JP4561344B2 - Wing member - Google Patents

Wing member Download PDF

Info

Publication number
JP4561344B2
JP4561344B2 JP2004353819A JP2004353819A JP4561344B2 JP 4561344 B2 JP4561344 B2 JP 4561344B2 JP 2004353819 A JP2004353819 A JP 2004353819A JP 2004353819 A JP2004353819 A JP 2004353819A JP 4561344 B2 JP4561344 B2 JP 4561344B2
Authority
JP
Japan
Prior art keywords
wing member
component
density
range
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004353819A
Other languages
Japanese (ja)
Other versions
JP2006161669A (en
Inventor
英樹 ▲ぬで▼島
毅 吉田
篤史 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004353819A priority Critical patent/JP4561344B2/en
Publication of JP2006161669A publication Critical patent/JP2006161669A/en
Application granted granted Critical
Publication of JP4561344B2 publication Critical patent/JP4561344B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Wind Motors (AREA)

Description

本発明は、風力発電用ブレード等に好適なFRP製翼部材とその製造方法に関する。   The present invention relates to an FRP blade member suitable for a wind power generation blade and the like, and a method for manufacturing the same.

翼部材はその断面が厚み分布を有する形状であり、これにより流体の流れを制御する機能を発現する。一般に航空機や自動車用のリアスポイラに代表される水平翼および垂直翼、航空機、ヘリコプターおよび船舶等のプロペラ翼、送風機のタービン翼や、攪拌機のブレード、風力発電用のブレードなどに用いられる。これらの例のように、翼部材は移動体に固定されて使用されたり、またはそれ自身が回転したりすることで、流体の流れを制御する機能を利用されることが多い。   The wing member has a shape in which the cross section has a thickness distribution, thereby expressing the function of controlling the flow of fluid. Generally used for horizontal wings and vertical wings typified by rear spoilers for aircraft and automobiles, propeller wings for aircraft, helicopters and ships, turbine blades for blowers, blades for agitators, blades for wind power generation, and the like. As in these examples, the wing member is often used while being fixed to a moving body or by rotating itself so as to control the flow of fluid.

そのため、翼部材は軽量であることが求められる。すなわち、翼部材を含めた装置全体の軽量化や翼部材の慣性力低減により装置の構造や動力の軽装化に寄与するためである。   Therefore, the wing member is required to be lightweight. That is, it contributes to lightening of the structure and power of the apparatus by reducing the weight of the entire apparatus including the wing member and reducing the inertial force of the wing member.

また、翼部材は流体から圧力を受けるため、破壊や変形に耐え得る十分な強度と剛性を有することが必要不可欠である。   Further, since the wing member receives pressure from the fluid, it is indispensable to have sufficient strength and rigidity that can withstand destruction and deformation.

従来、翼部材としてアルミ、チタン等の金属材料が用いられてきたが、軽量化かつ高剛性の要求から金属と比較して軽量で、かつ高強度、高剛性である繊維強化樹脂(以降、FRPと略す)が使用されるようになった。さらに近年では、高強度、高剛性を確保しつつ、さらなる軽量化を達成するため、FRPの表皮材と該表皮材に囲まれたコア材として密度の小さい樹脂やハニカム構造を充填するサンドイッチ構造が提案されている。   Conventionally, metal materials such as aluminum and titanium have been used as wing members, but fiber reinforced resin (hereinafter referred to as FRP) that is lighter in weight, higher in strength, and higher in rigidity than metal due to the demand for light weight and high rigidity. Is abbreviated). Furthermore, in recent years, in order to achieve further weight reduction while ensuring high strength and high rigidity, a sandwich structure in which a low density resin or honeycomb structure is filled as a core material surrounded by the FRP skin material and the skin material. Proposed.

例えば、特許文献1には、FRP製中空本体にフォームコアを配置した自動車用リアスポイラが記載されている。また、特許文献2には、繊維強化樹脂製の外皮内にガラス繊維により強化された発泡充填材を充填した風車翼が記載されている。翼部材はその使用目的から長手方向の強度、剛性を高めることが重要であるが、いずれの文献においてもこの点については課題と認識されておらず、有効な解決手段は提案されていない。   For example, Patent Document 1 describes a rear spoiler for an automobile in which a foam core is disposed on a hollow main body made of FRP. Patent Document 2 describes a wind turbine blade in which a foam filler reinforced with glass fiber is filled in a fiber reinforced resin outer skin. Although it is important for the wing member to increase the strength and rigidity in the longitudinal direction from the purpose of use, none of these documents recognizes this point as a problem, and no effective solution has been proposed.

かかる問題を解決せんとして、特許文献3には、強化樹脂製のスキン層で囲まれたブレード内部に主桁を配置し、前縁側において繊維を連続させたことを特徴とする風力発電機用プロペラブレードを提案している。このプロペラブレードでは、ブレード内部に主桁が配置されているため、ブレード自体の長手方向の強度および剛性は向上しているが、密度が高い桁材料をブレード内部に使用しているように、もう一方の必要特性である軽量性には十分配慮しているとはいえない。   In order to solve this problem, Patent Document 3 discloses a propeller for a wind power generator characterized in that a main girder is arranged inside a blade surrounded by a skin layer made of reinforced resin, and fibers are continuous on the front edge side. Suggest a blade. In this propeller blade, the main girder is arranged inside the blade, so that the strength and rigidity in the longitudinal direction of the blade itself are improved. On the other hand, it cannot be said that sufficient consideration is given to lightness, which is a necessary characteristic.

また、ブレード内部に主桁や前後の補強材等からなる複数の構造体から構成する場合、これら相互の接合強度が高くないと、部材としての強度や剛性が得られず、技術の適用難度が高いこと、複数の構造体を配置するため工数を余分に要することなどからコストアップも無視できない。
特開2004−268875号公報 特開平6−323238号公報 特開平13−165033号公報
In addition, when the blade is composed of a plurality of structures made up of a main girder, front and rear reinforcements, etc., the strength and rigidity as a member cannot be obtained unless the joint strength between them is high, and the degree of difficulty in applying the technology is reduced. Cost increases cannot be ignored due to the high cost and the extra man-hours required to place multiple structures.
JP 2004-268875 A JP-A-6-323238 JP-A No. 13-165033

本発明は、かかる従来技術の欠点を鑑み、軽量かつ高強度、高剛性を達成する高効率で安全な翼部材を提供することを目的とする。     An object of the present invention is to provide a highly efficient and safe wing member that achieves light weight, high strength, and high rigidity in view of the drawbacks of the prior art.

本発明は、かかる課題を解決するために、次の手段を採用するものである。すなわち、
(1)次の構成要素[A]、[B]を含み、構成要素[A]は[B]を完全に包含していることを特徴とする翼部材[1]
The present invention employs the following means in order to solve such problems. That is,
(1) A wing member [1] including the following components [A] and [B], wherein the component [A] completely includes [B ] .

[A]翼部材[1]の全長の90%以上の長さに亘り、長手方向に引き揃えられた連続炭素繊維層を含むFRPからなる表皮材[2]
[B]密度0.05〜1.0g/cm であるとともに、厚みが3mm以下の部位における構成要素[B]の密度が、[B]全体の平均密度の1.5〜10倍の範囲内である、一体構造の樹脂多孔質体からなるコア材[3]
[A] Skin material [2] made of FRP including continuous carbon fiber layers aligned in the longitudinal direction over 90% or more of the total length of the wing member [1 ]
[B] The density is 0.05 to 1.0 g / cm 3 , and the density of the constituent element [B] in the portion having a thickness of 3 mm or less is in the range of 1.5 to 10 times the average density of [B] as a whole. The core material [3] consisting of a porous resin body having a monolithic structure

)構成要素[A]の厚みが0.5〜5.0mmの範囲内である(1)に記載の翼部材[1]( 2 ) Wing member [1] as described in (1 ) whose thickness of component [A] exists in the range of 0.5-5.0 mm.

)構成要素[A]の前縁部[4]での最大厚みが、構成要素[A]全体の平均厚みの1.05〜5倍の範囲内である(1)または(2)に記載の翼部材[1]( 3 ) The maximum thickness at the leading edge [4] of the component [A] is in the range of 1.05 to 5 times the average thickness of the entire component [A] (1) or (2) Wing member [1] described.

)全幅W(m)と全長L(m)との比W/Lが0.05〜0.5である(1)〜()のいずれかに記載の翼部材[1]( 4 ) The wing member [1] according to any one of (1) to ( 3 ), wherein a ratio W / L of the total width W (m) to the total length L (m) is 0.05 to 0.5.

)構成要素[A]と構成要素[B]とが一体化されている(1)〜()のいずれかに記載の翼部材[1]( 5 ) The wing member [1] according to any one of (1) to ( 4 ), wherein the component [A] and the component [B] are integrated.

)自由振動での1次固有振動数が、20〜100Hzの範囲内である(1)〜()のいずれかに記載の翼部材[1]( 6 ) The blade member [1] according to any one of (1) to ( 5 ), wherein a primary natural frequency in free vibration is in a range of 20 to 100 Hz.

)風力発電用ブレードである(1)〜()のいずれかに記載の翼部材[1]( 7 ) The wing member [1] according to any one of (1) to ( 6 ), which is a blade for wind power generation.

)次の構成要素[A]、[B]を含む翼部材[1]の製造方法であって、翼部材[1]の長手方向に垂直な任意断面において、構成要素[B]の短径の長さD(m)と、構成要素[A]に包含される前の構成要素[B]の短径の長さD(m)との比D/Dが0.2〜0.95の範囲内であるように、ホットプレス、オートクレーブ、および、RTMからなる群から選ばれる成形法によって加熱加圧成形することを特徴とする翼部材[1]の製造方法。 ( 8 ) A method for manufacturing a wing member [1] including the following components [A] and [B], wherein the component [B] is short in an arbitrary cross section perpendicular to the longitudinal direction of the wing member [1]. The ratio D 1 / D 2 between the length D 1 (m) of the diameter and the length D 2 (m) of the minor axis of the component [B] before being included in the component [A] is 0.2. A method for producing a wing member [1] , wherein the pressure and pressure molding is performed by a molding method selected from the group consisting of a hot press, an autoclave, and an RTM so as to be within a range of ˜0.95.

[A]翼部材[1]の全長の90%以上の長さに亘り、長手方向に引き揃えられた連続炭素繊維層を含むFRPからなる表皮材[2]
[B]密度0.05〜1.0g/cm であるとともに、厚みが3mm以下の部位における構成要素[B]の密度が、[B]全体の平均密度の1.5〜10倍の範囲内である、一体構造の樹脂多孔質体からなるコア材[3]
)翼部材[1]形状の型内に液状樹脂を注入後、型内で発泡、硬化させることによって構成要素[B]を得る()に記載の翼部材[1]の製造方法。
[A] Skin material [2] made of FRP including continuous carbon fiber layers aligned in the longitudinal direction over 90% or more of the total length of the wing member [1 ]
[B] The density is 0.05 to 1.0 g / cm 3 , and the density of the constituent element [B] in the portion having a thickness of 3 mm or less is in the range of 1.5 to 10 times the average density of [B] as a whole. The core material [3] consisting of a porous resin body having a monolithic structure
( 9 ) The method for producing the wing member [1] according to ( 8 ), wherein the component [B] is obtained by injecting a liquid resin into the wing member [1] -shaped mold and then foaming and curing in the mold.

(1)繊維強化プリプレグシートを構成要素[B]の周囲に巻きまわして完全に包含することで、加熱加圧成形前の積層体を得る()または()に記載の翼部材[1]の製造方法。 (1 0 ) Wrapping member according to ( 8 ) or ( 9 ), in which a fiber reinforced prepreg sheet is completely wrapped around the component [B] to obtain a laminated body before heating and pressing . 1] .

本発明の翼部材によれば、軽量かつ長手方向の引張、曲げに対して高強度、高剛性の翼部材を提供することができる。 According to the wing member of the present invention, it is possible to provide a wing member that is lightweight and has high strength and high rigidity against tension and bending in the longitudinal direction.

以下、本発明を図面を参照しながら説明する。図1は、翼部材の全体斜視図である。図2は図1におけるa−a断面図、図3は図1のb−b断面図であるが、図2・図3に示すように、翼部材1は表皮材2のFRPによりコア材3である樹脂多孔質体を完全に包含する構造としている。   The present invention will be described below with reference to the drawings. FIG. 1 is an overall perspective view of a wing member. 2 is a cross-sectional view taken along the line aa in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line bb in FIG. 1. As shown in FIGS. The resin porous body is completely included.

効率的に翼構造の剛性を向上させ、軽量化を図るためには外皮としての剛性強化が好ましい。本発明では、表皮材2にFRPを用いることにより高強度・高剛性とし、さらに、表皮材2でコア材3を完全に包含することで、翼部材内部への水分や異物の混入を防止できるとともに、応力集中を低減できるために翼部材の耐久性向上が図れる。かかる観点から、FRPとしては、その強化繊維に、炭素繊維やガラス繊維、有機高弾性率繊維(例えば、米国デュポン(株)社製のポリアラミド繊維“ケブラー”)、アルミナ繊維、シリコンカーバイド繊維、ボロン繊維、炭化ケイ素繊維等の高強度、高弾性率繊維が好ましい。また、ポリアミド繊維、ポリエステル繊維、アクリル繊維、ポリオレフィン繊維、ビニロン繊維等の合成繊維、さらには、有機天然繊維も使用でき、それぞれの強化繊維を単独または複数組み合わせてもよい。この中で少なくとも、高い剛性と軽量性を両立するために、弾性率と密度との比である比弾性率が高い炭素繊維を含むことが必要である。炭素繊維は例えばポリアクリロニトリル(PAN系)、ピッチ系、セルロース系、炭化水素による気相成長系炭素繊維、黒鉛繊維等を用いることができ、これらを2種類以上併用してもよい。中でも、強度と剛性とのバランスに優れるPAN系炭素繊維を含むことが好ましい。また強化繊維形態は連続繊維や不連続繊維のものを使用でき、両者を組み合わせてもよいが、中でも、一方向に引き揃えられた炭素繊維や織物がより好ましい。   In order to efficiently improve the rigidity of the blade structure and reduce the weight, it is preferable to enhance the rigidity of the outer skin. In the present invention, high strength and high rigidity are obtained by using FRP for the skin material 2, and further, the core material 3 is completely included in the skin material 2, thereby preventing moisture and foreign matter from entering the wing member. In addition, since the stress concentration can be reduced, the durability of the wing member can be improved. From this point of view, as FRP, carbon fiber, glass fiber, organic high modulus fiber (for example, polyaramid fiber “Kevlar” manufactured by DuPont, USA), alumina fiber, silicon carbide fiber, boron are used as the reinforcing fiber. High strength and high elastic modulus fibers such as fibers and silicon carbide fibers are preferred. Further, synthetic fibers such as polyamide fibers, polyester fibers, acrylic fibers, polyolefin fibers, vinylon fibers, and organic natural fibers can also be used, and these reinforcing fibers may be used alone or in combination. Among these, in order to achieve at least both high rigidity and light weight, it is necessary to include carbon fiber having a high specific elastic modulus, which is a ratio of elastic modulus and density. As the carbon fiber, for example, polyacrylonitrile (PAN-based), pitch-based, cellulose-based, vapor-grown carbon fiber by hydrocarbon, graphite fiber, or the like can be used, and two or more of these may be used in combination. Among these, it is preferable to include a PAN-based carbon fiber that has an excellent balance between strength and rigidity. Further, the reinforcing fiber form may be continuous fiber or discontinuous fiber, and both may be combined, but among them, carbon fiber and woven fabric aligned in one direction are more preferable.

図3は図1のb−b断面図であるが、図3において、少なくとも翼部材1の全長の90%以上の長さに亘り、長手方向に引き揃えられた連続炭素繊維層6を含むFRPからなる表皮材2を含むことが必要である。これにより軽量性と長手方向の引張および曲げに対する強度、剛性の両立ができる。連続炭素繊維を長手方向に引き揃えた層がない場合には、翼部材の長手方向において、十分な引張および曲げに対する強度、剛性が得られず、翼部材が大きな流体の圧力を受けたときに、大変形し、ついには破壊するといった問題が発生する可能性がある。また特に翼部材が風力発電ブレードなどに使用される場合には、ブレードが回転する際に長手方向の曲げ剛性が十分でないと、風圧で大きく変形しながら回転することになり、発電効率の低下を招く。   FIG. 3 is a cross-sectional view taken along the line bb of FIG. 1. In FIG. 3, the FRP includes a continuous carbon fiber layer 6 aligned in the longitudinal direction over at least 90% of the total length of the wing member 1. It is necessary to include a skin material 2 made of This makes it possible to achieve both lightness and strength and rigidity against tensile and bending in the longitudinal direction. When there is no layer in which continuous carbon fibers are aligned in the longitudinal direction, sufficient strength and rigidity against tension and bending cannot be obtained in the longitudinal direction of the wing member, and the wing member is subjected to a large fluid pressure. There is a possibility that problems such as large deformation and eventually destruction will occur. In particular, when the blade member is used for a wind power generation blade or the like, if the bending rigidity in the longitudinal direction is not sufficient when the blade rotates, the blade rotates while being largely deformed by the wind pressure, which reduces the power generation efficiency. Invite.

連続炭素繊維層6は表皮材2の最表層に配置してもよく、また最内層に配置してもよいが、好ましくは外部からの衝撃を直接受けないように少なくとも最表層以外にも配置することがよい。また高い曲げ剛性が得られないと十分に高い固有振動数が得られず、翼部材と接する構造物の振動と共振し、翼部材が破壊する可能性がある
表皮材2に用いられるFRPのマトリックス樹脂としては、熱硬化性樹脂や熱可塑性樹脂を使用することができる。具体的には、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ABS樹脂、ポリエチレンテレフタラート樹脂、ナイロン樹脂、シアネート樹脂、ベンゾオキサジン樹脂、マレイミド樹脂、ポリイミド樹脂等があるが、これらに特に限定されるものではない。エポキシ樹脂等の熱硬化性樹脂で熱または光や電子線などの外部からのエネルギーにより硬化して、少なくとも部分的に三次元硬化物を形成する樹脂が好ましく使用できる。 コア材3は、軽量性を確保するために樹脂多孔質体からなることが必要である。樹脂多孔質体とはその主成分が樹脂からなり、構造内部に空隙を多数供えた構造を有するものである。空隙は発泡剤が発泡したものでも良いし、中空ガラスビーズ等を多数含んだシンタクティックコアでも良い。樹脂は熱硬化性樹脂、熱可塑性樹脂等を使用することができる例えば、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂等があり、熱可塑性樹脂としては、ポリアミド樹脂、変性フェニレンエーテル樹脂、ポリアセタール樹脂、ポリフェニレンサルファイド樹脂、液晶ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチルテレフタレート等のポリエステル樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、HIPS樹脂、ABS樹脂、AES樹脂、AAS樹脂等のスチレン系樹脂、ポリメチルメタクリレート樹脂等のアクリル樹脂、塩化ビニル、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、変性ポリオレフィン樹脂、ポリウレタン樹脂、ポリエーテルイミドやポリメタクリルイミド等のイミド樹脂、さらにはエチレン/プロピレン共重合体、エチレン/1‐ブテン共重合体、エチレン/プロピレン/ジエン共重合体、エチレン/一酸化炭素/ジエン共重合体、エチレン/(メタ)アクリル酸グリシジル、エチレン/酢酸ビニル/(メタ)アクリル酸グリシジル共重合体、ポリエーテルエステルエラストマー、ポリエーテルエーテルエラストマー、ポリエーテルエステルアミドエラストマー、ポリエステルアミドエラストマー、ポリエステルエステルエラストマー等の各種エラストマー類等がある。これらは、単独で使用しても良いし、複数を混合して使用しても良い。より具体的には、コア材3は軽量性を確保するために密度0.05〜1.0g/cmの一体構造の樹脂多孔質体を用いることが好ましい。ここで一体構造とは、樹脂多孔質体が分割されておらず、コア材3全体に渡って樹脂部分が物理的(形態)にも化学的(組成)にも連続している状態をいう。ここで、樹脂多孔質体およびコア材の密度とは、外見上の体積当たりの質量のことであり、構造内部の空隙の総体積に大きく依存する。コア材3の密度は、0.05〜1.0g/cmであることが必要である。0.05未満の場合には、十分な圧縮剛性を達成することができず、翼部材が曲げ荷重に対して座屈破壊を生じやすいといった問題がある。一方、コア材3の密度が1.0g/cmより大きい場合には、圧縮剛性は十分確保できるものの、重量が増大するため好ましくない。また、樹脂気孔体が一体構造をなしていないと、成形体である翼部材の強度が十分に得られず好ましくない。
The continuous carbon fiber layer 6 may be disposed on the outermost layer of the skin material 2 and may be disposed on the innermost layer, but is preferably disposed at least other than the outermost layer so as not to be directly subjected to external impact. It is good. Further, if high bending rigidity cannot be obtained, a sufficiently high natural frequency cannot be obtained, and the FRP matrix used for the skin material 2 may resonate with the vibration of the structure in contact with the wing member and possibly destroy the wing member. As the resin, a thermosetting resin or a thermoplastic resin can be used. Specific examples include epoxy resins, phenol resins, unsaturated polyester resins, vinyl ester resins, ABS resins, polyethylene terephthalate resins, nylon resins, cyanate resins, benzoxazine resins, maleimide resins, polyimide resins, etc. It is not particularly limited. A resin that is cured with heat or an external energy such as light or electron beam with a thermosetting resin such as an epoxy resin to form a three-dimensional cured product at least partially can be preferably used. The core material 3 needs to be made of a porous resin body in order to ensure lightness. The porous resin body has a structure in which the main component is made of resin and a large number of voids are provided inside the structure. The void may be a foamed foaming agent, or a syntactic core containing many hollow glass beads. As the resin, a thermosetting resin, a thermoplastic resin, or the like can be used.For example, as the thermosetting resin, there are an epoxy resin, a phenol resin, an unsaturated polyester resin, a vinyl ester resin, and the like. Polyamide resin, modified phenylene ether resin, polyacetal resin, polyphenylene sulfide resin, polyester resin such as liquid crystal polyester, polyethylene terephthalate, polybutylene terephthalate, polycyclohexanedimethyl terephthalate, polyarylate resin, polycarbonate resin, polystyrene resin, HIPS resin, ABS resin, AES resin, styrene resin such as AAS resin, acrylic resin such as polymethyl methacrylate resin, polyolefin resin such as vinyl chloride, polyethylene, polypropylene, etc. Olefin resins, polyurethane resins, imide resins such as polyetherimide and polymethacrylimide, ethylene / propylene copolymers, ethylene / 1-butene copolymers, ethylene / propylene / diene copolymers, ethylene / carbon monoxide / Diene copolymer, ethylene / glycidyl (meth) acrylate, ethylene / vinyl acetate / glycidyl (meth) acrylate copolymer, polyether ester elastomer, polyether ether elastomer, polyether ester amide elastomer, polyester amide elastomer, There are various elastomers such as polyester ester elastomers. These may be used alone or in combination. More specifically, the core material 3 preferably uses a resin porous body having an integrated structure with a density of 0.05 to 1.0 g / cm 3 in order to ensure lightness. Here, the integral structure means a state in which the resin porous body is not divided and the resin portion is continuous both physically (formally) and chemically (composition) over the entire core material 3. Here, the density of the resin porous body and the core material is an apparent mass per volume, and greatly depends on the total volume of voids inside the structure. The density of the core material 3 needs to be 0.05 to 1.0 g / cm 3 . If it is less than 0.05, sufficient compression rigidity cannot be achieved, and there is a problem that the wing member is liable to buckle against bending load. On the other hand, when the density of the core material 3 is larger than 1.0 g / cm 3 , the compression rigidity can be sufficiently secured, but the weight increases, which is not preferable. Further, if the resin pore body does not have an integral structure, the strength of the wing member that is a molded body cannot be sufficiently obtained, which is not preferable.

また、翼部材において、厚みが3mm以下の部位ではコア材3の密度がコア材3全体の平均密度の1.5〜10倍であることが必要である。密度1.5倍以上とすることで、翼部材の構造上、強度、剛性が不足しがちな薄肉部分にカケや亀裂が生じるのを防止できるためである。ただし、10倍より大きくしてしまうと、コア材を使用する本来の目的である軽量化効果が減少するため好ましくない。
In the wing member, the density of the core material 3 is required to be 1.5 to 10 times the average density of the entire core material 3 at a portion having a thickness of 3 mm or less. This is because by setting the density to 1.5 times or more, it is possible to prevent the occurrence of cracks and cracks in a thin portion where strength and rigidity tend to be insufficient due to the structure of the wing member. However, if it is larger than 10 times, the effect of reducing the weight, which is the original purpose of using the core material, is not preferable.

表皮材2に使用するFRPとしては、上記強化繊維に上記マトリックス樹脂を予め含浸させたプリプレグを用いるのが好ましく、単層または複数層を積層して表皮材2を構成するのがよい。   As the FRP used for the skin material 2, it is preferable to use a prepreg obtained by impregnating the reinforcing fiber with the matrix resin in advance.

複数層積層する際の強化繊維の配向はそれぞれの層で同一方向でも良いが、翼部材として各方向の強度、剛性のバランスを保持するために、異なる配向角度で積層することがより好ましい。   The orientation of the reinforcing fibers when laminating a plurality of layers may be in the same direction in each layer, but it is more preferred to laminate at different orientation angles in order to maintain a balance of strength and rigidity in each direction as a wing member.

表皮材2の厚みは、強度、剛性と軽量化のバランスを考慮して0.5〜5.0mmの範囲内であることが好ましい。表皮材2の厚みが、この範囲で有れば、軽量化効果と強度・剛性といった構造特性が両立できる範囲が広く、設計の自由度が高いために好ましい。ここで表皮材2の厚みとは、典型的には図4における7で示される層の厚みを意味するが、一般に長手方向の先端や後縁部5は翼構造自身が薄肉となるため、表皮材2のみで構成される部分もある。このような場合には図5に示すように、表皮材の厚み7が翼構造自身の厚みと同一になることもある。   The thickness of the skin material 2 is preferably in the range of 0.5 to 5.0 mm in consideration of the balance between strength, rigidity and weight reduction. If the thickness of the skin material 2 is in this range, it is preferable because the range in which the structural characteristics such as the lightening effect and the strength / rigidity can be compatible is wide and the degree of freedom in design is high. Here, the thickness of the skin material 2 typically means the thickness of the layer indicated by 7 in FIG. 4. Generally, the wing structure itself is thin at the front end and the rear edge portion 5 in the longitudinal direction. There is also a portion composed only of the material 2. In such a case, as shown in FIG. 5, the thickness 7 of the skin material may be the same as the thickness of the wing structure itself.

また、翼部材の前縁部4は流体から大きな圧力を受ける、あるいは、流体中の固体により衝撃を受けるため、特に強度、剛性が高いことが好ましい。そのため図4に示すように、表皮材2の前縁部4での最大厚みは、表皮材2全体の平均厚みの1.05〜5倍の範囲内であることが好ましい
また、翼部材の全幅W(m)と全長L(m)との比W/Lが0.05〜0.5であることが好ましい。該比が0.5を超えると長手方向の曲げ強度や剛性には余裕ができるが、流体を制御する効率が低下するからである。一般に該比が0.5以下の場合には、その形状的な面から長手方向の曲げ強度や剛性の不足が懸念されるが、本発明においては表皮材2として長手方向に引き揃えられた連続炭素繊維層4を備えていることからかかる問題はなく、流体を制御する効率が良くなる利点の方が大きいからである。軽量化のためには、W/Lは小さければ小さいほど好ましいが、上記、曲げ強度や剛性と効率とのバランスから、0.05以上であることが好ましい。
Moreover, since the front edge part 4 of a wing member receives a big pressure from a fluid, or receives an impact by the solid in a fluid, it is preferable that especially intensity | strength and rigidity are high. Therefore, as shown in FIG. 4, it is preferable that the maximum thickness at the front edge portion 4 of the skin material 2 is in a range of 1.05 to 5 times the average thickness of the entire skin material 2. The ratio W / L between W (m) and the total length L (m) is preferably 0.05 to 0.5. If the ratio exceeds 0.5, the bending strength and rigidity in the longitudinal direction can be afforded, but the efficiency of controlling the fluid is reduced. In general, when the ratio is 0.5 or less, there is a concern about insufficient bending strength and rigidity in the longitudinal direction due to its shape, but in the present invention, the skin material 2 is continuously aligned in the longitudinal direction. This is because there is no such problem because the carbon fiber layer 4 is provided, and the advantage of improving the efficiency of controlling the fluid is greater. In order to reduce the weight, W / L is preferably as small as possible, but is preferably 0.05 or more in view of the balance between bending strength, rigidity, and efficiency.

さらに表皮材2とコア材3とが一体化されていることが好ましい。コア材3は低密度の樹脂多孔質体からなるため単体での強度や剛性はほとんど期待できないものの、表皮材2とコア材3とが強固に一体化することによって、コア材3は、翼部材構造としての面外の圧縮補強材となるとともに、翼部材の断面2次モーメントを向上させ、曲げ剛性補強材として大きな役割を果たすからである。   Furthermore, it is preferable that the skin material 2 and the core material 3 are integrated. Although the core material 3 is composed of a low-density resin porous body, the strength and rigidity of the single body can hardly be expected. This is because it becomes an out-of-plane compression reinforcing material as a structure, improves the secondary moment of section of the wing member, and plays a major role as a bending rigidity reinforcing material.

また、固有振動数は材料の曲げ剛性および重量に依存し、曲げ剛性が高く、重量が小さいほど固有振動数は大きくなる傾向にある。固有振動数が小さい場合、翼部材と接する構造物の振動と共振し、あるいは制御する流体の粘性によって翼部材が自励振動を生じることによって、翼部材が疲労により強度が低下したり、破壊するといったおそれがあるため、構造物の振動数や、回転数等の使用条件に対して、高い固有振動数を有することが好ましい。具体的には自由振動での1次固有振動数が、20〜100Hzの範囲内であることが好ましい。   In addition, the natural frequency depends on the bending rigidity and weight of the material, the bending rigidity is high, and the natural frequency tends to increase as the weight decreases. When the natural frequency is small, the blade member resonates with the vibration of the structure in contact with the blade member, or the blade member generates self-excited vibration due to the viscosity of the fluid to be controlled. Therefore, it is preferable to have a high natural frequency with respect to usage conditions such as the frequency of the structure and the number of rotations. Specifically, the primary natural frequency at free vibration is preferably in the range of 20 to 100 Hz.

翼部材の製造方法としては、種々の成形法を適用することが可能であるが、中でも図6に示すように、長手方向に垂直な任意断面において、コア材3の短径の長さD(m)と、表皮材2に包含される前のコア材3の短径の長さD(m)との比D/Dが0.2〜0.95の範囲内であるように、ホットプレス、オートクレーブ、および、RTMからなる群から選ばれる成形法によって加熱加圧成形することがより好ましい。短径とは、断面において、前縁部4と後縁部5とを結ぶ外径を長径としたときに、この長径に直行する外径を意味する。表皮材に包含される前と比較して、適切な比率で短径が減少するように加熱加圧成形することによって、加圧成形時にコア材3からの成形内圧が得られるために、翼部材の良好な外観が得られやすい。またD/Dを調整することで、翼部材において、厚みが3mm以下の部位におけるコア材3の密度がコア材3全体の平均密度の1.5〜10倍に調整することが容易にできるため、翼部材の薄肉部位の強度向上の面からも好ましい。 As a method for manufacturing the wing member, various molding methods can be applied. In particular, as shown in FIG. 6, the length D 1 of the short diameter of the core material 3 in an arbitrary cross section perpendicular to the longitudinal direction. The ratio D 1 / D 2 between (m) and the length D 2 (m) of the minor axis of the core material 3 before being included in the skin material 2 is in the range of 0.2 to 0.95. Furthermore, it is more preferable to perform heat and pressure molding by a molding method selected from the group consisting of a hot press, an autoclave, and RTM. The minor axis means an outer diameter that is perpendicular to the major axis when the outer diameter connecting the front edge 4 and the rear edge 5 is a major axis in the cross section. Since the internal pressure from the core material 3 is obtained at the time of pressure molding by performing heat and pressure molding so that the minor axis is reduced at an appropriate ratio as compared with before being included in the skin material, the wing member It is easy to obtain a good appearance. Further, by adjusting D 1 / D 2 , in the wing member, it is easy to adjust the density of the core material 3 in a portion having a thickness of 3 mm or less to 1.5 to 10 times the average density of the entire core material 3. Since it can do, it is preferable also from the surface of the strength improvement of the thin part of a wing | blade member.

さらに好ましくは、コア材3は翼部材形状の型内に液状樹脂を注入後、型内で発泡、硬化させることによって得ることである。これは、あらかじめ用意したブロック等の樹脂発泡体から機械加工等で切削して所望のコア材3形状を得る場合と比較して、はるかに短時間でかつ低コストでコア材3を得ることが可能となる。また機械加工等では形成が困難な薄肉形状や3次元曲面も、本方法によれば所望の形状のキャビティを備えた型を用いることで、比較的容易に得ることができる。   More preferably, the core material 3 is obtained by injecting a liquid resin into a wing member-shaped mold and then foaming and curing in the mold. This is because the core material 3 can be obtained in a much shorter time and at a lower cost than when a desired core material 3 shape is obtained by cutting a resin foam such as a block prepared by machining or the like. It becomes possible. In addition, thin-walled shapes and three-dimensional curved surfaces that are difficult to form by machining or the like can be obtained relatively easily by using a mold having a cavity having a desired shape according to this method.

またさらに好ましくは、繊維強化プリプレグシートをコア材3の周囲に巻きまわして完全に包含することで、加熱加圧成形前の積層体を得ることである。これは、熱硬化性樹脂を含浸した強化繊維のロービングをコア材3の周囲に巻きました後に加熱加圧成形する場合や強化繊維織物をコア材3の周囲に巻きまわした後に樹脂を含浸させ加熱加圧する場合と比較して、強化繊維の配向精度が高く、かつ繊維強化プリプレグシートは事前に十分に樹脂含浸されていることから、コア材3を完全に包含することが容易である。これは成形後の翼部材の重量のバラツキを低減するためにも効果的であるとともに、一般に表皮材2に含まれるFRPの繊維重量含有率も高く設定しやすくなり、軽量かつ高強度、高剛性を達成できる。   Still more preferably, a fiber reinforced prepreg sheet is wound around the core material 3 and completely included, thereby obtaining a laminate before heating and pressing. This is because the roving of the reinforcing fiber impregnated with the thermosetting resin is wound around the core material 3 and then heated and pressed, or the reinforcing fiber fabric is wound around the core material 3 and then impregnated with the resin. Compared with the case of heating and pressing, the orientation accuracy of the reinforcing fibers is high, and the fiber-reinforced prepreg sheet is sufficiently impregnated with the resin in advance, so that it is easy to completely include the core material 3. This is effective for reducing the variation in the weight of the wing member after molding, and it is generally easy to set the fiber weight content of FRP contained in the skin material 2 to be light, high strength and high rigidity. Can be achieved.

本発明の翼部材は、風力発電用ブレードに限らず、航空機や自動車用スポイラーの水平翼、航空機、ヘリコプターや船舶のプロペラなどにも応用することができるが、その応用範囲がこれらに限られるものではない。   The wing member of the present invention can be applied not only to blades for wind power generation but also to horizontal wings of aircraft and automobile spoilers, aircraft, helicopters and ship propellers, but the application range is limited to these. is not.

本発明の一実施態様に係る翼部材を示す斜視図である。It is a perspective view which shows the wing | blade member which concerns on one embodiment of this invention. 図1のa−a断面を示す断面図である。It is sectional drawing which shows the aa cross section of FIG. 図1のb−b断面を示す断面図である。It is sectional drawing which shows the bb cross section of FIG. 本発明の一実施態様に係る翼部材の前縁部の部分拡大断面図である。It is a partial expanded sectional view of the front edge part of the wing | blade member which concerns on one embodiment of this invention. 本発明の一実施態様に係る翼部材の後縁部の部分拡大断面図である。It is a partial expanded sectional view of the rear edge part of the wing | blade member which concerns on one embodiment of this invention. 本発明の一実施態様に係る翼部材の製造法を示す断面図である。It is sectional drawing which shows the manufacturing method of the wing | blade member which concerns on one embodiment of this invention.

符号の説明Explanation of symbols

1 翼部材
2 表皮材
3 コア材
4 前縁部
5 後縁部
6 連続炭素繊維層
7 表皮材厚み
DESCRIPTION OF SYMBOLS 1 Wing member 2 Skin material 3 Core material 4 Front edge part 5 Rear edge part 6 Continuous carbon fiber layer 7 Skin material thickness

Claims (10)

次の構成要素[A]、[B]を含み、構成要素[A]は[B]を完全に包含していることを特徴とする翼部材[1]
[A]翼部材[1]の全長の90%以上の長さに亘り、長手方向に引き揃えられた連続炭素繊維層を含むFRPからなる表皮材[2]
[B]密度0.05〜1.0g/cm であるとともに、厚みが3mm以下の部位における構成要素[B]の密度が、[B]全体の平均密度の1.5〜10倍の範囲内である、一体構造の樹脂多孔質体からなるコア材[3]
A wing member [1] including the following components [A] and [B], wherein the component [A] completely includes [B ] .
[A] Skin material [2] made of FRP including continuous carbon fiber layers aligned in the longitudinal direction over 90% or more of the total length of the wing member [1 ]
[B] The density is 0.05 to 1.0 g / cm 3 , and the density of the constituent element [B] in the portion having a thickness of 3 mm or less is in the range of 1.5 to 10 times the average density of [B] as a whole. The core material [3] consisting of a porous resin body having a monolithic structure
構成要素[A]の厚みが0.5〜5.0mmの範囲内である請求項1に記載の翼部材[1]The wing member [1] according to claim 1, wherein the thickness of the constituent element [A] is in the range of 0.5 to 5.0 mm. 構成要素[A]の前縁部[4]での最大厚みが、構成要素[A]全体の平均厚みの1.05〜5倍の範囲内である請求項1または2に記載の翼部材[1]The wing member according to claim 1 or 2 , wherein the maximum thickness at the leading edge [4] of the component [A] is within a range of 1.05 to 5 times the average thickness of the entire component [A] . 1] . 全幅W(m)と全長L(m)との比W/Lが0.05〜0.5である請求項1〜のいずれかに記載の翼部材[1]The wing member [1] according to any one of claims 1 to 3 , wherein a ratio W / L of the total width W (m) to the total length L (m) is 0.05 to 0.5. 構成要素[A]と構成要素[B]とが一体化されている請求項1〜のいずれかに記載の翼部材[1]The wing member [1] according to any one of claims 1 to 4 , wherein the component [A] and the component [B] are integrated. 自由振動での1次固有振動数が、20〜100Hzの範囲内である請求項1〜のいずれかに記載の翼部材[1]The wing member [1] according to any one of claims 1 to 5 , wherein a primary natural frequency in free vibration is in a range of 20 to 100 Hz. 風力発電用ブレードである請求項1〜のいずれかに記載の翼部材[1]The blade member [1] according to any one of claims 1 to 6 , wherein the blade member is a blade for wind power generation. 次の構成要素[A]、[B]を含む翼部材[1]の製造方法であって、翼部材[1]の長手方向に垂直な任意断面において、構成要素[B]の短径の長さD(m)と、構成要素[A]に包含される前の構成要素[B]の短径の長さD(m)との比D/Dが0.2〜0.95の範囲内であるように、ホットプレス、オートクレーブ、および、RTMからなる群から選ばれる成形法によって加熱加圧成形することを特徴とする翼部材[1]の製造方法。
[A]翼部材[1]の全長の90%以上の長さに亘り、長手方向に引き揃えられた連続炭素繊維層を含むFRPからなる表皮材[2]
[B]密度0.05〜1.0g/cm であるとともに、厚みが3mm以下の部位における構成要素[B]の密度が、[B]全体の平均密度の1.5〜10倍の範囲内である、一体構造の樹脂多孔質体からなるコア材[3]
A method for manufacturing a wing member [1] including the following constituent elements [A] and [B], wherein the length of the minor axis of the constituent element [B] is an arbitrary cross section perpendicular to the longitudinal direction of the wing member [1]. It is D 1 and (m), component ratio D 1 / D 2 of the length of the minor component [B] before being included in [a] D 2 (m) is from 0.2 to 0. 95. A method for producing a wing member [1] , wherein the pressure and pressure molding is performed by a molding method selected from the group consisting of hot press, autoclave, and RTM so as to be within a range of 95.
[A] Skin material [2] made of FRP including continuous carbon fiber layers aligned in the longitudinal direction over 90% or more of the total length of the wing member [1 ]
[B] The density is 0.05 to 1.0 g / cm 3 , and the density of the constituent element [B] in the portion having a thickness of 3 mm or less is in the range of 1.5 to 10 times the average density of [B] as a whole. The core material [3] consisting of a porous resin body having a monolithic structure
翼部材[1]形状の型内に液状樹脂を注入後、型内で発泡、硬化させることによって構成要素[B]を得る請求項に記載の翼部材[1]の製造方法。 The method for producing a wing member [1] according to claim 8 , wherein the constituent element [B] is obtained by injecting a liquid resin into the wing member [1] -shaped mold and then foaming and curing in the mold. 繊維強化プリプレグシートを構成要素[B]の周囲に巻きまわして完全に包含することで、加熱加圧成形前の積層体を得る請求項またはに記載の翼部材[1]の製造方法。 The method for producing a wing member [1] according to claim 8 or 9 , wherein the fiber reinforced prepreg sheet is completely wrapped around the component [B] to obtain a laminated body before heating and pressing.
JP2004353819A 2004-12-07 2004-12-07 Wing member Expired - Fee Related JP4561344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353819A JP4561344B2 (en) 2004-12-07 2004-12-07 Wing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353819A JP4561344B2 (en) 2004-12-07 2004-12-07 Wing member

Publications (2)

Publication Number Publication Date
JP2006161669A JP2006161669A (en) 2006-06-22
JP4561344B2 true JP4561344B2 (en) 2010-10-13

Family

ID=36663963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353819A Expired - Fee Related JP4561344B2 (en) 2004-12-07 2004-12-07 Wing member

Country Status (1)

Country Link
JP (1) JP4561344B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149391A1 (en) * 2022-02-03 2023-08-10 東レ株式会社 Rotary wing

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4676228B2 (en) * 2005-03-30 2011-04-27 ゼファー株式会社 Windmill wing
JP5228518B2 (en) * 2007-02-22 2013-07-03 東レ株式会社 Wind turbine blade, molding die thereof and manufacturing method thereof
JP2009275536A (en) * 2008-05-13 2009-11-26 Global Energy Co Ltd Blade of windmill and windmill
US7942637B2 (en) 2008-12-11 2011-05-17 General Electric Company Sparcap for wind turbine rotor blade and method of fabricating wind turbine rotor blade
JP2011163349A (en) * 2011-04-13 2011-08-25 Bellsion:Kk Blade for horizontal shaft windmill
CN106795864B (en) * 2015-09-03 2019-03-01 积水化成品工业株式会社 Windmill blade
JP2017129091A (en) * 2016-01-22 2017-07-27 株式会社日立製作所 Wind power generation device or manufacturing method of blade
CN110206694A (en) * 2019-06-20 2019-09-06 天津爱思普信息技术有限公司 A kind of conductive strips production method of wind generator set blade anti-icing and deicing system
CN111188740A (en) * 2019-11-30 2020-05-22 惠阳航空螺旋桨有限责任公司 Composite material blade with high-strength blade root and manufacturing method thereof
CN112160865A (en) * 2020-11-11 2021-01-01 杨志林 Wind power generation blade

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5054436U (en) * 1973-09-21 1975-05-23
JPS63186976U (en) * 1987-05-22 1988-11-30
JPH01145985U (en) * 1988-03-31 1989-10-06
JPH04103262U (en) * 1991-01-24 1992-09-07 三菱重工業株式会社 Fiber-reinforced plastic blades for wind turbines
JPH04127869U (en) * 1991-05-16 1992-11-20 三菱重工業株式会社 windmill blade
JPH0666244A (en) * 1992-08-21 1994-03-08 Mitsubishi Heavy Ind Ltd Windmill vane
JPH0674142A (en) * 1992-08-26 1994-03-15 Mitsubishi Heavy Ind Ltd Main beam of frp vane for wind mill and manufacture thereof
US6145787A (en) * 1997-05-20 2000-11-14 Thermion Systems International Device and method for heating and deicing wind energy turbine blades
JP2002371139A (en) * 2001-06-14 2002-12-26 Yuichi Sugiyama Reinforcing fiber composition for frp, and frp molded article produced by using the same
US20030141721A1 (en) * 2002-01-30 2003-07-31 Bartlett Lexington P. Wind power system
JP2004316466A (en) * 2003-04-11 2004-11-11 Sekisui Chem Co Ltd Blade for wind power generation

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5054436U (en) * 1973-09-21 1975-05-23
JPS63186976U (en) * 1987-05-22 1988-11-30
JPH01145985U (en) * 1988-03-31 1989-10-06
JPH04103262U (en) * 1991-01-24 1992-09-07 三菱重工業株式会社 Fiber-reinforced plastic blades for wind turbines
JPH04127869U (en) * 1991-05-16 1992-11-20 三菱重工業株式会社 windmill blade
JPH0666244A (en) * 1992-08-21 1994-03-08 Mitsubishi Heavy Ind Ltd Windmill vane
JPH0674142A (en) * 1992-08-26 1994-03-15 Mitsubishi Heavy Ind Ltd Main beam of frp vane for wind mill and manufacture thereof
US6145787A (en) * 1997-05-20 2000-11-14 Thermion Systems International Device and method for heating and deicing wind energy turbine blades
JP2002371139A (en) * 2001-06-14 2002-12-26 Yuichi Sugiyama Reinforcing fiber composition for frp, and frp molded article produced by using the same
US20030141721A1 (en) * 2002-01-30 2003-07-31 Bartlett Lexington P. Wind power system
JP2004316466A (en) * 2003-04-11 2004-11-11 Sekisui Chem Co Ltd Blade for wind power generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149391A1 (en) * 2022-02-03 2023-08-10 東レ株式会社 Rotary wing

Also Published As

Publication number Publication date
JP2006161669A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
KR101988387B1 (en) A rotary wing aircraft with a fuselage that comprises at least one structural stiffened panel
EP2121264B1 (en) Helicopter blade mandrel, method for making the mandrel and method for molding a helicopter rotor blade
US7531058B2 (en) Reinforced rampdown for composite structural member and method for same
JP4607583B2 (en) One piece co-cured composite wing
JP4561344B2 (en) Wing member
US4964825A (en) Composite aquatic board and manufacturing method
US20110244213A1 (en) Core for composite laminated article and manufacture thereof
US20120196079A1 (en) Composite body
US3000446A (en) Helicopter rotor blades
JP2007270839A (en) Turbine blade for mechanically holding nonmetallic filler in cavity part
WO1997025198A1 (en) Composite honeycomb sandwich structure
JPH09300497A (en) Large-sized columnar body made of fiber-reinforced plastic
US10407159B2 (en) Reinforced blade and spar
JP2007170328A (en) Windmill blade for wind power generation and its manufacturing method
JP5228518B2 (en) Wind turbine blade, molding die thereof and manufacturing method thereof
JP6126761B1 (en) Fiber reinforced sheet and structure
WO2005049933A1 (en) Sandwich panel and a method of producing a sandwich panel
US20210316526A1 (en) Fiber-reinforced composite blank, fiber-reinforced composite component, rotor blade element, rotor blade and wind turbine and method for producing a fiber-reinforced composite blank and method for producing a fiber-reinforced composite component
KR20160084684A (en) Composite material panel for ship and menufacturing method thereof
JP2009074421A (en) Blade material for axial flow type windmill
CN208438808U (en) Composite material and its core material
JP2007263098A (en) Windmill blade
KR102638697B1 (en) Fiber reinforced plastic propellers for unmanned aerial vehicle and manufacturing method thereof
JP2018168789A (en) Windmill blade
JP6178746B2 (en) Windmill blade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees