いても良く、p電極16の形成方法も、n電極13と同じ方法でも異なる方法でも良く、例えば、アルミニウム等の導体の蒸着、印刷、スパッタを用いても良いし、或は、アルミニウム箔等の導体箔を光発電パネル10の裏面全体に貼り付けてp電極16を形成しても良い。
[14] p-electrode formation process After the polishing process, the process proceeds to the p-electrode formation process. As shown in FIG. 13, the p-electrode 16 is exposed on the entire back surface of the photovoltaic panel 10. It is formed so as to be in close contact with the surface. The conductor forming the p-electrode 16 may be the same conductor as the n-electrode 13 described above, or a different conductor may be used, and the method of forming the p-electrode 16 may be the same as or different from the n-electrode 13. For example, vapor deposition, printing, or sputtering of a conductor such as aluminum may be used, or a conductor foil such as an aluminum foil may be attached to the entire back surface of the photovoltaic panel 10 to form the p electrode 16.

[15]レーザーシンタ工程
p電極形成工程終了後に、図14に示すように、レーザーシンタ工程に進み、p電極16と各光発電素子11の後端部のp型半導体層との接合部分の中央部付近に、レーザー光を所定パターンでスポット的に1回又は複数回照射して、その部分をスポット的に加熱し、オーミックな接触抵抗部を形成するためのp電極16の熱処理(シンタ)を行う。
[15] Laser Sintering Step After the p-electrode forming step is completed, as shown in FIG. 14, the laser sintering step proceeds to the center of the junction between the p-electrode 16 and the p-type semiconductor layer at the rear end of each photovoltaic element 11 In the vicinity of the portion, laser light is irradiated in a predetermined pattern one or more times in a spot pattern, the portion is spot-heated, and a heat treatment (sinter) of the p-electrode 16 is performed to form an ohmic contact resistance portion. Do.

このレーザーシンタ工程で使用するレーザーは、例えばYVO4 レーザー(LD励起個体レーザー)で、照射条件は、Qスイッチ周波数:20kHz、照射面積:直径0.3mm、照射密度:25μmとした。この条件では、透明樹脂12を損傷することなく、良好なオーミック接触抵抗部が形成された。尚、使用するレーザーは、YVO4 レーザー(LD励起個体レーザー)に限定されず、例えばYAGレーザー、CO2 レーザー等を用いても、同様の効果が得られる。また、上記の照射条件も一例に過ぎず、適宜変更しても良いことは言うまでもない。 The laser used in this laser sintering process is, for example, a YVO 4 laser (LD-excited solid laser), and the irradiation conditions were a Q switch frequency: 20 kHz, an irradiation area: a diameter of 0.3 mm, and an irradiation density: 25 μm. Under this condition, a good ohmic contact resistance portion was formed without damaging the transparent resin 12. The laser to be used is not limited to YVO 4 laser (LD excitation solid laser), and the same effect can be obtained by using, for example, YAG laser, CO 2 laser or the like. Moreover, it goes without saying that the above irradiation conditions are merely examples, and may be changed as appropriate.

ところで、光発電パネル10における各光発電素子11の配列が正確な等ピッチ配列であれば、配列された各光発電素子11の中心位置(レーザー光の照射位置)が一義的に決められるため、レーザー光照射装置に対して光発電パネル10の各光発電素子11の位置を位置決めして、各光発電素子11の中心位置にスポット的にレーザー光を1回又は複数回照射する処理を光発電素子11の配列に従って順番に自動的に実行するようにすれば良い。   By the way, if the arrangement of the photovoltaic elements 11 in the photovoltaic panel 10 is an accurate equal pitch arrangement, the center position (laser light irradiation position) of the arranged photovoltaic elements 11 is uniquely determined. The position of each photovoltaic element 11 of the photovoltaic panel 10 is positioned with respect to the laser beam irradiating apparatus, and the process of irradiating the center position of each photovoltaic element 11 with the laser beam once or a plurality of times is photovoltaic. What is necessary is just to perform automatically in order according to the arrangement | sequence of the element 11. FIG.

しかし、本実施例1で使用する光発電素子11は、外径寸法や形状・真球精度に多少のばらつきがあるため、光発電パネル10における各光発電素子11の配列が、必ずしも等ピッチ配列とはならない。このような場合は、画像処理等の技術を使用して各光発電素子11の中心位置を1個ずつ探り出し、その点にレーザー光を1回又は複数回照射するようにすれば良い。このようにすれば、各光発電素子11の配列が不均一になっていても、各光発電素子11の中心位置にレーザー光を正確に照射することができる。   However, since the photovoltaic elements 11 used in the first embodiment have some variation in outer diameter size, shape, and true spherical accuracy, the arrangement of the photovoltaic elements 11 in the photovoltaic panel 10 is not necessarily equal pitch. It will not be. In such a case, the center position of each photovoltaic element 11 may be found one by one using a technique such as image processing, and laser light may be irradiated to that point one or more times. In this way, even if the arrangement of the photovoltaic elements 11 is not uniform, the laser beam can be accurately irradiated to the center position of each photovoltaic element 11.

[16]保護絶縁層形成工程
レーザーシンタ工程終了後に、保護絶縁層形成工程に進み、図15に示すように、光発電パネル10の裏面のp電極16全面に、絶縁性樹脂を塗布して硬化させて耐候性の保護絶縁層17を形成し、p電極16全面を保護絶縁層17で覆った状態にする。この保護絶縁層17を形成する樹脂は、熱硬化性樹脂、紫外線硬化性樹脂、嫌気性硬化樹脂等のいずれを用いても良い。以上説明した各工程[1]〜[16]を一通り実行すれば、光発電パネル10の製造が完了する。
[16] Protective insulating layer forming process After the laser sintering process, the process proceeds to the protective insulating layer forming process, and as shown in FIG. 15, an insulating resin is applied to the entire surface of the p-electrode 16 on the back surface of the photovoltaic panel 10 and cured. Thus, a weather-resistant protective insulating layer 17 is formed, and the entire surface of the p-electrode 16 is covered with the protective insulating layer 17. As the resin forming the protective insulating layer 17, any of thermosetting resin, ultraviolet curable resin, anaerobic curable resin, and the like may be used. If each process [1]-[16] demonstrated above is performed one by one, manufacture of the photovoltaic panel 10 will be completed.

以上説明した本実施例1の光発電パネル10の製造方法によれば、受け台22の逃げ凹部21に可塑性シール材23を充填して、この受け台22上に成形型24をセットし、成形型24の各椀状凹部26内に収容した各光発電素子11を上方から押さえ付けて各光発電素子11の下部を各椀状凹部26の貫通孔27に嵌まり込ませて受け台22の逃げ凹部21内の可塑性シール材23の内部にほぼ一定量だけ押し込んだ後、成形型24の成形キャビティ25内に透明樹脂12の樹脂液を注入して硬化させることで、多数の光発電素子11を透明樹脂12でパネル状に一体化した光発電パネル10を成形するようにしたので、光発電パネル10の製造に用いる光発電素子11の外径寸法や形状・真球精度に多少のばらつきがあっても、光発電パネル10の透明樹脂12部分からの素子突出量を均一化することができると共に、光発電素子11の外径寸法や形状・真球精度のばらつきによって生じる各椀状凹部26の貫通孔27と光発電素子11との隙間を可塑性シール材23でシールすることができて、その隙間からの樹脂漏れを防止することができる(この際、樹脂の粘度を調整して樹脂漏れをより確実に防止するようにしても良い)。これにより、光発電パネル10の要求品質レベルを満たしつつ、光発電素子11の外径寸法や形状・真球精度に対する許容範囲を広げることができて、光発電素子11の生産性向上、歩留まり向上を製品品質を落とさずに実現することができる。   According to the manufacturing method of the photovoltaic panel 10 of the first embodiment described above, the relief seal 21 of the cradle 22 is filled with the plastic sealing material 23, the mold 24 is set on the cradle 22, and the molding is performed. The photovoltaic elements 11 housed in the bowl-shaped recesses 26 of the mold 24 are pressed from above, and the lower portions of the photovoltaic elements 11 are fitted into the through holes 27 of the bowl-shaped recesses 26 to A large number of photovoltaic elements 11 are injected by injecting a resin solution of the transparent resin 12 into the molding cavity 25 of the molding die 24 after being pushed into the plastic sealing material 23 in the escape recess 21 by a substantially constant amount. Since the photovoltaic panel 10 in which the transparent resin 12 is integrated into a panel shape is molded, there is some variation in the outer diameter size, shape, and true sphere accuracy of the photovoltaic element 11 used in the production of the photovoltaic panel 10. Even if there is photovoltaic power generation The amount of protrusion of the element 10 from the transparent resin 12 portion of the battery 10 can be made uniform, and the through hole 27 and light of each bowl-shaped recess 26 caused by variations in the outer diameter size, shape and true spherical accuracy of the photovoltaic element 11 The gap with the power generation element 11 can be sealed with the plastic sealing material 23, and resin leakage from the gap can be prevented (in this case, the resin leakage is adjusted to prevent the resin leakage more reliably. You may do it). Thereby, while satisfying the required quality level of the photovoltaic panel 10, the allowable range for the outer diameter size, shape, and true spherical accuracy of the photovoltaic element 11 can be expanded, and the productivity and the yield of the photovoltaic element 11 are improved. Can be realized without sacrificing product quality.

しかも、本実施例1では、素子押し込み工程において、各光発電素子11の下端を受け台22の逃げ凹部21の底面に当接又はほぼ当接させるように押し込むようにしたので、極めて簡単な作業で光発電パネル10の透明樹脂12(樹脂部)からの素子突出量を均一化することができて、この突出部分に形成するn電極13の大きさや高さ位置を均一化することができる。本発明は、可塑性シール材の粘度を調整することで、光発電素子の下部を可塑性シール材の内部にほぼ一定量だけ押し込むようにしても良い。   Moreover, in the first embodiment, in the element pushing step, the lower end of each photovoltaic element 11 is pushed so as to abut or substantially abut against the bottom surface of the relief recess 21 of the pedestal 22. Thus, the element protrusion amount from the transparent resin 12 (resin portion) of the photovoltaic panel 10 can be made uniform, and the size and height position of the n-electrode 13 formed on this protrusion portion can be made uniform. In the present invention, by adjusting the viscosity of the plastic sealing material, the lower portion of the photovoltaic element may be pushed into the plastic sealing material by a substantially constant amount.

更に、本実施例1では、各光発電素子11の下端が受け台22の逃げ凹部21の底面に当接又はほぼ当接した状態において各光発電素子11の外周面が各貫通孔27の内周縁に当接又はほぼ当接した状態になるように各貫通孔27の孔径を設定するようにしたので、素子押し込み工程で、各椀状凹部26の貫通孔27と光発電素子11との隙間を小さくすることができて、その隙間から可塑性シール材23の一部が椀状凹部26内に押し込まれることを防止できて、光発電素子11と透明樹脂12との境界を滑らかに形成することができる。これにより、光発電パネル10の裏面側に、光反射面を兼ねるn電極13を形成する工程で、光発電素子11と透明樹脂12との境界周辺のn電極13(光反射面)を滑らかに形成することができ、光発電素子11への反射光の受光量を増加させることができて、光発電効率を高めることができる利点がある。   Furthermore, in the first embodiment, the outer peripheral surface of each photovoltaic element 11 is within the through hole 27 in a state where the lower end of each photovoltaic element 11 is in contact with or substantially in contact with the bottom surface of the relief recess 21 of the cradle 22. Since the hole diameter of each through-hole 27 is set so as to be in contact with or substantially in contact with the peripheral edge, the gap between the through-hole 27 of each bowl-shaped recess 26 and the photovoltaic element 11 in the element pushing step. , And a portion of the plastic sealing material 23 can be prevented from being pushed into the bowl-shaped recess 26 through the gap, and the boundary between the photovoltaic element 11 and the transparent resin 12 can be formed smoothly. Can do. As a result, the n electrode 13 (light reflecting surface) around the boundary between the photovoltaic element 11 and the transparent resin 12 is smoothly formed in the step of forming the n electrode 13 serving also as the light reflecting surface on the back surface side of the photovoltaic panel 10. Therefore, there is an advantage that the amount of reflected light to the photovoltaic element 11 can be increased and the photovoltaic efficiency can be increased.

また、本実施例1では、光発電素子11のうちの透明樹脂12から露出する部分にp電極16を形成した後、レーザー光をp電極16に照射してシンタリングすることで、p電極16と光発電素子11との接合部分にオーミックな接触抵抗部を形成するようにしたので、光発電パネル10の製造に用いる光発電素子11の外径寸法や形状・真球精度に多少のばらつきがあっても、レーザー光によるシンタリングによって、p電極16と光発電素子11との接合部分にオーミックな接触抵抗部を容易に形成することができる。   In Example 1, the p-electrode 16 is formed on the portion of the photovoltaic element 11 exposed from the transparent resin 12, and then the p-electrode 16 is irradiated with laser light and sintered. Since an ohmic contact resistance portion is formed at the junction between the photovoltaic device 11 and the photovoltaic device 11, there is some variation in the outer diameter size, shape, and true sphere accuracy of the photovoltaic device 11 used in the production of the photovoltaic panel 10. Even if it exists, an ohmic contact resistance part can be easily formed in the junction part of the p electrode 16 and the photovoltaic device 11 by the sintering by a laser beam.

尚、本実施例1では、光発電素子11の外周側をn型半導体層、内周側をp型半導体層としたが、これとは反対に、外周側をp型半導体層、内周側をn型半導体層としても良い。この場合、n電極とp電極の位置も反対となり、レーザー光によるシンタリングによってn電極と光発電素子11との接合部分にオーミックな接触抵抗部を形成するようにすれば良い。   In Example 1, the outer peripheral side of the photovoltaic element 11 is an n-type semiconductor layer and the inner peripheral side is a p-type semiconductor layer. On the contrary, the outer peripheral side is a p-type semiconductor layer and the inner peripheral side. May be an n-type semiconductor layer. In this case, the positions of the n electrode and the p electrode are also reversed, and an ohmic contact resistance portion may be formed at the junction between the n electrode and the photovoltaic element 11 by laser beam sintering.

また、レーザー光によるシンタリングによって電極と光発電素子11との接合部分にオーミックな接触抵抗部を形成する技術は、上記実施例1以外の製造方法で製造した光発電パネルについても適用して実施できる。   In addition, the technique of forming an ohmic contact resistance portion at the joint between the electrode and the photovoltaic element 11 by sintering with laser light is also applied to photovoltaic panels manufactured by a manufacturing method other than the first embodiment. it can.

上記実施例1では、受け台22の逃げ凹部21に可塑性シール材23を充填するようにしたが、本発明に関連する参考例としての実施例2では、図16に示すように、可塑性シール材23が充填されていない受け台22上に成形型24をセットし、図17に示すように、この成形型24の各椀状凹部26に光発電素子11を1個ずつ収容して各光発電素子11の下部を各椀状凹部26の貫通孔27に嵌まり込ませて、各光発電素子11の下端を受け台22の逃げ凹部21の底面に当接又はほぼ当接させた状態にする。この場合も、各光発電素子11の下端が受け台22の逃げ凹部21の底面に当接又はほぼ当接した状態において各光発電素子11の外周面が各貫通孔27の内周縁に当接又はほぼ当接した状態になるように各貫通孔27の孔径を設定するようにすると良い。 In the first embodiment, the relief recess 21 of the cradle 22 is filled with the plastic sealing material 23. However, in the second embodiment as a reference example related to the present invention , as shown in FIG. The molding die 24 is set on the pedestal 22 not filled with 23, and as shown in FIG. 17, the photovoltaic elements 11 are accommodated one by one in each bowl-shaped recess 26 of the molding die 24, and each photovoltaic power generation is received. The lower part of the element 11 is fitted into the through hole 27 of each bowl-shaped recess 26 so that the lower end of each photovoltaic element 11 is in contact with or substantially in contact with the bottom surface of the escape recess 21 of the base 22. . Also in this case, the outer peripheral surface of each photovoltaic element 11 is in contact with the inner peripheral edge of each through-hole 27 in a state where the lower end of each photovoltaic element 11 is in contact with or substantially in contact with the bottom surface of the relief recess 21 of the cradle 22. Or it is good to set the hole diameter of each through-hole 27 so that it may be in the substantially contact | abutted state.

この後、図18に示すように、成形型24の成形キャビティ25内に透明樹脂12の樹脂液を注入して硬化させて光発電パネル10を成形する。この際、透明樹脂12としては、各椀状凹部26の貫通孔27と光発電素子11との隙間から漏れない程度の粘度(非流動性)を有する紫外線硬化性樹脂を用いると良い。   Thereafter, as shown in FIG. 18, the photovoltaic panel 10 is molded by injecting the resin liquid of the transparent resin 12 into the molding cavity 25 of the molding die 24 and curing it. At this time, as the transparent resin 12, it is preferable to use an ultraviolet curable resin having a viscosity (non-fluidity) that does not leak from the gap between the through hole 27 of each bowl-shaped recess 26 and the photovoltaic element 11.

尚、成形した光発電パネル10を成形型24から取り出した後は、前記実施例1と同様に、前述した[8]n電極形成工程から[16]保護絶縁層形成工程までの各工程が順番に実行される。   After the molded photovoltaic panel 10 is taken out from the mold 24, each step from the [8] n-electrode forming step to the [16] protective insulating layer forming step is performed in the same manner as in the first embodiment. To be executed.

以上説明した本実施例2においても、光発電パネル10の製造に用いる光発電素子11の外径寸法や形状・真球精度に多少のばらつきがあっても、極めて簡単な作業で光発電パネル10の透明樹脂12からの素子突出量を均一化することができ、この突出部分に形成するn電極13の大きさや高さ位置を均一化することができる。しかも、光発電素子11の外径寸法や形状・真球精度に対する許容範囲を広げることができて、光発電素子11の生産性向上、歩留まり向上を製品品質を落とさずに実現することができる。   Even in the second embodiment described above, the photovoltaic panel 10 can be obtained by a very simple operation even if there is some variation in the outer diameter size, shape, and true spherical accuracy of the photovoltaic element 11 used for manufacturing the photovoltaic panel 10. The amount of element protrusion from the transparent resin 12 can be made uniform, and the size and height position of the n-electrode 13 formed on this protrusion can be made uniform. In addition, the allowable range for the outer diameter size, shape, and true spherical accuracy of the photovoltaic device 11 can be expanded, and the productivity and yield of the photovoltaic device 11 can be improved without degrading the product quality.

更に、各光発電素子11の下端が受け台22の逃げ凹部21の底面に当接又はほぼ当接した状態において各光発電素子11の外周面が各貫通孔27の内周縁に当接又はほぼ当接した状態になるように各貫通孔27の孔径を設定するようにしたので、成形型24の成形キャビティ25内に樹脂液を注入する際に、各椀状凹部26の貫通孔27と光発電素子11との隙間を小さくすることができて、その隙間から樹脂液が漏れることをより効果的に防止することができる。   Further, the outer peripheral surface of each photovoltaic element 11 is in contact with or substantially in contact with the inner peripheral edge of each through hole 27 in a state where the lower end of each photovoltaic element 11 is in contact with or substantially in contact with the bottom surface of the relief recess 21 of the cradle 22. Since the diameters of the through holes 27 are set so as to be in contact with each other, when the resin liquid is injected into the molding cavity 25 of the molding die 24, the through holes 27 of the bowl-shaped recesses 26 and the light The gap with the power generation element 11 can be reduced, and the resin liquid can be more effectively prevented from leaking through the gap.

尚、本実施例2では、受け台22の上面に逃げ凹部21を形成することで、成形型24と受け台22との間に各光発電素子11の下端を逃がすための隙間をあけるようにしたが、図19に示すように、成形型24の下面に逃げ凹部24aを形成することで、成形型24と受け台22との間に各光発電素子11の下端を逃がすための隙間をあけるようにしても良い。或は、成形型24と受け台22との間に隙間形成用のスペーサを挟み込んで、各光発電素子11の下端を逃がすための隙間をあけるようにしても良い。この場合は、成形型24と受け台22のいずれにも逃げ凹部を形成する必要はない。   In the second embodiment, the clearance recess 21 is formed on the upper surface of the cradle 22 so that a gap is formed between the molding die 24 and the cradle 22 for escaping the lower end of each photovoltaic element 11. However, as shown in FIG. 19, by forming a relief recess 24 a on the lower surface of the mold 24, a gap for allowing the lower end of each photovoltaic element 11 to escape is formed between the mold 24 and the cradle 22. You may do it. Alternatively, a gap-forming spacer may be sandwiched between the mold 24 and the cradle 22 so as to open a gap for releasing the lower end of each photovoltaic element 11. In this case, it is not necessary to form a relief recess in either the mold 24 or the cradle 22.

上記実施例1,2では、光発電パネル10の透明樹脂12(樹脂部)を成形するために成形型24を用いるようにしたが、図20乃至図27に示す本発明に関連する参考例としての実施例3では、受け台31の凹部32に充填した可塑性シール材33に成形キャビティ34を形成し、これを成形型として用いるようにしている。
In the first and second embodiments, the mold 24 is used to mold the transparent resin 12 (resin portion) of the photovoltaic panel 10, but as a reference example related to the present invention shown in FIGS. In Example 3, the molding cavity 34 is formed in the plastic sealing material 33 filled in the recess 32 of the cradle 31 and used as a molding die.

具体的には、図20に示すように、受け台31の上面側に形成された凹部32に可塑性シール材33を充填した後、図21に示すように、光発電パネル10の透明樹脂12を成形する成形キャビティ34の形状を転写するための転写型35を可塑性シール材33に押し付けることで、多数の光発電素子11が1個ずつ収容される多数の椀状凹部36を有する成形キャビティ34を可塑性シール材33に形成する(図22参照)。   Specifically, as shown in FIG. 20, after filling the recess 32 formed on the upper surface side of the cradle 31 with the plastic sealing material 33, the transparent resin 12 of the photovoltaic panel 10 is applied as shown in FIG. By pressing a transfer mold 35 for transferring the shape of the molding cavity 34 to be molded against the plastic seal material 33, the molding cavity 34 having a large number of bowl-shaped recesses 36 in which a large number of photovoltaic elements 11 are accommodated one by one is formed. It forms in the plastic sealing material 33 (refer FIG. 22).

この後、図23に示すように、成形キャビティ34の各椀状凹部36に光発電素子11を1個ずつ収容した後、図24に示すように、各椀状凹部36内に収容された各光発電素子11を上方から押さえ付けて各光発電素子11の下部を可塑性シール材33の内部にほぼ一定量だけ押し込む。この際、各光発電素子11の下端を受け台31の凹部32の底面に当接又はほぼ当接させるように押し込むことで、各光発電素子11の下部を可塑性シール材33の内部にほぼ一定量だけ押し込むようにすると良い。   Thereafter, as shown in FIG. 23, after one photovoltaic element 11 is accommodated in each bowl-shaped recess 36 of the molding cavity 34, each housed in each bowl-shaped recess 36 as shown in FIG. 24. The photovoltaic elements 11 are pressed from above, and the lower portions of the photovoltaic elements 11 are pushed into the plastic sealing material 33 by a substantially constant amount. At this time, the lower end of each photovoltaic element 11 is pushed so as to abut or substantially abut against the bottom surface of the recess 32 of the receiving base 31, so that the lower part of each photovoltaic element 11 is substantially constant inside the plastic sealing material 33. It is good to push in only the amount.

この後、図25に示すように、成形キャビティ34内に透明樹脂12(紫外線硬化性樹脂)の樹脂液を注入して、全ての椀状凹部36を樹脂液中に完全に沈めた状態にする。この後、図26に示すように、成形キャビティ34内の透明樹脂12(紫外線硬化性樹脂)の樹脂液に紫外線を照射して該樹脂液を硬化させることで、多数の光発電素子11を透明樹脂12でパネル状に一体化した光発電パネル10を成形した後、図27に示すように、成形キャビティ34から光発電パネル10を取り出す。この後は、前記実施例1と同様に、前述した[8]n電極形成工程から[16]保護絶縁層形成工程までの各工程が順番に実行される。   Thereafter, as shown in FIG. 25, the resin liquid of the transparent resin 12 (ultraviolet curable resin) is injected into the molding cavity 34 so that all the bowl-shaped recesses 36 are completely submerged in the resin liquid. . Thereafter, as shown in FIG. 26, the resin liquid of the transparent resin 12 (ultraviolet curable resin) in the molding cavity 34 is irradiated with ultraviolet rays to cure the resin liquid, thereby making a large number of photovoltaic elements 11 transparent. After the photovoltaic panel 10 integrated into a panel shape with the resin 12 is molded, the photovoltaic panel 10 is taken out from the molding cavity 34 as shown in FIG. Thereafter, as in the first embodiment, the respective steps from the [8] n-electrode forming step to the [16] protective insulating layer forming step are sequentially performed.

以上説明した本実施例3では、受け台31の凹部32に充填した可塑性シール材33に転写型35を押し付けて成形キャビティ34を形成し、この成形キャビティ34の各椀状凹部36に収容した各光発電素子11を上方から押さえ付けて各光発電素子11の下部を可塑性シール材33の内部にほぼ一定量だけ押し込んだ後、成形キャビティ34内に透明樹脂12(紫外線硬化性樹脂)の樹脂液を注入して光発電パネル10を成形するようにしたので、光発電パネル10の製造に用いる光発電素子11の外径寸法や形状・真球精度に多少のばらつきがあっても、光発電パネル10の透明樹脂12からの素子突出量を均一化することができて、この突出部分に形成するn電極13の大きさや高さ位置を均一化することができる。しかも、光発電素子11と透明樹脂12との境界を滑らかに形成することができるので、光発電パネル10の裏面側に、光反射面を兼ねるn電極13を形成する工程で、光発電素子11と透明樹脂12との境界周辺のn電極13(光反射面)を滑らかに形成することができ、光発電素子11への反射光の受光量を増加させることができて、光発電効率を高めることができる。   In the third embodiment described above, the transfer die 35 is pressed against the plastic seal material 33 filled in the recess 32 of the cradle 31 to form the molding cavity 34, and each of the housings accommodated in the bowl-shaped recesses 36 of the molding cavity 34. After the photovoltaic elements 11 are pressed from above and the lower portions of the photovoltaic elements 11 are pushed into the plastic sealing material 33 by a substantially constant amount, a resin liquid of transparent resin 12 (ultraviolet curable resin) is placed in the molding cavity 34. Since the photovoltaic panel 10 is molded by injecting the photovoltaic panel 10, even if there is some variation in the outer diameter size, shape, and true spherical accuracy of the photovoltaic element 11 used for manufacturing the photovoltaic panel 10, the photovoltaic panel The element protrusion amount from the 10 transparent resin 12 can be made uniform, and the size and height position of the n-electrode 13 formed on this protrusion portion can be made uniform. In addition, since the boundary between the photovoltaic element 11 and the transparent resin 12 can be formed smoothly, the photovoltaic element 11 is formed in the step of forming the n-electrode 13 that also serves as a light reflecting surface on the back surface side of the photovoltaic panel 10. The n electrode 13 (light reflecting surface) around the boundary between the transparent resin 12 and the transparent resin 12 can be formed smoothly, the amount of reflected light received by the photovoltaic element 11 can be increased, and the photovoltaic efficiency is increased. be able to.

実施例1の光発電パネルの製造方法における可塑性シール材充填工程を説明する図である。It is a figure explaining the plastic sealing material filling process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法における成形型セット工程を説明する図である。It is a figure explaining the shaping | molding die setting process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法における光発電素子収容工程を説明する図である。It is a figure explaining the photovoltaic device accommodation process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法における素子押し込み工程を説明する図である。It is a figure explaining the element pushing process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法における樹脂液注入工程を説明する図である。It is a figure explaining the resin liquid injection | pouring process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法における樹脂硬化工程を説明する図である。It is a figure explaining the resin hardening process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法における離型工程を説明する図である。It is a figure explaining the mold release process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法におけるn電極形成工程を説明する図である。It is a figure explaining the n electrode formation process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法における保護層形成工程を説明する図である。It is a figure explaining the protective layer formation process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法におけるサンドブラスト工程を説明する図である。It is a figure explaining the sandblasting process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法における絶縁層(上層の絶縁性樹脂層)形成工程を説明する図である。It is a figure explaining the insulating layer (upper insulating resin layer) formation process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法における研磨工程を説明する図である。It is a figure explaining the grinding | polishing process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法におけるp電極形成工程を説明する図である。It is a figure explaining the p electrode formation process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法におけるレーザーシンタ工程を説明する図である。It is a figure explaining the laser sintering process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法における保護絶縁層形成工程を説明する図である。It is a figure explaining the protective insulating layer formation process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例2の光発電パネルの製造方法における成形型セット工程を説明する図である。It is a figure explaining the shaping | molding die setting process in the manufacturing method of the photovoltaic panel of Example 2. FIG. 実施例2の光発電パネルの製造方法における光発電素子収容工程を説明する図である。It is a figure explaining the photovoltaic device accommodation process in the manufacturing method of the photovoltaic panel of Example 2. FIG. 実施例2の光発電パネルの製造方法における樹脂液注入工程を説明する図である。It is a figure explaining the resin liquid injection | pouring process in the manufacturing method of the photovoltaic panel of Example 2. FIG. 実施例2の光発電パネルの製造方法における成形型と受け台の他の構成例を説明する図である。It is a figure explaining the other structural example of the shaping | molding die in a manufacturing method of the photovoltaic panel of Example 2, and a cradle. 実施例3の光発電パネルの製造方法における可塑性シール材充填工程を説明する図である。It is a figure explaining the plastic sealing material filling process in the manufacturing method of the photovoltaic panel of Example 3. FIG. 実施例3の光発電パネルの製造方法におけるキャビティ形状転写工程を説明する図である(その1)。It is a figure explaining the cavity shape transcription | transfer process in the manufacturing method of the photovoltaic panel of Example 3 (the 1). 実施例3の光発電パネルの製造方法におけるキャビティ形状転写工程を説明する図である(その2)。It is a figure explaining the cavity shape transcription | transfer process in the manufacturing method of the photovoltaic panel of Example 3 (the 2). 実施例3の光発電パネルの製造方法における光発電素子収容工程を説明する図である。It is a figure explaining the photovoltaic device accommodation process in the manufacturing method of the photovoltaic panel of Example 3. FIG. 実施例3の光発電パネルの製造方法における素子押し込み工程を説明する図である。It is a figure explaining the element pushing process in the manufacturing method of the photovoltaic panel of Example 3. FIG. 実施例3の光発電パネルの製造方法における樹脂液注入工程を説明する図である。It is a figure explaining the resin liquid injection | pouring process in the manufacturing method of the photovoltaic panel of Example 3. FIG. 実施例3の光発電パネルの製造方法における樹脂硬化工程を説明する図である。It is a figure explaining the resin hardening process in the manufacturing method of the photovoltaic panel of Example 3. FIG. 実施例3の光発電パネルの製造方法における離型工程を説明する図である。It is a figure explaining the mold release process in the manufacturing method of the photovoltaic panel of Example 3. FIG.

符号の説明Explanation of symbols

10…光発電パネル、11…光発電素子、12…透明樹脂(樹脂部)、13…n電極、14…保護層(下層の絶縁性樹脂層)15…絶縁層(上層の絶縁性樹脂層)、16…p電極、17…保護絶縁層、21…逃げ凹部、22…受け台、23…可塑性シール材、24…成形型、24a…逃げ凹部、25…成形キャビティ、26…椀状凹部、27…貫通孔、31…受け台、32…凹部、33…可塑性シール材、34…成形キャビティ、35…転写型、36…椀状凹部   DESCRIPTION OF SYMBOLS 10 ... Photovoltaic panel, 11 ... Photovoltaic element, 12 ... Transparent resin (resin part), 13 ... N electrode, 14 ... Protective layer (lower insulating resin layer) 15 ... Insulating layer (upper insulating resin layer) , 16 ... p-electrode, 17 ... protective insulating layer, 21 ... relief recess, 22 ... cradle, 23 ... plastic sealing material, 24 ... molding die, 24a ... relief recess, 25 ... molding cavity, 26 ... bowl-like recess, 27 ... through hole, 31 ... cradle, 32 ... recess, 33 ... plastic sealing material, 34 ... molding cavity, 35 ... transfer mold, 36 ... bowl-shaped recess

Claims (5)

多数の粒状の光発電素子を配列して透明樹脂でパネル状に成形し、且つ各光発電素子の一部を樹脂部から突出させた光発電パネルを製造する方法において、
成形キャビティに前記多数の光発電素子が1個ずつ収容される多数の椀状凹部が形成され、且つ各椀状凹部の底部に前記各光発電素子の一部が下向きに突出する円形の貫通孔が形成された成形型と、
少なくとも前記貫通孔に対向する部分に逃げ凹部が形成された受け台とを用い、
前記受け台の逃げ凹部に可塑性シール材を充填する工程と、
前記受け台上に前記成形型をセットする工程と、
前記成形型の各椀状凹部に前記光発電素子を1個ずつ収容する工程と、
前記成形型の各椀状凹部内に収容された前記各光発電素子を上方から押さえ付けて前記各光発電素子の下部を各椀状凹部の貫通孔に嵌まり込ませて前記可塑性シール材の内部にほぼ一定量だけ押し込む素子押し込み工程と、
前記成形型の成形キャビティ内に前記透明樹脂の樹脂液を注入する工程と、
前記成形型の成形キャビティ内の前記樹脂液を硬化させて前記多数の光発電素子を透明樹脂でパネル状に一体化した光発電パネルを成形する工程と、
前記成形型の成形キャビティから前記光発電パネルを取り出す工程と
を含むことを特徴とする光発電パネルの製造方法。
In a method of manufacturing a photovoltaic panel in which a large number of granular photovoltaic elements are arranged and molded into a panel shape with a transparent resin, and a part of each photovoltaic element is protruded from the resin portion,
A circular through-hole in which a plurality of bowl-shaped recesses for accommodating each of the plurality of photovoltaic elements is formed in the molding cavity, and a part of each of the photovoltaic elements protrudes downward at the bottom of each bowl-shaped recess. A mold formed with,
Using a cradle with a relief recess formed in at least a portion facing the through hole,
Filling the relief recess of the cradle with a plastic sealing material;
Setting the mold on the cradle;
Storing one photovoltaic element in each bowl-shaped recess of the mold;
By pressing the photovoltaic elements housed in the bowl-shaped recesses of the mold from above, the lower portions of the photovoltaic elements are fitted into the through holes of the bowl-shaped recesses, and the plastic sealing material An element pushing process for pushing a substantially constant amount inside,
Injecting a resin liquid of the transparent resin into a molding cavity of the mold;
Curing the resin liquid in the molding cavity of the mold and molding a photovoltaic panel in which the photovoltaic elements are integrated into a panel with a transparent resin;
Removing the photovoltaic panel from a molding cavity of the molding die. A method for producing a photovoltaic panel, comprising:
前記素子押し込み工程において、前記各光発電素子の下端を前記受け台の逃げ凹部の底面に当接又はほぼ当接させるように押し込むことで、前記各光発電素子の下部を前記可塑性シール材の内部にほぼ一定量だけ押し込むことを特徴とする請求項1に記載の光発電パネルの製造方法。   In the element pushing step, the lower end of each photovoltaic element is pushed into the bottom surface of the relief recess of the cradle so that the lower end of each photovoltaic element is placed inside the plastic seal material. 2. The method of manufacturing a photovoltaic panel according to claim 1, wherein a substantially constant amount is pushed into the panel. 前記各光発電素子の下端が前記受け台の逃げ凹部の底面に当接又はほぼ当接した状態において各光発電素子の外周面が前記各貫通孔の内周縁に当接又はほぼ当接した状態になるように前記各貫通孔の孔径が設定されていることを特徴とする請求項1又は2に記載の光発電パネルの製造方法。   A state in which the outer peripheral surface of each photovoltaic element is in contact with or substantially in contact with the inner peripheral edge of each through hole in a state in which the lower end of each photovoltaic element is in contact with or substantially in contact with the bottom surface of the relief recess of the cradle The method for manufacturing a photovoltaic panel according to claim 1, wherein the diameter of each through-hole is set so as to be. 前記光発電パネルの各光発電素子のうちの前記樹脂部から突出する部分に電極を形成することを特徴とする請求項1乃至3のいずれかに記載の光発電パネルの製造方法。   The method for manufacturing a photovoltaic panel according to any one of claims 1 to 3, wherein an electrode is formed on a portion of each photovoltaic element of the photovoltaic panel protruding from the resin portion. 前記光発電パネルの各光発電素子のうちの前記樹脂部から露出する部分に前記電極を形成した後、レーザー光を前記電極に照射してシンタリングすることで、前記電極と前記光発電素子との接合部分にオーミックな接触抵抗部を形成することを特徴とする請求項4に記載の光発電パネルの製造方法。 After forming the electrode in a portion exposed from the resin portion of each photovoltaic element of the photovoltaic panel, the electrode and the photovoltaic element are irradiated by irradiating the electrode with laser light and sintering. The method for manufacturing a photovoltaic panel according to claim 4, wherein an ohmic contact resistance portion is formed at a joint portion of the photovoltaic panel.
JP2005159991A 2004-06-29 2005-05-31 Photovoltaic panel manufacturing method Expired - Fee Related JP4562034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005159991A JP4562034B2 (en) 2004-06-29 2005-05-31 Photovoltaic panel manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004190590 2004-06-29
JP2005159991A JP4562034B2 (en) 2004-06-29 2005-05-31 Photovoltaic panel manufacturing method

Publications (2)

Publication Number Publication Date
JP2006049831A JP2006049831A (en) 2006-02-16
JP4562034B2 true JP4562034B2 (en) 2010-10-13

Family

ID=36027982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159991A Expired - Fee Related JP4562034B2 (en) 2004-06-29 2005-05-31 Photovoltaic panel manufacturing method

Country Status (1)

Country Link
JP (1) JP4562034B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205150A (en) * 2011-07-15 2011-10-13 Clean Venture 21 Corp Method of manufacturing photoelectric conversion device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022184A (en) * 1998-07-03 2000-01-21 Nippon Telegr & Teleph Corp <Ntt> Spherical or rod-shaped crystal solar cell and its manufacture
JP2001185744A (en) * 1999-12-24 2001-07-06 Mitsui High Tec Inc Solar cell and its manufacturing method
JP2001210843A (en) * 1999-11-17 2001-08-03 Fuji Mach Mfg Co Ltd Photovoltaic power generating panel and method of manufacturing it
JP2002050780A (en) * 2000-08-03 2002-02-15 Mitsui High Tec Inc Solar cell and method of manufacturing the same
JP2002164554A (en) * 2000-11-24 2002-06-07 Yoshihiro Hamakawa Photovoltaic device
JP2002280593A (en) * 2001-01-15 2002-09-27 Fuji Mach Mfg Co Ltd Method for manufacturing optical power generation panel
JP2004063564A (en) * 2002-07-25 2004-02-26 Clean Venture 21:Kk Photoelectric converter fabricating process
JP2004140217A (en) * 2002-10-18 2004-05-13 Clean Venture 21:Kk Photoelectric converter fabricating process
JP2006196489A (en) * 2005-01-11 2006-07-27 Fuji Mach Mfg Co Ltd Optical power generation panel and optical power generation element
JP2006203156A (en) * 2004-12-21 2006-08-03 Fuji Mach Mfg Co Ltd Photovoltaic panel and method for fabricating same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022184A (en) * 1998-07-03 2000-01-21 Nippon Telegr & Teleph Corp <Ntt> Spherical or rod-shaped crystal solar cell and its manufacture
JP2001210843A (en) * 1999-11-17 2001-08-03 Fuji Mach Mfg Co Ltd Photovoltaic power generating panel and method of manufacturing it
JP2001185744A (en) * 1999-12-24 2001-07-06 Mitsui High Tec Inc Solar cell and its manufacturing method
JP2002050780A (en) * 2000-08-03 2002-02-15 Mitsui High Tec Inc Solar cell and method of manufacturing the same
JP2002164554A (en) * 2000-11-24 2002-06-07 Yoshihiro Hamakawa Photovoltaic device
JP2002280593A (en) * 2001-01-15 2002-09-27 Fuji Mach Mfg Co Ltd Method for manufacturing optical power generation panel
JP2004063564A (en) * 2002-07-25 2004-02-26 Clean Venture 21:Kk Photoelectric converter fabricating process
JP2004140217A (en) * 2002-10-18 2004-05-13 Clean Venture 21:Kk Photoelectric converter fabricating process
JP2006203156A (en) * 2004-12-21 2006-08-03 Fuji Mach Mfg Co Ltd Photovoltaic panel and method for fabricating same
JP2006196489A (en) * 2005-01-11 2006-07-27 Fuji Mach Mfg Co Ltd Optical power generation panel and optical power generation element

Also Published As

Publication number Publication date
JP2006049831A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
CN101459866B (en) Electric microphone module for microcomputer and manufacture method
US4637130A (en) Method for manufacturing a plastic encapsulated semiconductor device and a lead frame therefor
US6593171B2 (en) Stereolithographic methods for fabricating hermetic semiconductor device packages and semiconductor devices including stereolithographically fabricated hermetic packages
JP6815880B2 (en) Manufacturing method of semiconductor package
CN110349864A (en) A kind of packaging method and chip package product of chip cooling piece
CN104995754A (en) Optoelectronic component and method for producing same
JP4562034B2 (en) Photovoltaic panel manufacturing method
JP5599397B2 (en) Optoelectronic semiconductor device and manufacturing method thereof
JP4993333B2 (en) Photovoltaic panel manufacturing method
US7682544B2 (en) Method of fabricating photovoltaic panel
CN204809259U (en) CSP packaging structure and LED device based on injection molding
EP0735582A1 (en) Package for mounting an IC-chip
EP3491899B1 (en) Light-emitting device and method for manufacturing same
JP4624775B2 (en) Semiconductor device
JP2007027497A (en) Photoelectric converter and its manufacturing method
CN111063665A (en) Special-shaped TWS SIP module and manufacturing method thereof
JP2004343378A (en) Surface acoustic wave device and its manufacturing method
WO1999062028A1 (en) Method for making a portable electronic device comprising at least an integrated circuit chip
CN210272261U (en) Three-side attached metal packaging and packaging structure
FR3079068A1 (en) ELECTRONIC DEVICES AND METHODS OF MANUFACTURE
TW201739071A (en) Method for producing an optoelectronic component, and optoelectronic component
JPH1056238A (en) Semiconductor laser device and its manufacture
CN210182335U (en) Five-sided metal encapsulation packaging structure
EP0641469B1 (en) Method for producing a card with at least one electronic component
JP4437657B2 (en) Photovoltaic panel manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4562034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees