JP2018168789A - Windmill blade - Google Patents

Windmill blade Download PDF

Info

Publication number
JP2018168789A
JP2018168789A JP2017067863A JP2017067863A JP2018168789A JP 2018168789 A JP2018168789 A JP 2018168789A JP 2017067863 A JP2017067863 A JP 2017067863A JP 2017067863 A JP2017067863 A JP 2017067863A JP 2018168789 A JP2018168789 A JP 2018168789A
Authority
JP
Japan
Prior art keywords
blade
windmill
resin
core material
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017067863A
Other languages
Japanese (ja)
Other versions
JP6865084B2 (en
Inventor
真章 中村
Masaaki Nakamura
真章 中村
洋一郎 福永
Yoichiro Fukunaga
洋一郎 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2017067863A priority Critical patent/JP6865084B2/en
Publication of JP2018168789A publication Critical patent/JP2018168789A/en
Application granted granted Critical
Publication of JP6865084B2 publication Critical patent/JP6865084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

To provide a windmill blade capable of improving rigidity of a blade part even in a case where a foamed resin is used for a core material of the blade part.SOLUTION: The present invention relates to a windmill blade 1 comprising: an attachment part 11 which is attached to a rotary body of a windmill; and a blade part 12 extending from the attachment part 11. The windmill blade 1 comprises: a core material 13 including at least a blade core part 13A which is formed in accordance with a shape of the blade part 12 and consists of a foam molding of resin beads; and an outer cover 15 which is formed to cover a surface of the core material 13 and consists of a fiber reinforced resin. In the core material 13, a density of the foamed resin in a portion along an edge of the blade part 12 is higher than a density of the foamed resin inside the core material 13.SELECTED DRAWING: Figure 3

Description

本発明は、風車の回転体に取付けられる風車用ブレードであって、特に、発泡樹脂からなる芯材と、繊維強化樹脂からなる外皮とを、備えた風車用ブレードに関する。   The present invention relates to a windmill blade attached to a rotating body of a windmill, and more particularly to a windmill blade provided with a core material made of foamed resin and an outer skin made of fiber-reinforced resin.

従来から、風力発電用などの風車は、回転体に、複数の風車用ブレードが取付けられた構造になっている。各風車用ブレードは、流線型の翼断面構造を有しており、風車用ブレードに風が当たることにより風車が回転する。風力により効率的に風車を回転するためには、風車用ブレードを軽量化することが望ましい。   Conventionally, wind turbines for wind power generation have a structure in which a plurality of wind turbine blades are attached to a rotating body. Each windmill blade has a streamlined blade cross-sectional structure, and the windmill rotates when wind hits the windmill blade. In order to efficiently rotate the windmill by wind power, it is desirable to reduce the weight of the blade for the windmill.

このような点を鑑みて、例えば、特許文献1には、風車用ブレードの外皮として、繊維強化樹脂からなる外皮を備え、風車用ブレードの羽根部を形成する外皮の内部に、アクリル樹脂発泡体からなる芯材を充満した風車用ブレードが提案されている。   In view of such a point, for example, Patent Document 1 includes an outer shell made of fiber-reinforced resin as an outer skin of a windmill blade, and an acrylic resin foam inside the outer skin forming a blade portion of the windmill blade. Wind turbine blades filled with a core material made of

この風車用ブレードによれば、その外皮を繊維強化樹脂で構成することにより、風車用ブレードの強度を保ちつつ、羽根部を形成する外皮の内部の芯材を、アクリル樹脂発泡体で構成することにより、風車用ブレードの軽量化を図ることができる。   According to this windmill blade, the core material inside the outer skin forming the blade portion is made of an acrylic resin foam while maintaining the strength of the windmill blade by making the outer skin made of fiber reinforced resin. Thus, the weight of the windmill blade can be reduced.

特許第6002865号公報Japanese Patent No. 6002865

しかしながら、特許文献1に示すように、羽根部を形成する外皮の内部に、アクリル樹脂発泡体を充満したとしても、風車用ブレードの羽根部の剛性を充分に保つことができない。これは、アクリル樹脂発泡体からなる芯材は、軽量化を目的とし、バルク材を削り込んで作られたものであるため、アクリル発泡体の密度は均一になっているからである。   However, as shown in Patent Document 1, even if an acrylic resin foam is filled inside the outer skin forming the blade portion, the rigidity of the blade portion of the wind turbine blade cannot be sufficiently maintained. This is because the core material made of an acrylic resin foam is made by cutting a bulk material for the purpose of weight reduction, and the density of the acrylic foam is uniform.

そして、風車が回転したときに、回転体に取付けられた風車用ブレードの羽根部の剛性が十分でないと、風力により風車が効率的に回転できないため、たとえば、風車による発電効率が低下することが想定される。   And when the windmill rotates, if the rigidity of the blade portion of the windmill blade attached to the rotating body is not sufficient, the windmill cannot be efficiently rotated by the wind force. For example, the power generation efficiency by the windmill may be reduced. is assumed.

本発明は、このような点を鑑みてなされたものであり、その目的とするところは、羽根部の芯材に発泡樹脂を用いた場合であっても、羽根部の剛性を高めることができる、風車用ブレードを提供することにある。   The present invention has been made in view of these points, and the object of the present invention is to increase the rigidity of the blade portion even when a foamed resin is used as the core material of the blade portion. It is to provide a blade for a windmill.

発明者らは、鋭意検討を重ねた結果、風車用ブレードの羽根部の周縁に沿った部分の機械的強度を、他の部分の強度よりも高くすれば、羽根部の周縁に補強フレームが配置されるかの如く羽根部が補強され、その剛性が高まると考えた。そこで、発明者らは、羽根部の周縁の強度を高める手法として、羽根部の内部に配置される発泡樹脂からなる芯材の密度に着眼した。   As a result of intensive studies, the inventors have arranged a reinforcing frame on the periphery of the blade if the mechanical strength of the portion along the periphery of the blade portion of the wind turbine blade is made higher than the strength of the other portions. It was thought that the blades were reinforced as if they were, and the rigidity was increased. Therefore, the inventors focused on the density of the core material made of foamed resin disposed inside the blade portion as a technique for increasing the strength of the peripheral edge of the blade portion.

本発明は、このような発明者らの着眼に基づくものであり、本発明に係る風車用ブレードは、風車の回転体に取付けられる取付け部と、前記取付け部から延在した羽根部とを備えた風車用ブレードであって、前記風車用ブレードは、少なくとも前記羽根部の形状に応じて形成された、樹脂ビーズの発泡成形体からなる芯材と、前記芯材の表面を覆うように形成された繊維強化樹脂からなる外皮と、を備えており、前記芯材のうち、前記羽根部の周縁に沿った部分の発泡樹脂の密度は、前記芯材の内部の発泡樹脂の密度よりも高いことを特徴とする。   The present invention is based on such inventors' attention, and a blade for a wind turbine according to the present invention includes an attachment portion that is attached to a rotating body of the wind turbine, and a blade portion that extends from the attachment portion. The windmill blade is formed so as to cover a core material made of a foamed resin bead formed at least according to the shape of the blade portion and the surface of the core material. An outer skin made of fiber reinforced resin, and the density of the foamed resin in the portion along the peripheral edge of the blade portion of the core material is higher than the density of the foamed resin inside the core material. It is characterized by.

本発明によれば、風車用ブレードの羽根部は、樹脂発泡体からなる芯材と、この芯材の表面全体を覆う繊維強化樹脂からなる外皮とにより、構成されているため、風車用ブレードを軽量化することができる。   According to the present invention, the blade portion of the windmill blade is constituted by the core material made of resin foam and the outer skin made of fiber reinforced resin covering the entire surface of the core material. The weight can be reduced.

これに加えて、芯材のうち、羽根部の周縁に沿った部分の発泡樹脂の密度が、芯材の内部の発泡樹脂の密度よりも高くなっているので、羽根部の周縁に沿った機械的な強度を高めることができる。これにより、羽根部の周縁に補強フレームが配置されるかの如く羽根部が補強されるため、羽根部全体としての剛性を高めることできる。   In addition to this, since the density of the foamed resin in the core material along the periphery of the blade part is higher than the density of the foamed resin inside the core material, the machine along the periphery of the blade part. Strength can be increased. Thereby, since a blade | wing part is reinforced as if the reinforcement frame is arrange | positioned at the periphery of a blade | wing part, the rigidity as the whole blade | wing part can be improved.

ここで、本発明でいう「羽根部の周縁」とは、風車用ブレードを風車の回転体に取付けた状態で、回転体の回転軸に沿った方向から羽根部を視たときの羽根部の周縁のことである。   Here, the “periphery of the blade portion” as used in the present invention refers to the state of the blade portion when the blade portion is viewed from the direction along the rotation axis of the rotating body with the windmill blade attached to the rotating body of the windmill. It is the periphery.

ところで、本発明では、上述した如く、芯材のうち、羽根部の周縁に沿った部分の発泡樹脂の密度を高めたので、羽根部の周縁に沿った羽根部の先端側まで、芯材の発泡樹脂の密度も高くなる。この結果、確かに羽根部の剛性が高まるが、羽根部の先端側の質量が増加してしまう。   By the way, in this invention, since the density of the foamed resin of the part along the periphery of a blade | wing part was raised as mentioned above among core materials, the core material of the core material was carried out to the front end side of the blade | wing part along the periphery of a blade | wing part. The density of the foamed resin is also increased. As a result, although the rigidity of the blade portion is increased, the mass on the tip side of the blade portion is increased.

そこで、より好ましい態様としては、前記羽根部の先端面における外皮の強化繊維の密度は、前記羽根部の他部分の外皮の強化繊維の密度よりも低い。この態様によれば、羽根部の先端面における外皮の強化繊維の密度を、羽根部の他の部分の外皮の強化繊維の密度よりも低くしたので、羽根部の先端側の質量の増加を低減することができる。これにより、風車用ブレードが回転体に取付けられた風車の振れを抑え、より安定して風車を回転させることができる。   Therefore, as a more preferable aspect, the density of the reinforcing fiber in the outer skin on the tip surface of the blade part is lower than the density of the reinforcing fiber in the outer part of the other part of the blade part. According to this aspect, the density of the reinforcing fiber in the outer skin at the tip surface of the blade part is made lower than the density of the reinforcing fiber in the outer skin of the other part of the blade part. can do. As a result, the wind turbine blade can be prevented from swinging with the wind turbine blade attached to the rotating body, and the wind turbine can be rotated more stably.

さらに好ましい態様としては、前記芯材は、前記取付け部の形状に応じて形成された部分と、前記羽根部の形状に応じて形成された部分とが、一体的に成形された樹脂ビーズの発泡成形体からなる。   As a more preferable aspect, the core material is a foamed resin bead in which a portion formed according to the shape of the mounting portion and a portion formed according to the shape of the blade portion are integrally formed. It consists of a molded body.

この態様によれば、芯材のうち、取付け部の形状に応じて形成された部分と、羽根部の形状に応じて形成された部分とが、一体的に成形されているので、風車用ブレード全体の剛性を高めることができる。また、風車用ブレードの取付け部と羽根部との境界部分は、その形状に起因した絞り形状となっており、この部分に応力集中しやすいが、この部分も一体的に成形されているため、風車用ブレードの強度を高めることができる。   According to this aspect, since the portion formed according to the shape of the attachment portion and the portion formed according to the shape of the blade portion of the core material are integrally formed, the blade for the windmill The overall rigidity can be increased. In addition, the boundary portion between the wind turbine blade mounting portion and the blade portion has a narrowed shape due to its shape, and it is easy to concentrate stress on this portion, but this portion is also integrally molded, The strength of the windmill blade can be increased.

さらに好ましい態様としては、前記取付け部には、前記芯材が前記外皮に挟まれた位置において、前記風車用ブレードを前記回転体に固定するための締結具が挿通される貫通孔が形成されている。   As a more preferable aspect, the attachment portion is formed with a through-hole through which a fastener for fixing the windmill blade to the rotating body is inserted at a position where the core member is sandwiched between the outer skins. Yes.

この態様によれば、貫通孔に締結具を挿通し、風車用ブレードと回転体とを挟み込むように締結具を締結し、風車用ブレードを回転体に固定することができる。この締結具の締結力により、風車用ブレードの取付け部の芯材は圧縮され、圧縮された芯材の復元力に起因した反力が締結具に作用する。この反力により、締結具の緩みを低減することができる。   According to this aspect, the fastener can be inserted into the through hole, the fastener can be fastened so as to sandwich the windmill blade and the rotating body, and the windmill blade can be fixed to the rotating body. Due to the fastening force of the fastener, the core material of the attachment portion of the wind turbine blade is compressed, and a reaction force due to the restoring force of the compressed core material acts on the fastener. This reaction force can reduce the looseness of the fastener.

本発明によれば、羽根部の芯材に発泡樹脂を用いた場合であっても、羽根部の剛性を高めることができる。   According to the present invention, even if a foamed resin is used for the core material of the blade portion, the rigidity of the blade portion can be increased.

本発明の本実施形態に係る風車用ブレードの模式的斜視図である。It is a typical perspective view of the blade for windmills concerning this embodiment of the present invention. (a)は、図1に示す風車用ブレードの正面図であり、(b)は、その側面図である。(A) is a front view of the blade for windmills shown in FIG. 1, (b) is the side view. (a)は、図2(a)に示すA−A線矢視断面図であり、(b)は、図2(a)に示すB−B線矢視断面図である。(A) is an AA arrow directional cross-sectional view shown to Fig.2 (a), (b) is a BB arrow directional cross-sectional view shown to Fig.2 (a). 図2(b)に示すC−C線矢視断面図である。It is CC sectional view taken on the line in FIG.2 (b). 外皮に相当するプリプレグ同士を芯材に貼り合わせて、風車用ブレードをプレス成形する前の状態を示した模式的斜視図である。It is the typical perspective view which showed the state before bonding the prepregs corresponded to an outer skin to a core material, and press-molding the windmill blade. 本実施形態に係る風車用ブレードを回転板に取付けた状態の要部拡大断面図である。It is a principal part expanded sectional view of the state which attached the blade for windmills concerning this embodiment to the rotating plate.

以下に本発明の実施形態に係る風車用ブレードの一例について説明する。
図1は、本発明の本実施形態に係る風車用ブレード1の模式的斜視図である。図2(a)は、図1に示す風車用ブレード1の正面図であり、(b)は、その側面図である。図3(a)は、図2(a)に示すA−A線矢視断面図であり、(b)は、図2(a)に示すB−B線矢視断面図である。図4は、図2(b)に示すC−C線矢視断面図である。
Hereinafter, an example of a blade for a windmill according to an embodiment of the present invention will be described.
FIG. 1 is a schematic perspective view of a windmill blade 1 according to this embodiment of the present invention. Fig.2 (a) is a front view of the blade 1 for windmills shown in FIG. 1, (b) is the side view. 3A is a cross-sectional view taken along the line AA shown in FIG. 2A, and FIG. 3B is a cross-sectional view taken along the line BB shown in FIG. FIG. 4 is a cross-sectional view taken along line C-C shown in FIG.

1.風車用ブレードの全体構造
図1に示すように、本実施形態に係る風車用ブレード1は、風車の回転軸として回転する一対の回転板(回転体)21,21に、複数枚取付けられる風車用ブレードである。風車用ブレード1は、風車の回転板21,21に取付けられる取付け部11と、取付け部11から延在した羽根部12とを備えている。羽根部12は、幅方向の一方側に尖った流線型の断面形状であり、羽根部12の先端から基端まで、この断面形状を維持して捩じられている(たとえば図3(b)参照)。
1. Overall Structure of Windmill Blade As shown in FIG. 1, a windmill blade 1 according to this embodiment is for a windmill that is attached to a plurality of rotating plates (rotators) 21, 21 that rotate as a rotating shaft of the windmill. It is a blade. The windmill blade 1 includes an attachment portion 11 that is attached to the rotating plates 21 and 21 of the windmill, and a blade portion 12 that extends from the attachment portion 11. The blade portion 12 has a streamlined cross-sectional shape that is pointed on one side in the width direction, and is twisted while maintaining this cross-sectional shape from the distal end to the proximal end of the blade portion 12 (see, for example, FIG. 3B). ).

また、図2(a),(b)に示すように、羽根部12は、その長手方向中央から基端に向かって厚さが増加し、取付け部11近傍において、取付け部11側に進むに従って羽根部12の幅および厚さが減少するように形成されている。取付け部11には、風車の回転板21,21に取付けるための3つの貫通孔19,19,19が形成されている。   Further, as shown in FIGS. 2A and 2B, the blade portion 12 increases in thickness from the center in the longitudinal direction toward the base end, and proceeds toward the attachment portion 11 in the vicinity of the attachment portion 11. The blade portion 12 is formed so that the width and thickness thereof are reduced. The attachment portion 11 is formed with three through holes 19, 19, 19 for attaching to the rotating plates 21, 21 of the windmill.

図3(a),(b)および図4に示すように、取付け部11および羽根部12は、芯材13と、芯材13に接触し、芯材13の表面全体を覆う外皮15と、を備えている。すなわち、風車用ブレード1は、見かけ上は、外皮15に樹脂発泡体からなる芯材13が充填された構造となっている。   As shown in FIGS. 3A, 3B and 4, the attachment portion 11 and the blade portion 12 are a core member 13, an outer skin 15 that contacts the core member 13 and covers the entire surface of the core member 13, It has. That is, the windmill blade 1 has a structure in which an outer skin 15 is filled with a core material 13 made of a resin foam.

2.芯材13について
芯材13は、羽根部12の形状に応じて形成された羽根芯部13Aと、取付け部11の形状に応じて形成された取付け芯部13Bとを備えている。羽根芯部13Aと、取付け芯部13Bとは、一体的に成形された樹脂ビーズの発泡成形体からなる。
2. About Core Material 13 The core material 13 includes a blade core portion 13 </ b> A formed according to the shape of the blade portion 12 and an attachment core portion 13 </ b> B formed according to the shape of the attachment portion 11. The blade core portion 13A and the attachment core portion 13B are made of a foamed molded body of resin beads formed integrally.

本実施形態では、羽根芯部13Aと、取付け芯部13Bとが一体的に成形されているので、風車用ブレード1全体の剛性を高めることができる。また、取付け部11と羽根部12との境界部分では、その形状に起因した絞り形状となっており、この部分に応力集中しやすいが、この部分を含む羽根芯部13Aおよび取付け芯部13Bが一体的に成形されているため、風車用ブレード1の強度を高めることができる。   In this embodiment, since the blade core portion 13A and the attachment core portion 13B are integrally formed, the rigidity of the entire wind turbine blade 1 can be increased. In addition, the boundary portion between the attachment portion 11 and the blade portion 12 has a narrowed shape due to its shape, and stress is likely to be concentrated on this portion, but the blade core portion 13A and the attachment core portion 13B including this portion are Since it is integrally formed, the strength of the wind turbine blade 1 can be increased.

ここで、芯材13となる樹脂ビーズの発泡成形体は、型内発泡成形法により製造される。具体的には、発泡剤を含む予備発泡した樹脂ビーズを成形型内に充填し、熱水や水蒸気などの熱媒体によって樹脂ビーズを加熱してさらに発泡させ、樹脂ビーズの発泡圧によって樹脂ビーズ同士を融着一体化することにより、樹脂ビーズの発泡成形体を製造することができる。   Here, the resin bead foam molded body to be the core material 13 is manufactured by an in-mold foam molding method. Specifically, pre-expanded resin beads containing a foaming agent are filled in a mold, and the resin beads are further foamed by heating with a heat medium such as hot water or steam, and the resin beads are expanded by the foaming pressure of the resin beads. By fusing and integrating, a foam molded body of resin beads can be produced.

樹脂発泡体の樹脂(樹脂ビーズの樹脂)としては、例えば、ポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリメタクリルイミド系樹脂、ポリオレフィン系樹脂などの熱可塑性樹脂、フェノール系樹脂、エポキシ系樹脂、ビニルエステル系樹脂、不飽和ポリエステル系樹脂などの反応硬化性樹脂を主成分とするものが含むものが挙げられる。その他にも、スチレン−メタクリル酸メチル−無水マレイン酸共重合樹脂(SMM)や、ポリフェニレンオキサイド系樹脂などであってもよい。樹脂発泡体に含有させる樹脂は、1種単独である必要はなく、2種以上であっても良い。   Examples of resin foam resins (resin beads) include polyester resins, acrylic resins, polycarbonate resins, polymethacrylamide resins, polyolefin resins, and other thermoplastic resins, phenol resins, and epoxy resins. And those containing as a main component a reaction curable resin such as a vinyl ester resin and an unsaturated polyester resin. In addition, styrene-methyl methacrylate-maleic anhydride copolymer resin (SMM), polyphenylene oxide resin, and the like may be used. The resin contained in the resin foam need not be one kind alone, and may be two or more kinds.

たとえば、ポリエステル系樹脂としては、ポリエチレンテレフタレート樹脂、ポリプロピレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリシクロヘキサンジメチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリブチレンナフタレート樹脂などが挙げられる。   For example, examples of the polyester resin include polyethylene terephthalate resin, polypropylene terephthalate resin, polybutylene terephthalate resin, polycyclohexanedimethylene terephthalate resin, polyethylene naphthalate resin, and polybutylene naphthalate resin.

ここで、図2,図3(b),および図4に示すように、芯材13の羽根芯部13Aのうち、羽根部12の周縁12aに沿った部分13aの発泡樹脂の密度は、羽根芯部13Aの内部13bの発泡樹脂の密度よりも高い。   Here, as shown in FIG. 2, FIG. 3 (b), and FIG. 4, the density of the foamed resin in the portion 13a along the peripheral edge 12a of the blade portion 12 of the blade core portion 13A of the core member 13 is It is higher than the density of the foamed resin in the inside 13b of the core portion 13A.

たとえば、羽根芯部13Aの内部13bの発泡樹脂の密度は、0.09〜0.45g/cmの範囲にあることが好ましく、さらに、羽根芯部13Aの内部13bの発泡樹脂の密度に対する、羽根芯部13Aの羽根部12の周縁12aに沿った部分13aの発泡樹脂の密度の比率は、1.05〜2.00の範囲にあることが好ましく、より好ましくは、1.05〜1.70の範囲にある。なお、発泡樹脂の密度は、JIS K7222:2005「発泡プラスチック及びゴム−見掛け密度の測定」に準拠して測定される値をいう。 For example, the density of the foamed resin in the inner part 13b of the blade core part 13A is preferably in the range of 0.09 to 0.45 g / cm 3 , and further, the density of the foamed resin in the inner part 13b of the blade core part 13A is The ratio of the density of the foamed resin in the portion 13a along the peripheral edge 12a of the blade portion 12 of the blade core portion 13A is preferably in the range of 1.05 to 2.00, more preferably 1.05 to 1. It is in the range of 70. The density of the foamed resin is a value measured according to JIS K7222: 2005 “Measurement of foamed plastic and rubber-apparent density”.

羽根芯部13Aの内部13bの発泡樹脂を上述した密度の範囲にすることにより、風車用ブレード1の軽量化を図ることができる。さらに、羽根芯部13Aの内部13bの発泡樹脂の密度に対する、羽根芯部13Aの羽根部12の周縁12aに沿った部分13aの発泡樹脂の密度の比率を上述した範囲にすることにより、羽根部12の周縁12aに沿った機械的な強度を高めることができる。   By setting the foamed resin in the inner part 13b of the blade core part 13A within the above-described density range, the weight of the windmill blade 1 can be reduced. Furthermore, by setting the ratio of the density of the foamed resin in the portion 13a along the peripheral edge 12a of the blade portion 12 of the blade core portion 13A to the density of the foamed resin in the inside 13b of the blade core portion 13A, the blade portion The mechanical strength along the 12 peripheral edges 12a can be increased.

これにより、羽根部12の周縁12aに補強フレームが配置されるかの如く羽根部12が補強されるため、羽根部12全体としての剛性を高めることできる。この結果、風車が回転したときに、回転板21,21に取付けられた風車用ブレード1の羽根部12の剛性を確保することができる。このため、風力により風車を効率的に回転させることができ、たとえば、風車による発電効率を高めることができる。   Thereby, since the blade | wing part 12 is reinforced as if the reinforcement frame is arrange | positioned at the peripheral edge 12a of the blade | wing part 12, the rigidity as the whole blade | wing part 12 can be improved. As a result, when the wind turbine rotates, the rigidity of the blade portion 12 of the wind turbine blade 1 attached to the rotating plates 21 and 21 can be ensured. For this reason, a windmill can be efficiently rotated with wind power, for example, the power generation efficiency by a windmill can be improved.

なお、羽根部12の周縁12aとは、風車用ブレード1を風車の回転板21,21に取付けた状態で、回転板21の回転軸に沿った方向から羽根部12を視たときの周縁のことであり、図2(a)に示す、風車用ブレードの正面視において、風車用ブレード1の羽根部12を視たときの周縁のことである。   The peripheral edge 12a of the blade portion 12 is the peripheral edge when the blade portion 12 is viewed from the direction along the rotation axis of the rotating plate 21 with the windmill blade 1 attached to the rotating plates 21 and 21 of the windmill. That is, in the front view of the windmill blade shown in FIG. 2A, the peripheral edge when the blade portion 12 of the windmill blade 1 is viewed.

3.外皮15について
外皮15は、羽根芯部13Aおよび取付け芯部13Bからなる芯材13の表面全体を覆っている。なお、上述した貫通孔19は、芯材13の取付け芯部13Bが外皮15に挟まれた位置に、これらを貫通するように形成されている。
3. About the outer skin 15 The outer skin 15 covers the entire surface of the core material 13 composed of the blade core portion 13A and the attachment core portion 13B. In addition, the through-hole 19 mentioned above is formed in the position where the attachment core part 13B of the core material 13 was pinched | interposed into the outer skin | cover 15, so that these may be penetrated.

外皮15は、強化繊維に合成樹脂が含浸された繊維強化樹脂からなる。繊維強化樹脂を構成する強化繊維としては、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、チラノ繊維、玄武岩繊維、セラミックス繊維などの無機繊維;ステンレス繊維やスチール繊維などの金属繊維;アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサドール(PBO)繊維などの有機繊維;またはボロン繊維などが挙げられる。強化繊維は、一種単独で用いられてもよく、二種以上が併用されてもよい。なかでも、炭素繊維、ガラス繊維、またはアラミド繊維が好ましく、炭素繊維がより好ましい。これらの強化繊維は、軽量であるにも関わらず優れた機械的強度を有している。   The outer skin 15 is made of a fiber reinforced resin in which a reinforced fiber is impregnated with a synthetic resin. As the reinforcing fiber constituting the fiber reinforced resin, inorganic fibers such as glass fiber, carbon fiber, silicon carbide fiber, alumina fiber, Tyranno fiber, basalt fiber, ceramic fiber; metal fiber such as stainless steel fiber and steel fiber; aramid fiber, Examples thereof include organic fibers such as polyethylene fibers and polyparaphenylene benzoxador (PBO) fibers; or boron fibers. Reinforcing fibers may be used alone or in combination of two or more. Among these, carbon fiber, glass fiber, or aramid fiber is preferable, and carbon fiber is more preferable. These reinforcing fibers have excellent mechanical strength despite being lightweight.

強化繊維としては、長繊維または短繊維のいずれであってもよいが、所望の形状に加工された強化繊維基材として用いられることが好ましい。強化繊維基材としては、強化繊維を用いてなる織物基材、編物基材、不織布、または強化繊維を一方向に引き揃えた繊維束(ストランド)を糸で結束(縫合)してなる面材などが挙げられる。本実施形態では、強化繊維基材は、長繊維が織り込まれた織物基材であり、織物基材の織り方としては、平織、綾織、朱子織などが挙げられる。繊維強化基材は、一枚の繊維強化基材のみを積層せずに用いてもよく、複数枚の繊維強化基材を積層して積層繊維強化基材として用いてもよい。   The reinforcing fiber may be either a long fiber or a short fiber, but is preferably used as a reinforcing fiber substrate processed into a desired shape. As the reinforcing fiber base material, a woven fabric base material, a knitted base material, a nonwoven fabric, or a face material obtained by binding (sewing) a fiber bundle (strand) in which reinforcing fibers are aligned in one direction with a thread. Etc. In the present embodiment, the reinforcing fiber base is a woven base in which long fibers are woven, and examples of the weaving of the woven base include plain weave, twill, satin weave and the like. The fiber reinforced base material may be used without laminating only one fiber reinforced base material, or a plurality of fiber reinforced base materials may be laminated and used as a laminated fiber reinforced base material.

合成樹脂は、強化繊維に含浸されて、強化繊維同士を結合する樹脂である。含浸させた合成樹脂によって、強化繊維同士を結着一体化させることができる。強化繊維に含浸させる合成樹脂は、熱硬化性樹脂または熱可塑性樹脂のいずれの樹脂であってもよいが、より好ましくは、熱硬化性樹脂である。   A synthetic resin is a resin that is impregnated into reinforcing fibers and bonds the reinforcing fibers together. The reinforcing fibers can be bonded and integrated by the impregnated synthetic resin. The synthetic resin impregnated into the reinforcing fibers may be either a thermosetting resin or a thermoplastic resin, but more preferably a thermosetting resin.

熱硬化性樹脂としては、特に限定されず、例えば、エポキシ系樹脂、不飽和ポリエステル系樹脂、フェノール系樹脂、メラミン系樹脂、ポリウレタン系樹脂、シリコン系樹脂、マレイミド系樹脂、ビニルエステル系樹脂、シアン酸エステル系樹脂、またはマレイミド系樹脂とシアン酸エステル系樹脂を予備重合した樹脂などが挙げられる。熱硬化性樹脂は、単独で用いられても二種以上が併用されてもよい。なかでも、エポキシ系樹脂、またはビニルエステル系樹脂が好ましい。これらの合成樹脂によれば、弾性に優れた繊維強化樹脂を形成することができ、得られる風車用ブレード1の耐衝撃性を向上させることができる。また、熱硬化性樹脂には、硬化剤、硬化促進剤などの添加剤が含有されていてもよい。繊維強化樹脂は、シート・モールディング・コンパウンド(SMC)により成形されてもよい。   The thermosetting resin is not particularly limited. For example, epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, polyurethane resin, silicon resin, maleimide resin, vinyl ester resin, cyanide. Examples thereof include acid ester resins, or resins obtained by prepolymerizing maleimide resins and cyanate ester resins. A thermosetting resin may be used independently or 2 or more types may be used together. Of these, epoxy resins or vinyl ester resins are preferable. According to these synthetic resins, a fiber reinforced resin having excellent elasticity can be formed, and the impact resistance of the resulting wind turbine blade 1 can be improved. Further, the thermosetting resin may contain additives such as a curing agent and a curing accelerator. The fiber reinforced resin may be molded by a sheet molding compound (SMC).

繊維強化樹脂における熱硬化性樹脂の含有量は、20〜80重量%が好ましく、30〜70重量%がより好ましい。熱硬化性樹脂の含有量が少な過ぎると、強化繊維同士の結着性が不十分となるおそれがある。また、熱硬化性樹脂の含有量が多過ぎると、外皮15の機械的強度が低下して、風車用ブレード1の耐衝撃性を十分に向上させることができないおそれがある。   The content of the thermosetting resin in the fiber reinforced resin is preferably 20 to 80% by weight, and more preferably 30 to 70% by weight. When there is too little content of a thermosetting resin, there exists a possibility that the binding property of reinforcement fibers may become inadequate. Moreover, when there is too much content of a thermosetting resin, there exists a possibility that the mechanical strength of the outer skin | casing 15 may fall and the impact resistance of the blade 1 for windmills cannot fully be improved.

本実施形態では、羽根部12の先端面12cにおける外皮15の強化繊維の密度は、羽根部12の他部分の外皮15の強化繊維の密度よりも低い。具体的には、強化繊維が、炭素繊維である場合、羽根部12の先端面12cにおける外皮15の強化繊維の密度は、1.4〜1.9g/mの範囲にあることが好ましい。羽根部12のそれ以外の部分(他の部分)の外皮15の密度は、羽根部12の先端面12cにおける外皮15の強化繊維の密度が低いことを前提に、1.5〜2.0g/mの範囲にあることが好ましい。 In the present embodiment, the density of the reinforcing fibers of the outer skin 15 on the tip surface 12 c of the blade part 12 is lower than the density of the reinforcing fibers of the outer skin 15 of the other part of the blade part 12. Specifically, when the reinforcing fiber is a carbon fiber, the density of the reinforcing fiber of the outer skin 15 on the tip surface 12c of the blade portion 12 is preferably in the range of 1.4 to 1.9 g / m 2 . The density of the outer skin 15 of the other part (other part) of the blade part 12 is 1.5 to 2.0 g / on the premise that the density of the reinforcing fiber of the outer skin 15 on the tip surface 12c of the blade part 12 is low. it is preferably in the range of m 2.

このように、羽根部12の先端面12cにおける外皮15の強化繊維の密度を、羽根部12の他部分の外皮15の強化繊維の密度よりも低くしたので、羽根部12の先端側の質量の増加を低減することができる。これにより、風車用ブレード1が回転板21に取付けられた風車の振れを抑え、より安定して風車を回転させることができる。   Thus, since the density of the reinforcing fiber of the outer skin 15 on the tip surface 12c of the blade portion 12 is lower than the density of the reinforcing fiber of the outer skin 15 of the other portion of the blade portion 12, the mass of the tip side of the blade portion 12 is reduced. The increase can be reduced. Thereby, the windmill blade 1 can suppress the vibration of the windmill attached to the rotating plate 21, and the windmill can be rotated more stably.

4.風車用ブレード1の製造方法
以下に風車用ブレード1の製造方法を説明する。図5は、外皮に相当するプリプレグ15A,15A同士を芯材13に貼り合わせて、風車用ブレード1をプレス成形する前の状態を示した模式的斜視図である。
4). Method for Manufacturing Windmill Blade 1 A method for manufacturing the windmill blade 1 will be described below. FIG. 5 is a schematic perspective view showing a state before the prepregs 15A and 15A corresponding to the outer skin are bonded to the core member 13 and the windmill blade 1 is press-molded.

まず、型内発泡成形法により、風車用ブレード1の芯材13となる、樹脂ビーズの発泡成形体を製造する。具体的には、芯材13の形状に応じた成形型(図示せず)内に、発泡剤を含む予備発泡した樹脂ビーズを充填し、熱水や水蒸気などの熱媒体によって樹脂ビーズを加熱してさらに発泡させ、樹脂ビーズの発泡圧によって樹脂ビーズ同士を融着一体化する。   First, a resin-bead foam-molded body that becomes the core member 13 of the wind turbine blade 1 is manufactured by an in-mold foam-molding method. Specifically, a pre-foamed resin bead containing a foaming agent is filled in a mold (not shown) according to the shape of the core material 13, and the resin bead is heated with a heat medium such as hot water or steam. Further, the resin beads are fused and integrated by the foaming pressure of the resin beads.

これにより、羽根芯部13Aと取付け芯部13Bとが一体的に成形された、芯材13を得ることができる。得られた芯材13の羽根芯部13Aの形状に起因して、羽根芯部13Aを構成する発泡樹脂のうち、羽根部12の周縁12aに沿った部分13aの発泡樹脂の密度が、羽根芯部13Aの内部13bの発泡樹脂の密度よりも高くなる(たとえば、図2(a)参照)。   Thereby, the core material 13 in which the blade core portion 13A and the attachment core portion 13B are integrally formed can be obtained. Due to the shape of the blade core portion 13A of the core material 13 obtained, the density of the foamed resin in the portion 13a along the peripheral edge 12a of the blade portion 12 among the foamed resin constituting the blade core portion 13A is the blade core. It becomes higher than the density of the foamed resin in the inside 13b of the portion 13A (see, for example, FIG. 2A).

次に、図5に示すように、風車用ブレード1の形状に応じたキャビティCが形成された下型41と上型42とを準備し、下型41に外皮に相当するプリプレグ15Aを配置し、その上に、芯材13を配置し、さらにその上を、プリプレグ15Aで覆う。プリプレグ15Aには、たとえば、上述した強化繊維からなる織物基材に、未硬化の熱硬化性樹脂(合成樹脂)を含浸させたものを用いる。なお、合成樹脂は、熱可塑性樹脂であってもよい。   Next, as shown in FIG. 5, a lower mold 41 and an upper mold 42 in which a cavity C corresponding to the shape of the windmill blade 1 is formed are prepared, and a prepreg 15 </ b> A corresponding to the outer skin is arranged on the lower mold 41. The core material 13 is disposed thereon, and the top is covered with the prepreg 15A. As the prepreg 15A, for example, a woven base material made of the above-described reinforcing fiber is used which is impregnated with an uncured thermosetting resin (synthetic resin). The synthetic resin may be a thermoplastic resin.

この状態で、下型41と上型42を加熱しながら、上型42を下型41に移動させて、これらを型締めし、合成樹脂が熱硬化性樹脂である場合には、その硬化温度以上で(また合成樹脂が熱可塑性樹脂である場合には、その軟化点以上)で加熱しつつ、風車用ブレード1をプレス成形する。この際、羽根部12の先端面12cとして成形されるプリプレグ15Aの部分は、他のプリプレグ15Aの部分に比べて、型締め時に、大きく流動する。これにより、羽根部12の先端面12cにおける外皮15の強化繊維の密度が、羽根部12の他部分の外皮15の強化繊維の密度よりも、低くなる。   In this state, while the lower mold 41 and the upper mold 42 are heated, the upper mold 42 is moved to the lower mold 41 and these are clamped. When the synthetic resin is a thermosetting resin, its curing temperature The windmill blade 1 is press-molded while being heated as described above (and, if the synthetic resin is a thermoplastic resin, at or above its softening point). At this time, the portion of the prepreg 15A that is molded as the tip surface 12c of the blade portion 12 flows more greatly during mold clamping than the portion of the other prepreg 15A. Thereby, the density of the reinforcing fibers of the outer skin 15 on the tip surface 12 c of the blade part 12 becomes lower than the density of the reinforcing fibers of the outer skin 15 of the other part of the blade part 12.

さらに、型締め方向におけるプリプレグ15Aの厚みに対する羽根芯部13Aの厚みの比率は、羽根部12の周縁12aに沿った部分が最も大きくなる。このため、羽根芯部13Aの周縁12aに沿った部分13aの発泡樹脂は、他の部分の樹脂よりも、型締め時により大きな荷重で加圧される。この結果、羽根芯部13Aを構成する発泡樹脂のうち、羽根部12の周縁12aに沿った部分13aの発泡樹脂の密度を、部分13aに囲まれた内側の表面の発泡樹脂の密度よりも高くすることができる。   Furthermore, as for the ratio of the thickness of the blade core portion 13A to the thickness of the prepreg 15A in the mold clamping direction, the portion along the peripheral edge 12a of the blade portion 12 is the largest. For this reason, the foamed resin of the part 13a along the peripheral edge 12a of the blade core part 13A is pressurized with a larger load at the time of mold clamping than the resin of other parts. As a result, among the foamed resins constituting the blade core portion 13A, the density of the foamed resin in the portion 13a along the peripheral edge 12a of the blade portion 12 is higher than the density of the foamed resin on the inner surface surrounded by the portion 13a. can do.

5.風車用ブレード1の取付け構造
図6は、本実施形態に係る風車用ブレード1を回転板21,22に取付けた状態の要部拡大断面図である。図1に示すように、風車用ブレード1は、一対の回転板21,21で挟み込むようにして、一対の回転板21,21に取付けられる。
5. Attachment Structure of Windmill Blade 1 FIG. 6 is an enlarged cross-sectional view of a main part in a state where the windmill blade 1 according to the present embodiment is attached to the rotating plates 21 and 22. As shown in FIG. 1, the windmill blade 1 is attached to the pair of rotating plates 21 and 21 so as to be sandwiched between the pair of rotating plates 21 and 21.

具体的には、図1および図6に示すように、風車用ブレード1の取付け部11に形成された3つの貫通孔19を利用して、風車用ブレード1を回転板21,21に取付ける。まず、貫通孔19に、後述するボルト61を案内するための円筒状のガイド材51と、リング状のガイド材52を配置する。   Specifically, as shown in FIGS. 1 and 6, the windmill blade 1 is attached to the rotating plates 21 and 21 by using three through holes 19 formed in the attachment portion 11 of the windmill blade 1. First, a cylindrical guide material 51 for guiding a bolt 61 described later and a ring-shaped guide material 52 are disposed in the through hole 19.

次に、風車用ブレード1の取付け部11の両側に、回転板21,21を挟み込む。この状態で、貫通孔19に、締結具の一部を構成するボルト61を貫通孔19の一方側から挿通する。次に貫通孔19の他方側から締結具の一部を構成するナット62を、ボルト61に螺着させ、これを締め込む。   Next, the rotating plates 21 and 21 are sandwiched between both sides of the attachment portion 11 of the windmill blade 1. In this state, the bolt 61 constituting a part of the fastener is inserted into the through hole 19 from one side of the through hole 19. Next, a nut 62 constituting a part of the fastener is screwed onto the bolt 61 from the other side of the through hole 19 and is tightened.

これにより、貫通孔19にボルト61を挿通し、風車用ブレード1と回転板21,21とを挟み込むように、ボルト61にナット62を締結し、風車用ブレード1を回転板21,21に固定することができる。この際、風車用ブレード1の取付け部11の取付け芯部13Bは、ボルト61とナット62の締結力により圧縮される。そして、圧縮された取付け芯部13Bの復元力に起因した反力がボルト61とナット62に作用する。この反力により、ボルト61とナット62との緩みを低減することができる。   As a result, the bolt 61 is inserted into the through hole 19, the nut 62 is fastened to the bolt 61 so that the windmill blade 1 and the rotating plates 21 and 21 are sandwiched, and the windmill blade 1 is fixed to the rotating plates 21 and 21. can do. At this time, the attachment core portion 13 </ b> B of the attachment portion 11 of the wind turbine blade 1 is compressed by the fastening force of the bolt 61 and the nut 62. Then, a reaction force caused by the restoring force of the compressed mounting core portion 13 </ b> B acts on the bolt 61 and the nut 62. This reaction force can reduce loosening between the bolt 61 and the nut 62.

以上、本発明の実施の形態を用いて詳述してきたが、具体的な構成はこの実施形態及び実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更があっても、それらは本発明に含まれるものである。   As mentioned above, although it explained in full detail using embodiment of this invention, a concrete structure is not limited to this embodiment and an Example, There exists a design change in the range which does not deviate from the summary of this invention. They are also included in the present invention.

たとえば、本実施形態では、芯材は、取付け芯部と羽根芯部の双方を一体的に成形したものであるが、少なくとも羽根芯部の発泡樹脂の密度の関係が上述した範囲を満たせば、これらが分離された状態であってもよい。   For example, in the present embodiment, the core material is formed by integrally forming both the attachment core portion and the blade core portion, and at least if the density relationship of the foamed resin in the blade core portion satisfies the above-described range, These may be in a separated state.

1:風車用ブレード、11:取付け部、12:羽根部、13:芯材、13A:羽根芯部、13B:取付け芯部、19:貫通孔、12:羽根部、15:外皮、19:貫通孔 1: windmill blade, 11: attachment portion, 12: blade portion, 13: core material, 13A: blade core portion, 13B: attachment core portion, 19: through hole, 12: blade portion, 15: outer skin, 19: penetration Hole

Claims (4)

風車の回転体に取付けられる取付け部と、前記取付け部から延在した羽根部とを備えた風車用ブレードであって、
前記風車用ブレードは、少なくとも前記羽根部の形状に応じて形成された、樹脂ビーズの発泡成形体からなる芯材と、
前記芯材の表面を覆うように形成された繊維強化樹脂からなる外皮と、を備えており、
前記芯材のうち、前記羽根部の周縁に沿った部分の発泡樹脂の密度は、前記芯材の内部の発泡樹脂の密度よりも高いことを特徴とする風車用ブレード。
A blade for a windmill comprising an attachment portion attached to a rotating body of the windmill, and a blade portion extending from the attachment portion;
The windmill blade is formed according to the shape of at least the blade portion, and a core material made of a foam molded body of resin beads,
An outer skin made of a fiber reinforced resin formed so as to cover the surface of the core material,
The windmill blade according to claim 1, wherein a density of the foamed resin in a portion along the peripheral edge of the blade portion of the core material is higher than a density of the foamed resin inside the core material.
前記羽根部の先端面における外皮の強化繊維の密度は、前記羽根部の他部分の外皮の強化繊維の密度よりも低いことを特徴とする請求項1に記載の風車用ブレード。   The windmill blade according to claim 1, wherein the density of the reinforcing fiber in the outer skin at the tip surface of the blade portion is lower than the density of the reinforcing fiber in the outer skin at the other portion of the blade portion. 前記芯材は、前記取付け部の形状に応じて形成された部分と、前記羽根部の形状に応じて形成された部分とが、一体的に成形された樹脂ビーズの発泡成形体からなることを特徴とする請求項1または2に記載の風車用ブレード。   The core material is formed of a resin bead foam molded body in which a portion formed according to the shape of the mounting portion and a portion formed according to the shape of the blade portion are integrally formed. The blade for windmills according to claim 1 or 2, characterized by the above-mentioned. 前記取付け部には、前記芯材が前記外皮に挟まれた位置において、前記風車用ブレードを前記回転体に固定するための締結具が挿通される貫通孔が形成されていることを特徴とする請求項3に記載の風車用ブレード。   The attachment portion is formed with a through-hole through which a fastener for fixing the windmill blade to the rotating body is inserted at a position where the core member is sandwiched between the outer skins. The blade for wind turbines according to claim 3.
JP2017067863A 2017-03-30 2017-03-30 Windmill blade Active JP6865084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017067863A JP6865084B2 (en) 2017-03-30 2017-03-30 Windmill blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017067863A JP6865084B2 (en) 2017-03-30 2017-03-30 Windmill blade

Publications (2)

Publication Number Publication Date
JP2018168789A true JP2018168789A (en) 2018-11-01
JP6865084B2 JP6865084B2 (en) 2021-04-28

Family

ID=64018546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017067863A Active JP6865084B2 (en) 2017-03-30 2017-03-30 Windmill blade

Country Status (1)

Country Link
JP (1) JP6865084B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022538402A (en) * 2019-06-20 2022-09-02 ギャラクティック コ.,エルエルシー One-piece pultruded composite profile and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288227A (en) * 1990-01-25 1992-10-13 Basf Ag Laminated board of improved edge part stability
WO2006106734A1 (en) * 2005-03-30 2006-10-12 Zephyr Corporation Windmill
WO2017037930A1 (en) * 2015-09-03 2017-03-09 積水化成品工業株式会社 Windmill blade

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288227A (en) * 1990-01-25 1992-10-13 Basf Ag Laminated board of improved edge part stability
WO2006106734A1 (en) * 2005-03-30 2006-10-12 Zephyr Corporation Windmill
WO2017037930A1 (en) * 2015-09-03 2017-03-09 積水化成品工業株式会社 Windmill blade

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022538402A (en) * 2019-06-20 2022-09-02 ギャラクティック コ.,エルエルシー One-piece pultruded composite profile and method for manufacturing same

Also Published As

Publication number Publication date
JP6865084B2 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
US8101262B2 (en) Fiber-reinforced plastic and process for production thereof
EP2431159B1 (en) Hockey blade and method of forming the same
JP5241257B2 (en) Fiber-reinforced composite material and method for producing the same
JP2007092716A (en) Blade structure body and method for manufacturing same
US20120040106A1 (en) Apparatus for impregnating a fiber material with a resin and methods for forming a fiber-reinforced plastic part
EP2943336B1 (en) Triaxial fiber-reinforced composite laminate
WO2006106734A1 (en) Windmill
US10427361B2 (en) Fiber-reinforced sheet and structure
JP5336225B2 (en) Multi-axis stitch base material and preform using it
CA3040845C (en) Fan rotor blade and method of manufacturing same
JP2007170328A (en) Windmill blade for wind power generation and its manufacturing method
JP2017132310A (en) Composite structure
JP2018168789A (en) Windmill blade
JP2009074421A (en) Blade material for axial flow type windmill
EP4394176A1 (en) Reinforced core material for fan blade and preparation method therefor
JP6731875B2 (en) Fiber reinforced composite
JP2021112849A (en) Laminate and method for producing laminate
KR101237614B1 (en) Zipper lock type silicone bag for molding composite materials
JP2000168777A (en) Pallet
JP2017065181A (en) Method for producing fiber-reinforced sheet and method for producing structure
JP2000302062A (en) Straightening plate
JP4353599B2 (en) Rotating body
JPH11311101A (en) Fiber reinforced plastic blade structure
CN118269361A (en) Reinforcing method of core material, sandwich structure, fan blade and wind generating set
JPH0976385A (en) Manufacture of fiber-reinforced composite material with connecting hole

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210405

R150 Certificate of patent or registration of utility model

Ref document number: 6865084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150