JP4993333B2 - Photovoltaic panel manufacturing method - Google Patents

Photovoltaic panel manufacturing method Download PDF

Info

Publication number
JP4993333B2
JP4993333B2 JP2005172649A JP2005172649A JP4993333B2 JP 4993333 B2 JP4993333 B2 JP 4993333B2 JP 2005172649 A JP2005172649 A JP 2005172649A JP 2005172649 A JP2005172649 A JP 2005172649A JP 4993333 B2 JP4993333 B2 JP 4993333B2
Authority
JP
Japan
Prior art keywords
photovoltaic
photovoltaic panel
panel
resin
temporary holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005172649A
Other languages
Japanese (ja)
Other versions
JP2006203156A (en
Inventor
鎬一 浅井
貢雄 森下
一俊 酒井
和也 鈴木
俊司 吉金
賢次 田中
尋信 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Machine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Machine Manufacturing Co Ltd filed Critical Fuji Machine Manufacturing Co Ltd
Priority to JP2005172649A priority Critical patent/JP4993333B2/en
Publication of JP2006203156A publication Critical patent/JP2006203156A/en
Application granted granted Critical
Publication of JP4993333B2 publication Critical patent/JP4993333B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、多数の粒状の光発電素子を格子点状(アレイ状)に配列して透明樹脂でパネル状に一体成形した光発電パネルの製造方法に関する発明である。 The present invention is an invention relating to a manufacturing method of multiple granular photovoltaic element lattice points photovoltaic panel which is integrally molded into panel-like transparent resin is arranged in (an array).

近年、太陽光エネルギを電気エネルギに変換する光発電パネルの発電効率を高めるために、例えば、特許文献1(特公平7−54855号公報)、特許文献2(特開2002−164554号公報)に示すように、光発電素子を粒状に形成するようにしたものがある。粒状の光発電素子は、様々な方向から入射する太陽光に対してその光入射方向から見た素子投影面積(受光量)がほぼ一定となるため、太陽高度が低くても効率良く発電できる利点がある。   In recent years, for example, Patent Document 1 (Japanese Patent Publication No. 7-54855) and Patent Document 2 (Japanese Patent Application Laid-Open No. 2002-164554) have been proposed in order to increase the power generation efficiency of photovoltaic panels that convert solar energy into electrical energy. As shown, a photovoltaic device is formed in a granular form. Granular photovoltaic elements have the advantage that the element projected area (light receiving amount) seen from the light incident direction is almost constant with respect to sunlight incident from various directions, so that it is possible to generate power efficiently even when the solar altitude is low. There is.

これらの特許文献1,2の技術では、表面電極を兼ねたベースプレートに形成された多数の円形孔にそれぞれ粒状シリコンを嵌め込み、ベースプレートの下面側に突出した粒状シリコン露出部に、絶縁層を介して電極を形成するようにしている。
特公平7−54855号公報 特開2002−164554号公報
In the techniques of these Patent Documents 1 and 2, granular silicon is fitted into each of a large number of circular holes formed in the base plate that also serves as a surface electrode, and the granular silicon exposed portion protruding to the lower surface side of the base plate is interposed via an insulating layer. An electrode is formed.
Japanese Patent Publication No. 7-54855 JP 2002-164554 A

上記特許文献1,2の技術では、ベースプレートの上面側に露出する粒状シリコン受光領域の面積と、下面側の電極形成領域の大きさ(高さ)は、ベースプレートに形成された円形孔の内径と粒状シリコンの外径との関係によって決定されるため、粒状シリコン受光領域の面積と電極形成領域の大きさ(高さ)を均一化するためには、粒状シリコンの外径寸法や形状・真球精度に対して高い均一性が要求される。また、表面電極を兼ねたベースプレートと粒状シリコンとの間に良好な電気的接続を形成するためにも、粒状シリコンに高い真球精度が要求される。このため、粒状シリコン製造工程の管理が複雑化して粒状シリコンの生産性が低下すると共に、粒状シリコンの歩留まりが悪くなってしまい、製造コストが高くなるという欠点がある。   In the techniques of Patent Documents 1 and 2, the area of the granular silicon light receiving region exposed on the upper surface side of the base plate and the size (height) of the electrode forming region on the lower surface side are the inner diameter of the circular hole formed in the base plate. Since it is determined by the relationship with the outer diameter of the granular silicon, in order to make the area of the granular silicon light receiving region and the size (height) of the electrode forming region uniform, the outer diameter size, shape and true sphere of the granular silicon High uniformity is required for accuracy. Further, high spherical accuracy is required for granular silicon in order to form a good electrical connection between the base plate that also serves as a surface electrode and granular silicon. For this reason, the management of the granular silicon manufacturing process is complicated, the productivity of the granular silicon is lowered, the yield of the granular silicon is deteriorated, and the manufacturing cost is increased.

そこで、本出願人は、この問題を異なる手法で解決する2つ発明(特願2003−345292と特願2004−190590)を出願している。これら2つの特許出願は、いずれも未公開である。   Therefore, the present applicant has applied for two inventions (Japanese Patent Application No. 2003-345292 and Japanese Patent Application No. 2004-190590) that solve this problem by different methods. Neither of these two patent applications has been published.

特願2003−345292は、光発電素子に1個ずつ集光レンズを形成する方法を開示している。具体的には、各光発電素子を樹脂液に浸して引き上げ、各光発電素子の表面に付着した樹脂液を表面張力により球状凸面形状にして硬化させることで、各光発電素子の表面に樹脂製の集光レンズを形成し、この方法で形成した多数の集光レンズ付きの光発電素子を平面状に配列して光発電パネルを形成するようにしている。しかし、この方法では、光発電素子の外径寸法や形状のばらつきによって集光レンズの外径寸法がばらつくことは避けられないため、多数の集光レンズ付きの光発電素子を平面状に配列して光発電パネルを形成する工程で、一部の集光レンズの周囲に隙間が生じて、この隙間に入射する光が光発電に寄与しなくなり、その分、発電効率が低下することが判明している。   Japanese Patent Application No. 2003-345292 discloses a method of forming a condensing lens one by one in a photovoltaic element. Specifically, each photovoltaic device is dipped in a resin solution and pulled up, and the resin solution adhering to the surface of each photovoltaic device is cured into a spherical convex shape by surface tension and cured to a resin on the surface of each photovoltaic device. A condensing lens made of this method is formed, and a photovoltaic panel is formed by arranging a large number of photovoltaic elements with a condensing lens formed in this manner in a planar shape. However, in this method, it is inevitable that the outer diameter of the condensing lens varies due to variations in the outer diameter and shape of the photovoltaic elements. Therefore, a large number of photovoltaic elements with condensing lenses are arranged in a plane. In the process of forming the photovoltaic panel, a gap is created around some condensing lenses, and the light incident on this gap no longer contributes to photovoltaic power generation. ing.

また、特願2004−190590では、各光発電素子の下側に球面状の反射面を形成し、この反射面で集光するようにしている。この反射面は、光発電素子の電極を兼ねるため、反射面材料には、高い光反射率の他に、光発電素子(粒状シリコン)との密着性(接合性)が要求される。しかし、現実には、これら2つの要求を満たすことは困難であり、いずれかの機能が犠牲となって、発電効率が低下することが判明している。   In Japanese Patent Application No. 2004-190590, a spherical reflecting surface is formed on the lower side of each photovoltaic element, and light is condensed on this reflecting surface. Since this reflecting surface also serves as an electrode of the photovoltaic device, the reflecting surface material is required to have adhesion (bondability) with the photovoltaic device (granular silicon) in addition to high light reflectance. However, in reality, it is difficult to satisfy these two requirements, and it has been found that one of the functions is sacrificed and the power generation efficiency is lowered.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、光発電パネルの要求品質レベルを満たしつつ、光発電素子(粒状シリコン)の外径寸法や形状・真球精度に対する許容範囲を広げることができて、光発電素子の生産性向上、歩留まり向上を製品品質を落とさずに実現できると共に、発電効率を向上させることができる光発電パネルの製造方法を提供することにある。 The present invention has been made in consideration of such circumstances. Therefore, the object of the present invention is to satisfy the required quality level of the photovoltaic panel, while maintaining the outer diameter size, shape and true spherical accuracy of the photovoltaic element (granular silicon). to be able to widen the allowable range for the productivity of the photovoltaic device improves, it is possible to realize the improved yield without reducing product quality, to provide a method for manufacturing a photovoltaic panel which can improve the power generation efficiency It is in.

上記目的を達成するために、請求項1に係る発明は、多数の粒状の光発電素子を格子点状(アレイ状)に配列して透明樹脂でパネル状に一体成形する光発電パネルの製造方法において、仮保持板の片面に前記多数の光発電素子を格子点状に配列して仮保持させる仮保持工程と、前記各光発電素子をそれぞれ受光面側から覆う集光レンズと前記各光発電素子を保持する透明樹脂層とを成形するための成形型内に前記透明樹脂の樹脂液を注入すると共に、前記仮保持板の片面に仮保持させた前記多数の光発電素子を該樹脂液に浸漬して該樹脂液を硬化させることで、前記集光レンズと前記各光発電素子を保持する透明樹脂層とを一体化した光発電パネルを成形する成形工程と、前記光発電パネルを前記成形型から取り出すと共に、該光発電パネルから前記仮保持板を剥離する工程とを含むことを特徴とするものである。この製造方法では、多数の集光レンズを成形型によって一体成形できるため、各光発電素子のサイズ(径寸法)や形状(真球度)に多少のばらつきがあっても、各光発電素子の表面に好ましい球状凸面形状の集光レンズを形成でき、光発電パネルの要求品質レベルを満たしつつ、光発電素子(粒状シリコン)の外径寸法や形状・真球精度に対する許容範囲を広げることができて、光発電素子の生産性向上、歩留まり向上を製品品質を落とさずに実現できる。しかも、成形型によって光発電パネルの受光面全域に隙間なく集光レンズを成形できるため、光発電パネルで受光した光を効率良く光発電に寄与させることができて、発電効率を向上できる。これにより、光発電パネルの小型化や光発電素子の使用数の削減による低コスト化も期待できる。
本発明の製造方法では、成形工程で、成形型に対して多数の光発電素子を位置決めして樹脂液に浸漬する作業を容易に行うことができて、多数の光発電素子と集光レンズとを一体化した光発電パネルを能率良く成形することができる。しかも、成形工程で、仮保持板の片面に仮保持させた多数の光発電素子を樹脂液に浸漬する量を調整することで、集光レンズの焦点に対して任意の高さ位置に光発電素子を配置することができる。
In order to achieve the above object, the invention according to claim 1 is a method of manufacturing a photovoltaic panel in which a large number of granular photovoltaic elements are arrayed in a lattice point shape (array shape) and integrally formed into a panel shape with a transparent resin. A temporary holding step of temporarily holding the plurality of photovoltaic elements arranged in a lattice point on one side of the temporary holding plate, a condensing lens covering each of the photovoltaic elements from the light receiving surface side, and each of the photovoltaic generators A resin solution of the transparent resin is injected into a mold for forming a transparent resin layer for holding the element, and the numerous photovoltaic elements temporarily held on one side of the temporary holding plate are added to the resin liquid. A molding step of molding a photovoltaic panel in which the condensing lens and the transparent resin layer holding the photovoltaic elements are integrated by immersing the resin liquid, and molding the photovoltaic panel The photovoltaic panel is removed from the mold Is characterized in that a step of peeling the al the temporary holding plate. In this manufacturing method, since a large number of condensing lenses can be integrally formed with a molding die, even if there is a slight variation in the size (diameter dimension) and shape (sphericity) of each photovoltaic element, Spherical convex convex condenser lens can be formed on the surface, and the tolerance level for the outer diameter size, shape and true spherical accuracy of photovoltaic element (granular silicon) can be expanded while meeting the required quality level of photovoltaic panel As a result, it is possible to improve the productivity and yield of photovoltaic devices without degrading product quality. In addition, since the condensing lens can be formed without gaps over the entire light receiving surface of the photovoltaic panel by the molding die, the light received by the photovoltaic panel can be efficiently contributed to photovoltaic power generation, and the power generation efficiency can be improved. This can be expected to reduce the cost by reducing the size of the photovoltaic panel and reducing the number of photovoltaic elements used.
In the manufacturing method of the present invention, it is possible to easily perform the operation of positioning a large number of photovoltaic elements with respect to the mold and immersing them in a resin liquid in the molding step. It is possible to efficiently form a photovoltaic panel in which the above is integrated. In addition, by adjusting the amount of a large number of photovoltaic elements temporarily held on one side of the temporary holding plate in the resin liquid in the molding process, the photovoltaic power generation is at an arbitrary height position with respect to the focal point of the condenser lens. Elements can be placed.

この場合、請求項のように、前記仮保持板を透明な材料で形成し、前記成形工程において、紫外線硬化型の樹脂液を用い、紫外線を前記仮保持板を透過させて該樹脂液に照射することで該樹脂液を硬化させるようにすると良い。このようにすれば、成形工程で、紫外線照射により集光レンズや透明樹脂層を短時間で硬化させることができ、生産性を向上させることができる。尚、成形型を透明な材料で形成して、紫外線を成形型を透過させて樹脂液を硬化させるようにしても、同様の効果を得ることができる。 In this case, as in claim 2 , the temporary holding plate is formed of a transparent material, and in the molding step, an ultraviolet curable resin liquid is used, and ultraviolet rays are transmitted through the temporary holding plate to the resin liquid. It is preferable to cure the resin liquid by irradiation. If it does in this way, a condensing lens and a transparent resin layer can be hardened in a molding process by ultraviolet irradiation in a short time, and productivity can be improved. The same effect can be obtained by forming the mold with a transparent material and allowing the resin liquid to cure by transmitting ultraviolet rays through the mold.

また、集光レンズの受光面が該集光レンズを成形する成形型を兼ねる透明なレンズ保護カバーで覆われた構成の光発電パネルを製造する場合は、請求項のように、集光レンズを成形する成形型を兼ねる透明なレンズ保護カバーを形成する工程と、前記レンズ保護カバー内に前記透明樹脂の樹脂液を注入すると共に、前記多数の光発電素子を格子点状に配列させるように位置決めして該樹脂液に浸漬して該樹脂液を硬化させることで、前記集光レンズと前記各光発電素子を保持する透明樹脂層と前記レンズ保護カバーとを一体化した光発電パネルを成形する成形工程とを実行するようにすると良い。このようにすれば、レンズ保護カバー付きの光発電パネルを能率良く製造できる。 In the case of manufacturing a photovoltaic panel having a configuration in which the light receiving surface of the condenser lens is covered with a transparent lens protective cover that also serves as a mold for molding the condenser lens, the condenser lens as in claim 3. Forming a transparent lens protective cover that also serves as a mold for molding the resin, injecting a resin liquid of the transparent resin into the lens protective cover, and arranging the plurality of photovoltaic elements in a lattice point form A photovoltaic panel in which the condensing lens, the transparent resin layer holding each photovoltaic element and the lens protective cover are integrated is formed by positioning and immersing in the resin liquid to cure the resin liquid. It is preferable to execute the molding process. In this way, a photovoltaic panel with a lens protective cover can be efficiently manufactured.

更に、請求項のように、前記成形工程終了後に、光発電パネルの裏面に裏カバーを被せて、該裏カバーの周縁部と前記レンズ保護カバーの周縁部とを結合するようにすると良い。このようにすれば、レンズ保護カバーと裏カバーとで包み込んだ光発電パネルを能率良く製造できる。 Further, as described in claim 4 , after the molding step is completed, a back cover is covered on the back surface of the photovoltaic panel, and the peripheral edge portion of the back cover and the peripheral edge portion of the lens protective cover are combined. In this way, the photovoltaic panel wrapped with the lens protective cover and the back cover can be efficiently manufactured.

この場合も、請求項のように、予め、仮保持板の片面に前記多数の光発電素子を格子点状に配列して仮保持させた後、前記成形工程で、前記仮保持板の片面に仮保持させた前記多数の光発電素子を前記樹脂液に浸漬して該樹脂液を硬化させて前記光発電パネルを成形し、成形工程終了後に、前記光発電パネルから前記仮保持板を剥離するようにすると良い。このようにすれば、成形工程で、成形型を兼ねるレンズ保護カバーに対して多数の光発電素子を位置決めして樹脂液に浸漬する作業を容易に行うことができて、多数の光発電素子と集光レンズとレンズ保護カバーとを一体化した光発電パネルを能率良く成形することができる。
Also in this case, as in claim 5 , after the large number of photovoltaic elements are preliminarily arranged in a lattice point form on one side of the temporary holding plate and then temporarily held in the molding step, The photovoltaic elements temporarily held in the substrate are immersed in the resin liquid to cure the resin liquid to form the photovoltaic panel, and after the molding process, the temporary holding plate is peeled off from the photovoltaic panel. It is good to do. In this way, in the molding process, it is possible to easily perform the operation of positioning a large number of photovoltaic elements with respect to the lens protective cover that also serves as a mold and immersing them in the resin liquid. A photovoltaic panel in which the condenser lens and the lens protective cover are integrated can be efficiently molded.

以下、本発明を実施するための最良の形態を具体化した2つの実施例1,2を説明する。   Hereinafter, two Examples 1 and 2, which embody the best mode for carrying out the present invention, will be described.

本発明の実施例1を図1乃至図14に基づいて説明する。
まず、図1に基づいて本実施例1の製造方法で製造した光発電パネル10の構造を説明する。
A first embodiment of the present invention will be described with reference to FIGS.
First, the structure of the photovoltaic panel 10 manufactured by the manufacturing method of the first embodiment will be described with reference to FIG.

光発電パネル10は、多数の粒状の光発電素子11を格子点状(アレイ状)に配列して透明樹脂層12で一体化したものである。この透明樹脂層12としては、例えば紫外線硬化型の透明樹脂を用いると良い。   The photovoltaic panel 10 includes a large number of granular photovoltaic elements 11 arranged in a lattice point (array) and integrated with a transparent resin layer 12. As the transparent resin layer 12, for example, an ultraviolet curable transparent resin may be used.

各光発電素子11は、外周部にn型半導体層11aが薄く形成され、その内周側がp型半導体層11bとなっている。この光発電素子11の製造方法は、特に限定されず、例えば、国際公開WO99/10935号公報に示すように、加熱融解されたシリコン液滴を自由落下させて、そのシリコン液滴を表面張力で球状の形状に変形させて凝固させる自由落下法や、特開2002−60943号公報に示すように、プラズマCVD装置内で、芯材の表面全体にSiを堆積させて粒状の光発電素子を製造するプラズマCVD法を用いても良いし、それ以外の製造方法を用いても良い。   Each photovoltaic element 11 is formed with a thin n-type semiconductor layer 11a on the outer peripheral portion, and a p-type semiconductor layer 11b on the inner peripheral side. The method for producing the photovoltaic element 11 is not particularly limited. For example, as shown in International Publication WO99 / 10935, a silicon droplet that has been heated and melted is freely dropped, and the silicon droplet is subjected to surface tension. Manufacturing a granular photovoltaic device by depositing Si over the entire surface of the core material in a plasma CVD apparatus as shown in Japanese Patent Application Laid-Open No. 2002-60943, or a free fall method in which it is deformed into a spherical shape and solidified The plasma CVD method may be used, or other manufacturing methods may be used.

この光発電パネル10の受光面側(図1において上面側)には、各光発電素子11を、それぞれ覆うように球状凸面形状の集光レンズ13が成形型25(図5参照)によって透明樹脂層12と一体成形されている。本実施例1では、球状凸面形状の集光レンズ13の中心に光発電素子11が配置され、各集光レンズ13の直径Dと光発電素子11の直径dとの比D/dがほぼn2 /n1 以上(但しn1 は集光レンズ13の外側の媒体の屈折率、n2 は集光レンズ13の屈折率)になるように形成されている。   On the light-receiving surface side (upper surface side in FIG. 1) of the photovoltaic panel 10, a spherical convex condensing lens 13 is formed by a molding die 25 (see FIG. 5) so as to cover each photovoltaic element 11 with a transparent resin. It is integrally formed with the layer 12. In the first embodiment, the photovoltaic element 11 is arranged at the center of the spherical convex condenser lens 13, and the ratio D / d between the diameter D of each condenser lens 13 and the diameter d of the photovoltaic element 11 is approximately n2. / N1 or more (where n1 is the refractive index of the medium outside the condenser lens 13, and n2 is the refractive index of the condenser lens 13).

例えば、集光レンズ13の外側の媒体が空気であれば、屈折率n1 は1.0となり、水であれば、屈折率n1 はほぼ1.3となる。また、本実施例1のように、集光レンズ13が透明樹脂で形成されていれば、屈折率n2 はほぼ1.5となる。参考までに、ガラスレンズの場合も、屈折率n2 はほぼ1.5となる。一般には、集光レンズ13の外側の媒体が空気であるため、本実施例1のように、集光レンズ13が透明樹脂で形成されている場合は、n2 /n1 はほぼ1.5となる。   For example, if the medium outside the condenser lens 13 is air, the refractive index n1 is 1.0, and if it is water, the refractive index n1 is approximately 1.3. If the condenser lens 13 is made of a transparent resin as in the first embodiment, the refractive index n2 is approximately 1.5. For reference, in the case of a glass lens, the refractive index n2 is approximately 1.5. In general, since the medium outside the condenser lens 13 is air, when the condenser lens 13 is formed of a transparent resin as in the first embodiment, n2 / n1 is approximately 1.5. .

この場合、D/dがn2 /n1 よりも小さいと、集光レンズ13の表面に入射した平行光は、集光レンズ13で屈折して全て光発電素子11表面に集光されるため、光発電パネル10の裏面側に光反射膜を必要としない。従って、本発明は、D/dがn2 /n1 よりも小さくなるように形成しても良いが、D/dが小さくなると、光発電素子11の使用数が増加して、コストアップとなる。   In this case, if D / d is smaller than n2 / n1, the parallel light incident on the surface of the condenser lens 13 is refracted by the condenser lens 13 and is all condensed on the surface of the photovoltaic element 11, so that the light A light reflecting film is not required on the back side of the power generation panel 10. Therefore, the present invention may be formed so that D / d is smaller than n2 / n1, but when D / d is smaller, the number of photovoltaic elements 11 used is increased and the cost is increased.

これに対して、D/dがn2 /n1 よりも大きいと、集光レンズ13の表面に入射した平行光の一部が光発電素子13表面に集光されずに通り抜けることになるが、この光を光反射膜(電極14)で反射して光発電素子11に受光させれば、発電効率を高めることができる。この観点から、本実施例1では、D/dがほぼn2 /n1 以上になるように形成している。これにより、光発電素子11の使用数を減らしてコスト性の要求を満たしながら、高い発電効率を実現できる。   On the other hand, when D / d is larger than n2 / n1, a part of the parallel light incident on the surface of the condenser lens 13 passes through the surface of the photovoltaic element 13 without being condensed. If light is reflected by the light reflecting film (electrode 14) and received by the photovoltaic element 11, the power generation efficiency can be increased. From this point of view, in the first embodiment, D / d is formed to be approximately n2 / n1 or more. Thereby, high power generation efficiency is realizable, reducing the number of the photovoltaic elements 11 used, and satisfy | filling the request | requirement of cost property.

また、本発明の光発電パネル10は、各集光レンズ13間に少しの隙間を持たせても良いが、本実施例1では、各集光レンズ13が互いに接触するように形成している。これにより、各集光レンズ13間の隙間を最小とすることができ、集光レンズ13による集光効率を最大とすることができる。   Further, the photovoltaic panel 10 of the present invention may have a small gap between the condenser lenses 13, but in the first embodiment, the condenser lenses 13 are formed in contact with each other. . Thereby, the clearance gap between each condensing lens 13 can be minimized, and the condensing efficiency by the condensing lens 13 can be maximized.

光発電パネル10の裏面側(図1において下面側)には、各光発電素子11の外周部のn型半導体層11aに導通するn電極14が透明樹脂層12の裏面全体を覆うように形成されている。このn電極14は、透明樹脂層12を透過した光を各光発電素子11側に反射する光反射膜としても機能する。このn電極14は、2層の絶縁性樹脂層15,16によって完全に覆われている。1層目の絶縁性樹脂層15は、後述するエッチング時に保護層(マスク)として機能し、2層目の絶縁性樹脂層16は、n電極14とp電極17との間を絶縁する絶縁層として機能する。   On the back surface side of the photovoltaic panel 10 (on the lower surface side in FIG. 1), an n-electrode 14 that is electrically connected to the n-type semiconductor layer 11 a on the outer periphery of each photovoltaic device 11 is formed so as to cover the entire back surface of the transparent resin layer 12. Has been. The n-electrode 14 also functions as a light reflecting film that reflects the light transmitted through the transparent resin layer 12 toward the photovoltaic elements 11. The n electrode 14 is completely covered with two insulating resin layers 15 and 16. The first insulating resin layer 15 functions as a protective layer (mask) during etching described later, and the second insulating resin layer 16 is an insulating layer that insulates between the n electrode 14 and the p electrode 17. Function as.

各光発電素子11の後端部には、研磨等によってn型半導体層11aが部分的に取り除かれてp型半導体層11bが露出する部分が形成され、このp型半導体層11bにp電極17が導通するように形成されている。このp電極17は、絶縁性樹脂等で形成された保護絶縁層18によって完全に覆われ、保護・絶縁されている。   A portion where the n-type semiconductor layer 11a is partially removed by polishing or the like to expose the p-type semiconductor layer 11b is formed at the rear end of each photovoltaic element 11, and the p-electrode 17 is formed on the p-type semiconductor layer 11b. Is formed to be conductive. The p-electrode 17 is completely covered and protected and insulated by a protective insulating layer 18 formed of an insulating resin or the like.

以上のように構成した光発電パネル10の製造方法を説明する。前述したように、粒状の光発電素子11の製造方法は、特に限定されず、どの様な方法で粒状の光発電素子11を製造しても良く、1つのメーカーで光発電素子11の製造から光発電パネル10の製造までを一貫して行っても良いし、他のメーカーで製造した光発電素子11を仕入れて光発電パネル10を製造するようにしても良い。以下、何等かの方法で製造された粒状の光発電素子11を用いて光発電パネル10を製造する各工程を順番に説明する。   A method for manufacturing the photovoltaic panel 10 configured as described above will be described. As described above, the method for manufacturing the granular photovoltaic element 11 is not particularly limited, and the granular photovoltaic element 11 may be manufactured by any method. The process up to the production of the photovoltaic panel 10 may be performed consistently, or the photovoltaic panel 10 may be produced by purchasing photovoltaic elements 11 produced by other manufacturers. Hereinafter, each process which manufactures the photovoltaic panel 10 using the granular photovoltaic element 11 manufactured with the some method is demonstrated in order.

[1]光発電素子整列工程
まず、図2に示すように、光発電素子11が1個ずつ嵌まり込む多数の素子位置決め凹部22が格子点状に形成された素子整列治具21を用いて、該素子整列治具21の各素子位置決め凹部22にそれぞれ光発電素子11を1個ずつ嵌め込むことで、多数の光発電素子11を格子点状に整列させる。この際、素子整列治具21上で整列された光発電素子11(素子位置決め凹部22)の配列ピッチは、製造する光発電パネル10の光発電素子11の配列ピッチに一致している。
[1] Photovoltaic Element Alignment Step First, as shown in FIG. 2, an element alignment jig 21 in which a large number of element positioning recesses 22 into which the photovoltaic elements 11 are fitted one by one is formed in a lattice point shape is used. A large number of photovoltaic elements 11 are aligned in lattice points by fitting one photovoltaic element 11 into each element positioning recess 22 of the element alignment jig 21. At this time, the arrangement pitch of the photovoltaic elements 11 (element positioning recesses 22) aligned on the element alignment jig 21 matches the arrangement pitch of the photovoltaic elements 11 of the photovoltaic panel 10 to be manufactured.

[2]仮保持工程
光発電素子整列工程終了後に、仮保持工程に進む。この仮保持工程では、予め、図3に示すように、紫外線が透過可能な透明ガラス等の透明な材料で形成された仮保持板23を用いて、この仮保持板23の片面に粘着剤をコーティングしたり、或は、両面粘着シートを貼着するなどして、仮保持板23の片面に粘着層を形成しておく。この粘着層の厚みは、光発電素子11の直径のばらつきを吸収できる程度の厚みとすることが望ましい。
[2] Temporary holding step After the photovoltaic element alignment step, the process proceeds to a temporary holding step. In this temporary holding step, as shown in FIG. 3, an adhesive is applied to one side of the temporary holding plate 23 using a temporary holding plate 23 formed of a transparent material such as transparent glass capable of transmitting ultraviolet rays. An adhesive layer is formed on one side of the temporary holding plate 23 by coating or by sticking a double-sided adhesive sheet. The thickness of the adhesive layer is desirably set to a thickness that can absorb the variation in the diameter of the photovoltaic element 11.

そして、この仮保持板23の粘着層を下向きにして、該仮保持板23を素子整列治具21の上方から下降させて、該仮保持板23の粘着層を素子整列治具21上の各光発電素子11に押し付ける。これにより、仮保持板23の粘着層に各光発電素子11を格子点状に配列させた状態で粘着(仮保持)させる。   Then, with the adhesive layer of the temporary holding plate 23 facing downward, the temporary holding plate 23 is lowered from above the element alignment jig 21, and the adhesive layer of the temporary holding plate 23 is placed on each of the element alignment jigs 21. Press against the photovoltaic element 11. As a result, the photovoltaic elements 11 are adhered (temporarily held) to the adhesive layer of the temporary holding plate 23 in a state where the photovoltaic elements 11 are arranged in a lattice point form.

[3]成形工程
仮保持工程終了後に、成形工程に進み、まず、図4に示すように、多数の集光レンズ成形キャビティ24が形成された成形型25内に紫外線硬化型透明樹脂の樹脂液26を注入する。この後、仮保持板23の粘着層に粘着した各光発電素子11を成形型25の各集光レンズ成形キャビティ24に位置合わせした状態で、仮保持板23を下降させて、図5に示すように、仮保持板23の粘着層に粘着した各光発電素子11を各集光レンズ成形キャビティ24の樹脂液26に浸漬した状態にする。この際、樹脂液26に対する光発電素子11の浸漬量を調整すれば、集光レンズ13の焦点に対して任意の高さ位置に光発電素子11を配置することができる。尚、光発電素子11を樹脂液26に浸漬する際に、仮保持板23の下面(粘着層)と樹脂液26との間に隙間を持たせて、仮保持板23の下面(粘着層)に樹脂液26が付着しないようにする。
[3] Molding process After the temporary holding process is completed, the process proceeds to the molding process. First, as shown in FIG. 4, a resin liquid of an ultraviolet curable transparent resin is formed in a mold 25 in which a large number of condensing lens molding cavities 24 are formed. 26 is injected. Thereafter, with the photovoltaic elements 11 adhered to the adhesive layer of the temporary holding plate 23 aligned with the condensing lens molding cavities 24 of the mold 25, the temporary holding plate 23 is lowered, as shown in FIG. As described above, the photovoltaic elements 11 adhered to the adhesive layer of the temporary holding plate 23 are immersed in the resin liquid 26 of the condenser lens molding cavities 24. At this time, if the amount of immersion of the photovoltaic element 11 in the resin liquid 26 is adjusted, the photovoltaic element 11 can be arranged at an arbitrary height position with respect to the focal point of the condenser lens 13. When the photovoltaic device 11 is immersed in the resin liquid 26, a gap is provided between the lower surface (adhesive layer) of the temporary holding plate 23 and the resin liquid 26 so that the lower surface (adhesive layer) of the temporary holding plate 23. The resin liquid 26 is prevented from adhering to the surface.

この後、図6に示すように、仮保持板23の上方から紫外線を下向きに照射する。これにより、紫外線を仮保持板23を透過させて樹脂液26に照射して該樹脂液26を硬化させることで、集光レンズ13と各光発電素子11を保持する透明樹脂層12とを一体化した光発電パネル10を成形する。尚、成形型25を透明な材料で形成して、紫外線を成形型25を透過させて樹脂液26を硬化させるようにしても良い。   Thereafter, as shown in FIG. 6, ultraviolet rays are irradiated downward from above the temporary holding plate 23. Thereby, the condensing lens 13 and the transparent resin layer 12 that holds each photovoltaic element 11 are integrated by passing ultraviolet rays through the temporary holding plate 23 and irradiating the resin liquid 26 to cure the resin liquid 26. The converted photovoltaic panel 10 is molded. Alternatively, the mold 25 may be formed of a transparent material, and the resin liquid 26 may be cured by allowing ultraviolet rays to pass through the mold 25.

[4]離型工程
成形工程終了後に、離型工程に進み、図7に示すように、成形後の光発電パネル10を成形型25から取り出すと共に、該光発電パネル10の裏面側から仮保持板23を剥離する。この際、仮保持板23の下面に樹脂液26が付着していなければ、仮保持板23を光発電パネル10の裏面側から簡単に剥離することができる。
[4] Mold Release Process After the molding process is completed, the process proceeds to the mold release process. As shown in FIG. 7, the molded photovoltaic panel 10 is taken out from the molding mold 25 and temporarily held from the back side of the photovoltaic panel 10. The plate 23 is peeled off. At this time, if the resin liquid 26 is not attached to the lower surface of the temporary holding plate 23, the temporary holding plate 23 can be easily peeled from the back surface side of the photovoltaic panel 10.

[5]n電極形成工程
離型工程終了後に、n電極形成工程に進み、図8に示すように、光発電パネル10の裏面全体に、蒸着、めっき、CVD、スパッタリング、塗布、印刷等の導体成膜技術を用いてn電極14を形成する。このn電極14を形成する導体は、Ag、Ag系導体等の電気抵抗値が小さく、且つ、光を反射しやすい導体(入射光の反射面としても機能させるため)を用いることが好ましい。このn電極14は、各光発電素子11の外周部のn型半導体層11aに導通し、且つ透明樹脂層12の裏面全体を覆って入射光の光反射膜としても機能するようになっている。尚、n電極14の一部は、後述するサンドブラスト工程で光発電素子11の一部を露出させるように取り除かれるため、その部分にはn電極14を形成しない部分があっても良い。
[5] n-electrode formation process After the mold release process, the process proceeds to the n-electrode formation process. As shown in FIG. 8, conductors such as vapor deposition, plating, CVD, sputtering, coating, and printing are formed on the entire back surface of the photovoltaic panel 10. An n-electrode 14 is formed using a film forming technique. As the conductor forming the n-electrode 14, it is preferable to use a conductor that has a small electrical resistance value such as Ag or an Ag-based conductor and easily reflects light (to function as a reflection surface of incident light). The n-electrode 14 is electrically connected to the n-type semiconductor layer 11 a on the outer peripheral portion of each photovoltaic element 11 and covers the entire back surface of the transparent resin layer 12 to function as a light reflecting film for incident light. . In addition, since a part of n electrode 14 is removed so that a part of photovoltaic device 11 may be exposed by the sandblast process mentioned later, the part which does not form the n electrode 14 may exist in the part.

[6]保護層(1層目の絶縁性樹脂層)形成工程
n電極形成工程終了後に、保護層形成工程に進み、図9に示すように、光発電パネル10の裏面のn電極14全面に、エポキシ系樹脂等の絶縁性樹脂を塗布して硬化させて保護層(1層目の絶縁性樹脂層)15を形成し、n電極14全面を保護層15で覆った状態にする。この保護層15を形成する樹脂は、熱硬化性樹脂、紫外線硬化性樹脂、嫌気性硬化樹脂等のいずれを用いても良いが、絶縁性と耐薬品性・耐酸性(エッチング時のマスクとして用いるため)を備えている必要がある。尚、保護層15の一部は、次のサンドブラスト工程で光発電素子11の一部を露出させるように取り除かれるため、その部分には保護層15を形成しない部分があっても良い。
[6] Protection Layer (First Insulating Resin Layer) Formation Process After the n electrode formation process is completed, the process proceeds to the protection layer formation process, and as shown in FIG. Then, an insulating resin such as an epoxy resin is applied and cured to form a protective layer (first insulating resin layer) 15, and the entire surface of the n electrode 14 is covered with the protective layer 15. The resin for forming the protective layer 15 may be any of thermosetting resin, ultraviolet curable resin, anaerobic curable resin, etc., but has insulation, chemical resistance and acid resistance (used as a mask during etching). For that). In addition, since a part of the protective layer 15 is removed so as to expose a part of the photovoltaic element 11 in the next sandblasting step, there may be a part where the protective layer 15 is not formed.

[7]サンドブラスト工程
保護層形成工程終了後に、サンドブラスト工程に進み、図10に示すように、サンドブラストにより、各光発電素子11の後端部の保護層15とn電極14を部分的に取り除いて、各光発電素子11の後端部のn型半導体層11aを露出させた状態にする。尚、サンドブラストに代えて、研磨、レーザ加工、放電加工等によって保護層15とn電極14を部分的に取り除くようにしても良い。
[7] Sandblasting process After the protective layer forming process is completed, the process proceeds to the sandblasting process. As shown in FIG. 10, the protective layer 15 and the n-electrode 14 at the rear end of each photovoltaic element 11 are partially removed by sandblasting. The n-type semiconductor layer 11a at the rear end of each photovoltaic element 11 is exposed. Instead of sandblasting, the protective layer 15 and the n-electrode 14 may be partially removed by polishing, laser processing, electric discharge processing, or the like.

[8]エッチング工程
サンドブラスト工程終了後に、エッチング工程に進み、保護層15をマスク(エッチングレジスト)として用いて、該保護層15から露出する光発電素子11の後端部のn型半導体層11aを化学エッチングして部分的に取り除き、その内側のp型半導体層11bを露出させた状態にする。尚、化学エッチングに代えて、ドライエッチングを用いても良い。
[8] Etching Step After the sandblasting step, the process proceeds to the etching step, and the protective layer 15 is used as a mask (etching resist), and the n-type semiconductor layer 11a at the rear end of the photovoltaic element 11 exposed from the protective layer 15 is removed. Chemical etching is partially removed to expose the p-type semiconductor layer 11b inside. Note that dry etching may be used instead of chemical etching.

[9]絶縁層(2層目の絶縁性樹脂層)形成工程
エッチング工程終了後に、絶縁層(2層目の絶縁性樹脂層)形成工程に進み、図11に示すように、光発電パネル10の裏面全体に、エポキシ系樹脂等の絶縁性樹脂を塗布して硬化させて絶縁層(2層目の絶縁性樹脂層)16を形成し、前記サンドブラスト工程で部分的に露出されたn電極14を完全に覆って絶縁した状態にする。この絶縁層16を形成する樹脂は、その下層の保護層15と同種、異種のいずれの絶縁性樹脂を用いても良く、熱硬化性樹脂、紫外線硬化性樹脂、嫌気性硬化樹脂等のいずれを用いても良い。尚、絶縁層16の一部は、次の研磨工程で光発電素子11の一部を露出させるように除かれるため、その部分には絶縁層16を形成しない部分があっても良い。
[9] Insulating layer (second insulating resin layer) forming step After the etching step is completed, the process proceeds to an insulating layer (second insulating resin layer) forming step, and as shown in FIG. An insulating resin (second insulating resin layer) 16 is formed by applying and curing an insulating resin such as an epoxy resin on the entire back surface of the n-type electrode, and the n-electrode 14 partially exposed in the sandblasting process. Completely covered and insulated. As the resin forming the insulating layer 16, any of the same type or different types of insulating resin as the protective layer 15 thereunder may be used, and any of thermosetting resin, ultraviolet curable resin, anaerobic curable resin, etc. may be used. It may be used. Since a part of the insulating layer 16 is removed so as to expose a part of the photovoltaic element 11 in the next polishing step, there may be a part where the insulating layer 16 is not formed.

[10]研磨工程
絶縁層形成工程終了後に、研磨工程に進み、図12に示すように、光発電パネル10の裏面の絶縁層16を研磨装置で研磨して平坦化すると共に、光発電素子11の後端部のp型半導体層11bを絶縁層16から露出させると共に、該p型半導体層11bの露出面を平坦化する。尚、サンドブラストで研磨するようにしても良い。
[10] Polishing Step After the insulating layer forming step is completed, the process proceeds to the polishing step. As shown in FIG. 12, the insulating layer 16 on the back surface of the photovoltaic panel 10 is polished and planarized by a polishing apparatus, and the photovoltaic element 11 The p-type semiconductor layer 11b at the rear end is exposed from the insulating layer 16, and the exposed surface of the p-type semiconductor layer 11b is planarized. In addition, you may make it grind | polish by sandblasting.

[11]p電極形成工程
研磨工程終了後に、p電極形成工程に進み、図13に示すように、光発電パネル10の裏面全体にp電極17を各光発電素子11のp型半導体層11bの露出面に密着させるように形成する。このp電極17を形成する導体は、前述したn電極14と同じ導体でも良いし、異なる導体を用いても良く、p電極17の形成方法も、n電極14と同じ方法でも異なる方法でも良い。例えば、Al等の導体を光発電パネル10の裏面全体に擦り付けて、その摩擦力と摩擦熱により、Al等の導体を各光発電素子11のp型半導体層11bの露出面と絶縁層16に付着させてp電極17を形成するようにしても良い。或は、アルミニウム箔等の導体箔を光発電パネル10の裏面全体に貼り付けてp電極17を形成しても良い。
[11] p-electrode forming process After the polishing process is completed, the process proceeds to the p-electrode forming process. As shown in FIG. 13, the p-electrode 17 is placed on the entire back surface of the photovoltaic panel 10. It is formed so as to be in close contact with the exposed surface. The conductor forming the p-electrode 17 may be the same conductor as the n-electrode 14 described above, or a different conductor may be used. The p-electrode 17 may be formed by the same method as the n-electrode 14 or by a different method. For example, a conductor such as Al is rubbed against the entire back surface of the photovoltaic panel 10, and the conductor such as Al is applied to the exposed surface of the p-type semiconductor layer 11 b of each photovoltaic element 11 and the insulating layer 16 by the frictional force and frictional heat. The p electrode 17 may be formed by adhering. Alternatively, the p-electrode 17 may be formed by attaching a conductive foil such as an aluminum foil to the entire back surface of the photovoltaic panel 10.

[12]レーザーシンタ工程
p電極形成工程終了後に、レーザーシンタ工程に進み、p電極17と各光発電素子11の後端部のp型半導体層11bとの接合部分の中央部にレーザー光をスポット的に照射して、その部分をスポット的に加熱し、オーミックコンタクトを形成するためのp電極17の熱処理(シンタ)を行う。
[12] Laser sintering process After the p electrode forming process is completed, the laser sintering process is performed, and laser light is spotted at the center of the junction between the p electrode 17 and the p-type semiconductor layer 11b at the rear end of each photovoltaic element 11. The p electrode 17 is heat-treated (sintered) to form an ohmic contact.

[13]保護絶縁層形成工程
レーザーシンタ工程終了後に、保護絶縁層形成工程に進み、図14に示すように、光発電パネル10の裏面のp電極17全面に、絶縁性樹脂を塗布して硬化させて保護絶縁層18を形成し、p電極17全面を保護絶縁層18で覆った状態にする。この保護絶縁層18を形成する樹脂は、熱硬化性樹脂、紫外線硬化性樹脂、嫌気性硬化樹脂等のいずれを用いても良い。以上説明した各工程[1]〜[13]を一通り実行すれば、光発電パネル10の製造が完了する。
[13] Protective insulating layer forming process After the laser sintering process, the process proceeds to the protective insulating layer forming process, and as shown in FIG. 14, an insulating resin is applied to the entire surface of the p-electrode 17 on the back surface of the photovoltaic panel 10 and cured. Thus, the protective insulating layer 18 is formed, and the entire surface of the p electrode 17 is covered with the protective insulating layer 18. As the resin forming the protective insulating layer 18, any of thermosetting resin, ultraviolet curable resin, anaerobic curable resin, and the like may be used. If each process [1]-[13] demonstrated above is performed one by one, manufacture of the photovoltaic panel 10 will be completed.

以上説明した本実施例1によれば、多数の粒状の光発電素子11を格子点状に配列して透明樹脂層12でパネル状に一体成形した光発電パネル10において、光発電パネル10の受光面側に、各光発電素子11をそれぞれ覆う集光レンズ13を成形型25によって一体に成形するようにしたので、各光発電素子11のサイズ(径寸法)や形状(真球度)に多少のばらつきがあっても、各光発電素子11の表面に好ましい球状凸面形状の集光レンズ13を形成でき、光発電パネル10の要求品質レベルを満たしつつ、光発電素子11の外径寸法や形状・真球精度に対する許容範囲を広げることができて、光発電素子11の生産性向上、歩留まり向上を製品品質を落とさずに実現できる。しかも、成形型25によって光発電パネル10の受光面全域に隙間なく集光レンズ13を成形できるため、光発電パネル10で受光した光を効率良く光発電に寄与させることができて、発電効率を向上できる。これにより、光発電パネル10の小型化や光発電素子11の使用数の削減による低コスト化も期待できる。   According to the first embodiment described above, in the photovoltaic panel 10 in which a large number of granular photovoltaic elements 11 are arranged in lattice points and integrally formed in a panel shape with the transparent resin layer 12, the photovoltaic panel 10 receives light. Since the condenser lens 13 that covers each photovoltaic element 11 is integrally formed on the surface side by the molding die 25, the size (diameter dimension) and shape (sphericity) of each photovoltaic element 11 are somewhat different. Can be formed on the surface of each photovoltaic element 11, and the outer diameter dimension and shape of the photovoltaic element 11 can be satisfied while satisfying the required quality level of the photovoltaic panel 10. -The allowable range for the true spherical accuracy can be expanded, and the productivity improvement and the yield improvement of the photovoltaic device 11 can be realized without deteriorating the product quality. Moreover, since the condensing lens 13 can be formed without gaps over the entire light receiving surface of the photovoltaic panel 10 by the molding die 25, the light received by the photovoltaic panel 10 can be efficiently contributed to photovoltaic power generation, and the power generation efficiency can be improved. Can be improved. Thereby, cost reduction by size reduction of the photovoltaic panel 10 and reduction of the number of the photovoltaic elements 11 used can also be expected.

しかも、本実施例1では、仮保持板23を透明な材料で形成し、成形工程において、紫外線硬化型の樹脂液26を用い、紫外線を仮保持板23を透過させて該樹脂液26に照射することで該樹脂液26を硬化させるようにしたので、成形工程で、紫外線照射により集光レンズ13や透明樹脂層12を短時間で硬化させることができ、生産性を向上させることができる。   Moreover, in the first embodiment, the temporary holding plate 23 is formed of a transparent material, and in the molding process, an ultraviolet curable resin liquid 26 is used, and ultraviolet rays are transmitted through the temporary holding plate 23 to irradiate the resin liquid 26. By doing so, the resin liquid 26 is cured, so that in the molding process, the condenser lens 13 and the transparent resin layer 12 can be cured in a short time by ultraviolet irradiation, and productivity can be improved.

尚、本実施例1では、素子整列治具21の各素子位置決め凹部22にそれぞれ光発電素子11を1個ずつ嵌め込むことで、多数の光発電素子11を格子点状に整列させ、その状態で、仮保持板23の粘着層に多数の光発電素子11を格子点状に配列して粘着させるようにしたが、この他に、次のような光発電素子11の整列方法を採用しても良い。例えば、素子整列治具に、素子位置決め凹部22の代わりに、光発電素子11の直径よりも僅かに大きい孔径の貫通孔を格子点状に形成し、この素子整列治具を、仮保持板23上面の粘着層に僅かな隙間を隔てて対向させた状態で、素子整列治具の各貫通孔からそれぞれ光発電素子11を1個ずつ貫通させて仮保持板23の粘着層に押し付けることで、仮保持板23の粘着層に多数の光発電素子11を格子点状に配列して粘着させるようにしても良い。   In the first embodiment, one photovoltaic element 11 is fitted into each element positioning recess 22 of the element aligning jig 21 so that a large number of photovoltaic elements 11 are aligned in a lattice point state. Then, a large number of photovoltaic elements 11 are arranged and adhered to the adhesive layer of the temporary holding plate 23 in the form of lattice points, but in addition to this, the following alignment method of the photovoltaic elements 11 is adopted. Also good. For example, instead of the element positioning recess 22 in the element alignment jig, through holes having a diameter slightly larger than the diameter of the photovoltaic element 11 are formed in a lattice point shape, and this element alignment jig is attached to the temporary holding plate 23. By pressing the photovoltaic device 11 one by one from each through hole of the element alignment jig and pressing it against the adhesive layer of the temporary holding plate 23 with the adhesive layer on the upper surface facing a slight gap, A large number of photovoltaic elements 11 may be arranged and adhered to the adhesive layer of the temporary holding plate 23 in the form of lattice points.

次に、本発明の実施例2を図15乃至図19に基づいて説明する。以下の説明では、上記実施例1と実質的に同一の部分には、同一符号を付して説明を簡略化する。   Next, a second embodiment of the present invention will be described with reference to FIGS. In the following description, parts that are substantially the same as those in the first embodiment are denoted by the same reference numerals, and the description is simplified.

本実施例2の光発電パネル30は、図19に示すように、集光レンズ13の受光面を、該集光レンズ13を成形する成形型を兼ねる透明なレンズ保護カバー31で覆うと共に、光発電パネル30の裏面を絶縁性の裏カバー32で覆って、該裏カバー32の周縁部とレンズ保護カバー31の周縁部とをシール材33によって結合し、光発電パネル30全体をレンズ保護カバー31と裏カバー32とで包み込んで密閉状態に封止(シール)したところに構成上の特徴がある。   As shown in FIG. 19, the photovoltaic panel 30 of the second embodiment covers the light receiving surface of the condenser lens 13 with a transparent lens protective cover 31 that also serves as a mold for molding the condenser lens 13, and The back surface of the power generation panel 30 is covered with an insulating back cover 32, the peripheral edge portion of the back cover 32 and the peripheral edge portion of the lens protection cover 31 are joined together by a sealing material 33, and the entire photovoltaic power generation panel 30 is connected to the lens protection cover 31. And the back cover 32 and are sealed (sealed) in a sealed state.

この場合、レンズ保護カバー31は、耐候性、耐摩耗性、紫外線カット性(集光レンズ13の紫外線劣化防止)に優れた透明な樹脂で形成されている。一方、裏カバー32は、耐候性、耐摩耗性、絶縁性に優れた樹脂で形成されている。裏カバー32は、透明性や紫外線カット性は要求されないため、不透明又は半透明の樹脂や紫外線を透過する樹脂で形成しても良い。その他、レンズ保護カバー31や裏カバー32を形成する素材は、樹脂に限定されず、ガラス等、樹脂以外の素材で形成しても良いことは言うまでもない。   In this case, the lens protective cover 31 is formed of a transparent resin excellent in weather resistance, wear resistance, and ultraviolet ray cut-off property (preventing ultraviolet ray deterioration of the condenser lens 13). On the other hand, the back cover 32 is formed of a resin excellent in weather resistance, wear resistance, and insulation. Since the back cover 32 is not required to be transparent or UV cut, it may be formed of an opaque or translucent resin or a resin that transmits ultraviolet light. In addition, the material for forming the lens protection cover 31 and the back cover 32 is not limited to resin, and it goes without saying that it may be formed of a material other than resin, such as glass.

尚、本実施例2では、光発電パネル30の裏面全体を覆う絶縁性の裏カバー32が前記実施例1の保護絶縁層18に相当する役割を果たすため、p電極17上に保護絶縁層18を形成しない構成としているが、封止効果をより高めるために、p電極17上に保護絶縁層18を形成しても良いことは言うまでもない。   In the second embodiment, the insulating back cover 32 that covers the entire back surface of the photovoltaic panel 30 plays a role corresponding to the protective insulating layer 18 of the first embodiment. Therefore, the protective insulating layer 18 is formed on the p-electrode 17. However, it goes without saying that the protective insulating layer 18 may be formed on the p-electrode 17 in order to further enhance the sealing effect.

或は、前記実施例1と同様の方法で光発電パネル30裏面のp電極17上に形成した保護絶縁層18を裏カバーとして用い、この保護絶縁層18(裏カバー)の周縁部とレンズ保護カバー31の周縁部とを接着、熱融着等により接合するようにしても良い。   Alternatively, the protective insulating layer 18 formed on the p-electrode 17 on the back surface of the photovoltaic panel 30 by the same method as in the first embodiment is used as a back cover, and the peripheral portion of the protective insulating layer 18 (back cover) and lens protection are used. You may make it join with the peripheral part of the cover 31 by adhesion | attachment, heat sealing | fusion, etc. FIG.

以上のように構成した本実施例2の光発電パネル30は、次のような工程を経て製造される。
まず、集光レンズ13を成形する成形型を兼ねる透明なレンズ保護カバー31(図15参照)と裏カバー32を準備する。これらを樹脂で形成する場合は、真空成形法、射出成形法、圧縮成形法等により成形すれば良い。レンズ保護カバー31の内側には、前記実施例1で使用した成形型25のキャビティ24と同じ形状のキャビティ31aを成形する。
The photovoltaic panel 30 of Example 2 configured as described above is manufactured through the following steps.
First, a transparent lens protective cover 31 (see FIG. 15) that also serves as a mold for forming the condenser lens 13 and a back cover 32 are prepared. When these are formed of resin, they may be formed by a vacuum forming method, an injection forming method, a compression forming method or the like. Inside the lens protective cover 31, a cavity 31a having the same shape as the cavity 24 of the mold 25 used in the first embodiment is formed.

そして、前記実施例1と同じく、[1]光発電素子整列工程、[2]仮保持工程を行い、図16に示すように、仮保持板23下面の粘着層に各光発電素子11を格子点状に配列させた状態で粘着(仮保持)させる。   Then, as in the first embodiment, [1] photovoltaic element alignment step and [2] temporary holding step are performed, and each photovoltaic element 11 is latticed on the adhesive layer on the lower surface of the temporary holding plate 23 as shown in FIG. Adhesion (temporary holding) is performed in the state of being arranged in the form of dots.

この後、成形工程に進み、図16に示すように、成形型を兼ねるレンズ保護カバー31のキャビティ31a内に紫外線硬化型透明樹脂の樹脂液26を注入する。この後、仮保持板23の粘着層に粘着した各光発電素子11をレンズ保護カバー31の各キャビティ31aに位置合わせした状態で、仮保持板23を下降させて、図17に示すように、仮保持板23の粘着層に粘着した各光発電素子11をレンズ保護カバー31のキャビティ13aの樹脂液26に浸漬した状態にする。この際、樹脂液26に対する光発電素子11の浸漬量を調整すれば、集光レンズ13の焦点に対して任意の高さ位置に光発電素子11を配置することができる。尚、光発電素子11を樹脂液26に浸漬する際に、仮保持板23の下面(粘着層)と樹脂液26との間に隙間を持たせて、仮保持板23の下面(粘着層)に樹脂液26が付着しないようにする。   Thereafter, the process proceeds to a molding step, and as shown in FIG. 16, a resin liquid 26 of an ultraviolet curable transparent resin is injected into the cavity 31a of the lens protective cover 31 that also serves as a mold. Thereafter, in a state where the photovoltaic elements 11 adhered to the adhesive layer of the temporary holding plate 23 are aligned with the cavities 31a of the lens protective cover 31, the temporary holding plate 23 is lowered, as shown in FIG. Each photovoltaic device 11 adhered to the adhesive layer of the temporary holding plate 23 is immersed in the resin liquid 26 in the cavity 13a of the lens protective cover 31. At this time, if the amount of immersion of the photovoltaic element 11 in the resin liquid 26 is adjusted, the photovoltaic element 11 can be arranged at an arbitrary height position with respect to the focal point of the condenser lens 13. When the photovoltaic device 11 is immersed in the resin liquid 26, a gap is provided between the lower surface (adhesive layer) of the temporary holding plate 23 and the resin liquid 26 so that the lower surface (adhesive layer) of the temporary holding plate 23. The resin liquid 26 is prevented from adhering to the surface.

この後、仮保持板23の上方から紫外線を下向きに照射する。これにより、紫外線を仮保持板23を透過させて樹脂液26に照射して該樹脂液26を硬化させることで、レンズ保護カバー31と集光レンズ13と各光発電素子11を保持する透明樹脂層12とを一体化した光発電パネル30を成形する。   Thereafter, ultraviolet rays are irradiated downward from above the temporary holding plate 23. Thus, the transparent resin that holds the lens protective cover 31, the condensing lens 13, and each photovoltaic device 11 by irradiating the resin liquid 26 with the ultraviolet light transmitted through the temporary holding plate 23 and curing the resin liquid 26. The photovoltaic panel 30 integrated with the layer 12 is molded.

成形工程終了後に、図18に示すように、成形後の光発電パネル30の裏面側から仮保持板23を剥離する。   After completion of the molding process, the temporary holding plate 23 is peeled from the rear surface side of the photovoltaic panel 30 after molding, as shown in FIG.

この後は、前記実施例1と同じく、[5]n電極形成工程、[6]保護層(1層目の絶縁性樹脂層)形成工程、[7]サンドブラスト工程、[8]エッチング工程、[9]絶縁層(2層目の絶縁性樹脂層)形成工程、[10]研磨工程、[11]p電極形成工程、[12]レーザーシンタ工程を順番に実行する。   Thereafter, as in Example 1, [5] n-electrode forming step, [6] protective layer (first insulating resin layer) forming step, [7] sandblasting step, [8] etching step, [ 9) An insulating layer (second insulating resin layer) forming step, [10] polishing step, [11] p-electrode forming step, and [12] laser sintering step are sequentially executed.

この後、図18に示すように、光発電パネル30裏面のp電極17上に裏カバー32を被せて、該裏カバー32の周縁部とレンズ保護カバー31の周縁部とをシール材33によって結合し、光発電パネル30全体をレンズ保護カバー31と裏カバー32とで包み込んで密閉状態に封止(シール)する。この封止方法は、熱融着、接着剤等の適宜の方法を用いれば良く、また、シール材33を省略して、裏カバー32の周縁部とレンズ保護カバー31の周縁部とを熱融着、接着等により接合するようにしても良い。   Thereafter, as shown in FIG. 18, the back cover 32 is put on the p-electrode 17 on the back surface of the photovoltaic panel 30, and the peripheral portion of the back cover 32 and the peripheral portion of the lens protective cover 31 are joined by the sealing material 33. Then, the entire photovoltaic panel 30 is wrapped with the lens protection cover 31 and the back cover 32 and sealed (sealed) in a sealed state. As the sealing method, an appropriate method such as heat fusion or adhesive may be used. Further, the sealing material 33 is omitted, and the peripheral edge of the back cover 32 and the peripheral edge of the lens protective cover 31 are thermally fused. You may make it join by adhesion | attachment, adhesion | attachment, etc.

以上説明した本実施例2では、集光レンズ13のレンズ保護カバー31を成形型として用いて集光レンズ13を成形して、レンズ保護カバー31付きの光発電パネル30を成形するようにしたので、成形後の離型工程が不要になると共に、光発電パネル30にレンズ保護カバー31を取り付ける工程も不要となり、生産性を向上できる。しかも、集光レンズ13とレンズ保護カバー31とを異なる素材で形成できるため、これらを形成する素材の選択幅を広げることができ、例えば、集光レンズ13を透明度の高い樹脂で形成し、レンズ保護カバー31を、耐候性、耐摩耗性、紫外線カット性(集光レンズ13の紫外線劣化防止)に優れた透明な樹脂(又はガラス)で形成するという具合に、集光レンズ13とレンズ保護カバー31とをそれぞれの使用目的に合わせた好適な素材で形成することができ、発電効率、耐久性、コスト性を向上させることができる。   In the second embodiment described above, the condensing lens 13 is formed using the lens protective cover 31 of the condensing lens 13 as a molding die, and the photovoltaic panel 30 with the lens protective cover 31 is formed. A mold release step after molding becomes unnecessary, and a step of attaching the lens protection cover 31 to the photovoltaic panel 30 becomes unnecessary, so that productivity can be improved. In addition, since the condensing lens 13 and the lens protective cover 31 can be formed of different materials, the selection range of materials for forming these can be expanded. For example, the condensing lens 13 is formed of a highly transparent resin, and the lens The protective lens 31 and the lens protective cover are formed such that the protective cover 31 is formed of a transparent resin (or glass) excellent in weather resistance, abrasion resistance, and ultraviolet ray cut-off property (preventing ultraviolet ray deterioration of the condenser lens 13). 31 can be formed of a suitable material in accordance with the intended use, and the power generation efficiency, durability, and cost can be improved.

しかも、光発電パネル30全体をレンズ保護カバー31と裏カバー32とで包み込んで密閉状態に封止(シール)するようにしたので、光発電パネル30の防水性を高めることができる。その他、本実施例2においても、前記実施例1と同様の効果を得ることができる。   In addition, since the entire photovoltaic panel 30 is wrapped with the lens protective cover 31 and the back cover 32 and sealed (sealed) in a sealed state, the waterproof property of the photovoltaic panel 30 can be improved. In addition, also in the second embodiment, the same effects as in the first embodiment can be obtained.

尚、各実施例1,2では、光発電素子11の外周側をn型半導体層、内周側をp型半導体層としたが、これとは反対に、外周側をp型半導体層、内周側をn型半導体層としても良い。この場合、n電極とp電極の位置も反対となり、レーザー光によるシンタリングによってn電極と光発電素子11との接合部分にオーミックな接触抵抗部を形成するようにすれば良い。   In each of Examples 1 and 2, the outer peripheral side of the photovoltaic element 11 is an n-type semiconductor layer and the inner peripheral side is a p-type semiconductor layer. The peripheral side may be an n-type semiconductor layer. In this case, the positions of the n electrode and the p electrode are also reversed, and an ohmic contact resistance portion may be formed at the junction between the n electrode and the photovoltaic element 11 by laser beam sintering.

本発明の実施例1の製造方法で製造した光発電パネルの構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the photovoltaic panel manufactured with the manufacturing method of Example 1 of this invention. 実施例1の光発電パネルの製造方法における光発電素子整列工程を説明する図である。It is a figure explaining the photovoltaic device alignment process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法における仮保持工程を説明する図である。It is a figure explaining the temporary holding process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法における成形工程を説明する図である(その1)。It is a figure explaining the formation process in the manufacturing method of the photovoltaic panel of Example 1 (the 1). 実施例1の光発電パネルの製造方法における成形工程を説明する図である(その2)。It is a figure explaining the formation process in the manufacturing method of the photovoltaic panel of Example 1 (the 2). 実施例1の光発電パネルの製造方法における成形工程を説明する図である(その3)。It is a figure explaining the formation process in the manufacturing method of the photovoltaic panel of Example 1 (the 3). 実施例1の光発電パネルの製造方法における離型工程を説明する図である。It is a figure explaining the mold release process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法におけるn電極形成工程を説明する図である。It is a figure explaining the n electrode formation process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法における保護層(1層目の絶縁性樹脂層)形成工程を説明する図である。It is a figure explaining the protective layer (1st insulating resin layer) formation process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法におけるサンドブラスト工程を説明する図である。It is a figure explaining the sandblasting process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法における絶縁層(2層目の絶縁性樹脂層)形成工程を説明する図である。It is a figure explaining the insulating layer (2nd insulating resin layer) formation process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法における研磨工程を説明する図である。It is a figure explaining the grinding | polishing process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法におけるp電極形成工程を説明する図である。It is a figure explaining the p electrode formation process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例1の光発電パネルの製造方法における保護絶縁層形成工程を説明する図である。It is a figure explaining the protective insulating layer formation process in the manufacturing method of the photovoltaic panel of Example 1. FIG. 実施例2の光発電パネルの製造方法で用いる成形型兼用のレンズ保護カバーを示す断面図である。It is sectional drawing which shows the lens protective cover used as a shaping | molding die used with the manufacturing method of the photovoltaic panel of Example 2. FIG. 実施例2の光発電パネルの製造方法における成形工程を説明する図である(その1)。It is a figure explaining the formation process in the manufacturing method of the photovoltaic panel of Example 2 (the 1). 実施例2の光発電パネルの製造方法における成形工程を説明する図である(その2)。It is a figure explaining the formation process in the manufacturing method of the photovoltaic panel of Example 2 (the 2). 実施例2の成形後の光発電パネルから仮保持板を剥離した状態を示す図である。It is a figure which shows the state which peeled the temporary holding board from the photovoltaic panel after the shaping | molding of Example 2. FIG. 実施例2の光発電パネルの製造方法で製造される光発電パネルの構成を示す断面図である。It is sectional drawing which shows the structure of the photovoltaic panel manufactured with the manufacturing method of the photovoltaic panel of Example 2. FIG.

符号の説明Explanation of symbols

10…光発電パネル、11…光発電素子、12…透明樹脂層、13…集光レンズ、14…n電極、15…保護層(1層目の絶縁性樹脂層)、16…絶縁層(2層目の絶縁性樹脂層)、17…p電極、18…保護絶縁層、21…素子整列治具、22…素子位置決め凹部、23…仮保持板、24…集光レンズ成形キャビティ、25…成形型、26…樹脂液、30…光発電パネル、31…レンズ保護カバー、32…裏カバー、33…シール材   DESCRIPTION OF SYMBOLS 10 ... Photovoltaic panel, 11 ... Photovoltaic element, 12 ... Transparent resin layer, 13 ... Condensing lens, 14 ... N electrode, 15 ... Protective layer (first insulating resin layer), 16 ... Insulating layer (2 Insulating resin layer), 17 ... p electrode, 18 ... protective insulating layer, 21 ... element alignment jig, 22 ... element positioning recess, 23 ... temporary holding plate, 24 ... condensing lens molding cavity, 25 ... molding Mold, 26 ... Resin liquid, 30 ... Photovoltaic panel, 31 ... Lens protection cover, 32 ... Back cover, 33 ... Sealing material

Claims (5)

多数の粒状の光発電素子を格子点状に配列して透明樹脂でパネル状に一体成形する光発電パネルの製造方法において、
仮保持板の片面に前記多数の光発電素子を格子点状に配列して仮保持させる仮保持工程と、
前記各光発電素子をそれぞれ受光面側から覆う集光レンズと前記各光発電素子を保持する透明樹脂層とを成形するための成形型内に前記透明樹脂の樹脂液を注入すると共に、前記仮保持板の片面に仮保持させた前記多数の光発電素子を該樹脂液に浸漬して該樹脂液を硬化させることで、前記集光レンズと前記各光発電素子を保持する透明樹脂層とを一体化した光発電パネルを成形する成形工程と、
前記光発電パネルを前記成形型から取り出すと共に、該光発電パネルから前記仮保持板を剥離する工程と
を含むことを特徴とする光発電パネルの製造方法。
In a method for manufacturing a photovoltaic panel in which a large number of granular photovoltaic elements are arranged in a lattice pattern and integrally molded into a panel shape with a transparent resin,
A temporary holding step of temporarily holding the plurality of photovoltaic elements arranged in a lattice point on one side of the temporary holding plate; and
A resin solution of the transparent resin is injected into a mold for molding a condensing lens that covers the photovoltaic elements from the light receiving surface side and a transparent resin layer that holds the photovoltaic elements. The condensing lens and the transparent resin layer for holding each photovoltaic element are obtained by immersing the numerous photovoltaic elements temporarily held on one side of the holding plate in the resin liquid and curing the resin liquid. A molding process for molding an integrated photovoltaic panel;
And a step of removing the photovoltaic panel from the mold and peeling the temporary holding plate from the photovoltaic panel.
前記仮保持板を透明な材料で形成し、
前記成形工程において、紫外線硬化型の樹脂液を用い、紫外線を前記仮保持板を透過させて該樹脂液に照射することで該樹脂液を硬化させることを特徴とする請求項に記載の光発電パネルの製造方法。
Forming the temporary holding plate with a transparent material;
2. The light according to claim 1 , wherein in the molding step, an ultraviolet curable resin liquid is used, and the resin liquid is cured by irradiating the resin liquid with ultraviolet rays transmitted through the temporary holding plate. A method for producing a power generation panel.
多数の粒状の光発電素子を格子点状に配列して透明樹脂でパネル状に一体成形する光発電パネルを製造する方法において、
前記各光発電素子をそれぞれ受光面側から覆う集光レンズを成形する成形型を兼ねる透明なレンズ保護カバーを形成する工程と、
前記レンズ保護カバー内に前記透明樹脂の樹脂液を注入すると共に、前記多数の光発電素子を格子点状に配列させるように位置決めして該樹脂液に浸漬して該樹脂液を硬化させることで、前記集光レンズと前記各光発電素子を保持する透明樹脂層と前記レンズ保護カバーとを一体化した光発電パネルを成形する成形工程と
を含むことを特徴とする光発電パネルの製造方法。
In a method of manufacturing a photovoltaic panel in which a large number of granular photovoltaic elements are arranged in a grid and formed integrally with a transparent resin in a panel shape ,
Forming a transparent lens protective cover that also serves as a mold for forming a condensing lens that covers each photovoltaic element from the light-receiving surface side ;
Injecting a resin liquid of the transparent resin into the lens protective cover, positioning the large number of photovoltaic elements to be arranged in a lattice point, and immersing the resin liquid in the resin liquid to cure the resin liquid And a forming step of forming a photovoltaic panel in which the condensing lens, the transparent resin layer holding each photovoltaic element and the lens protective cover are integrated, and a method for producing a photovoltaic panel.
前記成形工程終了後に、前記光発電パネルの裏面に裏カバーを被せて、該裏カバーの周縁部と前記レンズ保護カバーの周縁部とを結合することを特徴とする請求項に記載の光発電パネルの製造方法。 4. The photovoltaic power generation according to claim 3 , wherein after the molding step is finished, a back cover is put on a back surface of the photovoltaic power generation panel, and a peripheral edge portion of the back cover and a peripheral edge portion of the lens protective cover are combined. Panel manufacturing method. 予め、仮保持板の片面に前記多数の光発電素子を格子点状に配列して仮保持させた後、前記成形工程で、前記仮保持板の片面に仮保持させた前記多数の光発電素子を前記樹脂液に浸漬して該樹脂液を硬化させて前記光発電パネルを成形し、
前記成形工程終了後に、前記光発電パネルから前記仮保持板を剥離することを特徴とする請求項又はに記載の光発電パネルの製造方法。
The large number of photovoltaic elements previously arranged on one side of the temporary holding plate and temporarily held on one side of the temporary holding plate in the molding step after the large number of photovoltaic elements are arranged in a lattice point and temporarily held Is immersed in the resin solution to cure the resin solution to form the photovoltaic panel,
The method of manufacturing a photovoltaic panel according to claim 3 or 4 , wherein the temporary holding plate is peeled off from the photovoltaic panel after the forming step.
JP2005172649A 2004-12-21 2005-06-13 Photovoltaic panel manufacturing method Expired - Fee Related JP4993333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005172649A JP4993333B2 (en) 2004-12-21 2005-06-13 Photovoltaic panel manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004369326 2004-12-21
JP2004369326 2004-12-21
JP2005172649A JP4993333B2 (en) 2004-12-21 2005-06-13 Photovoltaic panel manufacturing method

Publications (2)

Publication Number Publication Date
JP2006203156A JP2006203156A (en) 2006-08-03
JP4993333B2 true JP4993333B2 (en) 2012-08-08

Family

ID=36960836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005172649A Expired - Fee Related JP4993333B2 (en) 2004-12-21 2005-06-13 Photovoltaic panel manufacturing method

Country Status (1)

Country Link
JP (1) JP4993333B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562034B2 (en) * 2004-06-29 2010-10-13 富士機械製造株式会社 Photovoltaic panel manufacturing method
WO2009128324A1 (en) * 2008-04-17 2009-10-22 三菱電機株式会社 Method for roughening substrate surface and method for manufacturing photovoltaic device
JP2011096984A (en) * 2009-11-02 2011-05-12 Asahi Kasei E-Materials Corp Multilayer flexible wiring board
US9812592B2 (en) * 2012-12-21 2017-11-07 Sunpower Corporation Metal-foil-assisted fabrication of thin-silicon solar cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5419782A (en) * 1993-05-11 1995-05-30 Texas Instruments Incorporated Array of solar cells having an optically self-aligning, output-increasing, ambient-protecting coating

Also Published As

Publication number Publication date
JP2006203156A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
US20200108528A1 (en) Led packaging with integrated optics and methods of manufacturing the same
AU2007248263B2 (en) Laminated solar concentrating photovoltaic device
US8168998B2 (en) LED with remote phosphor layer and reflective submount
TW526568B (en) Integrated circuit device
KR101419849B1 (en) Reflective secondary lens system and semiconductor assembly and also method for production thereof
US6762359B2 (en) Photovoltaic panel and method of producing same
US20140261612A1 (en) Methods for manufacturing three-dimensional metamaterial devices with photovoltaic bristles
CN101093864A (en) Solar concentrating photovoltaic device with resilient cell package assembly
JP4993333B2 (en) Photovoltaic panel manufacturing method
CN108780141A (en) Thin optical-electric module with hole and its manufacture
CN104995754A (en) Optoelectronic component and method for producing same
US8338215B2 (en) Solar cell module and method for manufacturing the same
WO2011058941A1 (en) Photovoltaic conversion device, package for accommodating photovoltaic conversion element, and photovoltaic conversion module
US20190371949A1 (en) Solar cell and a method for manufacturing a solar cell
US7682544B2 (en) Method of fabricating photovoltaic panel
JP2007165485A (en) Manufacturing method for solar power generation module
JP2006196489A (en) Optical power generation panel and optical power generation element
JP4437657B2 (en) Photovoltaic panel manufacturing method
TW201739071A (en) Method for producing an optoelectronic component, and optoelectronic component
JP4562034B2 (en) Photovoltaic panel manufacturing method
JP2007130951A (en) Article having island-like structure and method for manufacturing the same
KR102051478B1 (en) Semiconductor light emitting device and method of manufacturing the same
US20180076367A1 (en) Optoelectronic component and method for the production thereof
KR102017730B1 (en) Method of manufacturing preformed sealant for semiconductor light emitting device
KR102022460B1 (en) Semiconductor light emitting device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080429

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4993333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees