JP4676228B2 - Windmill wing - Google Patents
Windmill wing Download PDFInfo
- Publication number
- JP4676228B2 JP4676228B2 JP2005098140A JP2005098140A JP4676228B2 JP 4676228 B2 JP4676228 B2 JP 4676228B2 JP 2005098140 A JP2005098140 A JP 2005098140A JP 2005098140 A JP2005098140 A JP 2005098140A JP 4676228 B2 JP4676228 B2 JP 4676228B2
- Authority
- JP
- Japan
- Prior art keywords
- blade
- skin material
- wind turbine
- thickness
- entire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 claims description 51
- 238000005452 bending Methods 0.000 claims description 12
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 11
- 239000004917 carbon fiber Substances 0.000 claims description 11
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims description 9
- 239000011151 fibre-reinforced plastic Substances 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 3
- 235000020289 caffè mocha Nutrition 0.000 claims 1
- 239000011162 core material Substances 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 239000012779 reinforcing material Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 239000012783 reinforcing fiber Substances 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 4
- 239000004620 low density foam Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 239000006261 foam material Substances 0.000 description 3
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Wind Motors (AREA)
Description
本発明は、風力発電用等に用いられる風車の翼に関し、とくに炭素繊維を含む繊維強化プラスチック(以下、単にCFRPと呼ぶこともある。)からなる表皮材を用いて構成された風車翼に関する。 The present invention relates to a wind turbine blade used for wind power generation and the like, and more particularly, to a wind turbine blade configured using a skin material made of a fiber reinforced plastic containing carbon fiber (hereinafter also simply referred to as CFRP).
風力により回転される風車の回転エネルギーを電気エネルギーに変換する風力発電技術は、クリーンな発電方法として、近年脚光を浴びている。また、風車翼を軽量化するために、翼の一部または全体を、繊維強化プラスチック(以下、単にFRPと呼ぶこともある。)で構成することも行われつつある。 In recent years, wind power generation technology that converts the rotational energy of a windmill rotated by wind power into electric energy has attracted attention as a clean power generation method. In addition, in order to reduce the weight of the wind turbine blade, a part or the whole of the blade is being made of fiber reinforced plastic (hereinafter also simply referred to as FRP).
しかしながら、このような風車においては、ローター径の大型化や高速化に伴い、風車翼の騒音、例えば、フラッタリング、カルマン渦による気流騒音や、翼振動騒音などが問題となっている。 However, in such a windmill, with increasing rotor diameter and speed, windmill blade noise, for example, fluttering, airflow noise due to Karman vortices, blade vibration noise, and the like becomes a problem.
例えば、翼先端部がねじれやすく、曲げ剛性が小さいと、翼がフラッタ現象を引き起こし易く、騒音を発生する原因となる。このような問題に対し、特許文献1には、翼先端部を、高弾性率、高比重の金属材料でコの字形に補強し、軽量高強度のテンションロッドでハブ側の翼取付部材に連結した風車翼が開示されているが、翼先端部に高比重の補強材を設けることにより、翼全体の重量増加を招き、それによって発電効率が低下するという問題がある。また、補強材の接合の信頼性等の問題が残り、接合強度不足が生じると、翼が破損するおそれがある。 For example, if the tip of the blade is easily twisted and the bending rigidity is small, the blade is likely to cause a flutter phenomenon and cause noise. In order to solve such problems, Patent Document 1 discloses that a blade tip portion is reinforced with a metal material having a high elastic modulus and high specific gravity, and is connected to a blade-side blade mounting member with a light and high-strength tension rod. However, there is a problem in that providing a high specific gravity reinforcing material at the tip of the blade causes an increase in the weight of the entire blade, thereby reducing the power generation efficiency. Further, problems such as the reliability of joining of the reinforcing material remain, and if the joining strength is insufficient, the blade may be damaged.
また、翼の強度や剛性を確保するために、翼あるいはその構成部材の厚みを大きくすることが考えられるが、とくに翼の縁部の厚みが大きいと、翼後縁の後方にカルマン渦を生じ易く、騒音問題につながる。このような問題に対し、特許文献2には、翼後縁部に、その長手方向に沿って、翼本体部とは異種の材料からなる別体の補強材を設けた風車翼が開示されているが、このような補強材を設けると、やはり翼の重量増加の問題を生じるとともに、補強材の接合の信頼性等の問題が残り、接合強度不足が生じると、翼が破損するおそれがある。
そこで本発明の課題は、上記のような問題点に着目し、異種材料からなる補強材による補強に頼ることなく、翼の軽量化を達成しつつ、翼の振動による騒音を抑制し、かつ、カルマン渦発生に伴う騒音も抑制可能な風車翼を提供することにある。 Therefore, the problem of the present invention is to focus on the above-mentioned problems, suppress the noise due to the vibration of the wing while achieving weight reduction of the wing without depending on the reinforcement by the reinforcing material made of different materials, and An object of the present invention is to provide a wind turbine blade capable of suppressing noise caused by Karman vortex generation.
上記課題を解決するために、本発明に係る風車翼は、少なくとも炭素繊維を含む繊維強化プラスチックからなる表皮材と、該表皮材で囲まれる該表皮材よりもかさ密度の小さい気体および/または固体で構成され、翼先端から回転中心方向に翼全長の3〜30%の長さに亘り、次の構成要素〔A〕と条件〔B〕を同時に満足することを特徴とするものからなる。
〔A〕翼長手方向の曲げ弾性率E0(N/mm2)と厚みD(mm)との積E0×Dが25,000〜600,000N/mmである表皮材
〔B〕表皮材を含めた翼全体の厚みT(mm)と幅W(mm)との比T/Wが0.05〜0.15の範囲内にあること
In order to solve the above problems, a wind turbine blade according to the present invention includes a skin material made of fiber-reinforced plastic containing at least carbon fiber, and a gas and / or solid having a lower bulk density than the skin material surrounded by the skin material. The following constituent element [A] and condition [B] are satisfied simultaneously over the length of 3 to 30% of the entire length of the blade from the blade tip to the rotation center direction.
[A] Skin material whose product E 0 × D of flexural modulus E 0 (N / mm 2 ) and thickness D (mm) in the blade longitudinal direction is 25,000 to 600,000 N / mm [B] Skin material The ratio T / W of the thickness T (mm) and the width W (mm) of the entire blade including the blade is in the range of 0.05 to 0.15.
ここで、少なくとも炭素繊維を含む繊維強化プラスチック(FRP)とは、強化繊維の全部が炭素繊維からなる場合と、炭素繊維と他の強化繊維とからなる場合の両方を含む概念である。他の強化繊維としては、例えば、ガラス繊維等の無機繊維や、ケブラー繊維、ポリエチレン繊維、ポリアミド繊維などの有機繊維からなる強化繊維が挙げられる。翼の強度や剛性の制御の容易性の面からは、とくに炭素繊維が好ましい。また、FRPのマトリックス樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂等の熱硬化性樹脂が挙げられ、さらには、ポリアミド樹脂、ポリオレフィン樹脂、ジシクロペンタジエン樹脂、ポリウレタン樹脂等の熱可塑性樹脂も使用可能である。 Here, the fiber reinforced plastic (FRP) including at least carbon fiber is a concept including both the case where the entire reinforcing fiber is made of carbon fiber and the case where the fiber is made of carbon fiber and another reinforcing fiber. Examples of other reinforcing fibers include inorganic fibers such as glass fibers, and reinforcing fibers made of organic fibers such as Kevlar fibers, polyethylene fibers, and polyamide fibers. Carbon fiber is particularly preferable from the viewpoint of controllability of the blade strength and rigidity. Examples of the FRP matrix resin include thermosetting resins such as epoxy resins, unsaturated polyester resins, vinyl ester resins, phenol resins, and further, polyamide resins, polyolefin resins, dicyclopentadiene resins, polyurethanes. A thermoplastic resin such as a resin can also be used.
また、表皮材で囲まれる部分が、該表皮材よりもかさ密度の小さい気体および/または固体で構成されるとは、表皮材で囲まれる内部部分が、中空構造に構成されてもよく、低密度のコア材を内包した構造に構成されてもよいと言う概念である。コア材としては、弾性体や発泡材、ハニカム材の使用が可能であり、軽量化のためにはとくに発泡材が好ましい。発泡材の材質としては特に限定されず、たとえば、ポリウレタンやアクリル、ポリスチレン、ポリイミド、塩化ビニル、フェノールなどの高分子材料の低密度フォーム材などを使用できる。ハニカム材としては特に限定されず、たとえばアルミニウム合金、紙、アラミドペーパー等を使用することができる。 Further, the portion surrounded by the skin material is composed of a gas and / or solid having a lower bulk density than the skin material. The internal portion surrounded by the skin material may be configured in a hollow structure, It is a concept that it may be configured in a structure including a core material having a high density. As the core material, an elastic body, a foam material, and a honeycomb material can be used, and a foam material is particularly preferable for reducing the weight. The material of the foam material is not particularly limited, and for example, a low-density foam material made of a polymer material such as polyurethane, acrylic, polystyrene, polyimide, vinyl chloride, or phenol can be used. The honeycomb material is not particularly limited, and for example, aluminum alloy, paper, aramid paper or the like can be used.
上記〔A〕のように、翼長手方向の曲げ弾性率E0(N/mm2)と厚みD(mm)との積E0×Dを25,000〜600,000N/mmとすることにより、軽量性を維持しつつ、翼長手方向に十分に高い曲げ剛性を達成でき、翼の振動を抑えてそれに起因する騒音を抑制することができる。また、上記〔B〕のように、厚みT(mm)と幅W(mm)との比T/Wを0.05〜0.15の範囲内とすることにより、軽量性、曲げ剛性を高く保ちつつ、薄い翼とすることでカルマン渦の発生を効果的に抑制することができ、とくにカルマン渦に起因する騒音を抑制することができる。T/Wが0.05よりも小さいと長手方向の曲げ剛性が小さくなりすぎ、0.15よりも大きいとカルマン渦の抑制効果が小さくなる。そして、このような〔A〕、〔B〕の構成、条件を満足させる領域は、翼先端から回転中心方向に翼全長の3〜30%の長さに亘る領域で十分であり、それによって目標とする騒音抑制効果が得られる。このような構成、条件を他の領域に亘ってまで満足するように構成すると、翼全体の軽量性が損なわれるおそれがある。 By setting the product E 0 × D of the flexural modulus E 0 (N / mm 2 ) and thickness D (mm) in the blade longitudinal direction to 25,000 to 600,000 N / mm as in [A] above. In addition, while maintaining the light weight, it is possible to achieve a sufficiently high bending rigidity in the longitudinal direction of the blade, and it is possible to suppress the vibration of the blade and suppress the noise caused thereby. In addition, as described in [B] above, when the ratio T / W of the thickness T (mm) to the width W (mm) is in the range of 0.05 to 0.15, the lightness and bending rigidity are increased. The generation of Karman vortices can be effectively suppressed by using thin wings while maintaining noise, and in particular, noise caused by Karman vortices can be suppressed. When T / W is smaller than 0.05, the bending rigidity in the longitudinal direction becomes too small, and when it is larger than 0.15, the effect of suppressing Karman vortices becomes small. The area satisfying the configuration and conditions of [A] and [B] is sufficient in the area extending from 3 to 30% of the entire length of the blade in the direction of the rotation center from the blade tip. The noise suppression effect is obtained. If such a configuration and conditions are satisfied even over other regions, the lightness of the entire blade may be impaired.
このような本発明に係る風車翼においては、上記表皮材〔A〕が表皮材全体の平均厚みの1.1〜3.0倍の厚みをもつ箇所を備えている構成とすることができる。つまり、翼先端から回転中心方向に翼全長の3〜30%の長さに亘る領域の少なくとも一部において、表皮材の厚みを厚くする構成である。 In such a wind turbine blade according to the present invention, the skin material [A] may have a location having a thickness of 1.1 to 3.0 times the average thickness of the entire skin material. That is, the thickness of the skin material is increased in at least a part of a region extending from the blade tip to the rotation center direction in a length of 3 to 30% of the entire blade length.
また、上記表皮材〔A〕が、該表皮材〔A〕以外の部分の表皮材の1.1〜3.0倍の弾性率をもつ箇所を備えている構成とすることもできる。つまり、翼先端から回転中心方向に翼全長の3〜30%の長さに亘る領域の少なくとも一部において、表皮材の弾性率を大きくする構成である。 Moreover, the said skin material [A] can also be set as the structure provided with the location which has 1.1-3.0 times the elasticity modulus of the skin material of parts other than this skin material [A]. That is, the elastic modulus of the skin material is increased in at least a part of a region extending from the blade tip to the rotation center direction in a length of 3 to 30% of the entire blade length.
また、上記表皮材〔A〕において、翼長手方向に対し翼回転面上で±45°の方向の曲げ弾性率E45(N/mm2)と厚みD(mm)との積E45×Dが25,000〜600,000N/mmである構成とすることもできる。このような構成では、この領域でのねじれ方向剛性を上げることができ、それによって翼のフラッタリングを効果的に抑制でき、フラッタリングに起因する騒音を抑制することができる。 In the skin material [A], the product E 45 × D of the flexural modulus E 45 (N / mm 2 ) and thickness D (mm) in the direction of ± 45 ° on the blade rotation surface with respect to the blade longitudinal direction. Can be configured to be 25,000 to 600,000 N / mm. In such a configuration, the torsional rigidity in this region can be increased, and thereby fluttering of the blades can be effectively suppressed, and noise caused by fluttering can be suppressed.
また、上記表皮材〔A〕において、翼長手方向の曲げ弾性率E0(N/mm2)と翼長手方向に対し翼回転面上で±45°の方向の曲げ弾性率E45(N/mm2)との比E0/E45が0.2〜5.0の範囲内にある構成とすることが好ましい。すなわち、長手方向の曲げ弾性率と±45°の方向の曲げ弾性率(ねじり方向の弾性率)とを適度にバランスさせ、翼長手方向の曲げによる振動と、ねじり方向の振動とを、ともに効率よく低減できるようにした構成であり、これら振動に起因する騒音を全体として低く抑制しようとする構成である。 Further, in the skin material [A], the bending elastic modulus E 0 (N / mm 2 ) in the blade longitudinal direction and the bending elastic modulus E 45 (N / in the direction of ± 45 ° on the blade rotation surface with respect to the blade longitudinal direction). It is preferable that the ratio E 0 / E 45 to mm 2 ) be in the range of 0.2 to 5.0 . In other words, the bending elastic modulus in the longitudinal direction and the bending elastic modulus in the direction of ± 45 ° (elastic modulus in the torsional direction) are appropriately balanced, and both the vibration caused by bending in the blade longitudinal direction and the vibration in the torsional direction are efficient. It is a configuration that can be reduced well, and is a configuration that attempts to suppress noise caused by these vibrations as a whole.
また、翼全体の平均密度ρとしては、0.15〜1.5(g/cm3)の範囲内にあることが好ましい。平均密度ρが0.15g/cm3よりも低いと、翼全体の強度を確保することが難しくなり、1.5g/cm3よりも高いと、翼全体の軽量性が損なわれるおそれがある。 The average density ρ of the entire blade is preferably in the range of 0.15 to 1.5 (g / cm 3 ). When the average density ρ is lower than 0.15 g / cm 3, it is difficult to ensure the strength of the entire blade, and when it is higher than 1.5 g / cm 3 , the lightness of the entire blade may be impaired.
本発明に係る風車翼が適用される風車のタイプはとくに限定しないが、本発明は、風車軸が水平方向に延びる水平軸型風車にとくに好適なものである。 The type of wind turbine to which the wind turbine blade according to the present invention is applied is not particularly limited, but the present invention is particularly suitable for a horizontal axis type wind turbine in which the wind turbine shaft extends in the horizontal direction.
このように、本発明によれば、異種材料からなる補強材による補強に頼ることなく、軽量かつ高強度、高剛性で、振動やカルマン渦に起因する騒音を効率よく抑制できる風車翼を提供できる。 Thus, according to the present invention, it is possible to provide a wind turbine blade that can efficiently suppress noise caused by vibrations and Karman vortices without being dependent on reinforcement by a reinforcing material made of a different material, with light weight, high strength, and high rigidity. .
以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。
図1〜図3は、本発明の一実施態様に係る風車翼を示しており、水平軸型の風車の翼に本発明を適用した場合を示している。図1において、1は1枚の風車翼全体を示しており、風車翼1は、実質的にその表裏全面に亘って表皮材2で覆われている。本実施態様では、表皮材2は、炭素繊維強化プラスチック(強化繊維が炭素繊維、マトリックス樹脂がエポキシ樹脂)からなり、その内部には前述したような低密度発泡体からなるコア材(本実施態様ではウレタン発泡体からなるコア材)が内包されている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
1 to 3 show a wind turbine blade according to an embodiment of the present invention, and show a case where the present invention is applied to a blade of a horizontal axis type wind turbine. In FIG. 1, reference numeral 1 denotes an entire wind turbine blade, and the wind turbine blade 1 is covered with a
図1の風車翼1におけるC−C断面は図2に示すように構成されており、D−D断面は図3に示すように構成されている。図2に示すように、表皮材2で囲まれた内部には、低密度発泡体からなるコア材3が内包されている。この風車翼1の翼先端4から回転中心方向に(つまり、翼根元部に向かう方向に)、翼全長の3〜30%の長さに亘る領域部分5では、表皮材2が、翼長手方向の曲げ弾性率E0(N/mm2)と厚みD(mm)との積E0×Dが25,000〜600,000N/mmの範囲内にある構成と、翼1の厚みT(mm)と幅W(mm)との比T/Wが0.05〜0.15の範囲内にある条件とが、ともに満足されるように構成されている。とくに本実施態様では、上記翼全長の3〜30%の長さに亘る領域部分5で、表皮材2の厚みが増加されており、表皮材2全体の平均厚みの1.1〜3.0倍の範囲内の厚みに設定されている。
The cross section CC in the windmill blade 1 of FIG. 1 is comprised as shown in FIG. 2, and DD cross section is comprised as shown in FIG. As shown in FIG. 2, a
このような構成、条件を満足しつつ、図1の風車翼1におけるD−D断面(翼横断面)は図3に示すように構成されている。図3に示すように、風車翼1はその横断面全体が表皮材2で覆われており、表皮材2で囲まれた内部には、低密度発泡体からなるコア材3が内包されている。6は翼1の回転方向における前縁部、7は後縁部を、それぞれ示している。
While satisfying such a configuration and conditions, a DD section (blade transverse section) in the wind turbine blade 1 of FIG. 1 is configured as shown in FIG. As shown in FIG. 3, the entire wind turbine blade 1 is covered with a
上記のように構成された本発明に係る風車翼について、実施例に基づいて、比較例と比較しながら説明する。 The wind turbine blade according to the present invention configured as described above will be described based on an example while comparing with a comparative example.
実施例1
表皮材に炭素繊維強化エポキシ樹脂を用い、コア材にウレタン発泡体を使用した。翼の全長は1,000mm、全幅は250mm、表皮材全体の平均厚みは0.75mmとした。翼先端から回転中心方向に翼全長の3〜30%の部分における、翼厚みは2〜6mmの範囲で変化し、表皮材の厚みDは0.95mmで実質的に一定厚みとし、弾性率E0 を75,000N/mm2 、弾性率E45を50,000N/mm2 と高く設定し、E0 ×Dを71,250N/mmとした。また、翼の厚みT(mm)と幅W(mm)との比T/Wは0.1〜0.13とし、E45×Dを47,500N/mm、E0 /E45を1.5とした。翼先端から回転中心方向に翼全長の30%以上の部分においては、E0 に相当する弾性率は55,000〜60,000N/mm2 の範囲にあった。翼全体の平均密度ρは0.3g/cm3 であった。
Example 1
Carbon fiber reinforced epoxy resin was used for the skin material, and urethane foam was used for the core material. The total length of the wings was 1,000 mm, the total width was 250 mm, and the average thickness of the entire skin material was 0.75 mm. The blade thickness in the range of 3 to 30% of the blade total length from the blade tip to the center of rotation varies in the range of 2 to 6 mm, the thickness D of the skin material is 0.95 mm, a substantially constant thickness, and the elastic modulus E 0 was set as high as 75,000 N / mm 2 , and the elastic modulus E 45 was set as high as 50,000 N / mm 2, and E 0 × D was set as 71,250 N / mm. The ratio T / W of the blade thickness T (mm) to the width W (mm) is 0.1 to 0.13, E 45 × D is 47,500 N / mm, and E 0 / E 45 is 1. It was set to 5. The elastic modulus corresponding to E 0 was in the range of 55,000 to 60,000 N / mm 2 in the portion of 30% or more of the blade total length from the blade tip to the rotation center direction. The average density ρ of the entire blade was 0.3 g / cm 3 .
この風車翼を水平軸型風車に3枚取り付けて騒音を測定したところ、20〜40dBの音圧レベルであり、十分に低く抑えられていた。また、フラッタリングもほとんど無く、それに起因する騒音は発生せず、フラッタリングによる強度上の不安も十分に除去されたと考えられる。結果をまとめて表1に示した。 When three wind turbine blades were attached to a horizontal axis type wind turbine and the noise was measured, the sound pressure level was 20 to 40 dB, which was sufficiently low. In addition, there is almost no fluttering, noise caused by the fluttering is not generated, and it is considered that the strength instability due to fluttering is sufficiently removed. The results are summarized in Table 1.
比較例1、2
比較例1では表皮材としてガラス繊維強化エポキシ樹脂を用い、コア材には実施例1と同じウレタン発泡体を使用した。比較例2では、コア材を使用することなく、翼全体を炭素繊維強化ナイロン樹脂で構成した。翼の各特性、および、実施例1と同様の試験を行った場合の音圧レベルの測定結果、フラッタリングの観測結果を表1に併せて示した。
Comparative Examples 1 and 2
In Comparative Example 1, glass fiber reinforced epoxy resin was used as the skin material, and the same urethane foam as in Example 1 was used as the core material. In Comparative Example 2, the entire blade was composed of carbon fiber reinforced nylon resin without using a core material. Table 1 also shows the characteristics of the blades, the measurement results of the sound pressure level when the same test as in Example 1 was performed, and the observation results of fluttering.
表1に示した結果から明らかなように、実施例1に係る風車翼では、比較例1、2の風車翼に比べ、騒音、フラッタリングともに大幅に改善された。 As is clear from the results shown in Table 1, in the wind turbine blades according to Example 1, both noise and fluttering were significantly improved as compared with the wind turbine blades of Comparative Examples 1 and 2.
本発明は、炭素繊維を含む繊維強化プラスチックからなる表皮材で形成されるあらゆる風車翼に適用可能であり、とくに、水平軸型の風車の翼に好適なものである。 The present invention can be applied to any wind turbine blade formed of a skin material made of fiber reinforced plastic including carbon fiber, and is particularly suitable for a horizontal axis wind turbine blade.
1 風車翼
2 表皮材
3 コア材
4 翼先端
5 翼先端から回転中心方向に翼全長の3〜30%の長さに亘る領域部分
6 前縁部
7 後縁部
DESCRIPTION OF SYMBOLS 1
Claims (7)
〔A〕翼長手方向の曲げ弾性率E0(N/mm2)と厚みD(mm)との積E0×Dが25,000〜600,000N/mmである表皮材(2)
〔B〕表皮材(2)を含めた翼全体の厚みT(mm)と幅W(mm)との比T/Wが0.05〜0.15の範囲内にあること At least the skin material made of a fiber-reinforced plastic comprising carbon fibers (2) is constituted by said surface skin material said surface skin material surrounded by (2) a small Mocha bulk density than (2) gas and / or solids (3), A wind turbine blade (1) characterized by simultaneously satisfying the following component [A] and condition [B] over a length of 3 to 30% of the total blade length from the blade tip (4) to the rotation center direction.
[A] Skin material (2) in which the product E 0 × D of the flexural modulus E 0 (N / mm 2 ) and thickness D (mm) in the blade longitudinal direction is 25,000 to 600,000 N / mm
[B] The ratio T / W between the thickness T (mm) and the width W (mm) of the entire blade including the skin material (2) is in the range of 0.05 to 0.15.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005098140A JP4676228B2 (en) | 2005-03-30 | 2005-03-30 | Windmill wing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005098140A JP4676228B2 (en) | 2005-03-30 | 2005-03-30 | Windmill wing |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006274990A JP2006274990A (en) | 2006-10-12 |
JP4676228B2 true JP4676228B2 (en) | 2011-04-27 |
Family
ID=37209984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005098140A Active JP4676228B2 (en) | 2005-03-30 | 2005-03-30 | Windmill wing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4676228B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106457719A (en) * | 2014-01-31 | 2017-02-22 | Lm Wp 专利控股有限公司 | Wind turbine blade with improved fibre transition |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100843448B1 (en) | 2007-03-20 | 2008-07-03 | 현대중공업 주식회사 | Vibration-Attenuated Airfoil Wings |
TWI412662B (en) * | 2010-08-05 | 2013-10-21 | Tai Yan Kam | Rotating the blade and forming the rotating blade |
FR2972503B1 (en) * | 2011-03-11 | 2013-04-12 | Epsilon Composite | MECHANICAL REINFORCEMENT FOR A COMPOSITE MATERIAL PART, IN PARTICULAR FOR A LARGE-SIZED WINDBREAD BLADE |
CN105626372B (en) * | 2016-02-02 | 2017-12-15 | 南安普敦咨询服务有限公司 | A kind of wind power generating set |
US20240400780A1 (en) * | 2023-06-04 | 2024-12-05 | Honeywell International Inc. | Foamable thermoplastic compositions, thermoplastic foams and methods of making same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63140179U (en) * | 1987-03-06 | 1988-09-14 | ||
JPH06323238A (en) * | 1993-05-11 | 1994-11-22 | Mitsubishi Heavy Ind Ltd | Windmill blade |
JP2005171916A (en) * | 2003-12-12 | 2005-06-30 | Kansai Electric Power Co Inc:The | Windmill blade |
JP2006161669A (en) * | 2004-12-07 | 2006-06-22 | Toray Ind Inc | Blade member |
-
2005
- 2005-03-30 JP JP2005098140A patent/JP4676228B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63140179U (en) * | 1987-03-06 | 1988-09-14 | ||
JPH06323238A (en) * | 1993-05-11 | 1994-11-22 | Mitsubishi Heavy Ind Ltd | Windmill blade |
JP2005171916A (en) * | 2003-12-12 | 2005-06-30 | Kansai Electric Power Co Inc:The | Windmill blade |
JP2006161669A (en) * | 2004-12-07 | 2006-06-22 | Toray Ind Inc | Blade member |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106457719A (en) * | 2014-01-31 | 2017-02-22 | Lm Wp 专利控股有限公司 | Wind turbine blade with improved fibre transition |
CN106457719B (en) * | 2014-01-31 | 2021-09-07 | Lm Wp 专利控股有限公司 | Wind turbine blade with improved fiber transition |
Also Published As
Publication number | Publication date |
---|---|
JP2006274990A (en) | 2006-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2806156B1 (en) | Airfoil trailing edge apparatus for noise reduction | |
US9970412B2 (en) | Wind turbine blade | |
US7988416B2 (en) | Wind turbine blade with damping element | |
US20100296940A1 (en) | Shell structure of wind turbine blade having regions of low shear modulus | |
WO2012008452A1 (en) | Fan rotor blade and fan | |
US20080075601A1 (en) | Composite turbomachine blade with metal reinforcement | |
JP6083112B2 (en) | Aircraft jet engine fan blades | |
US20140072441A1 (en) | Load and noise mitigation system for wind turbine blades | |
WO2011077545A1 (en) | Windmill rotary vane | |
US20060216153A1 (en) | Rotor blade for a wind power plant | |
WO2010016125A1 (en) | Windmill blade and wind power generator using same | |
CN101446263A (en) | Wind turbine blade stiffeners | |
JP5982837B2 (en) | Aircraft jet engine fan blades | |
AU2018211556B2 (en) | Fluid foil | |
JP2013194645A (en) | Blade for wind power generation apparatus | |
CN104948393A (en) | Wind turbine blade with viscoelastic damping | |
JP4676228B2 (en) | Windmill wing | |
WO2011078337A1 (en) | Windmill rotary vane | |
JP2011137388A5 (en) | ||
JP2020084812A (en) | Windmill blade and wind power generation device | |
JP6504655B2 (en) | Ship propeller | |
JP2019218886A (en) | Windmill blade and wind power generation apparatus | |
KR102719754B1 (en) | A blade of wind power generator | |
WO2024190111A1 (en) | Wind turbine blade | |
JP2006274989A (en) | Windmill |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080303 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100810 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110107 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110127 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140204 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4676228 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |