JP2009074421A - Blade material for axial flow type windmill - Google Patents

Blade material for axial flow type windmill Download PDF

Info

Publication number
JP2009074421A
JP2009074421A JP2007243463A JP2007243463A JP2009074421A JP 2009074421 A JP2009074421 A JP 2009074421A JP 2007243463 A JP2007243463 A JP 2007243463A JP 2007243463 A JP2007243463 A JP 2007243463A JP 2009074421 A JP2009074421 A JP 2009074421A
Authority
JP
Japan
Prior art keywords
flow type
axial flow
wind turbine
fiber
type wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007243463A
Other languages
Japanese (ja)
Inventor
Hirokazu Ide
洋和 井手
Takeshi Yoshida
毅 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007243463A priority Critical patent/JP2009074421A/en
Publication of JP2009074421A publication Critical patent/JP2009074421A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide blade material for an axial flow type windmill capable of not only greatly reducing lamination time by change of a lamination method but also retaining strength by an overlap structure, whereas a shape of a root part is complicated and it takes time for lamination of FRP in blade material for an axial flow type windmill using FRP. <P>SOLUTION: The blade material for the axial flow type windmill comprises a core material made of foam body inside and fiber reinforced plastic laminating at lest two layers around the core material. The root part of the blade material for the axial flow type windmill formed by lamination of FRP has a structure in which fiber of FRP forming its vertical surface and fiber of FRP forming its horizontal surface do not continue, are laminated in two or more layers beforehand, and are mutually joined at an overlap part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、風力発電用ブレード等に好適な、繊維強化プラスチック(以降、FRPと略することがある。)製の軸流型風車用翼部材に関するものである。   The present invention relates to a blade member for an axial flow type windmill made of fiber reinforced plastic (hereinafter sometimes abbreviated as FRP) suitable for a blade for wind power generation or the like.

翼は、その断面が厚み分布を有する形状であり、これにより流体の流れを制御する機能を発現する。一般に航空機や自動車用のリアスポイラーに代表される水平翼および垂直翼は、航空機、ヘリコプターおよび船舶等のプロペラ翼、送風機のタービン翼や、攪拌機のブレード、風力発電用のブレードなどに用いられる。これらの例のように、翼部材は移動体に固定されて使用されたり、またはそれ自体が回転したりすることで、流体の流れを制御する機能を利用されることが多い。そのため、翼部材を含めた装置全体の軽量化や、風車可動部の慣性力低減が求められており、これらを同時に達成できる翼部材への軽量化要求は強い。   The wing has a shape having a thickness distribution in its cross section, thereby expressing the function of controlling the flow of fluid. In general, horizontal wings and vertical wings typified by rear spoilers for aircraft and automobiles are used for propeller blades of aircraft, helicopters and ships, turbine blades of blowers, blades of stirrers, blades for wind power generation, and the like. As in these examples, the wing member is often used while being fixed to a moving body or rotating itself so as to control the flow of fluid. Therefore, weight reduction of the whole apparatus including a wing member and reduction of the inertia force of a windmill movable part are calculated | required, and the weight reduction request | requirement to the wing member which can achieve these simultaneously is strong.

従来、翼部材としてアルミ、チタン等の金属材料が用いられてきたが、軽量化かつ高剛性の要求から金属と比較して軽量で、かつ高強度、高剛性であるFRPが使用されるようになった。さらに近年では、高強度、高剛性を確保しつつ、さらなる軽量化を達成するため、FRPの表皮材と該表皮材に囲まれたコア材として密度の小さい樹脂やハニカム構造を充填するサンドイッチ構造が提案されている。また、翼部材は流体から圧力を受けるため、破壊や変形に耐え得る十分な強度と剛性を有することが必要不可欠である。   Conventionally, metal materials such as aluminum and titanium have been used as wing members, but FRP that is lighter in weight, higher in strength, and higher in rigidity than metal is used due to the demand for weight reduction and high rigidity. became. Furthermore, in recent years, in order to achieve further weight reduction while ensuring high strength and high rigidity, a sandwich structure in which a low density resin or honeycomb structure is filled as a core material surrounded by the FRP skin material and the skin material. Proposed. Further, since the wing member receives pressure from the fluid, it is indispensable to have sufficient strength and rigidity that can withstand destruction and deformation.

その中でも、特に、軸流方式の風車では、翼先端にいくほど回転時の周速が速くなるため、翼の自重による慣性力や、翼が受ける流体からの圧力の影響を低減させる目的から、翼根元部に対し、翼先端部ほど軽量化への要求が高い。   Among them, especially in an axial flow type windmill, the peripheral speed during rotation increases as it goes to the tip of the blade, so that the influence of the inertia force due to the weight of the blade and the pressure from the fluid that the blade receives is reduced. There is a higher demand for weight reduction at the blade tip than at the blade root.

従って、軸流方式の風車の翼形状は、根元部が幅広く、先端が細いのが一般的であり、また厚さも、根元部が先端よりも厚い構造であることが一般的である。   Therefore, the blade shape of an axial-flow wind turbine generally has a wide root portion and a narrow tip, and the thickness is generally a structure where the root portion is thicker than the tip.

この要求を満足すべく、軸流方式の風車翼に対し、数々の提案や発明がなされているが、そのほとんどが翼部材の先端や、断面構造に関する物であり、翼根元部に関する提案がほとんどなされていないのが実状である。   In order to satisfy this requirement, many proposals and inventions have been made for axial flow type wind turbine blades, but most of them are related to the tip of the blade member and the cross-sectional structure, and most proposals related to the blade root part. The fact is that nothing has been done.

これら翼根元部に関する数少ない提案の中では、例えば、特許文献1に、中空成形体ながら、各面を構成する部材を接着する製造方法が提案されている。この製造方法は、翼根元部への転用も可能であるが、中空成形体であるため、強度的に課題が残る。   Among these few proposals relating to the blade root part, for example, Patent Document 1 proposes a manufacturing method in which members constituting each surface are bonded while being a hollow molded body. Although this manufacturing method can be diverted to the blade root part, since it is a hollow molded body, a problem remains in strength.

また、特許文献1と同じく、翼根元部へも転用可能な特許文献2が提案されている。この成形体は、角部を有する心材と強化繊維織物とから構成され、該強化繊維織物が前記心材の角部へ張り合わせる際、少なくとも3分割された形態をとる。しかしながら3分割された形態で翼根元部を構成する場合、3分割それぞれの部材を作成する手間がかかり、実際には作業時間の短縮も限定的である。加えて、直角部分を構成する2面の交線が直線でなく、複雑な曲線の場合、各部材の接合部分の形状が複雑になり、作製が難しい。さらには作業者の熟練や、余計な作業時間が必要となり、翼根元部への転用は極めて困難である。
特開2006−44262号公報 特開2005−178335号公報
Similarly to Patent Document 1, Patent Document 2 that can be diverted to the blade root part has been proposed. This molded body is composed of a core material having a corner portion and a reinforcing fiber fabric, and takes a form divided into at least three when the reinforcing fiber fabric is bonded to the corner portion of the core material. However, when the blade root portion is configured in a three-divided form, it takes time and effort to create each of the three-divided members, and in practice, the working time is also limited. In addition, when the intersecting line of the two surfaces constituting the right-angled portion is not a straight line but a complicated curve, the shape of the joining portion of each member becomes complicated, making it difficult to manufacture. Furthermore, skill of the operator and extra work time are required, and diversion to the blade root is extremely difficult.
JP 2006-44262 A JP 2005-178335 A

本発明は、かかる従来技術の欠点を鑑み、複雑な形状を有する、軸流方式の風車に用いられる翼を形成する部材(「軸流型風車用翼部材」と称する。)において、軽量かつ高強度、高剛性を維持しつつ、大幅に生産効率を向上することが達成できる軸流型風車用翼部材を提供することを目的とする。   In view of the drawbacks of the prior art, the present invention is a lightweight and high-profile member (referred to as “axial-type wind turbine blade member”) that has a complicated shape and forms a blade used in an axial-flow wind turbine. An object of the present invention is to provide an axial-flow type wind turbine blade member capable of significantly improving production efficiency while maintaining strength and high rigidity.

前記目的を達成するため、本発明は次の手段を採用するものである。すなわち、
(1)内部に発泡体からなるコア材と、コア材の周囲に少なくとも2層以上積層された繊維強化プラスチックからなり、かつ、少なくとも次の要素を同時に満足する、軸流型風車用翼部材。
A.積層された繊維強化プラスチックが、軸流型風車用翼部材の根元部の表面をほぼ完全に包囲している。
B.軸流型風車用翼部材の根元部の垂直面を構成する繊維強化プラスチックの繊維部分が、軸流型風車用翼部材の根元部の水平面を構成する繊維強化プラスチックの繊維部分と不連続である。
C.軸流型風車用翼部材の根元部の垂直面を構成する繊維強化プラスチックがオーバーラップを有し、軸流型風車用翼部材の根元部の水平面を構成する繊維強化プラスチックとオーバーラップ部で接合されている、もしくは、軸流型風車用翼部材の根元部の水平面を構成する繊維強化プラスチックがオーバーラップを有し、軸流型風車用翼部材の根元部の垂直面を構成する繊維強化プラスチックとオーバーラップ部で接合されている。
In order to achieve the above object, the present invention employs the following means. That is,
(1) A wing member for an axial-flow type wind turbine which is made of a core material made of a foam inside and a fiber reinforced plastic laminated at least two layers around the core material, and satisfies at least the following elements at the same time.
A. The laminated fiber reinforced plastic almost completely surrounds the surface of the root portion of the axial flow type wind turbine blade member.
B. The fiber portion of the fiber reinforced plastic constituting the vertical surface of the root portion of the axial flow type wind turbine blade member is discontinuous with the fiber portion of the fiber reinforced plastic constituting the horizontal surface of the root portion of the axial flow type wind turbine blade member. .
C. The fiber reinforced plastic that forms the vertical surface of the root part of the axial flow type wind turbine blade member has an overlap, and the fiber reinforced plastic that forms the horizontal plane of the root part of the axial flow type wind turbine blade member is joined at the overlap part. Or a fiber reinforced plastic that forms a horizontal surface of the root portion of the wing member for an axial flow type wind turbine has an overlap, and a fiber reinforced plastic that forms a vertical surface of the root portion of the wing member for an axial flow type wind turbine And joined at the overlap part.

(2)繊維強化プラスチックを構成する繊維が、炭素繊維、ガラス繊維、ポリイミド繊維、ポリアミド繊維、およびボロン繊維からなる群から選ばれる少なくとも1種である、前記(1)に記載の軸流型風車用翼部材。   (2) The axial-flow wind turbine according to (1), wherein the fiber constituting the fiber-reinforced plastic is at least one selected from the group consisting of carbon fiber, glass fiber, polyimide fiber, polyamide fiber, and boron fiber. Wing member.

(3)繊維強化プラスチックのマトリックス樹脂が、熱硬化性樹脂または熱可塑性樹脂である、前記(1)および(2)に記載の軸流型風車用翼部材。   (3) The axial flow type wind turbine blade member according to (1) and (2), wherein the matrix resin of the fiber reinforced plastic is a thermosetting resin or a thermoplastic resin.

(4)軸流型風車用翼部材の根元部の垂直面と水平面との交線に曲線からなる部分を有する、前記(1)から(3)に記載の軸流型風車用翼部材。   (4) The wing member for an axial flow type wind turbine according to (1) to (3), wherein the wing member for an axial flow type wind turbine has a curved portion at a line of intersection between a vertical plane of a root portion of the axial flow type wind turbine blade member and a horizontal plane.

本発明により、複雑な形状を有する、軸流型風車用翼部材において、軸流型風車用翼部材の根元部の垂直面を構成する繊維強化プラスチックの繊維部分を、該軸流型風車用翼部材の根元部の水平面を構成する繊維強化プラスチックの繊維部分と不連続にし、それらをオーバーラップ部で接合させることにより、軽量かつ強度、剛性を維持しつつ、大幅に生産効率を向上できる軸流型風車用翼部材が得られる。   According to the present invention, in the axial flow type wind turbine blade member having a complicated shape, the fiber portion of the fiber reinforced plastic constituting the vertical surface of the root portion of the axial flow type wind turbine blade member is replaced with the axial flow type wind turbine blade. Axial flow that can significantly improve production efficiency while maintaining light weight, strength, and rigidity by making the fiber part of the fiber reinforced plastic constituting the horizontal plane at the base of the member discontinuous and joining them at the overlap part. A wind turbine blade member is obtained.

本発明は、軸流型風車に用いられる翼部材(軸流型風車用翼部材)に関するものであり、内部にコア材を有し、外部をFRPで覆った構造としている。かかる軸流型風車翼部材は、軸流型風車の回転軸に対し、ハブを介して取り付けて用いられる。   The present invention relates to a blade member (a blade member for an axial flow type wind turbine) used in an axial flow type wind turbine, and has a structure in which a core material is provided inside and the outside is covered with FRP. Such an axial flow type wind turbine blade member is attached to a rotating shaft of an axial flow type wind turbine via a hub.

本発明に係る軸流型風車用翼部材は、ハブとの接触部分に近い側に位置する根元部、遠い側に位置する先端部を有し、直接ハブと接触する部分に取付部を有し、その中でも特に、本発明の構成を特徴付ける根元部は、コア材の周囲をFRPがほぼ完全に包囲していることが重要である。これは、FRP部分に覆われず、コア材が剥き出している部分があると、FRP部分への応力集中や、水分の浸入によるコア材の加水分解などが懸念されるからである。なお、ここでいう「ほぼ完全に包囲している」とは、コア材の露出が肉眼で見えない、もしくは成形後の加工でFRPに孔を開けた場合、軸流型風車用翼部材の内部へ浸水しない様、防水性を維持する加工をした事を意味する。   The blade member for an axial flow type wind turbine according to the present invention has a root portion located on the side close to the contact portion with the hub and a tip portion located on the far side, and has an attachment portion on the portion that directly contacts the hub. In particular, it is important that the root portion that characterizes the configuration of the present invention has the FRP substantially completely surrounding the core material. This is because if there is a portion where the core material is not covered with the FRP portion, stress concentration on the FRP portion, hydrolysis of the core material due to moisture intrusion, or the like may occur. As used herein, “substantially completely surrounding” means that the core material is not visible to the naked eye, or when the FRP is perforated in the post-molding process, It means that it has been processed to maintain waterproofness so that it will not be submerged.

コア材の周囲を包囲するFRPに使用する繊維としては、少なくとも炭素繊維、ガラス繊維、ポリイミド繊維、ポリアミド繊維、ボロン繊維のいずれかを含むことが好ましい。これらの繊維は、強度が高く、軸流型風車翼に使用した場合、十分な強度を発揮できる。このうち、汎用が高いFRP用繊維として使用される繊維素材では、最も強度が高い炭素繊維が好ましい。   It is preferable that at least one of carbon fiber, glass fiber, polyimide fiber, polyamide fiber, and boron fiber is included as a fiber used for FRP surrounding the core material. These fibers have high strength and can exhibit sufficient strength when used in an axial flow type wind turbine blade. Among these, carbon fibers having the highest strength are preferable for fiber materials used as FRP fibers having high general purpose.

また、FRPに使用する繊維は必ずしも単一繊維素材である必要はなく、2種以上の繊維を混合使用しても構わない。この場合、綿や絹等の天然繊維、ポリエステル、ポリアミド等の熱可塑性繊維を含む有機繊維、金属等の無機繊維を問わず特に限定されない。さらに繊維形態は、引張強度に優れる長繊維が好ましいが、紡績糸等の短繊維糸条を使用しても構わないし、長繊維との交織や交編などでの混用も構わない。FRP内の繊維形態は、薄く経緯のバランスに優れ、かつ繊維間の拘束で繊維が解けにくい織物が最も好ましいが、繊維を長手方向に引き揃えて熱硬化性樹脂を含浸させたプリプレグ(以降UDプリプレグと略す)を、繊維の方向を変えて積層しても構わないし、編物でも構わない。また織物の織組織は、特に限定されないが、表裏・経緯バランスをとりやすい平織が好ましい。糸使いも同様に、経糸・緯糸で同じ糸を使用し、経緯のバランスをとるのが好ましいが、特に限定はされない。   Moreover, the fiber used for FRP does not necessarily need to be a single fiber raw material, and may mix and use 2 or more types of fibers. In this case, natural fibers such as cotton and silk, organic fibers including thermoplastic fibers such as polyester and polyamide, and inorganic fibers such as metals are not particularly limited. Further, the fiber form is preferably a long fiber excellent in tensile strength, but a short fiber yarn such as spun yarn may be used, or a mixed use in knitting or knitting with a long fiber may be used. The fiber form in the FRP is most preferably a woven fabric which is thin and excellent in the balance of the background and is difficult to unravel the fibers by restraint between the fibers, but the prepreg (hereinafter referred to as UD) in which the fibers are aligned in the longitudinal direction and impregnated with a thermosetting resin. (Abbreviated as prepreg) may be laminated by changing the direction of the fibers, or may be a knitted fabric. Moreover, the woven structure of the woven fabric is not particularly limited, but a plain weave which is easy to balance front / back and background is preferable. Similarly, it is preferable to use the same yarn for warp and weft to balance the warp, but there is no particular limitation.

本発明に用いられるFRPのマトリックス樹脂としては、熱硬化性樹脂または熱可塑性樹脂のいずれであっても良いが、一般的に長繊維との組み合わせで広く使用される熱硬化性樹脂が好ましい。具体的には、エポキシ、不飽和ポリエステル、ビニルエステル、フェノール、ポリイミド等の熱硬化性樹脂で熱または光や電子線などの外部からのエネルギーによって硬化し、少なくとも部分的に硬化物を形成する樹脂であれば良い。   The FRP matrix resin used in the present invention may be either a thermosetting resin or a thermoplastic resin, but a thermosetting resin that is generally widely used in combination with long fibers is preferred. Specifically, a resin that is cured by heat or external energy such as light or electron beam with a thermosetting resin such as epoxy, unsaturated polyester, vinyl ester, phenol, or polyimide, and at least partially forms a cured product. If it is good.

コア材は、剛性を保持したまま軽量化を達成するために表皮材よりも嵩密度が小さい材料を使用する必要がある。好ましくは、その主成分が樹脂からなり、構造内部に空隙を多数有する構造である、樹脂多孔材料が良い。空隙は、発泡材が発泡したものでも良いし、中空ガラスビーズ等を多数含んだシンタクティック発泡プラスチックからなるコアでも良い。コア材樹脂の材質は、熱硬化性樹脂または熱可塑性樹脂を使用することができる。例えば、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂等があり、熱可塑性樹脂としては、ポリアミド樹脂、ポリアセタール樹脂、ポリフェニレンサルファイド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチルテレフタレート等のポリエステル樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、HIPS樹脂、ABS樹脂、AES樹脂、AAS樹脂等のスチレン系樹脂、ポリメチルメタクリレート樹脂等のアクリル樹脂、塩化ビニル、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリウレタン樹脂、ポリエーテルイミドやポリメタクリルイミド等のイミド樹脂、さらには各種エラストマー類等がある。これらは、単独で使用しても良いし、複数を混用しても良い。   For the core material, it is necessary to use a material having a smaller bulk density than the skin material in order to achieve weight reduction while maintaining rigidity. Preferably, a resin porous material having a structure in which the main component is made of a resin and a large number of voids inside the structure is preferable. The void may be a foamed foam material or a core made of a syntactic foamed plastic containing a large number of hollow glass beads and the like. As the material of the core material resin, a thermosetting resin or a thermoplastic resin can be used. For example, as the thermosetting resin, there are epoxy resin, phenol resin, unsaturated polyester resin, vinyl ester resin, etc., and as the thermoplastic resin, polyamide resin, polyacetal resin, polyphenylene sulfide resin, polyethylene terephthalate, polybutylene terephthalate, Polyester resin such as polycyclohexanedimethyl terephthalate, polyarylate resin, polycarbonate resin, polystyrene resin, HIPS resin, ABS resin, AES resin, AAS resin and other styrene resins, polymethyl methacrylate resin and other acrylic resins, vinyl chloride, polyethylene, Polyolefin resins such as polypropylene, polyurethane resins, imide resins such as polyetherimide and polymethacrylimide, and various elastomersThese may be used alone or in combination.

本発明に係る軸流型風車用翼部材を構成するFRPを得る方法の一例として、プリプレグを積層し、金型で成型する方法が挙げられる。その際に、軸流型風車用翼部材の先端部は水平面の上面および下面からプリプレグを接着するか、もしくは一連のプリプレグによってコア材の周囲を包囲して成型すれば良い。   As an example of a method for obtaining the FRP constituting the axial flow type wind turbine blade member according to the present invention, there is a method in which prepregs are stacked and molded with a mold. At that time, the tip portion of the axial flow type wind turbine blade member may be molded by adhering the prepreg from the upper and lower surfaces of the horizontal plane or surrounding the core material with a series of prepregs.

軸流型風車用翼部材の根元部では、翼の厚みが増し、加えて形状が先端部と比べて複雑となるため、根元部の水平面を覆うプリプレグは、根元部の垂直面との接着性と強度保持を目的として、オーバーラップが設けられていることを必須とする。この場合、軸流型風車用翼部材の根元部の垂直面は、軸流型風車用翼部材の根元部の水平面に折り返さないようにすることが望ましい。なお、当該根元部の水平面のプリプレグに設けられたオーバーラップは、水平面に積層される全層に存在していても良い。また、本発明に係る軸流型風車用翼部材の根元部の水平面を覆うプリプレグにオーバーラップを設けるかわりに、根元部の水平面との接着性と強度保持を目的として、軸流型風車用翼部材の根元部の垂直面を覆うプリプレグにオーバーラップを設けても良い。この場合、軸流型風車用翼部材の根元部の水平面は、軸流型風車用翼部材の根元部の垂直面に折り返さないようにすることが望ましい。なお、当該根元部の垂直面のプリプレグに設けられたオーバーラップは、垂直面に積層される全層に存在していても良い。   At the root of the axial wind turbine blade member, the thickness of the blade increases and the shape becomes more complex than the tip.Therefore, the prepreg that covers the horizontal surface of the root is adhesive to the vertical surface of the root. For the purpose of maintaining strength, it is essential that an overlap is provided. In this case, it is desirable that the vertical surface of the root portion of the axial flow type wind turbine blade member is not folded back to the horizontal surface of the root portion of the axial flow type wind turbine blade member. In addition, the overlap provided in the prepreg on the horizontal surface of the root portion may be present in all layers stacked on the horizontal surface. Further, instead of providing an overlap on the prepreg that covers the horizontal surface of the root portion of the blade member for the axial flow type wind turbine according to the present invention, the blade for the axial flow type wind turbine is used for the purpose of maintaining adhesion and strength with the horizontal surface of the root portion. You may provide an overlap in the prepreg which covers the vertical surface of the base part of a member. In this case, it is desirable that the horizontal surface of the root portion of the axial flow type wind turbine blade member is not folded back to the vertical surface of the root portion of the axial flow type wind turbine blade member. In addition, the overlap provided in the prepreg on the vertical surface of the root portion may be present in all layers stacked on the vertical surface.

かかるオーバーラップは、水平面、ないしは垂直面に若干量折り返す程度の領域からなるものであっても良い。また、FRP内の繊維の方向は、織物であれば何れの方向でも構わないが、UDプリプレグを使用する場合、少なくとも1層は風車翼の長手方向に沿う状態と、必ず角度を付けたもう1層を積層するか、織物のプリプレグ(以降、クロスプリプレグ)を積層することが、積層体としての強度バランスを維持できるため好ましい。   Such an overlap may consist of a region that is slightly folded back to a horizontal plane or a vertical plane. The direction of the fibers in the FRP may be any direction as long as it is a woven fabric. However, when a UD prepreg is used, at least one layer is in a state along the longitudinal direction of the wind turbine blades and must be angled. It is preferable to laminate the layers or laminate a woven prepreg (hereinafter referred to as cross prepreg) because the strength balance as the laminate can be maintained.

さらに、本発明に係る軸流型風車用翼部材は、根元部の垂直面と水平面との交線に曲線からなる部分を有することが好ましい。すなわち、軸流型風車用の翼は、風車翼の長手方向に対し垂直に風を受け回転するが、回転速度が大きい場合、風車翼の空気抵抗を低減する目的で、飛行機の水平翼に似た形状となるが、この形状は、軸流型風車翼の長手方向に対して垂直な断面を見ると、水平面でも微少に彎曲している。このため、本発明では、図3の水平面(上面)2、および水平面(下面)3の通り、彎曲の程度が小さい水平面を水平面(下面)とし、彎曲の程度が大きい水平面を水平面(上面)としている。なお、断面が長方形の場合は、水平面(上面)と水平面(下面)に区別はない。また、軸流型風車用翼部材の縁部は、回転方向側を前縁部6、回転方向と反対側を、後縁部7としている。   Furthermore, the axial flow type wind turbine blade member according to the present invention preferably has a curved portion at the intersection line between the vertical surface of the root portion and the horizontal plane. In other words, the wing for an axial wind turbine is rotated by receiving wind perpendicularly to the longitudinal direction of the wind turbine blade, but when the rotation speed is high, it is similar to the horizontal blade of an airplane for the purpose of reducing the air resistance of the wind turbine blade. However, this shape is slightly bent even in the horizontal plane when the cross section perpendicular to the longitudinal direction of the axial flow type wind turbine blade is viewed. Therefore, in the present invention, as shown in the horizontal plane (upper surface) 2 and the horizontal plane (lower surface) 3 in FIG. 3, a horizontal plane with a small degree of curvature is defined as a horizontal plane (lower surface) and a horizontal plane with a large degree of curvature is defined as a horizontal plane (upper surface). Yes. When the cross section is rectangular, there is no distinction between a horizontal plane (upper surface) and a horizontal plane (lower surface). Moreover, the edge part of the wing member for axial flow type windmills makes the rotation direction side the front edge part 6, and makes the other side the rotation direction the rear edge part 7. FIG.

軸流型風車用翼の根元部の垂直面では、予め垂直面の全面を覆うようにプリプレグを切断し、2層以上積層することが好ましい。この場合、前述のとおり、水平面とのオーバーラップを有するように構成すれば良い。すなわち、垂直面を構成するFRPがオーバーラップを有し、水平面を構成するFRPとオーバーラップ部で接合するか、もしくは、水平面を構成するFRPがオーバーラップを有し、垂直面を構成する繊維強化プラスチックとオーバーラップ部で接合するように構成すれば良い。   It is preferable that two or more layers are laminated by cutting the prepreg in advance so as to cover the entire surface of the vertical surface at the vertical surface of the root portion of the axial flow type wind turbine blade. In this case, what is necessary is just to comprise so that it may have an overlap with a horizontal surface as mentioned above. That is, the FRP constituting the vertical plane has an overlap, and the FRP constituting the horizontal plane is joined with the overlap portion, or the FRP constituting the horizontal plane has an overlap, and the fiber reinforcement constituting the vertical plane What is necessary is just to comprise so that it may join with an overlap part with plastic.

また、積層するFRPの繊維は、織物であれば何れの方向でも構わないが、引き揃えた単一方向繊維を使用する場合、少なくとも1層は風車翼の幅方向に沿う状態とし、必ず角度を付けたもう1層を積層するか、織物のFRPを積層する。   The FRP fibers to be laminated may be in any direction as long as they are woven. However, when using unidirectional fibers that are aligned, at least one layer is in a state along the width direction of the wind turbine blade, and the angle is always set. Laminate another layer attached or fabric FRP.

本発明では、軸流型風車用翼の根元部で翼の水平と垂直面とが予め不連続となるようにプリプレグを切断し、積層すれば良い。プリプレグを不連続とするのは、垂直面を積層する作業では、折り返し部分で皺が生じ、皺を取り除くため垂直面に切れ込みを入れる作業が繁雑であり、作業時間が長くなってしまうのを防ぐためである。加えて、予め水平面部と垂直面部とをそれぞれ積層する方がさらに作業時間の短縮を図れる。   In the present invention, the prepreg may be cut and laminated so that the horizontal and vertical surfaces of the blades are discontinuous in advance at the root of the blade for the axial flow type wind turbine. The prepreg is made discontinuous. In the work of stacking vertical surfaces, wrinkles occur at the folded part, and the work of cutting the vertical surfaces to remove wrinkles is complicated and prevents the work time from becoming longer. Because. In addition, the working time can be further shortened by previously laminating the horizontal plane portion and the vertical plane portion in advance.

さらに、積層方法は、水平面、垂直面を問わず、全ての面で最外層のプリプレグに織物を使用するのが好ましい。これは、最外層ではFRP内繊維の方向性に偏りが出ない様にし、かつ屋外で使用されることが前提となる風車では、FRPの耐久性やFRPの繊維形状を維持するため、繊維同士が拘束される織物が繊維の形態維持性が高く最適である。   Furthermore, it is preferable to use a woven fabric for the prepreg of the outermost layer on all surfaces regardless of a horizontal plane or a vertical plane. This is because the direction of the fibers in the FRP is not biased in the outermost layer, and in the wind turbine that is assumed to be used outdoors, the FRP durability and the fiber shape of the FRP are maintained. A fabric in which the fiber is constrained is optimal because of its high fiber shape maintenance.

積層されるプリプレグの層数は、水平面、垂直面の何れにおいても2層以上であれば特に限定されないが、強度とコスト、そして重量面から、5層以下が好ましく、さらには2〜4層が好ましい。   The number of layers of the prepreg to be laminated is not particularly limited as long as it is 2 layers or more in both the horizontal plane and the vertical plane, but from the viewpoint of strength, cost, and weight, 5 layers or less are preferable, and 2 to 4 layers are more preferable. preferable.

本発明に係る軸流型風車用翼を成型する方法としては、射出成形では難しため、金型を使用したプレス成形を用いることが好ましい。特に、プリプレグを使用し、成型前に積層し、金型に入れてプレス成形するのが一般的である。特にコア材を有するため、予めコア材にプリプレグを積層すれば、1回のプレス成形で生産が可能である。   As a method for molding the axial flow type wind turbine blade according to the present invention, it is preferable to use press molding using a mold because injection molding is difficult. In particular, a prepreg is generally used, laminated before molding, and put into a mold and press-molded. In particular, since it has a core material, if a prepreg is laminated on the core material in advance, it can be produced by a single press molding.

以下に実施例を示し、本発明をさらに具体的に説明するが、下記実施例は本発明を何ら制限するものではなく、本発明の主旨を逸脱しない範囲で変更することは、本発明の技術範囲である。なお、本実施例で用いる特性は次のようにして測定される。   The present invention will be described more specifically with reference to the following examples. However, the following examples are not intended to limit the present invention in any way, and modifications within the scope of the present invention may be made without departing from the spirit of the present invention. It is a range. The characteristics used in this example are measured as follows.

[軸流型風車用翼部材の取付部の引張強度]
次に示す手順にしたがって測定した。
(1)軸流形風車翼を長手方向に対し、根元部を含む約300mmの長さに切断する。
(2)根元部をハブに取り付け、ハブおよび切断した風車翼側それぞれに治具を取り付ける。
(3)温度23±2℃の環境下にある試験室内に一昼夜試料を放置する。
(4)所定のロードセルを試験機に取り付ける。
(5)取り付けた治具を介して試料を定速圧縮試験機に固定する。
(6)試料を1mm/分の速度で試料を引っ張り、圧縮治具の変位と荷重を記録する。
(7)最大荷重を引張強度とする。
[Tensile strength of the mounting part of the blade member for an axial flow type wind turbine]
The measurement was performed according to the following procedure.
(1) The axial flow type wind turbine blade is cut into a length of about 300 mm including the root portion in the longitudinal direction.
(2) Attach the root part to the hub, and attach the jig to each of the hub and the cut windmill blade side.
(3) The sample is left overnight in a test room in an environment with a temperature of 23 ± 2 ° C.
(4) A predetermined load cell is attached to the testing machine.
(5) The sample is fixed to the constant speed compression tester through the attached jig.
(6) Pull the sample at a speed of 1 mm / min, and record the displacement and load of the compression jig.
(7) The maximum load is the tensile strength.

(実施例1)
コア材にウレタン発泡体を使用して、図1に示す全長約900mmの軸流形風車翼形状に切削した。
Example 1
A urethane foam was used as the core material, and the core material was cut into an axial flow type wind turbine blade shape having a total length of about 900 mm.

コア材に積層するFRPとして、炭素繊維強化エポキシ樹脂を使用した。また、炭素繊維の形態は、いずれも長繊維フィラメントであり、平織および単一方向に引き揃えられたシートの2種類を使用した。これらの炭素繊維にエポキシ樹脂を含浸させ、それぞれクロスプリプレグおよびUDプリプレグとした。   A carbon fiber reinforced epoxy resin was used as the FRP laminated on the core material. Moreover, as for the form of carbon fiber, all were long fiber filaments, and used two types, a plain weave and a sheet aligned in a single direction. These carbon fibers were impregnated with an epoxy resin to form a cross prepreg and a UD prepreg, respectively.

本発明では、まず、図2のコア材4の水平面(上面)2および水平面(下面)3を風車翼の長手方向に炭素繊維が揃う様、UDプリプレグで覆った。続いて垂直面1として予めクロスプリプレグを用いて3層に積層したシートを張り付けた。なお、オーバーラップ5は垂直面1の最外層にのみ設けた。   In the present invention, first, the horizontal surface (upper surface) 2 and the horizontal surface (lower surface) 3 of the core material 4 of FIG. 2 were covered with the UD prepreg so that the carbon fibers were aligned in the longitudinal direction of the wind turbine blade. Subsequently, a sheet laminated in three layers using a cross prepreg in advance was pasted as the vertical surface 1. The overlap 5 was provided only on the outermost layer of the vertical surface 1.

次に、風車翼の水平面を成す部分のみクロスプリプレグを上面および下面用に切断した後、UDプリプレグを積層したコア材の水平面(上面)3および水平面(下面)4それぞれの外層に載せ、コア材を金型に置いた後、プレス機にて100℃以上の温度でプレス成形した。脱型後、トリミングや補修作業を経て、軸流形風車翼を作製した。   Next, after the cross prepreg is cut for the upper surface and the lower surface only in the portion forming the horizontal plane of the wind turbine blade, the core material is placed on the outer layers of the horizontal plane (upper surface) 3 and the horizontal plane (lower surface) 4 of the core material laminated with the UD prepreg. Was placed in a mold and press-molded at a temperature of 100 ° C. or higher with a press. After demolding, an axial flow type wind turbine blade was manufactured through trimming and repair work.

図4に、本発明で得られた軸流型風車用翼部材の根元部断面は、垂直面1がオーバーラップ5を有し、水平面(上面)2および水平面(下面)3とオーバーラップ5で接合されている。この時、水平面(上面)2は、最内層にUDプリプレグ8を使用し、最外層にはクロスプリプレグ9を使用している。   In FIG. 4, the cross section of the root portion of the axial flow type wind turbine blade member obtained by the present invention has an overlap 5 on the vertical surface 1, and a horizontal surface (upper surface) 2 and a horizontal surface (lower surface) 3. It is joined. At this time, the horizontal plane (upper surface) 2 uses the UD prepreg 8 for the innermost layer and the cross prepreg 9 for the outermost layer.

その結果、軸流型風車用翼部材の取付部の引張強度は4kNであり、従来品と遜色ない強度を維持しつつ、作業時間は1本当たり約43パーセント短縮できた。   As a result, the tensile strength of the mounting part of the axial flow type wind turbine blade member was 4 kN, and the working time could be reduced by about 43% per one while maintaining the same strength as the conventional product.

(比較例1)
実施例同様、コア材4にウレタン発泡体を使用し、図1に示す全長約900mmの軸流形風車翼形状に切削した。また、使用したFRPも実施例と同一であった。
(Comparative Example 1)
As in the example, urethane foam was used for the core material 4, and the core material 4 was cut into an axial-flow wind turbine blade shape having a total length of about 900 mm. Also, the FRP used was the same as in the examples.

本比較例では、まず、実施例1と同じく、コア材の水平面(上面)2および水平面(下面)3をUDプリプレグで覆った。続いて垂直面にクロスプリプレグを1層を張り付けた。なお、オーバーラップは設けていない。   In this comparative example, first, as in Example 1, the horizontal surface (upper surface) 2 and the horizontal surface (lower surface) 3 of the core material were covered with a UD prepreg. Subsequently, one layer of cross prepreg was attached to the vertical surface. There is no overlap.

次に、UDプリプレグを載せたコア材の水平面(上面)2および水平面(下面)3の外層に積層すべく、クロスプリプレグを切断した。まず水平面(上面)2は垂直面1に於いて、ほとんどオーバーラップを構成しないよう、端部を水平面(上面)と垂直面1との交線に揃うよう切断した。水平面(下面)3はコア材に載せたUDプリプレグのさらに外層に載せた後、垂直面1へ折り返し、前記交線に揃う様切断した。水平面(下面)3の垂直面への折り返しでは、垂直面の形状が複雑であり、皺が生じた。従って切り込みを入れ、皺を取り除く作業を要した。水平面(下面)3の積層後、水平面(上面)2を積層した。   Next, the cross prepreg was cut so as to be laminated on the outer layer of the horizontal surface (upper surface) 2 and the horizontal surface (lower surface) 3 of the core material on which the UD prepreg was placed. First, the horizontal plane (upper surface) 2 was cut so that the end portion was aligned with the intersecting line of the horizontal plane (upper surface) and the vertical plane 1 so that the vertical plane 1 hardly formed an overlap. The horizontal surface (lower surface) 3 was placed on the outer layer of the UD prepreg placed on the core material, then turned back to the vertical surface 1 and cut so as to be aligned with the intersecting line. When the horizontal surface (lower surface) 3 is folded back to a vertical surface, the shape of the vertical surface is complicated and wrinkles are generated. Therefore, it was necessary to cut and remove the wrinkles. After the horizontal surface (lower surface) 3 was stacked, the horizontal surface (upper surface) 2 was stacked.

前記作業後、実施例と同じ条件で軸流形風車翼を作製した。   After the operation, an axial flow type wind turbine blade was manufactured under the same conditions as in the example.

その結果、軸流型風車用翼部材の取付部の引張強度は4kN以上であった。   As a result, the tensile strength of the attachment portion of the axial flow type wind turbine blade member was 4 kN or more.

本発明の軸流形風車翼は、小型の軸流形風車を中心に好適に使用される。   The axial flow type wind turbine blade of the present invention is preferably used mainly for a small axial flow type wind turbine.

本発明での軸流型風車翼の全体図である。1 is an overall view of an axial wind turbine blade according to the present invention. 本発明での軸流型風車翼の断面図(図1のA−A断面)である。It is sectional drawing (AA cross section of FIG. 1) of the axial flow type windmill blade in this invention. 本発明での軸流型風車翼の断面図(図1のB−B断面)である。It is sectional drawing (BB cross section of FIG. 1) of the axial flow type windmill blade in this invention. 本発明での軸流型風車翼の根元部断面図(図1のA−A断面)である。FIG. 2 is a cross-sectional view (A-A cross section in FIG. 1) of the root portion of the axial-flow wind turbine blade according to the present invention.

符号の説明Explanation of symbols

1:垂直面
2:水平面(上面)
3:水平面(下面)
4:コア材
5:オーバーラップ
6:前縁部
7:後縁部
8:UDプリプレグ
9:クロスプリプレグ
1: Vertical plane 2: Horizontal plane (upper surface)
3: Horizontal surface (bottom surface)
4: Core material 5: Overlap 6: Front edge 7: Rear edge 8: UD prepreg 9: Cross prepreg

Claims (4)

内部に発泡体からなるコア材と、コア材の周囲に少なくとも2層以上積層された繊維強化プラスチックからなり、かつ、少なくとも次の要素を同時に満足する、軸流型風車用翼部材。
(1)積層された繊維強化プラスチックが、軸流型風車用翼部材の根元部の表面をほぼ完全に包囲している。
(2)軸流型風車用翼部材の根元部の垂直面を構成する繊維強化プラスチックの繊維部分が、軸流型風車用翼部材の根元部の水平面を構成する繊維強化プラスチックの繊維部分と不連続である。
(3)軸流型風車用翼部材の根元部の垂直面を構成する繊維強化プラスチックがオーバーラップを有し、軸流型風車用翼部材の根元部の水平面を構成する繊維強化プラスチックとオーバーラップ部で接合されている、もしくは、軸流型風車用翼部材の根元部の水平面を構成する繊維強化プラスチックがオーバーラップを有し、軸流型風車用翼部材の根元部の垂直面を構成する繊維強化プラスチックとオーバーラップ部で接合されている。
An axial-flow type wind turbine blade member comprising a core material made of foam inside and a fiber-reinforced plastic laminated at least two layers around the core material, and satisfying at least the following elements simultaneously.
(1) The laminated fiber reinforced plastic almost completely surrounds the surface of the root portion of the blade member for the axial flow type wind turbine.
(2) The fiber portion of the fiber reinforced plastic that constitutes the vertical surface of the root portion of the axial flow type wind turbine blade member is different from the fiber portion of the fiber reinforced plastic that constitutes the horizontal surface of the root portion of the axial flow type wind turbine blade member. It is continuous.
(3) The fiber reinforced plastic constituting the vertical surface of the root portion of the axial flow type wind turbine blade member has an overlap, and the fiber reinforced plastic and the overlap constituting the horizontal surface of the root portion of the axial flow type wind turbine blade member The fiber reinforced plastic that is joined at the portion or that forms the horizontal surface of the root portion of the axial flow type wind turbine blade member has an overlap, and constitutes the vertical surface of the root portion of the axial flow type wind turbine blade member It is joined with fiber reinforced plastic at the overlap.
繊維強化プラスチックを構成する繊維が、炭素繊維、ガラス繊維、ポリイミド繊維、ポリアミド繊維、およびボロン繊維からなる群から選ばれる少なくとも1種である、請求項1に記載の軸流型風車用翼部材。 The wing member for an axial flow type wind turbine according to claim 1, wherein the fiber constituting the fiber reinforced plastic is at least one selected from the group consisting of carbon fiber, glass fiber, polyimide fiber, polyamide fiber, and boron fiber. 繊維強化プラスチックのマトリックス樹脂が、熱硬化性樹脂または熱可塑性樹脂である、請求項1または2に記載の軸流型風車用翼部材。 The blade member for an axial flow type wind turbine according to claim 1 or 2, wherein the fiber reinforced plastic matrix resin is a thermosetting resin or a thermoplastic resin. 軸流型風車用翼部材の根元部の垂直面と水平面との交線に曲線からなる部分を有する、請求項1〜3に記載の軸流型風車用翼部材。 The wing member for an axial flow type wind turbine according to claim 1, wherein the wing member for an axial flow type wind turbine has a curved portion at an intersection line between a vertical surface of a root portion of the wing member for an axial flow type wind turbine and a horizontal plane.
JP2007243463A 2007-09-20 2007-09-20 Blade material for axial flow type windmill Pending JP2009074421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007243463A JP2009074421A (en) 2007-09-20 2007-09-20 Blade material for axial flow type windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007243463A JP2009074421A (en) 2007-09-20 2007-09-20 Blade material for axial flow type windmill

Publications (1)

Publication Number Publication Date
JP2009074421A true JP2009074421A (en) 2009-04-09

Family

ID=40609645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007243463A Pending JP2009074421A (en) 2007-09-20 2007-09-20 Blade material for axial flow type windmill

Country Status (1)

Country Link
JP (1) JP2009074421A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013514208A (en) * 2009-12-18 2013-04-25 マグナ インターナショナル インコーポレイテッド Sheet molding compound with core
JP2018521263A (en) * 2015-07-01 2018-08-02 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Method for manufacturing rotor blade for wind power generator and rotor blade for wind power generator
JP2019116254A (en) * 2017-12-27 2019-07-18 株式会社イノアックコーポレーション Rotor and unmanned aircraft using the same
JP2020519808A (en) * 2017-05-10 2020-07-02 バーバー,ジェラルド Split airfoil design for guidewires

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013514208A (en) * 2009-12-18 2013-04-25 マグナ インターナショナル インコーポレイテッド Sheet molding compound with core
JP2018521263A (en) * 2015-07-01 2018-08-02 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Method for manufacturing rotor blade for wind power generator and rotor blade for wind power generator
US10744683B2 (en) 2015-07-01 2020-08-18 Wobben Properties Gmbh Method for producing a wind turbine rotor blade, and wind turbine rotor blade
JP2020519808A (en) * 2017-05-10 2020-07-02 バーバー,ジェラルド Split airfoil design for guidewires
JP7109478B2 (en) 2017-05-10 2022-07-29 バーバー,ジェラルド Segmented airfoil design for guidewires
JP2019116254A (en) * 2017-12-27 2019-07-18 株式会社イノアックコーポレーション Rotor and unmanned aircraft using the same

Similar Documents

Publication Publication Date Title
EP2309124B1 (en) Windmill vane and wind power generator utilizing the same
US10273935B2 (en) Rotor blades having structural skin insert and methods of making same
EP2617558B1 (en) A modular structural composite beam
EP2441571B1 (en) Proces for manufacturing a composite component
US10987879B2 (en) Methods of manufacturing rotor blade components for a wind turbine
CN109695535B (en) Rotor blade component for a wind turbine and method for manufacturing the same
JP2011137386A (en) Wind turbine rotor blade and method of manufacturing wind turbine rotor blade
CN111587178B (en) Method of manufacturing a wind turbine rotor blade panel with a printed grid structure
US20210339499A1 (en) Composite materials and structures
JP2011137386A5 (en)
KR20110100192A (en) Wind turbine blade and wind turbine generator using the same
US20210316526A1 (en) Fiber-reinforced composite blank, fiber-reinforced composite component, rotor blade element, rotor blade and wind turbine and method for producing a fiber-reinforced composite blank and method for producing a fiber-reinforced composite component
CA3040845C (en) Fan rotor blade and method of manufacturing same
JP2009074421A (en) Blade material for axial flow type windmill
WO2017037930A1 (en) Windmill blade
EP3466668A1 (en) Sheet and rod-shaped member
CN113544379A (en) Main beam for fan blade and manufacturing method thereof
JP2007170328A (en) Windmill blade for wind power generation and its manufacturing method
CN102011713A (en) Design of cores for blades of wind driven generator
CN112292256A (en) Method of manufacturing a rotor blade component for a wind turbine
JP2007263098A (en) Windmill blade
JP6865084B2 (en) Windmill blade
KR102638697B1 (en) Fiber reinforced plastic propellers for unmanned aerial vehicle and manufacturing method thereof
WO2023026662A1 (en) Skin member and blade structure
CN117396330A (en) System and method for manufacturing rotor blade